code
stringlengths
75
104k
docstring
stringlengths
1
46.9k
text
stringlengths
164
112k
def _getrsyncoptions(self): """Get options to be passed for rsync.""" ignores = list(self.DEFAULT_IGNORES) ignores += self.config.option.rsyncignore ignores += self.config.getini("rsyncignore") return {"ignores": ignores, "verbose": self.config.option.verbose}
Get options to be passed for rsync.
Below is the the instruction that describes the task: ### Input: Get options to be passed for rsync. ### Response: def _getrsyncoptions(self): """Get options to be passed for rsync.""" ignores = list(self.DEFAULT_IGNORES) ignores += self.config.option.rsyncignore ignores += self.config.getini("rsyncignore") return {"ignores": ignores, "verbose": self.config.option.verbose}
def available(): """Returns True if a deep water model can be built, or False otherwise.""" builder_json = h2o.api("GET /3/ModelBuilders", data={"algo": "deepwater"}) visibility = builder_json["model_builders"]["deepwater"]["visibility"] if visibility == "Experimental": print("Cannot build a Deep Water model - no backend found.") return False else: return True
Returns True if a deep water model can be built, or False otherwise.
Below is the the instruction that describes the task: ### Input: Returns True if a deep water model can be built, or False otherwise. ### Response: def available(): """Returns True if a deep water model can be built, or False otherwise.""" builder_json = h2o.api("GET /3/ModelBuilders", data={"algo": "deepwater"}) visibility = builder_json["model_builders"]["deepwater"]["visibility"] if visibility == "Experimental": print("Cannot build a Deep Water model - no backend found.") return False else: return True
def describe(self): '''Provide a dictionary with information describing itself.''' description = { 'description': self._description, 'type': self.name, } description.update(self.extra_params) return description
Provide a dictionary with information describing itself.
Below is the the instruction that describes the task: ### Input: Provide a dictionary with information describing itself. ### Response: def describe(self): '''Provide a dictionary with information describing itself.''' description = { 'description': self._description, 'type': self.name, } description.update(self.extra_params) return description
def read_locked(*args, **kwargs): """Acquires & releases a read lock around call into decorated method. NOTE(harlowja): if no attribute name is provided then by default the attribute named '_lock' is looked for (this attribute is expected to be a :py:class:`.ReaderWriterLock`) in the instance object this decorator is attached to. """ def decorator(f): attr_name = kwargs.get('lock', '_lock') @six.wraps(f) def wrapper(self, *args, **kwargs): rw_lock = getattr(self, attr_name) with rw_lock.read_lock(): return f(self, *args, **kwargs) return wrapper # This is needed to handle when the decorator has args or the decorator # doesn't have args, python is rather weird here... if kwargs or not args: return decorator else: if len(args) == 1: return decorator(args[0]) else: return decorator
Acquires & releases a read lock around call into decorated method. NOTE(harlowja): if no attribute name is provided then by default the attribute named '_lock' is looked for (this attribute is expected to be a :py:class:`.ReaderWriterLock`) in the instance object this decorator is attached to.
Below is the the instruction that describes the task: ### Input: Acquires & releases a read lock around call into decorated method. NOTE(harlowja): if no attribute name is provided then by default the attribute named '_lock' is looked for (this attribute is expected to be a :py:class:`.ReaderWriterLock`) in the instance object this decorator is attached to. ### Response: def read_locked(*args, **kwargs): """Acquires & releases a read lock around call into decorated method. NOTE(harlowja): if no attribute name is provided then by default the attribute named '_lock' is looked for (this attribute is expected to be a :py:class:`.ReaderWriterLock`) in the instance object this decorator is attached to. """ def decorator(f): attr_name = kwargs.get('lock', '_lock') @six.wraps(f) def wrapper(self, *args, **kwargs): rw_lock = getattr(self, attr_name) with rw_lock.read_lock(): return f(self, *args, **kwargs) return wrapper # This is needed to handle when the decorator has args or the decorator # doesn't have args, python is rather weird here... if kwargs or not args: return decorator else: if len(args) == 1: return decorator(args[0]) else: return decorator
def autosave_all(self): """Autosave all opened files.""" for index in range(self.stack.get_stack_count()): self.autosave(index)
Autosave all opened files.
Below is the the instruction that describes the task: ### Input: Autosave all opened files. ### Response: def autosave_all(self): """Autosave all opened files.""" for index in range(self.stack.get_stack_count()): self.autosave(index)
def access_required(config=None): """ Authenticates a HTTP method handler based on a custom set of arguments """ def _access_required(http_method_handler): def secure_http_method_handler(self, *args, **kwargs): # authentication context must be set if not self.__provider_config__.authentication: _message = "Service available to authenticated users only, no auth context provider set in handler" authentication_error = prestans.exception.AuthenticationError(_message) authentication_error.request = self.request raise authentication_error # check for access by calling is_authorized_user if not self.__provider_config__.authentication.is_authorized_user(config): _message = "Service available to authorized users only" authorization_error = prestans.exception.AuthorizationError(_message) authorization_error.request = self.request raise authorization_error http_method_handler(self, *args, **kwargs) return wraps(http_method_handler)(secure_http_method_handler) return _access_required
Authenticates a HTTP method handler based on a custom set of arguments
Below is the the instruction that describes the task: ### Input: Authenticates a HTTP method handler based on a custom set of arguments ### Response: def access_required(config=None): """ Authenticates a HTTP method handler based on a custom set of arguments """ def _access_required(http_method_handler): def secure_http_method_handler(self, *args, **kwargs): # authentication context must be set if not self.__provider_config__.authentication: _message = "Service available to authenticated users only, no auth context provider set in handler" authentication_error = prestans.exception.AuthenticationError(_message) authentication_error.request = self.request raise authentication_error # check for access by calling is_authorized_user if not self.__provider_config__.authentication.is_authorized_user(config): _message = "Service available to authorized users only" authorization_error = prestans.exception.AuthorizationError(_message) authorization_error.request = self.request raise authorization_error http_method_handler(self, *args, **kwargs) return wraps(http_method_handler)(secure_http_method_handler) return _access_required
def connection_id_to_public_key(self, connection_id): """ Get stored public key for a connection. """ with self._connections_lock: try: connection_info = self._connections[connection_id] return connection_info.public_key except KeyError: return None
Get stored public key for a connection.
Below is the the instruction that describes the task: ### Input: Get stored public key for a connection. ### Response: def connection_id_to_public_key(self, connection_id): """ Get stored public key for a connection. """ with self._connections_lock: try: connection_info = self._connections[connection_id] return connection_info.public_key except KeyError: return None
def get_pages(url): """ Return the 'pages' from the starting url Technically, look for the 'next 50' link, yield and download it, repeat """ while True: yield url doc = html.parse(url).find("body") links = [a for a in doc.findall(".//a") if a.text and a.text.startswith("next ")] if not links: break url = urljoin(url, links[0].get('href'))
Return the 'pages' from the starting url Technically, look for the 'next 50' link, yield and download it, repeat
Below is the the instruction that describes the task: ### Input: Return the 'pages' from the starting url Technically, look for the 'next 50' link, yield and download it, repeat ### Response: def get_pages(url): """ Return the 'pages' from the starting url Technically, look for the 'next 50' link, yield and download it, repeat """ while True: yield url doc = html.parse(url).find("body") links = [a for a in doc.findall(".//a") if a.text and a.text.startswith("next ")] if not links: break url = urljoin(url, links[0].get('href'))
def debug(self, i: int=None) -> str: """ Returns a debug message """ head = "[" + colors.yellow("debug") + "]" if i is not None: head = str(i) + " " + head return head
Returns a debug message
Below is the the instruction that describes the task: ### Input: Returns a debug message ### Response: def debug(self, i: int=None) -> str: """ Returns a debug message """ head = "[" + colors.yellow("debug") + "]" if i is not None: head = str(i) + " " + head return head
def _insert_additionals(self, fmtos, seen=None): """ Insert additional formatoptions into `fmtos`. This method inserts those formatoptions into `fmtos` that are required because one of the following criteria is fullfilled: 1. The :attr:`replot` attribute is True 2. Any formatoption with START priority is in `fmtos` 3. A dependency of one formatoption is in `fmtos` Parameters ---------- fmtos: list The list of formatoptions that shall be updated seen: set The formatoption keys that shall not be included. If None, all formatoptions in `fmtos` are used Returns ------- fmtos The initial `fmtos` plus further formatoptions Notes ----- `fmtos` and `seen` are modified in place (except that any formatoption in the initial `fmtos` has :attr:`~Formatoption.requires_clearing` attribute set to True)""" def get_dependencies(fmto): if fmto is None: return [] return fmto.dependencies + list(chain(*map( lambda key: get_dependencies(getattr(self, key, None)), fmto.dependencies))) seen = seen or {fmto.key for fmto in fmtos} keys = {fmto.key for fmto in fmtos} self.replot = self.replot or any( fmto.requires_replot for fmto in fmtos) if self.replot or any(fmto.priority >= START for fmto in fmtos): self.replot = True self.plot_data = self.data new_fmtos = dict((f.key, f) for f in self._fmtos if ((f not in fmtos and is_data_dependent( f, self.data)))) seen.update(new_fmtos) keys.update(new_fmtos) fmtos += list(new_fmtos.values()) # insert the formatoptions that have to be updated if the plot is # changed if any(fmto.priority >= BEFOREPLOTTING for fmto in fmtos): new_fmtos = dict((f.key, f) for f in self._fmtos if ((f not in fmtos and f.update_after_plot))) fmtos += list(new_fmtos.values()) for fmto in set(self._fmtos).difference(fmtos): all_dependencies = get_dependencies(fmto) if keys.intersection(all_dependencies): fmtos.append(fmto) if any(fmto.requires_clearing for fmto in fmtos): self.cleared = True return list(self._fmtos) return fmtos
Insert additional formatoptions into `fmtos`. This method inserts those formatoptions into `fmtos` that are required because one of the following criteria is fullfilled: 1. The :attr:`replot` attribute is True 2. Any formatoption with START priority is in `fmtos` 3. A dependency of one formatoption is in `fmtos` Parameters ---------- fmtos: list The list of formatoptions that shall be updated seen: set The formatoption keys that shall not be included. If None, all formatoptions in `fmtos` are used Returns ------- fmtos The initial `fmtos` plus further formatoptions Notes ----- `fmtos` and `seen` are modified in place (except that any formatoption in the initial `fmtos` has :attr:`~Formatoption.requires_clearing` attribute set to True)
Below is the the instruction that describes the task: ### Input: Insert additional formatoptions into `fmtos`. This method inserts those formatoptions into `fmtos` that are required because one of the following criteria is fullfilled: 1. The :attr:`replot` attribute is True 2. Any formatoption with START priority is in `fmtos` 3. A dependency of one formatoption is in `fmtos` Parameters ---------- fmtos: list The list of formatoptions that shall be updated seen: set The formatoption keys that shall not be included. If None, all formatoptions in `fmtos` are used Returns ------- fmtos The initial `fmtos` plus further formatoptions Notes ----- `fmtos` and `seen` are modified in place (except that any formatoption in the initial `fmtos` has :attr:`~Formatoption.requires_clearing` attribute set to True) ### Response: def _insert_additionals(self, fmtos, seen=None): """ Insert additional formatoptions into `fmtos`. This method inserts those formatoptions into `fmtos` that are required because one of the following criteria is fullfilled: 1. The :attr:`replot` attribute is True 2. Any formatoption with START priority is in `fmtos` 3. A dependency of one formatoption is in `fmtos` Parameters ---------- fmtos: list The list of formatoptions that shall be updated seen: set The formatoption keys that shall not be included. If None, all formatoptions in `fmtos` are used Returns ------- fmtos The initial `fmtos` plus further formatoptions Notes ----- `fmtos` and `seen` are modified in place (except that any formatoption in the initial `fmtos` has :attr:`~Formatoption.requires_clearing` attribute set to True)""" def get_dependencies(fmto): if fmto is None: return [] return fmto.dependencies + list(chain(*map( lambda key: get_dependencies(getattr(self, key, None)), fmto.dependencies))) seen = seen or {fmto.key for fmto in fmtos} keys = {fmto.key for fmto in fmtos} self.replot = self.replot or any( fmto.requires_replot for fmto in fmtos) if self.replot or any(fmto.priority >= START for fmto in fmtos): self.replot = True self.plot_data = self.data new_fmtos = dict((f.key, f) for f in self._fmtos if ((f not in fmtos and is_data_dependent( f, self.data)))) seen.update(new_fmtos) keys.update(new_fmtos) fmtos += list(new_fmtos.values()) # insert the formatoptions that have to be updated if the plot is # changed if any(fmto.priority >= BEFOREPLOTTING for fmto in fmtos): new_fmtos = dict((f.key, f) for f in self._fmtos if ((f not in fmtos and f.update_after_plot))) fmtos += list(new_fmtos.values()) for fmto in set(self._fmtos).difference(fmtos): all_dependencies = get_dependencies(fmto) if keys.intersection(all_dependencies): fmtos.append(fmto) if any(fmto.requires_clearing for fmto in fmtos): self.cleared = True return list(self._fmtos) return fmtos
def _add_graph_level(graph, level, parent_ids, names, scores, normalized_scores, include_pad): """Adds a level to the passed graph""" for i, parent_id in enumerate(parent_ids): if not include_pad and names[i] == PAD_TOKEN: continue new_node = (level, i) parent_node = (level - 1, parent_id) raw_score = '%.3f' % float(scores[i]) if scores[i] is not None else '-inf' norm_score = '%.3f' % float(normalized_scores[i]) if normalized_scores[i] is not None else '-inf' graph.add_node(new_node) graph.node[new_node]["name"] = names[i] graph.node[new_node]["score"] = "[RAW] {}".format(raw_score) graph.node[new_node]["norm_score"] = "[NORM] {}".format(norm_score) graph.node[new_node]["size"] = 100 # Add an edge to the parent graph.add_edge(parent_node, new_node)
Adds a level to the passed graph
Below is the the instruction that describes the task: ### Input: Adds a level to the passed graph ### Response: def _add_graph_level(graph, level, parent_ids, names, scores, normalized_scores, include_pad): """Adds a level to the passed graph""" for i, parent_id in enumerate(parent_ids): if not include_pad and names[i] == PAD_TOKEN: continue new_node = (level, i) parent_node = (level - 1, parent_id) raw_score = '%.3f' % float(scores[i]) if scores[i] is not None else '-inf' norm_score = '%.3f' % float(normalized_scores[i]) if normalized_scores[i] is not None else '-inf' graph.add_node(new_node) graph.node[new_node]["name"] = names[i] graph.node[new_node]["score"] = "[RAW] {}".format(raw_score) graph.node[new_node]["norm_score"] = "[NORM] {}".format(norm_score) graph.node[new_node]["size"] = 100 # Add an edge to the parent graph.add_edge(parent_node, new_node)
def set_property(self, key, value): '''Set a new (or updating existing) key value pair. Args: key: A string containing the key namespace value: A str, int, or bool value Raises: NotImplementedError: an unsupported value-type was provided ''' value_type = type(value) if value_type not in [str, int, bool]: raise NotImplementedError( 'Only string, integer, and boolean properties are implemented') key_object = self.properties.findChild(name='key', text=key) # Key (and value, if it's a valid property list) don't exist if key_object is None: key_object = self.soup.new_tag('key') key_object.string = key self.properties.append(key_object) value_object = self.soup.new_tag( {str: 'string', int: 'integer', bool: str(value).lower()}[ value_type]) if value_type is not bool: value_object.string = str(value) self.properties.append(value_object) return # Key (and value, if it's a valid property list) exist # Eh, just remove the key+value tags from the tree and re-add them # (with the new value) value_object = key_object.find_next_sibling() key_object.decompose() value_object.decompose() self.set_property(key, value)
Set a new (or updating existing) key value pair. Args: key: A string containing the key namespace value: A str, int, or bool value Raises: NotImplementedError: an unsupported value-type was provided
Below is the the instruction that describes the task: ### Input: Set a new (or updating existing) key value pair. Args: key: A string containing the key namespace value: A str, int, or bool value Raises: NotImplementedError: an unsupported value-type was provided ### Response: def set_property(self, key, value): '''Set a new (or updating existing) key value pair. Args: key: A string containing the key namespace value: A str, int, or bool value Raises: NotImplementedError: an unsupported value-type was provided ''' value_type = type(value) if value_type not in [str, int, bool]: raise NotImplementedError( 'Only string, integer, and boolean properties are implemented') key_object = self.properties.findChild(name='key', text=key) # Key (and value, if it's a valid property list) don't exist if key_object is None: key_object = self.soup.new_tag('key') key_object.string = key self.properties.append(key_object) value_object = self.soup.new_tag( {str: 'string', int: 'integer', bool: str(value).lower()}[ value_type]) if value_type is not bool: value_object.string = str(value) self.properties.append(value_object) return # Key (and value, if it's a valid property list) exist # Eh, just remove the key+value tags from the tree and re-add them # (with the new value) value_object = key_object.find_next_sibling() key_object.decompose() value_object.decompose() self.set_property(key, value)
def columnOptions( self, tableType ): """ Returns the column options for the inputed table type. :param tableType | <subclass of orb.Table> :return [<str>, ..] """ if ( not tableType ): return [] schema = tableType.schema() return map(lambda x: x.name(), schema.columns())
Returns the column options for the inputed table type. :param tableType | <subclass of orb.Table> :return [<str>, ..]
Below is the the instruction that describes the task: ### Input: Returns the column options for the inputed table type. :param tableType | <subclass of orb.Table> :return [<str>, ..] ### Response: def columnOptions( self, tableType ): """ Returns the column options for the inputed table type. :param tableType | <subclass of orb.Table> :return [<str>, ..] """ if ( not tableType ): return [] schema = tableType.schema() return map(lambda x: x.name(), schema.columns())
def _convert_priority(p_priority): """ Converts todo.txt priority to an iCalendar priority (RFC 2445). Priority A gets priority 1, priority B gets priority 5 and priority C-F get priorities 6-9. This scheme makes sure that clients that use "high", "medium" and "low" show the correct priority. """ result = 0 prio_map = { 'A': 1, 'B': 5, 'C': 6, 'D': 7, 'E': 8, 'F': 9, } try: result = prio_map[p_priority] except KeyError: if p_priority: # todos with no priority have priority None, and result of this # function will be 0. For all other letters, return 9 (lowest # priority in RFC 2445). result = 9 return result
Converts todo.txt priority to an iCalendar priority (RFC 2445). Priority A gets priority 1, priority B gets priority 5 and priority C-F get priorities 6-9. This scheme makes sure that clients that use "high", "medium" and "low" show the correct priority.
Below is the the instruction that describes the task: ### Input: Converts todo.txt priority to an iCalendar priority (RFC 2445). Priority A gets priority 1, priority B gets priority 5 and priority C-F get priorities 6-9. This scheme makes sure that clients that use "high", "medium" and "low" show the correct priority. ### Response: def _convert_priority(p_priority): """ Converts todo.txt priority to an iCalendar priority (RFC 2445). Priority A gets priority 1, priority B gets priority 5 and priority C-F get priorities 6-9. This scheme makes sure that clients that use "high", "medium" and "low" show the correct priority. """ result = 0 prio_map = { 'A': 1, 'B': 5, 'C': 6, 'D': 7, 'E': 8, 'F': 9, } try: result = prio_map[p_priority] except KeyError: if p_priority: # todos with no priority have priority None, and result of this # function will be 0. For all other letters, return 9 (lowest # priority in RFC 2445). result = 9 return result
def getOffsetFromRva(self, rva): """ Converts an offset to an RVA. @type rva: int @param rva: The RVA to be converted. @rtype: int @return: An integer value representing an offset in the PE file. """ offset = -1 s = self.getSectionByRva(rva) if s != offset: offset = (rva - self.sectionHeaders[s].virtualAddress.value) + self.sectionHeaders[s].pointerToRawData.value else: offset = rva return offset
Converts an offset to an RVA. @type rva: int @param rva: The RVA to be converted. @rtype: int @return: An integer value representing an offset in the PE file.
Below is the the instruction that describes the task: ### Input: Converts an offset to an RVA. @type rva: int @param rva: The RVA to be converted. @rtype: int @return: An integer value representing an offset in the PE file. ### Response: def getOffsetFromRva(self, rva): """ Converts an offset to an RVA. @type rva: int @param rva: The RVA to be converted. @rtype: int @return: An integer value representing an offset in the PE file. """ offset = -1 s = self.getSectionByRva(rva) if s != offset: offset = (rva - self.sectionHeaders[s].virtualAddress.value) + self.sectionHeaders[s].pointerToRawData.value else: offset = rva return offset
def extract_data(self, page): """Extract the AppNexus object or list of objects from the response""" response_keys = set(page.keys()) uncommon_keys = response_keys - self.common_keys for possible_data_key in uncommon_keys: element = page[possible_data_key] if isinstance(element, dict): return [self.representation(self.client, self.service_name, element)] if isinstance(element, list): return [self.representation(self.client, self.service_name, x) for x in element]
Extract the AppNexus object or list of objects from the response
Below is the the instruction that describes the task: ### Input: Extract the AppNexus object or list of objects from the response ### Response: def extract_data(self, page): """Extract the AppNexus object or list of objects from the response""" response_keys = set(page.keys()) uncommon_keys = response_keys - self.common_keys for possible_data_key in uncommon_keys: element = page[possible_data_key] if isinstance(element, dict): return [self.representation(self.client, self.service_name, element)] if isinstance(element, list): return [self.representation(self.client, self.service_name, x) for x in element]
def dumps(post, handler=None, **kwargs): """ Serialize a :py:class:`post <frontmatter.Post>` to a string and return text. This always returns unicode text, which can then be encoded. Passing ``handler`` will change how metadata is turned into text. A handler passed as an argument will override ``post.handler``, with :py:class:`YAMLHandler <frontmatter.default_handlers.YAMLHandler>` used as a default. :: >>> print(frontmatter.dumps(post)) --- excerpt: tl;dr layout: post title: Hello, world! --- Well, hello there, world. """ if handler is None: handler = getattr(post, 'handler', None) or YAMLHandler() start_delimiter = kwargs.pop('start_delimiter', handler.START_DELIMITER) end_delimiter = kwargs.pop('end_delimiter', handler.END_DELIMITER) metadata = handler.export(post.metadata, **kwargs) return POST_TEMPLATE.format( metadata=metadata, content=post.content, start_delimiter=start_delimiter, end_delimiter=end_delimiter).strip()
Serialize a :py:class:`post <frontmatter.Post>` to a string and return text. This always returns unicode text, which can then be encoded. Passing ``handler`` will change how metadata is turned into text. A handler passed as an argument will override ``post.handler``, with :py:class:`YAMLHandler <frontmatter.default_handlers.YAMLHandler>` used as a default. :: >>> print(frontmatter.dumps(post)) --- excerpt: tl;dr layout: post title: Hello, world! --- Well, hello there, world.
Below is the the instruction that describes the task: ### Input: Serialize a :py:class:`post <frontmatter.Post>` to a string and return text. This always returns unicode text, which can then be encoded. Passing ``handler`` will change how metadata is turned into text. A handler passed as an argument will override ``post.handler``, with :py:class:`YAMLHandler <frontmatter.default_handlers.YAMLHandler>` used as a default. :: >>> print(frontmatter.dumps(post)) --- excerpt: tl;dr layout: post title: Hello, world! --- Well, hello there, world. ### Response: def dumps(post, handler=None, **kwargs): """ Serialize a :py:class:`post <frontmatter.Post>` to a string and return text. This always returns unicode text, which can then be encoded. Passing ``handler`` will change how metadata is turned into text. A handler passed as an argument will override ``post.handler``, with :py:class:`YAMLHandler <frontmatter.default_handlers.YAMLHandler>` used as a default. :: >>> print(frontmatter.dumps(post)) --- excerpt: tl;dr layout: post title: Hello, world! --- Well, hello there, world. """ if handler is None: handler = getattr(post, 'handler', None) or YAMLHandler() start_delimiter = kwargs.pop('start_delimiter', handler.START_DELIMITER) end_delimiter = kwargs.pop('end_delimiter', handler.END_DELIMITER) metadata = handler.export(post.metadata, **kwargs) return POST_TEMPLATE.format( metadata=metadata, content=post.content, start_delimiter=start_delimiter, end_delimiter=end_delimiter).strip()
def get_document_length(self, document): """ Returns the number of terms found within the specified document. """ if document in self._documents: return self._documents[document] else: raise IndexError(DOCUMENT_DOES_NOT_EXIST)
Returns the number of terms found within the specified document.
Below is the the instruction that describes the task: ### Input: Returns the number of terms found within the specified document. ### Response: def get_document_length(self, document): """ Returns the number of terms found within the specified document. """ if document in self._documents: return self._documents[document] else: raise IndexError(DOCUMENT_DOES_NOT_EXIST)
def hicexplorer_basic_statistics(self): """Create the general statistics for HiCExplorer.""" data = {} for file in self.mod_data: max_distance_key = 'Max rest. site distance' total_pairs = self.mod_data[file]['Pairs considered'][0] try: self.mod_data[file][max_distance_key][0] except KeyError: max_distance_key = 'Max library insert size' data_ = { 'Pairs considered': self.mod_data[file]['Pairs considered'][0], 'Pairs used': self.mod_data[file]['Pairs used'][0] / total_pairs, 'Mapped': self.mod_data[file]['One mate unmapped'][0] / total_pairs, 'Min rest. site distance': self.mod_data[file]['Min rest. site distance'][0], max_distance_key: self.mod_data[file][max_distance_key][0], } data[self.mod_data[file]['File'][0]] = data_ headers = OrderedDict() headers['Pairs considered'] = { 'title': '{} Pairs'.format(config.read_count_prefix), 'description': 'Total number of read pairs ({})'.format(config.read_count_desc), 'shared_key': 'read_count' } headers['Pairs used'] = { 'title': '% Used pairs', 'max': 100, 'min': 0, 'modify': lambda x: x * 100, 'suffix': '%' } headers['Mapped'] = { 'title': '% Mapped', 'max': 100, 'min': 0, 'modify': lambda x: (1 - x) * 100, 'scale': 'RdYlGn', 'suffix': '%' } headers['Min rest. site distance'] = { 'title': 'Min RE dist', 'description': 'Minimum restriction site distance (bp)', 'format': '{:.0f}', 'suffix': ' bp' } headers[max_distance_key] = { 'title': 'Max RE dist', 'description': max_distance_key + ' (bp)', 'format': '{:.0f}', 'suffix': ' bp' } self.general_stats_addcols(data, headers)
Create the general statistics for HiCExplorer.
Below is the the instruction that describes the task: ### Input: Create the general statistics for HiCExplorer. ### Response: def hicexplorer_basic_statistics(self): """Create the general statistics for HiCExplorer.""" data = {} for file in self.mod_data: max_distance_key = 'Max rest. site distance' total_pairs = self.mod_data[file]['Pairs considered'][0] try: self.mod_data[file][max_distance_key][0] except KeyError: max_distance_key = 'Max library insert size' data_ = { 'Pairs considered': self.mod_data[file]['Pairs considered'][0], 'Pairs used': self.mod_data[file]['Pairs used'][0] / total_pairs, 'Mapped': self.mod_data[file]['One mate unmapped'][0] / total_pairs, 'Min rest. site distance': self.mod_data[file]['Min rest. site distance'][0], max_distance_key: self.mod_data[file][max_distance_key][0], } data[self.mod_data[file]['File'][0]] = data_ headers = OrderedDict() headers['Pairs considered'] = { 'title': '{} Pairs'.format(config.read_count_prefix), 'description': 'Total number of read pairs ({})'.format(config.read_count_desc), 'shared_key': 'read_count' } headers['Pairs used'] = { 'title': '% Used pairs', 'max': 100, 'min': 0, 'modify': lambda x: x * 100, 'suffix': '%' } headers['Mapped'] = { 'title': '% Mapped', 'max': 100, 'min': 0, 'modify': lambda x: (1 - x) * 100, 'scale': 'RdYlGn', 'suffix': '%' } headers['Min rest. site distance'] = { 'title': 'Min RE dist', 'description': 'Minimum restriction site distance (bp)', 'format': '{:.0f}', 'suffix': ' bp' } headers[max_distance_key] = { 'title': 'Max RE dist', 'description': max_distance_key + ' (bp)', 'format': '{:.0f}', 'suffix': ' bp' } self.general_stats_addcols(data, headers)
def pad_length(x, d): """Return a vector appropriate to a dimensional space, using an input vector as a prompt depending on its type: - If the input is a vector, return that vector. - If the input is a scalar, return a vector filled with that value. Useful when a function expects an array specifying values along each axis, but wants to also accept a scalar value in case the length is the same in all directions. Parameters ---------- x: float or array-like The input parameter that may need padding. d: int The dimensional space to make `x` appropriate for. Returns ------- x_pad: array-like, shape (d,) The padded parameter. """ try: x[0] except TypeError: x = d * [x] return np.array(x)
Return a vector appropriate to a dimensional space, using an input vector as a prompt depending on its type: - If the input is a vector, return that vector. - If the input is a scalar, return a vector filled with that value. Useful when a function expects an array specifying values along each axis, but wants to also accept a scalar value in case the length is the same in all directions. Parameters ---------- x: float or array-like The input parameter that may need padding. d: int The dimensional space to make `x` appropriate for. Returns ------- x_pad: array-like, shape (d,) The padded parameter.
Below is the the instruction that describes the task: ### Input: Return a vector appropriate to a dimensional space, using an input vector as a prompt depending on its type: - If the input is a vector, return that vector. - If the input is a scalar, return a vector filled with that value. Useful when a function expects an array specifying values along each axis, but wants to also accept a scalar value in case the length is the same in all directions. Parameters ---------- x: float or array-like The input parameter that may need padding. d: int The dimensional space to make `x` appropriate for. Returns ------- x_pad: array-like, shape (d,) The padded parameter. ### Response: def pad_length(x, d): """Return a vector appropriate to a dimensional space, using an input vector as a prompt depending on its type: - If the input is a vector, return that vector. - If the input is a scalar, return a vector filled with that value. Useful when a function expects an array specifying values along each axis, but wants to also accept a scalar value in case the length is the same in all directions. Parameters ---------- x: float or array-like The input parameter that may need padding. d: int The dimensional space to make `x` appropriate for. Returns ------- x_pad: array-like, shape (d,) The padded parameter. """ try: x[0] except TypeError: x = d * [x] return np.array(x)
def doLog(self, level, where, format, *args, **kwargs): """ Log a message at the given level, with the possibility of going higher up in the stack. @param level: log level @type level: int @param where: how many frames to go back from the last log frame; or a function (to log for a future call) @type where: int (negative), or function @param kwargs: a dict of pre-calculated values from a previous doLog call @return: a dict of calculated variables, to be reused in a call to doLog that should show the same location @rtype: dict """ if _canShortcutLogging(self.logCategory, level): return {} args = self.logFunction(*args) return doLog(level, self.logObjectName(), self.logCategory, format, args, where=where, **kwargs)
Log a message at the given level, with the possibility of going higher up in the stack. @param level: log level @type level: int @param where: how many frames to go back from the last log frame; or a function (to log for a future call) @type where: int (negative), or function @param kwargs: a dict of pre-calculated values from a previous doLog call @return: a dict of calculated variables, to be reused in a call to doLog that should show the same location @rtype: dict
Below is the the instruction that describes the task: ### Input: Log a message at the given level, with the possibility of going higher up in the stack. @param level: log level @type level: int @param where: how many frames to go back from the last log frame; or a function (to log for a future call) @type where: int (negative), or function @param kwargs: a dict of pre-calculated values from a previous doLog call @return: a dict of calculated variables, to be reused in a call to doLog that should show the same location @rtype: dict ### Response: def doLog(self, level, where, format, *args, **kwargs): """ Log a message at the given level, with the possibility of going higher up in the stack. @param level: log level @type level: int @param where: how many frames to go back from the last log frame; or a function (to log for a future call) @type where: int (negative), or function @param kwargs: a dict of pre-calculated values from a previous doLog call @return: a dict of calculated variables, to be reused in a call to doLog that should show the same location @rtype: dict """ if _canShortcutLogging(self.logCategory, level): return {} args = self.logFunction(*args) return doLog(level, self.logObjectName(), self.logCategory, format, args, where=where, **kwargs)
def get_all(cls, include_disabled=True): """Returns a list of all accounts of a given type Args: include_disabled (`bool`): Include disabled accounts. Default: `True` Returns: list of account objects """ if cls == BaseAccount: raise InquisitorError('get_all on BaseAccount is not supported') account_type_id = db.AccountType.find_one(account_type=cls.account_type).account_type_id qry = db.Account.order_by(desc(Account.enabled), Account.account_type_id, Account.account_name) if not include_disabled: qry = qry.filter(Account.enabled == 1) accounts = qry.find(Account.account_type_id == account_type_id) return {res.account_id: cls(res) for res in accounts}
Returns a list of all accounts of a given type Args: include_disabled (`bool`): Include disabled accounts. Default: `True` Returns: list of account objects
Below is the the instruction that describes the task: ### Input: Returns a list of all accounts of a given type Args: include_disabled (`bool`): Include disabled accounts. Default: `True` Returns: list of account objects ### Response: def get_all(cls, include_disabled=True): """Returns a list of all accounts of a given type Args: include_disabled (`bool`): Include disabled accounts. Default: `True` Returns: list of account objects """ if cls == BaseAccount: raise InquisitorError('get_all on BaseAccount is not supported') account_type_id = db.AccountType.find_one(account_type=cls.account_type).account_type_id qry = db.Account.order_by(desc(Account.enabled), Account.account_type_id, Account.account_name) if not include_disabled: qry = qry.filter(Account.enabled == 1) accounts = qry.find(Account.account_type_id == account_type_id) return {res.account_id: cls(res) for res in accounts}
def call_api(self, resource_path, method, path_params=None, query_params=None, header_params=None, body=None, post_params=None, files=None, response_type=None, auth_settings=None, asynchronous=None, _return_http_data_only=None, collection_formats=None, _preload_content=True, _request_timeout=None): """ Makes the HTTP request (synchronous) and return the deserialized data. To make an async request, set the asynchronous parameter. :param resource_path: Path to method endpoint. :param method: Method to call. :param path_params: Path parameters in the url. :param query_params: Query parameters in the url. :param header_params: Header parameters to be placed in the request header. :param body: Request body. :param post_params dict: Request post form parameters, for `application/x-www-form-urlencoded`, `multipart/form-data`. :param auth_settings list: Auth Settings names for the request. :param response: Response data type. :param files dict: key -> filename, value -> filepath, for `multipart/form-data`. :param asynchronous bool: execute request asynchronously :param _return_http_data_only: response data without head status code and headers :param collection_formats: dict of collection formats for path, query, header, and post parameters. :param _preload_content: if False, the urllib3.HTTPResponse object will be returned without reading/decoding response data. Default is True. :param _request_timeout: timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts. :return: If asynchronous parameter is True, the request will be called asynchronously. The method will return the request thread. If parameter asynchronous is False or missing, then the method will return the response directly. """ if not asynchronous: return self.__call_api(resource_path, method, path_params, query_params, header_params, body, post_params, files, response_type, auth_settings, _return_http_data_only, collection_formats, _preload_content, _request_timeout) else: thread = self.pool.apply_async(self.__call_api, (resource_path, method, path_params, query_params, header_params, body, post_params, files, response_type, auth_settings, _return_http_data_only, collection_formats, _preload_content, _request_timeout)) return thread
Makes the HTTP request (synchronous) and return the deserialized data. To make an async request, set the asynchronous parameter. :param resource_path: Path to method endpoint. :param method: Method to call. :param path_params: Path parameters in the url. :param query_params: Query parameters in the url. :param header_params: Header parameters to be placed in the request header. :param body: Request body. :param post_params dict: Request post form parameters, for `application/x-www-form-urlencoded`, `multipart/form-data`. :param auth_settings list: Auth Settings names for the request. :param response: Response data type. :param files dict: key -> filename, value -> filepath, for `multipart/form-data`. :param asynchronous bool: execute request asynchronously :param _return_http_data_only: response data without head status code and headers :param collection_formats: dict of collection formats for path, query, header, and post parameters. :param _preload_content: if False, the urllib3.HTTPResponse object will be returned without reading/decoding response data. Default is True. :param _request_timeout: timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts. :return: If asynchronous parameter is True, the request will be called asynchronously. The method will return the request thread. If parameter asynchronous is False or missing, then the method will return the response directly.
Below is the the instruction that describes the task: ### Input: Makes the HTTP request (synchronous) and return the deserialized data. To make an async request, set the asynchronous parameter. :param resource_path: Path to method endpoint. :param method: Method to call. :param path_params: Path parameters in the url. :param query_params: Query parameters in the url. :param header_params: Header parameters to be placed in the request header. :param body: Request body. :param post_params dict: Request post form parameters, for `application/x-www-form-urlencoded`, `multipart/form-data`. :param auth_settings list: Auth Settings names for the request. :param response: Response data type. :param files dict: key -> filename, value -> filepath, for `multipart/form-data`. :param asynchronous bool: execute request asynchronously :param _return_http_data_only: response data without head status code and headers :param collection_formats: dict of collection formats for path, query, header, and post parameters. :param _preload_content: if False, the urllib3.HTTPResponse object will be returned without reading/decoding response data. Default is True. :param _request_timeout: timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts. :return: If asynchronous parameter is True, the request will be called asynchronously. The method will return the request thread. If parameter asynchronous is False or missing, then the method will return the response directly. ### Response: def call_api(self, resource_path, method, path_params=None, query_params=None, header_params=None, body=None, post_params=None, files=None, response_type=None, auth_settings=None, asynchronous=None, _return_http_data_only=None, collection_formats=None, _preload_content=True, _request_timeout=None): """ Makes the HTTP request (synchronous) and return the deserialized data. To make an async request, set the asynchronous parameter. :param resource_path: Path to method endpoint. :param method: Method to call. :param path_params: Path parameters in the url. :param query_params: Query parameters in the url. :param header_params: Header parameters to be placed in the request header. :param body: Request body. :param post_params dict: Request post form parameters, for `application/x-www-form-urlencoded`, `multipart/form-data`. :param auth_settings list: Auth Settings names for the request. :param response: Response data type. :param files dict: key -> filename, value -> filepath, for `multipart/form-data`. :param asynchronous bool: execute request asynchronously :param _return_http_data_only: response data without head status code and headers :param collection_formats: dict of collection formats for path, query, header, and post parameters. :param _preload_content: if False, the urllib3.HTTPResponse object will be returned without reading/decoding response data. Default is True. :param _request_timeout: timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts. :return: If asynchronous parameter is True, the request will be called asynchronously. The method will return the request thread. If parameter asynchronous is False or missing, then the method will return the response directly. """ if not asynchronous: return self.__call_api(resource_path, method, path_params, query_params, header_params, body, post_params, files, response_type, auth_settings, _return_http_data_only, collection_formats, _preload_content, _request_timeout) else: thread = self.pool.apply_async(self.__call_api, (resource_path, method, path_params, query_params, header_params, body, post_params, files, response_type, auth_settings, _return_http_data_only, collection_formats, _preload_content, _request_timeout)) return thread
def _empathy_status(status, message): """ Updates status and message for Empathy IM application. `status` Status type. `message` Status message. """ ACCT_IFACE = 'org.freedesktop.Telepathy.Account' DBUS_PROP_IFACE = 'org.freedesktop.DBus.Properties' ACCT_MAN_IFACE = 'org.freedesktop.Telepathy.AccountManager' ACCT_MAN_PATH = '/org/freedesktop/Telepathy/AccountManager' SP_IFACE = ('org.freedesktop.Telepathy.' 'Connection.Interface.SimplePresence') # fetch main account manager interface am_iface = _dbus_get_interface(ACCT_MAN_IFACE, ACCT_MAN_PATH, DBUS_PROP_IFACE) if am_iface: account_paths = am_iface.Get(ACCT_MAN_IFACE, 'ValidAccounts') for account_path in account_paths: try: # fetch account interface account = _dbus_get_object(ACCT_MAN_IFACE, account_path) # skip disconnected, disabled, etc. if account.Get(ACCT_IFACE, 'ConnectionStatus') != 0: continue # fetch simple presence interface for account connection conn_path = account.Get(ACCT_IFACE, 'Connection') conn_iface = conn_path.replace("/", ".")[1:] sp_iface = _dbus_get_interface(conn_iface, conn_path, SP_IFACE) except dbus.exceptions.DBusException: continue # set status and message for code in EMPATHY_CODE_MAP[status]: try: sp_iface.SetPresence(code, message) except dbus.exceptions.DBusException: pass else: break
Updates status and message for Empathy IM application. `status` Status type. `message` Status message.
Below is the the instruction that describes the task: ### Input: Updates status and message for Empathy IM application. `status` Status type. `message` Status message. ### Response: def _empathy_status(status, message): """ Updates status and message for Empathy IM application. `status` Status type. `message` Status message. """ ACCT_IFACE = 'org.freedesktop.Telepathy.Account' DBUS_PROP_IFACE = 'org.freedesktop.DBus.Properties' ACCT_MAN_IFACE = 'org.freedesktop.Telepathy.AccountManager' ACCT_MAN_PATH = '/org/freedesktop/Telepathy/AccountManager' SP_IFACE = ('org.freedesktop.Telepathy.' 'Connection.Interface.SimplePresence') # fetch main account manager interface am_iface = _dbus_get_interface(ACCT_MAN_IFACE, ACCT_MAN_PATH, DBUS_PROP_IFACE) if am_iface: account_paths = am_iface.Get(ACCT_MAN_IFACE, 'ValidAccounts') for account_path in account_paths: try: # fetch account interface account = _dbus_get_object(ACCT_MAN_IFACE, account_path) # skip disconnected, disabled, etc. if account.Get(ACCT_IFACE, 'ConnectionStatus') != 0: continue # fetch simple presence interface for account connection conn_path = account.Get(ACCT_IFACE, 'Connection') conn_iface = conn_path.replace("/", ".")[1:] sp_iface = _dbus_get_interface(conn_iface, conn_path, SP_IFACE) except dbus.exceptions.DBusException: continue # set status and message for code in EMPATHY_CODE_MAP[status]: try: sp_iface.SetPresence(code, message) except dbus.exceptions.DBusException: pass else: break
def get_api_date(self): ''' Figure out the date to use for API requests. Assumes yesterday's date if between midnight and 10am Eastern time. Override this function in a subclass to change how the API date is calculated. ''' # NOTE: If you are writing your own function to get the date, make sure # to include the first if block below to allow for the ``date`` # parameter to hard-code a date. api_date = None if self.date is not None and not isinstance(self.date, datetime): try: api_date = datetime.strptime(self.date, '%Y-%m-%d') except (TypeError, ValueError): self.logger.warning('Invalid date \'%s\'', self.date) if api_date is None: utc_time = pytz.utc.localize(datetime.utcnow()) eastern = pytz.timezone('US/Eastern') api_date = eastern.normalize(utc_time.astimezone(eastern)) if api_date.hour < 10: # The scores on NHL.com change at 10am Eastern, if it's before # that time of day then we will use yesterday's date. api_date -= timedelta(days=1) self.date = api_date
Figure out the date to use for API requests. Assumes yesterday's date if between midnight and 10am Eastern time. Override this function in a subclass to change how the API date is calculated.
Below is the the instruction that describes the task: ### Input: Figure out the date to use for API requests. Assumes yesterday's date if between midnight and 10am Eastern time. Override this function in a subclass to change how the API date is calculated. ### Response: def get_api_date(self): ''' Figure out the date to use for API requests. Assumes yesterday's date if between midnight and 10am Eastern time. Override this function in a subclass to change how the API date is calculated. ''' # NOTE: If you are writing your own function to get the date, make sure # to include the first if block below to allow for the ``date`` # parameter to hard-code a date. api_date = None if self.date is not None and not isinstance(self.date, datetime): try: api_date = datetime.strptime(self.date, '%Y-%m-%d') except (TypeError, ValueError): self.logger.warning('Invalid date \'%s\'', self.date) if api_date is None: utc_time = pytz.utc.localize(datetime.utcnow()) eastern = pytz.timezone('US/Eastern') api_date = eastern.normalize(utc_time.astimezone(eastern)) if api_date.hour < 10: # The scores on NHL.com change at 10am Eastern, if it's before # that time of day then we will use yesterday's date. api_date -= timedelta(days=1) self.date = api_date
def _item_list(profile=None): ''' Template for writing list functions Return a list of available items (glance items-list) CLI Example: .. code-block:: bash salt '*' glance.item_list ''' g_client = _auth(profile) ret = [] for item in g_client.items.list(): ret.append(item.__dict__) #ret[item.name] = { # 'name': item.name, # } return ret
Template for writing list functions Return a list of available items (glance items-list) CLI Example: .. code-block:: bash salt '*' glance.item_list
Below is the the instruction that describes the task: ### Input: Template for writing list functions Return a list of available items (glance items-list) CLI Example: .. code-block:: bash salt '*' glance.item_list ### Response: def _item_list(profile=None): ''' Template for writing list functions Return a list of available items (glance items-list) CLI Example: .. code-block:: bash salt '*' glance.item_list ''' g_client = _auth(profile) ret = [] for item in g_client.items.list(): ret.append(item.__dict__) #ret[item.name] = { # 'name': item.name, # } return ret
def installed(name, default=False, user=None, opts=None, env=None): ''' Verify that the specified ruby is installed with RVM. RVM is installed when necessary. name The version of ruby to install default : False Whether to make this ruby the default. user: None The user to run rvm as. env: None A list of environment variables to set (ie, RUBY_CONFIGURE_OPTS) opts: None A list of option flags to pass to RVM (ie -C, --patch) .. versionadded:: 0.17.0 ''' ret = {'name': name, 'result': None, 'comment': '', 'changes': {}} if __opts__['test']: ret['comment'] = 'Ruby {0} is set to be installed'.format(name) return ret ret = _check_rvm(ret, user) if ret['result'] is False: if not __salt__['rvm.install'](runas=user): ret['comment'] = 'RVM failed to install.' return ret else: return _check_and_install_ruby(ret, name, default, user=user, opts=opts, env=env) else: return _check_and_install_ruby(ret, name, default, user=user, opts=opts, env=env)
Verify that the specified ruby is installed with RVM. RVM is installed when necessary. name The version of ruby to install default : False Whether to make this ruby the default. user: None The user to run rvm as. env: None A list of environment variables to set (ie, RUBY_CONFIGURE_OPTS) opts: None A list of option flags to pass to RVM (ie -C, --patch) .. versionadded:: 0.17.0
Below is the the instruction that describes the task: ### Input: Verify that the specified ruby is installed with RVM. RVM is installed when necessary. name The version of ruby to install default : False Whether to make this ruby the default. user: None The user to run rvm as. env: None A list of environment variables to set (ie, RUBY_CONFIGURE_OPTS) opts: None A list of option flags to pass to RVM (ie -C, --patch) .. versionadded:: 0.17.0 ### Response: def installed(name, default=False, user=None, opts=None, env=None): ''' Verify that the specified ruby is installed with RVM. RVM is installed when necessary. name The version of ruby to install default : False Whether to make this ruby the default. user: None The user to run rvm as. env: None A list of environment variables to set (ie, RUBY_CONFIGURE_OPTS) opts: None A list of option flags to pass to RVM (ie -C, --patch) .. versionadded:: 0.17.0 ''' ret = {'name': name, 'result': None, 'comment': '', 'changes': {}} if __opts__['test']: ret['comment'] = 'Ruby {0} is set to be installed'.format(name) return ret ret = _check_rvm(ret, user) if ret['result'] is False: if not __salt__['rvm.install'](runas=user): ret['comment'] = 'RVM failed to install.' return ret else: return _check_and_install_ruby(ret, name, default, user=user, opts=opts, env=env) else: return _check_and_install_ruby(ret, name, default, user=user, opts=opts, env=env)
def deleteSettings(self, groupName=None): """ Deletes registry items from the persistent store. """ groupName = groupName if groupName else self.settingsGroupName settings = QtCore.QSettings() logger.info("Deleting {} from: {}".format(groupName, settings.fileName())) removeSettingsGroup(groupName)
Deletes registry items from the persistent store.
Below is the the instruction that describes the task: ### Input: Deletes registry items from the persistent store. ### Response: def deleteSettings(self, groupName=None): """ Deletes registry items from the persistent store. """ groupName = groupName if groupName else self.settingsGroupName settings = QtCore.QSettings() logger.info("Deleting {} from: {}".format(groupName, settings.fileName())) removeSettingsGroup(groupName)
def assoc(_d, key, value): """Associate a key with a value in a dictionary :param _d: a dictionary :param key: a key in the dictionary :param value: a value for the key :returns: a new dictionary >>> data = {} >>> new_data = assoc(data, 'name', 'Holy Grail') >>> new_data {'name': 'Holy Grail'} >>> data {} .. note:: the original dictionary is not modified """ d = deepcopy(_d) d[key] = value return d
Associate a key with a value in a dictionary :param _d: a dictionary :param key: a key in the dictionary :param value: a value for the key :returns: a new dictionary >>> data = {} >>> new_data = assoc(data, 'name', 'Holy Grail') >>> new_data {'name': 'Holy Grail'} >>> data {} .. note:: the original dictionary is not modified
Below is the the instruction that describes the task: ### Input: Associate a key with a value in a dictionary :param _d: a dictionary :param key: a key in the dictionary :param value: a value for the key :returns: a new dictionary >>> data = {} >>> new_data = assoc(data, 'name', 'Holy Grail') >>> new_data {'name': 'Holy Grail'} >>> data {} .. note:: the original dictionary is not modified ### Response: def assoc(_d, key, value): """Associate a key with a value in a dictionary :param _d: a dictionary :param key: a key in the dictionary :param value: a value for the key :returns: a new dictionary >>> data = {} >>> new_data = assoc(data, 'name', 'Holy Grail') >>> new_data {'name': 'Holy Grail'} >>> data {} .. note:: the original dictionary is not modified """ d = deepcopy(_d) d[key] = value return d
def get_supply_voltage(self, dest_addr_long=None): """ Fetches the value of %V and returns it as volts. """ value = self._get_parameter(b"%V", dest_addr_long=dest_addr_long) return (hex_to_int(value) * (1200/1024.0)) / 1000
Fetches the value of %V and returns it as volts.
Below is the the instruction that describes the task: ### Input: Fetches the value of %V and returns it as volts. ### Response: def get_supply_voltage(self, dest_addr_long=None): """ Fetches the value of %V and returns it as volts. """ value = self._get_parameter(b"%V", dest_addr_long=dest_addr_long) return (hex_to_int(value) * (1200/1024.0)) / 1000
def cell_arrays(self): """ Returns the all cell arrays """ cdata = self.GetCellData() narr = cdata.GetNumberOfArrays() # Update data if necessary if hasattr(self, '_cell_arrays'): keys = list(self._cell_arrays.keys()) if narr == len(keys): if keys: if self._cell_arrays[keys[0]].size == self.n_cells: return self._cell_arrays else: return self._cell_arrays # dictionary with callbacks self._cell_arrays = CellScalarsDict(self) for i in range(narr): name = cdata.GetArrayName(i) self._cell_arrays[name] = self._cell_scalar(name) self._cell_arrays.enable_callback() return self._cell_arrays
Returns the all cell arrays
Below is the the instruction that describes the task: ### Input: Returns the all cell arrays ### Response: def cell_arrays(self): """ Returns the all cell arrays """ cdata = self.GetCellData() narr = cdata.GetNumberOfArrays() # Update data if necessary if hasattr(self, '_cell_arrays'): keys = list(self._cell_arrays.keys()) if narr == len(keys): if keys: if self._cell_arrays[keys[0]].size == self.n_cells: return self._cell_arrays else: return self._cell_arrays # dictionary with callbacks self._cell_arrays = CellScalarsDict(self) for i in range(narr): name = cdata.GetArrayName(i) self._cell_arrays[name] = self._cell_scalar(name) self._cell_arrays.enable_callback() return self._cell_arrays
def init(image, root=None): ''' Mount the named image via qemu-nbd and return the mounted roots CLI Example: .. code-block:: bash salt '*' qemu_nbd.init /srv/image.qcow2 ''' nbd = connect(image) if not nbd: return '' return mount(nbd, root)
Mount the named image via qemu-nbd and return the mounted roots CLI Example: .. code-block:: bash salt '*' qemu_nbd.init /srv/image.qcow2
Below is the the instruction that describes the task: ### Input: Mount the named image via qemu-nbd and return the mounted roots CLI Example: .. code-block:: bash salt '*' qemu_nbd.init /srv/image.qcow2 ### Response: def init(image, root=None): ''' Mount the named image via qemu-nbd and return the mounted roots CLI Example: .. code-block:: bash salt '*' qemu_nbd.init /srv/image.qcow2 ''' nbd = connect(image) if not nbd: return '' return mount(nbd, root)
def can_create_catalog_with_record_types(self, catalog_record_types): """Tests if this user can create a single ``Catalog`` using the desired record types. While ``CatalogingManager.getCatalogRecordTypes()`` can be used to examine which records are supported, this method tests which record(s) are required for creating a specific ``Catalog``. Providing an empty array tests if a ``Catalog`` can be created with no records. arg: catalog_record_types (osid.type.Type[]): array of catalog record types return: (boolean) - ``true`` if ``Catalog`` creation using the specified record ``Types`` is supported, ``false`` otherwise raise: NullArgument - ``catalog_record_types`` is ``null`` *compliance: mandatory -- This method must be implemented.* """ # Implemented from template for # osid.resource.BinAdminSession.can_create_bin_with_record_types # NOTE: It is expected that real authentication hints will be # handled in a service adapter above the pay grade of this impl. if self._catalog_session is not None: return self._catalog_session.can_create_catalog_with_record_types(catalog_record_types=catalog_record_types) return True
Tests if this user can create a single ``Catalog`` using the desired record types. While ``CatalogingManager.getCatalogRecordTypes()`` can be used to examine which records are supported, this method tests which record(s) are required for creating a specific ``Catalog``. Providing an empty array tests if a ``Catalog`` can be created with no records. arg: catalog_record_types (osid.type.Type[]): array of catalog record types return: (boolean) - ``true`` if ``Catalog`` creation using the specified record ``Types`` is supported, ``false`` otherwise raise: NullArgument - ``catalog_record_types`` is ``null`` *compliance: mandatory -- This method must be implemented.*
Below is the the instruction that describes the task: ### Input: Tests if this user can create a single ``Catalog`` using the desired record types. While ``CatalogingManager.getCatalogRecordTypes()`` can be used to examine which records are supported, this method tests which record(s) are required for creating a specific ``Catalog``. Providing an empty array tests if a ``Catalog`` can be created with no records. arg: catalog_record_types (osid.type.Type[]): array of catalog record types return: (boolean) - ``true`` if ``Catalog`` creation using the specified record ``Types`` is supported, ``false`` otherwise raise: NullArgument - ``catalog_record_types`` is ``null`` *compliance: mandatory -- This method must be implemented.* ### Response: def can_create_catalog_with_record_types(self, catalog_record_types): """Tests if this user can create a single ``Catalog`` using the desired record types. While ``CatalogingManager.getCatalogRecordTypes()`` can be used to examine which records are supported, this method tests which record(s) are required for creating a specific ``Catalog``. Providing an empty array tests if a ``Catalog`` can be created with no records. arg: catalog_record_types (osid.type.Type[]): array of catalog record types return: (boolean) - ``true`` if ``Catalog`` creation using the specified record ``Types`` is supported, ``false`` otherwise raise: NullArgument - ``catalog_record_types`` is ``null`` *compliance: mandatory -- This method must be implemented.* """ # Implemented from template for # osid.resource.BinAdminSession.can_create_bin_with_record_types # NOTE: It is expected that real authentication hints will be # handled in a service adapter above the pay grade of this impl. if self._catalog_session is not None: return self._catalog_session.can_create_catalog_with_record_types(catalog_record_types=catalog_record_types) return True
def is_point_layer(layer): """Check if a QGIS layer is vector and its geometries are points. :param layer: A vector layer. :type layer: QgsVectorLayer, QgsMapLayer :returns: True if the layer contains points, otherwise False. :rtype: bool """ try: return (layer.type() == QgsMapLayer.VectorLayer) and ( layer.geometryType() == QgsWkbTypes.PointGeometry) except AttributeError: return False
Check if a QGIS layer is vector and its geometries are points. :param layer: A vector layer. :type layer: QgsVectorLayer, QgsMapLayer :returns: True if the layer contains points, otherwise False. :rtype: bool
Below is the the instruction that describes the task: ### Input: Check if a QGIS layer is vector and its geometries are points. :param layer: A vector layer. :type layer: QgsVectorLayer, QgsMapLayer :returns: True if the layer contains points, otherwise False. :rtype: bool ### Response: def is_point_layer(layer): """Check if a QGIS layer is vector and its geometries are points. :param layer: A vector layer. :type layer: QgsVectorLayer, QgsMapLayer :returns: True if the layer contains points, otherwise False. :rtype: bool """ try: return (layer.type() == QgsMapLayer.VectorLayer) and ( layer.geometryType() == QgsWkbTypes.PointGeometry) except AttributeError: return False
def normalize_ext_rename(filepath): """ normalize file ext like '.tgz' -> '.tar.gz' and '300d.txt' -> '300d.glove.txt' and rename the file >>> pth = os.path.join(DATA_PATH, 'sms_slang_dict.txt') >>> pth == normalize_ext_rename(pth) True """ logger.debug('normalize_ext.filepath=' + str(filepath)) new_file_path = normalize_ext(filepath) logger.debug('download_unzip.new_filepaths=' + str(new_file_path)) # FIXME: fails when name is a url filename filepath = rename_file(filepath, new_file_path) logger.debug('download_unzip.filepath=' + str(filepath)) return filepath
normalize file ext like '.tgz' -> '.tar.gz' and '300d.txt' -> '300d.glove.txt' and rename the file >>> pth = os.path.join(DATA_PATH, 'sms_slang_dict.txt') >>> pth == normalize_ext_rename(pth) True
Below is the the instruction that describes the task: ### Input: normalize file ext like '.tgz' -> '.tar.gz' and '300d.txt' -> '300d.glove.txt' and rename the file >>> pth = os.path.join(DATA_PATH, 'sms_slang_dict.txt') >>> pth == normalize_ext_rename(pth) True ### Response: def normalize_ext_rename(filepath): """ normalize file ext like '.tgz' -> '.tar.gz' and '300d.txt' -> '300d.glove.txt' and rename the file >>> pth = os.path.join(DATA_PATH, 'sms_slang_dict.txt') >>> pth == normalize_ext_rename(pth) True """ logger.debug('normalize_ext.filepath=' + str(filepath)) new_file_path = normalize_ext(filepath) logger.debug('download_unzip.new_filepaths=' + str(new_file_path)) # FIXME: fails when name is a url filename filepath = rename_file(filepath, new_file_path) logger.debug('download_unzip.filepath=' + str(filepath)) return filepath
async def connect(self, retry=2): """Connect to Mill.""" # pylint: disable=too-many-return-statements url = API_ENDPOINT_1 + 'login' headers = { "Content-Type": "application/x-zc-object", "Connection": "Keep-Alive", "X-Zc-Major-Domain": "seanywell", "X-Zc-Msg-Name": "millService", "X-Zc-Sub-Domain": "milltype", "X-Zc-Seq-Id": "1", "X-Zc-Version": "1", } payload = {"account": self._username, "password": self._password} try: with async_timeout.timeout(self._timeout): resp = await self.websession.post(url, data=json.dumps(payload), headers=headers) except (asyncio.TimeoutError, aiohttp.ClientError): if retry < 1: _LOGGER.error("Error connecting to Mill", exc_info=True) return False return await self.connect(retry - 1) result = await resp.text() if '"errorCode":3504' in result: _LOGGER.error('Wrong password') return False if '"errorCode":3501' in result: _LOGGER.error('Account does not exist') return False data = json.loads(result) token = data.get('token') if token is None: _LOGGER.error('No token') return False user_id = data.get('userId') if user_id is None: _LOGGER.error('No user id') return False self._token = token self._user_id = user_id return True
Connect to Mill.
Below is the the instruction that describes the task: ### Input: Connect to Mill. ### Response: async def connect(self, retry=2): """Connect to Mill.""" # pylint: disable=too-many-return-statements url = API_ENDPOINT_1 + 'login' headers = { "Content-Type": "application/x-zc-object", "Connection": "Keep-Alive", "X-Zc-Major-Domain": "seanywell", "X-Zc-Msg-Name": "millService", "X-Zc-Sub-Domain": "milltype", "X-Zc-Seq-Id": "1", "X-Zc-Version": "1", } payload = {"account": self._username, "password": self._password} try: with async_timeout.timeout(self._timeout): resp = await self.websession.post(url, data=json.dumps(payload), headers=headers) except (asyncio.TimeoutError, aiohttp.ClientError): if retry < 1: _LOGGER.error("Error connecting to Mill", exc_info=True) return False return await self.connect(retry - 1) result = await resp.text() if '"errorCode":3504' in result: _LOGGER.error('Wrong password') return False if '"errorCode":3501' in result: _LOGGER.error('Account does not exist') return False data = json.loads(result) token = data.get('token') if token is None: _LOGGER.error('No token') return False user_id = data.get('userId') if user_id is None: _LOGGER.error('No user id') return False self._token = token self._user_id = user_id return True
def tabulate(lol, headers, eol='\n'): """Use the pypi tabulate package instead!""" yield '| %s |' % ' | '.join(headers) + eol yield '| %s:|' % ':| '.join(['-' * len(w) for w in headers]) + eol for row in lol: yield '| %s |' % ' | '.join(str(c) for c in row) + eol
Use the pypi tabulate package instead!
Below is the the instruction that describes the task: ### Input: Use the pypi tabulate package instead! ### Response: def tabulate(lol, headers, eol='\n'): """Use the pypi tabulate package instead!""" yield '| %s |' % ' | '.join(headers) + eol yield '| %s:|' % ':| '.join(['-' * len(w) for w in headers]) + eol for row in lol: yield '| %s |' % ' | '.join(str(c) for c in row) + eol
def get_range(self, ignore_blank_lines=True): """ Gets the fold region range (start and end line). .. note:: Start line do no encompass the trigger line. :param ignore_blank_lines: True to ignore blank lines at the end of the scope (the method will rewind to find that last meaningful block that is part of the fold scope). :returns: tuple(int, int) """ ref_lvl = self.trigger_level first_line = self._trigger.blockNumber() block = self._trigger.next() last_line = block.blockNumber() lvl = self.scope_level if ref_lvl == lvl: # for zone set programmatically such as imports # in pyqode.python ref_lvl -= 1 while (block.isValid() and TextBlockHelper.get_fold_lvl(block) > ref_lvl): last_line = block.blockNumber() block = block.next() if ignore_blank_lines and last_line: block = block.document().findBlockByNumber(last_line) while block.blockNumber() and block.text().strip() == '': block = block.previous() last_line = block.blockNumber() return first_line, last_line
Gets the fold region range (start and end line). .. note:: Start line do no encompass the trigger line. :param ignore_blank_lines: True to ignore blank lines at the end of the scope (the method will rewind to find that last meaningful block that is part of the fold scope). :returns: tuple(int, int)
Below is the the instruction that describes the task: ### Input: Gets the fold region range (start and end line). .. note:: Start line do no encompass the trigger line. :param ignore_blank_lines: True to ignore blank lines at the end of the scope (the method will rewind to find that last meaningful block that is part of the fold scope). :returns: tuple(int, int) ### Response: def get_range(self, ignore_blank_lines=True): """ Gets the fold region range (start and end line). .. note:: Start line do no encompass the trigger line. :param ignore_blank_lines: True to ignore blank lines at the end of the scope (the method will rewind to find that last meaningful block that is part of the fold scope). :returns: tuple(int, int) """ ref_lvl = self.trigger_level first_line = self._trigger.blockNumber() block = self._trigger.next() last_line = block.blockNumber() lvl = self.scope_level if ref_lvl == lvl: # for zone set programmatically such as imports # in pyqode.python ref_lvl -= 1 while (block.isValid() and TextBlockHelper.get_fold_lvl(block) > ref_lvl): last_line = block.blockNumber() block = block.next() if ignore_blank_lines and last_line: block = block.document().findBlockByNumber(last_line) while block.blockNumber() and block.text().strip() == '': block = block.previous() last_line = block.blockNumber() return first_line, last_line
def get_body(self, msg): """ Extracts and returns the decoded body from an EmailMessage object""" body = "" charset = "" if msg.is_multipart(): for part in msg.walk(): ctype = part.get_content_type() cdispo = str(part.get('Content-Disposition')) # skip any text/plain (txt) attachments if ctype == 'text/plain' and 'attachment' not in cdispo: body = part.get_payload(decode=True) # decode charset = part.get_content_charset() break # not multipart - i.e. plain text, no attachments, keeping fingers crossed else: body = msg.get_payload(decode=True) charset = msg.get_content_charset() return body.decode(charset)
Extracts and returns the decoded body from an EmailMessage object
Below is the the instruction that describes the task: ### Input: Extracts and returns the decoded body from an EmailMessage object ### Response: def get_body(self, msg): """ Extracts and returns the decoded body from an EmailMessage object""" body = "" charset = "" if msg.is_multipart(): for part in msg.walk(): ctype = part.get_content_type() cdispo = str(part.get('Content-Disposition')) # skip any text/plain (txt) attachments if ctype == 'text/plain' and 'attachment' not in cdispo: body = part.get_payload(decode=True) # decode charset = part.get_content_charset() break # not multipart - i.e. plain text, no attachments, keeping fingers crossed else: body = msg.get_payload(decode=True) charset = msg.get_content_charset() return body.decode(charset)
def shutdown(self): """ Disconnect all cached connections. @returns: a deferred that fires once all connection are disconnected. @rtype: L{Deferred} """ self._shuttingDown = {key: Deferred() for key in self.cachedConnections.keys()} return DeferredList( [maybeDeferred(p.transport.loseConnection) for p in self.cachedConnections.values()] + self._shuttingDown.values())
Disconnect all cached connections. @returns: a deferred that fires once all connection are disconnected. @rtype: L{Deferred}
Below is the the instruction that describes the task: ### Input: Disconnect all cached connections. @returns: a deferred that fires once all connection are disconnected. @rtype: L{Deferred} ### Response: def shutdown(self): """ Disconnect all cached connections. @returns: a deferred that fires once all connection are disconnected. @rtype: L{Deferred} """ self._shuttingDown = {key: Deferred() for key in self.cachedConnections.keys()} return DeferredList( [maybeDeferred(p.transport.loseConnection) for p in self.cachedConnections.values()] + self._shuttingDown.values())
def select_larva(self): """Select all larva.""" action = sc_pb.Action() action.action_ui.select_larva.SetInParent() # Adds the empty proto field. return action
Select all larva.
Below is the the instruction that describes the task: ### Input: Select all larva. ### Response: def select_larva(self): """Select all larva.""" action = sc_pb.Action() action.action_ui.select_larva.SetInParent() # Adds the empty proto field. return action
def backoff( max_tries=constants.BACKOFF_DEFAULT_MAXTRIES, delay=constants.BACKOFF_DEFAULT_DELAY, factor=constants.BACKOFF_DEFAULT_FACTOR, exceptions=None): """Implements an exponential backoff decorator which will retry decorated function upon given exceptions. This implementation is based on `Retry <https://wiki.python.org/moin/PythonDecoratorLibrary#Retry>`_ from the *Python Decorator Library*. :param int max_tries: Number of tries before give up. Defaults to :const:`~escpos.constants.BACKOFF_DEFAULT_MAXTRIES`. :param int delay: Delay between retries (in seconds). Defaults to :const:`~escpos.constants.BACKOFF_DEFAULT_DELAY`. :param int factor: Multiply factor in which delay will be increased for the next retry. Defaults to :const:`~escpos.constants.BACKOFF_DEFAULT_FACTOR`. :param exceptions: Tuple of exception types to catch that triggers retry. Any exception not listed will break the decorator and retry routines will not run. :type exceptions: tuple[Exception] """ if max_tries <= 0: raise ValueError('Max tries must be greater than 0; got {!r}'.format(max_tries)) if delay <= 0: raise ValueError('Delay must be greater than 0; got {!r}'.format(delay)) if factor <= 1: raise ValueError('Backoff factor must be greater than 1; got {!r}'.format(factor)) def outter(f): def inner(*args, **kwargs): m_max_tries, m_delay = max_tries, delay # make mutable while m_max_tries > 0: try: retval = f(*args, **kwargs) except exceptions: logger.exception('backoff retry for: %r (max_tries=%r, delay=%r, ' 'factor=%r, exceptions=%r)', f, max_tries, delay, factor, exceptions) m_max_tries -= 1 # consume an attempt if m_max_tries <= 0: raise # run out of tries time.sleep(m_delay) # wait... m_delay *= factor # make future wait longer else: # we're done without errors return retval return inner return outter
Implements an exponential backoff decorator which will retry decorated function upon given exceptions. This implementation is based on `Retry <https://wiki.python.org/moin/PythonDecoratorLibrary#Retry>`_ from the *Python Decorator Library*. :param int max_tries: Number of tries before give up. Defaults to :const:`~escpos.constants.BACKOFF_DEFAULT_MAXTRIES`. :param int delay: Delay between retries (in seconds). Defaults to :const:`~escpos.constants.BACKOFF_DEFAULT_DELAY`. :param int factor: Multiply factor in which delay will be increased for the next retry. Defaults to :const:`~escpos.constants.BACKOFF_DEFAULT_FACTOR`. :param exceptions: Tuple of exception types to catch that triggers retry. Any exception not listed will break the decorator and retry routines will not run. :type exceptions: tuple[Exception]
Below is the the instruction that describes the task: ### Input: Implements an exponential backoff decorator which will retry decorated function upon given exceptions. This implementation is based on `Retry <https://wiki.python.org/moin/PythonDecoratorLibrary#Retry>`_ from the *Python Decorator Library*. :param int max_tries: Number of tries before give up. Defaults to :const:`~escpos.constants.BACKOFF_DEFAULT_MAXTRIES`. :param int delay: Delay between retries (in seconds). Defaults to :const:`~escpos.constants.BACKOFF_DEFAULT_DELAY`. :param int factor: Multiply factor in which delay will be increased for the next retry. Defaults to :const:`~escpos.constants.BACKOFF_DEFAULT_FACTOR`. :param exceptions: Tuple of exception types to catch that triggers retry. Any exception not listed will break the decorator and retry routines will not run. :type exceptions: tuple[Exception] ### Response: def backoff( max_tries=constants.BACKOFF_DEFAULT_MAXTRIES, delay=constants.BACKOFF_DEFAULT_DELAY, factor=constants.BACKOFF_DEFAULT_FACTOR, exceptions=None): """Implements an exponential backoff decorator which will retry decorated function upon given exceptions. This implementation is based on `Retry <https://wiki.python.org/moin/PythonDecoratorLibrary#Retry>`_ from the *Python Decorator Library*. :param int max_tries: Number of tries before give up. Defaults to :const:`~escpos.constants.BACKOFF_DEFAULT_MAXTRIES`. :param int delay: Delay between retries (in seconds). Defaults to :const:`~escpos.constants.BACKOFF_DEFAULT_DELAY`. :param int factor: Multiply factor in which delay will be increased for the next retry. Defaults to :const:`~escpos.constants.BACKOFF_DEFAULT_FACTOR`. :param exceptions: Tuple of exception types to catch that triggers retry. Any exception not listed will break the decorator and retry routines will not run. :type exceptions: tuple[Exception] """ if max_tries <= 0: raise ValueError('Max tries must be greater than 0; got {!r}'.format(max_tries)) if delay <= 0: raise ValueError('Delay must be greater than 0; got {!r}'.format(delay)) if factor <= 1: raise ValueError('Backoff factor must be greater than 1; got {!r}'.format(factor)) def outter(f): def inner(*args, **kwargs): m_max_tries, m_delay = max_tries, delay # make mutable while m_max_tries > 0: try: retval = f(*args, **kwargs) except exceptions: logger.exception('backoff retry for: %r (max_tries=%r, delay=%r, ' 'factor=%r, exceptions=%r)', f, max_tries, delay, factor, exceptions) m_max_tries -= 1 # consume an attempt if m_max_tries <= 0: raise # run out of tries time.sleep(m_delay) # wait... m_delay *= factor # make future wait longer else: # we're done without errors return retval return inner return outter
def list(self, request, *args, **kwargs): """ To get a list of projects, run **GET** against */api/projects/* as authenticated user. Here you can also check actual value for project quotas and project usage Note that a user can only see connected projects: - projects that the user owns as a customer - projects where user has any role Supported logic filters: - ?can_manage - return a list of projects where current user is manager or a customer owner; - ?can_admin - return a list of projects where current user is admin; """ return super(ProjectViewSet, self).list(request, *args, **kwargs)
To get a list of projects, run **GET** against */api/projects/* as authenticated user. Here you can also check actual value for project quotas and project usage Note that a user can only see connected projects: - projects that the user owns as a customer - projects where user has any role Supported logic filters: - ?can_manage - return a list of projects where current user is manager or a customer owner; - ?can_admin - return a list of projects where current user is admin;
Below is the the instruction that describes the task: ### Input: To get a list of projects, run **GET** against */api/projects/* as authenticated user. Here you can also check actual value for project quotas and project usage Note that a user can only see connected projects: - projects that the user owns as a customer - projects where user has any role Supported logic filters: - ?can_manage - return a list of projects where current user is manager or a customer owner; - ?can_admin - return a list of projects where current user is admin; ### Response: def list(self, request, *args, **kwargs): """ To get a list of projects, run **GET** against */api/projects/* as authenticated user. Here you can also check actual value for project quotas and project usage Note that a user can only see connected projects: - projects that the user owns as a customer - projects where user has any role Supported logic filters: - ?can_manage - return a list of projects where current user is manager or a customer owner; - ?can_admin - return a list of projects where current user is admin; """ return super(ProjectViewSet, self).list(request, *args, **kwargs)
def by_current_session(cls): """ Returns current user session """ session = Session.current_session() if session is None: return None return cls.where_id(session.user_id)
Returns current user session
Below is the the instruction that describes the task: ### Input: Returns current user session ### Response: def by_current_session(cls): """ Returns current user session """ session = Session.current_session() if session is None: return None return cls.where_id(session.user_id)
def generate_raml_resource_types(module): """Compile a Pale module's resource documentation into RAML format. RAML calls Pale resources 'resourceTypes'. This function converts Pale resources into the RAML resourceType format. The returned string should be appended to the RAML documentation string before it is returned. """ from pale import extract_endpoints, extract_resources, is_pale_module if not is_pale_module(module): raise ValueError( """The passed in `module` (%s) is not a pale module. `paledoc` only works on modules with a `_module_type` set to equal `pale.ImplementationModule`.""") module_resource_types = extract_resources(module) raml_resource_types_unsorted = {} for resource in module_resource_types: resource_name = resource.__name__ raml_resource_types_unsorted[resource_name] = document_resource(resource) if hasattr(resource, "_description"): modified_description = clean_description(resource._description) raml_resource_types_unsorted[resource_name]["description"] = modified_description raml_resource_types_doc = OrderedDict(sorted(raml_resource_types_unsorted.items(), key=lambda t: t[0])) output = StringIO() indent = " " # 2 # blacklist of resources to ignore ignored_resources = [] for resource_type in raml_resource_types_doc: this_resource_type = raml_resource_types_doc[resource_type] # add the name, ignoring the blacklist if resource_type not in ignored_resources: output.write(indent + resource_type + ":\n") indent += " " # 4 # add the description if this_resource_type.get("description") != None: modified_description = clean_description(this_resource_type["description"]) output.write(indent + "description: " + modified_description + "\n") # if there are no fields, set type directly: if len(this_resource_type["fields"]) == 0: this_type = "object" if this_resource_type.get("_underlying_model") != None: if this_resource_type["_underlying_model"] != object: if hasattr(this_resource_type._underlying_model, "_value_type") \ and this_resource_type["_underlying_model"]._value_type not in ignored_resources: this_type = this_resource_type["_underlying_model"]._value_type output.write(indent + "type: " + this_type + "\n") indent = indent[:-2] # 2 # if there are fields, use them as the properties, which implies type = object else: output.write(indent + "properties:\n") indent += " " # 6 sorted_fields = OrderedDict(sorted(this_resource_type["fields"].items(), key=lambda t: t[0])) # add the field name, a.k.a. RAML type name for field in sorted_fields: output.write(indent + field + ":\n") # add the query parameters, a.k.a. RAML properties properties = sorted_fields[field] indent += " " # 8 # if this type is a list of other types, set it to type 'array' and note the item types # if not, add the type from the Pale type if "_underlying_model" in this_resource_type and this_resource_type["_underlying_model"] == object: output.write(indent + "type: base\n") elif "item_type" in properties: output.write(indent + "type: array\n") output.write(indent + "items: " + properties["item_type"] + "\n") elif "type" in properties: output.write(indent + "type: " + properties["type"].replace(" ", "_") + "\n") # if extended description exists, strip newlines and whitespace and add as description if properties.get("extended_description") != None: modified_description = clean_description(properties["extended_description"]) output.write(indent + "description: " + modified_description + "\n") # otherwise, use description elif properties.get("description") != None: modified_description = clean_description(properties["description"]) output.write(indent + "description: " + modified_description + "\n") if properties.get("default_fields") != None: output.write(indent + "properties:\n") indent += " " # 10 for field_name in sorted(properties["default_fields"]): # @TODO check if every default field is actually a string type output.write(indent + field_name + ": string\n") indent = indent[:-2] # 8 indent = indent[:-2] # 6 indent = indent[:-4] # 2 raml_resource_types = output.getvalue() output.close() return raml_resource_types
Compile a Pale module's resource documentation into RAML format. RAML calls Pale resources 'resourceTypes'. This function converts Pale resources into the RAML resourceType format. The returned string should be appended to the RAML documentation string before it is returned.
Below is the the instruction that describes the task: ### Input: Compile a Pale module's resource documentation into RAML format. RAML calls Pale resources 'resourceTypes'. This function converts Pale resources into the RAML resourceType format. The returned string should be appended to the RAML documentation string before it is returned. ### Response: def generate_raml_resource_types(module): """Compile a Pale module's resource documentation into RAML format. RAML calls Pale resources 'resourceTypes'. This function converts Pale resources into the RAML resourceType format. The returned string should be appended to the RAML documentation string before it is returned. """ from pale import extract_endpoints, extract_resources, is_pale_module if not is_pale_module(module): raise ValueError( """The passed in `module` (%s) is not a pale module. `paledoc` only works on modules with a `_module_type` set to equal `pale.ImplementationModule`.""") module_resource_types = extract_resources(module) raml_resource_types_unsorted = {} for resource in module_resource_types: resource_name = resource.__name__ raml_resource_types_unsorted[resource_name] = document_resource(resource) if hasattr(resource, "_description"): modified_description = clean_description(resource._description) raml_resource_types_unsorted[resource_name]["description"] = modified_description raml_resource_types_doc = OrderedDict(sorted(raml_resource_types_unsorted.items(), key=lambda t: t[0])) output = StringIO() indent = " " # 2 # blacklist of resources to ignore ignored_resources = [] for resource_type in raml_resource_types_doc: this_resource_type = raml_resource_types_doc[resource_type] # add the name, ignoring the blacklist if resource_type not in ignored_resources: output.write(indent + resource_type + ":\n") indent += " " # 4 # add the description if this_resource_type.get("description") != None: modified_description = clean_description(this_resource_type["description"]) output.write(indent + "description: " + modified_description + "\n") # if there are no fields, set type directly: if len(this_resource_type["fields"]) == 0: this_type = "object" if this_resource_type.get("_underlying_model") != None: if this_resource_type["_underlying_model"] != object: if hasattr(this_resource_type._underlying_model, "_value_type") \ and this_resource_type["_underlying_model"]._value_type not in ignored_resources: this_type = this_resource_type["_underlying_model"]._value_type output.write(indent + "type: " + this_type + "\n") indent = indent[:-2] # 2 # if there are fields, use them as the properties, which implies type = object else: output.write(indent + "properties:\n") indent += " " # 6 sorted_fields = OrderedDict(sorted(this_resource_type["fields"].items(), key=lambda t: t[0])) # add the field name, a.k.a. RAML type name for field in sorted_fields: output.write(indent + field + ":\n") # add the query parameters, a.k.a. RAML properties properties = sorted_fields[field] indent += " " # 8 # if this type is a list of other types, set it to type 'array' and note the item types # if not, add the type from the Pale type if "_underlying_model" in this_resource_type and this_resource_type["_underlying_model"] == object: output.write(indent + "type: base\n") elif "item_type" in properties: output.write(indent + "type: array\n") output.write(indent + "items: " + properties["item_type"] + "\n") elif "type" in properties: output.write(indent + "type: " + properties["type"].replace(" ", "_") + "\n") # if extended description exists, strip newlines and whitespace and add as description if properties.get("extended_description") != None: modified_description = clean_description(properties["extended_description"]) output.write(indent + "description: " + modified_description + "\n") # otherwise, use description elif properties.get("description") != None: modified_description = clean_description(properties["description"]) output.write(indent + "description: " + modified_description + "\n") if properties.get("default_fields") != None: output.write(indent + "properties:\n") indent += " " # 10 for field_name in sorted(properties["default_fields"]): # @TODO check if every default field is actually a string type output.write(indent + field_name + ": string\n") indent = indent[:-2] # 8 indent = indent[:-2] # 6 indent = indent[:-4] # 2 raml_resource_types = output.getvalue() output.close() return raml_resource_types
def request_stop(self, message='', exit_code=0): """Stop the Arbiter daemon :return: None """ # Only a master arbiter can stop the daemons if self.is_master: # Stop the daemons self.daemons_stop(timeout=self.conf.daemons_stop_timeout) # Request the daemon stop super(Arbiter, self).request_stop(message, exit_code)
Stop the Arbiter daemon :return: None
Below is the the instruction that describes the task: ### Input: Stop the Arbiter daemon :return: None ### Response: def request_stop(self, message='', exit_code=0): """Stop the Arbiter daemon :return: None """ # Only a master arbiter can stop the daemons if self.is_master: # Stop the daemons self.daemons_stop(timeout=self.conf.daemons_stop_timeout) # Request the daemon stop super(Arbiter, self).request_stop(message, exit_code)
def qemu_rebase(target, backing_file, safe=True, fail_on_error=True): """ changes the backing file of 'source' to 'backing_file' If backing_file is specified as "" (the empty string), then the image is rebased onto no backing file (i.e. it will exist independently of any backing file). (Taken from qemu-img man page) Args: target(str): Path to the source disk backing_file(str): path to the base disk safe(bool): if false, allow unsafe rebase (check qemu-img docs for more info) """ cmd = ['qemu-img', 'rebase', '-b', backing_file, target] if not safe: cmd.insert(2, '-u') return run_command_with_validation( cmd, fail_on_error, msg='Failed to rebase {target} onto {backing_file}'.format( target=target, backing_file=backing_file ) )
changes the backing file of 'source' to 'backing_file' If backing_file is specified as "" (the empty string), then the image is rebased onto no backing file (i.e. it will exist independently of any backing file). (Taken from qemu-img man page) Args: target(str): Path to the source disk backing_file(str): path to the base disk safe(bool): if false, allow unsafe rebase (check qemu-img docs for more info)
Below is the the instruction that describes the task: ### Input: changes the backing file of 'source' to 'backing_file' If backing_file is specified as "" (the empty string), then the image is rebased onto no backing file (i.e. it will exist independently of any backing file). (Taken from qemu-img man page) Args: target(str): Path to the source disk backing_file(str): path to the base disk safe(bool): if false, allow unsafe rebase (check qemu-img docs for more info) ### Response: def qemu_rebase(target, backing_file, safe=True, fail_on_error=True): """ changes the backing file of 'source' to 'backing_file' If backing_file is specified as "" (the empty string), then the image is rebased onto no backing file (i.e. it will exist independently of any backing file). (Taken from qemu-img man page) Args: target(str): Path to the source disk backing_file(str): path to the base disk safe(bool): if false, allow unsafe rebase (check qemu-img docs for more info) """ cmd = ['qemu-img', 'rebase', '-b', backing_file, target] if not safe: cmd.insert(2, '-u') return run_command_with_validation( cmd, fail_on_error, msg='Failed to rebase {target} onto {backing_file}'.format( target=target, backing_file=backing_file ) )
def to_canstrat(self, key, log, lith_field, filename=None, as_text=False): """ Make a Canstrat DAT (aka ASCII) file. TODO: The data part should probably belong to striplog, and only the header should be written by the well. Args: filename (str) key (str) log (str): the log name, should be 6 characters. lith_field (str) the name of the lithology field in the striplog's Primary component. Must match the Canstrat definitions. filename (str) as_text (bool): if you don't want to write a file. """ if (filename is None): if (not as_text): m = "You must provide a filename or set as_text to True." raise WellError(m) strip = self.data[key] strip = strip.fill() # Default is to fill with 'null' intervals. record = {1: [well_to_card_1(self)], 2: [well_to_card_2(self, key)], 8: [], 7: [interval_to_card_7(iv, lith_field) for iv in strip] } result = '' for c in [1, 2, 8, 7]: for d in record[c]: result += write_row(d, card=c, log=log) if as_text: return result else: with open(filename, 'w') as f: f.write(result) return None
Make a Canstrat DAT (aka ASCII) file. TODO: The data part should probably belong to striplog, and only the header should be written by the well. Args: filename (str) key (str) log (str): the log name, should be 6 characters. lith_field (str) the name of the lithology field in the striplog's Primary component. Must match the Canstrat definitions. filename (str) as_text (bool): if you don't want to write a file.
Below is the the instruction that describes the task: ### Input: Make a Canstrat DAT (aka ASCII) file. TODO: The data part should probably belong to striplog, and only the header should be written by the well. Args: filename (str) key (str) log (str): the log name, should be 6 characters. lith_field (str) the name of the lithology field in the striplog's Primary component. Must match the Canstrat definitions. filename (str) as_text (bool): if you don't want to write a file. ### Response: def to_canstrat(self, key, log, lith_field, filename=None, as_text=False): """ Make a Canstrat DAT (aka ASCII) file. TODO: The data part should probably belong to striplog, and only the header should be written by the well. Args: filename (str) key (str) log (str): the log name, should be 6 characters. lith_field (str) the name of the lithology field in the striplog's Primary component. Must match the Canstrat definitions. filename (str) as_text (bool): if you don't want to write a file. """ if (filename is None): if (not as_text): m = "You must provide a filename or set as_text to True." raise WellError(m) strip = self.data[key] strip = strip.fill() # Default is to fill with 'null' intervals. record = {1: [well_to_card_1(self)], 2: [well_to_card_2(self, key)], 8: [], 7: [interval_to_card_7(iv, lith_field) for iv in strip] } result = '' for c in [1, 2, 8, 7]: for d in record[c]: result += write_row(d, card=c, log=log) if as_text: return result else: with open(filename, 'w') as f: f.write(result) return None
def tau_reduction(ms, rate, n_per_decade): """Reduce the number of taus to maximum of n per decade (Helper function) takes in a tau list and reduces the number of taus to a maximum amount per decade. This is only useful if more than the "decade" and "octave" but less than the "all" taus are wanted. E.g. to show certain features of the data one might want 100 points per decade. NOTE: The algorithm is slightly inaccurate for ms under n_per_decade, and will also remove some points in this range, which is usually fine. Typical use would be something like: (data,m,taus)=tau_generator(data,rate,taus="all") (m,taus)=tau_reduction(m,rate,n_per_decade) Parameters ---------- ms: array of integers List of m values (assumed to be an "all" list) to remove points from. rate: float Sample rate of data in Hz. Time interval between measurements is 1/rate seconds. Used to convert to taus. n_per_decade: int Number of ms/taus to keep per decade. Returns ------- m: np.array Reduced list of m values taus: np.array Reduced list of tau values """ ms = np.int64(ms) keep = np.bool8(np.rint(n_per_decade*np.log10(ms[1:])) - np.rint(n_per_decade*np.log10(ms[:-1]))) # Adjust ms size to fit above-defined mask ms = ms[:-1] assert len(ms) == len(keep) ms = ms[keep] taus = ms/float(rate) return ms, taus
Reduce the number of taus to maximum of n per decade (Helper function) takes in a tau list and reduces the number of taus to a maximum amount per decade. This is only useful if more than the "decade" and "octave" but less than the "all" taus are wanted. E.g. to show certain features of the data one might want 100 points per decade. NOTE: The algorithm is slightly inaccurate for ms under n_per_decade, and will also remove some points in this range, which is usually fine. Typical use would be something like: (data,m,taus)=tau_generator(data,rate,taus="all") (m,taus)=tau_reduction(m,rate,n_per_decade) Parameters ---------- ms: array of integers List of m values (assumed to be an "all" list) to remove points from. rate: float Sample rate of data in Hz. Time interval between measurements is 1/rate seconds. Used to convert to taus. n_per_decade: int Number of ms/taus to keep per decade. Returns ------- m: np.array Reduced list of m values taus: np.array Reduced list of tau values
Below is the the instruction that describes the task: ### Input: Reduce the number of taus to maximum of n per decade (Helper function) takes in a tau list and reduces the number of taus to a maximum amount per decade. This is only useful if more than the "decade" and "octave" but less than the "all" taus are wanted. E.g. to show certain features of the data one might want 100 points per decade. NOTE: The algorithm is slightly inaccurate for ms under n_per_decade, and will also remove some points in this range, which is usually fine. Typical use would be something like: (data,m,taus)=tau_generator(data,rate,taus="all") (m,taus)=tau_reduction(m,rate,n_per_decade) Parameters ---------- ms: array of integers List of m values (assumed to be an "all" list) to remove points from. rate: float Sample rate of data in Hz. Time interval between measurements is 1/rate seconds. Used to convert to taus. n_per_decade: int Number of ms/taus to keep per decade. Returns ------- m: np.array Reduced list of m values taus: np.array Reduced list of tau values ### Response: def tau_reduction(ms, rate, n_per_decade): """Reduce the number of taus to maximum of n per decade (Helper function) takes in a tau list and reduces the number of taus to a maximum amount per decade. This is only useful if more than the "decade" and "octave" but less than the "all" taus are wanted. E.g. to show certain features of the data one might want 100 points per decade. NOTE: The algorithm is slightly inaccurate for ms under n_per_decade, and will also remove some points in this range, which is usually fine. Typical use would be something like: (data,m,taus)=tau_generator(data,rate,taus="all") (m,taus)=tau_reduction(m,rate,n_per_decade) Parameters ---------- ms: array of integers List of m values (assumed to be an "all" list) to remove points from. rate: float Sample rate of data in Hz. Time interval between measurements is 1/rate seconds. Used to convert to taus. n_per_decade: int Number of ms/taus to keep per decade. Returns ------- m: np.array Reduced list of m values taus: np.array Reduced list of tau values """ ms = np.int64(ms) keep = np.bool8(np.rint(n_per_decade*np.log10(ms[1:])) - np.rint(n_per_decade*np.log10(ms[:-1]))) # Adjust ms size to fit above-defined mask ms = ms[:-1] assert len(ms) == len(keep) ms = ms[keep] taus = ms/float(rate) return ms, taus
def clean_build(self): """Delete the build directory and all ingested files """ import shutil if self.build_fs.exists: try: shutil.rmtree(self.build_fs.getsyspath('/')) except NoSysPathError: pass
Delete the build directory and all ingested files
Below is the the instruction that describes the task: ### Input: Delete the build directory and all ingested files ### Response: def clean_build(self): """Delete the build directory and all ingested files """ import shutil if self.build_fs.exists: try: shutil.rmtree(self.build_fs.getsyspath('/')) except NoSysPathError: pass
async def main(): """Run.""" async with ClientSession() as websession: try: # Create a client: client = Client('<EMAIL>', '<PASSWORD>', websession) await client.async_init() print('Showing active Tiles:') print(await client.tiles.all()) print('Showing all Tiles:') print(await client.tiles.all(show_inactive=True)) except TileError as err: print(err)
Run.
Below is the the instruction that describes the task: ### Input: Run. ### Response: async def main(): """Run.""" async with ClientSession() as websession: try: # Create a client: client = Client('<EMAIL>', '<PASSWORD>', websession) await client.async_init() print('Showing active Tiles:') print(await client.tiles.all()) print('Showing all Tiles:') print(await client.tiles.all(show_inactive=True)) except TileError as err: print(err)
def plan_results(self, project_key, plan_key, expand=None, favourite=False, clover_enabled=False, label=None, issue_key=None, start_index=0, max_results=25): """ Get Plan results :param project_key: :param plan_key: :param expand: :param favourite: :param clover_enabled: :param label: :param issue_key: :param start_index: :param max_results: :return: """ return self.results(project_key, plan_key, expand=expand, favourite=favourite, clover_enabled=clover_enabled, label=label, issue_key=issue_key, start_index=start_index, max_results=max_results)
Get Plan results :param project_key: :param plan_key: :param expand: :param favourite: :param clover_enabled: :param label: :param issue_key: :param start_index: :param max_results: :return:
Below is the the instruction that describes the task: ### Input: Get Plan results :param project_key: :param plan_key: :param expand: :param favourite: :param clover_enabled: :param label: :param issue_key: :param start_index: :param max_results: :return: ### Response: def plan_results(self, project_key, plan_key, expand=None, favourite=False, clover_enabled=False, label=None, issue_key=None, start_index=0, max_results=25): """ Get Plan results :param project_key: :param plan_key: :param expand: :param favourite: :param clover_enabled: :param label: :param issue_key: :param start_index: :param max_results: :return: """ return self.results(project_key, plan_key, expand=expand, favourite=favourite, clover_enabled=clover_enabled, label=label, issue_key=issue_key, start_index=start_index, max_results=max_results)
def port_tag_details(cls, tags): # type: (Sequence[str]) -> Union[Tuple[bool, Port, str], None] """Search tags for port info, returning it Args: tags: A list of tags to check Returns: None or (is_source, port, connected_value|disconnected_value) where port is one of the Enum entries of Port """ for tag in tags: match = port_tag_re.match(tag) if match: source_sink, port, extra = match.groups() return source_sink == "source", cls(port), extra
Search tags for port info, returning it Args: tags: A list of tags to check Returns: None or (is_source, port, connected_value|disconnected_value) where port is one of the Enum entries of Port
Below is the the instruction that describes the task: ### Input: Search tags for port info, returning it Args: tags: A list of tags to check Returns: None or (is_source, port, connected_value|disconnected_value) where port is one of the Enum entries of Port ### Response: def port_tag_details(cls, tags): # type: (Sequence[str]) -> Union[Tuple[bool, Port, str], None] """Search tags for port info, returning it Args: tags: A list of tags to check Returns: None or (is_source, port, connected_value|disconnected_value) where port is one of the Enum entries of Port """ for tag in tags: match = port_tag_re.match(tag) if match: source_sink, port, extra = match.groups() return source_sink == "source", cls(port), extra
def _configure(cls, **defaults): """Updates class-level defaults for :class:`_Options` container.""" for attr in defaults: setattr(cls, attr, defaults[attr])
Updates class-level defaults for :class:`_Options` container.
Below is the the instruction that describes the task: ### Input: Updates class-level defaults for :class:`_Options` container. ### Response: def _configure(cls, **defaults): """Updates class-level defaults for :class:`_Options` container.""" for attr in defaults: setattr(cls, attr, defaults[attr])
def moduli_to_velocities(rho, K_s, G): """ convert moduli to velocities mainly to support Burnman operations :param rho: density in kg/m^3 :param v_phi: adiabatic bulk modulus in Pa :param v_s: shear modulus in Pa :return: bulk sound speed and shear velocity """ return np.sqrt(K_s / rho), np.sqrt(G / rho)
convert moduli to velocities mainly to support Burnman operations :param rho: density in kg/m^3 :param v_phi: adiabatic bulk modulus in Pa :param v_s: shear modulus in Pa :return: bulk sound speed and shear velocity
Below is the the instruction that describes the task: ### Input: convert moduli to velocities mainly to support Burnman operations :param rho: density in kg/m^3 :param v_phi: adiabatic bulk modulus in Pa :param v_s: shear modulus in Pa :return: bulk sound speed and shear velocity ### Response: def moduli_to_velocities(rho, K_s, G): """ convert moduli to velocities mainly to support Burnman operations :param rho: density in kg/m^3 :param v_phi: adiabatic bulk modulus in Pa :param v_s: shear modulus in Pa :return: bulk sound speed and shear velocity """ return np.sqrt(K_s / rho), np.sqrt(G / rho)
def segment_content_handler(): """Build a `~xml.sax.handlers.ContentHandler` to read segment XML tables """ from ligo.lw.lsctables import (SegmentTable, SegmentDefTable, SegmentSumTable) from ligo.lw.ligolw import PartialLIGOLWContentHandler def _filter(name, attrs): return reduce( operator.or_, [table_.CheckProperties(name, attrs) for table_ in (SegmentTable, SegmentDefTable, SegmentSumTable)]) return build_content_handler(PartialLIGOLWContentHandler, _filter)
Build a `~xml.sax.handlers.ContentHandler` to read segment XML tables
Below is the the instruction that describes the task: ### Input: Build a `~xml.sax.handlers.ContentHandler` to read segment XML tables ### Response: def segment_content_handler(): """Build a `~xml.sax.handlers.ContentHandler` to read segment XML tables """ from ligo.lw.lsctables import (SegmentTable, SegmentDefTable, SegmentSumTable) from ligo.lw.ligolw import PartialLIGOLWContentHandler def _filter(name, attrs): return reduce( operator.or_, [table_.CheckProperties(name, attrs) for table_ in (SegmentTable, SegmentDefTable, SegmentSumTable)]) return build_content_handler(PartialLIGOLWContentHandler, _filter)
def group_join( self, inner_enumerable, outer_key=lambda x: x, inner_key=lambda x: x, result_func=lambda x: x ): """ Return enumerable of group join between two enumerables :param inner_enumerable: inner enumerable to join to self :param outer_key: key selector of outer enumerable as lambda expression :param inner_key: key selector of inner enumerable as lambda expression :param result_func: lambda expression to transform the result of group join :return: new Enumerable object """ if not isinstance(inner_enumerable, Enumerable): raise TypeError( u"inner enumerable parameter must be an instance of Enumerable" ) return Enumerable( itertools.product( self, inner_enumerable.default_if_empty() ) ).group_by( key_names=['id'], key=lambda x: outer_key(x[0]), result_func=lambda g: ( g.first()[0], g.where( lambda x: inner_key(x[1]) == g.key.id).select( lambda x: x[1] ) ) ).select(result_func)
Return enumerable of group join between two enumerables :param inner_enumerable: inner enumerable to join to self :param outer_key: key selector of outer enumerable as lambda expression :param inner_key: key selector of inner enumerable as lambda expression :param result_func: lambda expression to transform the result of group join :return: new Enumerable object
Below is the the instruction that describes the task: ### Input: Return enumerable of group join between two enumerables :param inner_enumerable: inner enumerable to join to self :param outer_key: key selector of outer enumerable as lambda expression :param inner_key: key selector of inner enumerable as lambda expression :param result_func: lambda expression to transform the result of group join :return: new Enumerable object ### Response: def group_join( self, inner_enumerable, outer_key=lambda x: x, inner_key=lambda x: x, result_func=lambda x: x ): """ Return enumerable of group join between two enumerables :param inner_enumerable: inner enumerable to join to self :param outer_key: key selector of outer enumerable as lambda expression :param inner_key: key selector of inner enumerable as lambda expression :param result_func: lambda expression to transform the result of group join :return: new Enumerable object """ if not isinstance(inner_enumerable, Enumerable): raise TypeError( u"inner enumerable parameter must be an instance of Enumerable" ) return Enumerable( itertools.product( self, inner_enumerable.default_if_empty() ) ).group_by( key_names=['id'], key=lambda x: outer_key(x[0]), result_func=lambda g: ( g.first()[0], g.where( lambda x: inner_key(x[1]) == g.key.id).select( lambda x: x[1] ) ) ).select(result_func)
def _unicode(self): '''This returns a printable representation of the screen as a unicode string (which, under Python 3.x, is the same as 'str'). The end of each screen line is terminated by a newline.''' return u'\n'.join ([ u''.join(c) for c in self.w ])
This returns a printable representation of the screen as a unicode string (which, under Python 3.x, is the same as 'str'). The end of each screen line is terminated by a newline.
Below is the the instruction that describes the task: ### Input: This returns a printable representation of the screen as a unicode string (which, under Python 3.x, is the same as 'str'). The end of each screen line is terminated by a newline. ### Response: def _unicode(self): '''This returns a printable representation of the screen as a unicode string (which, under Python 3.x, is the same as 'str'). The end of each screen line is terminated by a newline.''' return u'\n'.join ([ u''.join(c) for c in self.w ])
def term_with_coeff(term, coeff): """ Change the coefficient of a PauliTerm. :param PauliTerm term: A PauliTerm object :param Number coeff: The coefficient to set on the PauliTerm :returns: A new PauliTerm that duplicates term but sets coeff :rtype: PauliTerm """ if not isinstance(coeff, Number): raise ValueError("coeff must be a Number") new_pauli = term.copy() # We cast to a complex number to ensure that internally the coefficients remain compatible. new_pauli.coefficient = complex(coeff) return new_pauli
Change the coefficient of a PauliTerm. :param PauliTerm term: A PauliTerm object :param Number coeff: The coefficient to set on the PauliTerm :returns: A new PauliTerm that duplicates term but sets coeff :rtype: PauliTerm
Below is the the instruction that describes the task: ### Input: Change the coefficient of a PauliTerm. :param PauliTerm term: A PauliTerm object :param Number coeff: The coefficient to set on the PauliTerm :returns: A new PauliTerm that duplicates term but sets coeff :rtype: PauliTerm ### Response: def term_with_coeff(term, coeff): """ Change the coefficient of a PauliTerm. :param PauliTerm term: A PauliTerm object :param Number coeff: The coefficient to set on the PauliTerm :returns: A new PauliTerm that duplicates term but sets coeff :rtype: PauliTerm """ if not isinstance(coeff, Number): raise ValueError("coeff must be a Number") new_pauli = term.copy() # We cast to a complex number to ensure that internally the coefficients remain compatible. new_pauli.coefficient = complex(coeff) return new_pauli
def _assert_explicit_vr(dicom_input): """ Assert that explicit vr is used """ if settings.validate_multiframe_implicit: header = dicom_input[0] if header.file_meta[0x0002, 0x0010].value == '1.2.840.10008.1.2': raise ConversionError('IMPLICIT_VR_ENHANCED_DICOM')
Assert that explicit vr is used
Below is the the instruction that describes the task: ### Input: Assert that explicit vr is used ### Response: def _assert_explicit_vr(dicom_input): """ Assert that explicit vr is used """ if settings.validate_multiframe_implicit: header = dicom_input[0] if header.file_meta[0x0002, 0x0010].value == '1.2.840.10008.1.2': raise ConversionError('IMPLICIT_VR_ENHANCED_DICOM')
def is_equivalent(self, other): """ Return ``True`` if the IPA character is equivalent to the ``other`` object. The ``other`` object can be: 1. a Unicode string, containing the representation of the IPA character, 2. a Unicode string, containing a space-separated list of descriptors, 3. a list of Unicode strings, containing descriptors, and 4. another IPAChar. :rtype: bool """ if (self.unicode_repr is not None) and (is_unicode_string(other)) and (self.unicode_repr == other): return True if isinstance(other, IPAChar): return self.canonical_representation == other.canonical_representation try: return self.canonical_representation == IPAChar(name=None, descriptors=other).canonical_representation except: return False
Return ``True`` if the IPA character is equivalent to the ``other`` object. The ``other`` object can be: 1. a Unicode string, containing the representation of the IPA character, 2. a Unicode string, containing a space-separated list of descriptors, 3. a list of Unicode strings, containing descriptors, and 4. another IPAChar. :rtype: bool
Below is the the instruction that describes the task: ### Input: Return ``True`` if the IPA character is equivalent to the ``other`` object. The ``other`` object can be: 1. a Unicode string, containing the representation of the IPA character, 2. a Unicode string, containing a space-separated list of descriptors, 3. a list of Unicode strings, containing descriptors, and 4. another IPAChar. :rtype: bool ### Response: def is_equivalent(self, other): """ Return ``True`` if the IPA character is equivalent to the ``other`` object. The ``other`` object can be: 1. a Unicode string, containing the representation of the IPA character, 2. a Unicode string, containing a space-separated list of descriptors, 3. a list of Unicode strings, containing descriptors, and 4. another IPAChar. :rtype: bool """ if (self.unicode_repr is not None) and (is_unicode_string(other)) and (self.unicode_repr == other): return True if isinstance(other, IPAChar): return self.canonical_representation == other.canonical_representation try: return self.canonical_representation == IPAChar(name=None, descriptors=other).canonical_representation except: return False
def _find_spelling_errors_in_chunks(chunks, contents, valid_words_dictionary=None, technical_words_dictionary=None, user_dictionary_words=None): """For each chunk and a set of valid and technical words, find errors.""" for chunk in chunks: for error in spellcheck_region(chunk.data, valid_words_dictionary, technical_words_dictionary, user_dictionary_words): col_offset = _determine_character_offset(error.line_offset, error.column_offset, chunk.column) msg = _SPELLCHECK_MESSAGES[error.error_type].format(error.word) yield _populate_spelling_error(error.word, error.suggestions, contents, error.line_offset + chunk.line, col_offset, msg)
For each chunk and a set of valid and technical words, find errors.
Below is the the instruction that describes the task: ### Input: For each chunk and a set of valid and technical words, find errors. ### Response: def _find_spelling_errors_in_chunks(chunks, contents, valid_words_dictionary=None, technical_words_dictionary=None, user_dictionary_words=None): """For each chunk and a set of valid and technical words, find errors.""" for chunk in chunks: for error in spellcheck_region(chunk.data, valid_words_dictionary, technical_words_dictionary, user_dictionary_words): col_offset = _determine_character_offset(error.line_offset, error.column_offset, chunk.column) msg = _SPELLCHECK_MESSAGES[error.error_type].format(error.word) yield _populate_spelling_error(error.word, error.suggestions, contents, error.line_offset + chunk.line, col_offset, msg)
def set_as_error(self, color=Qt.red): """ Highlights text as a syntax error. :param color: Underline color :type color: QtGui.QColor """ self.format.setUnderlineStyle( QTextCharFormat.WaveUnderline) self.format.setUnderlineColor(color)
Highlights text as a syntax error. :param color: Underline color :type color: QtGui.QColor
Below is the the instruction that describes the task: ### Input: Highlights text as a syntax error. :param color: Underline color :type color: QtGui.QColor ### Response: def set_as_error(self, color=Qt.red): """ Highlights text as a syntax error. :param color: Underline color :type color: QtGui.QColor """ self.format.setUnderlineStyle( QTextCharFormat.WaveUnderline) self.format.setUnderlineColor(color)
def choose_parent_view(self, request): """ Instantiates a class-based view to provide a view that allows a parent page to be chosen for a new object, where the assigned model extends Wagtail's Page model, and there is more than one potential parent for new instances. The view class used can be overridden by changing the 'choose_parent_view_class' attribute. """ kwargs = {'model_admin': self} view_class = self.choose_parent_view_class return view_class.as_view(**kwargs)(request)
Instantiates a class-based view to provide a view that allows a parent page to be chosen for a new object, where the assigned model extends Wagtail's Page model, and there is more than one potential parent for new instances. The view class used can be overridden by changing the 'choose_parent_view_class' attribute.
Below is the the instruction that describes the task: ### Input: Instantiates a class-based view to provide a view that allows a parent page to be chosen for a new object, where the assigned model extends Wagtail's Page model, and there is more than one potential parent for new instances. The view class used can be overridden by changing the 'choose_parent_view_class' attribute. ### Response: def choose_parent_view(self, request): """ Instantiates a class-based view to provide a view that allows a parent page to be chosen for a new object, where the assigned model extends Wagtail's Page model, and there is more than one potential parent for new instances. The view class used can be overridden by changing the 'choose_parent_view_class' attribute. """ kwargs = {'model_admin': self} view_class = self.choose_parent_view_class return view_class.as_view(**kwargs)(request)
def order_by(self, order_attribute): ''' Return the list of items in a certain order ''' to_return = [] for f in sorted(self.items, key=lambda i: getattr(i, order_attribute)): to_return.append(f) return to_return
Return the list of items in a certain order
Below is the the instruction that describes the task: ### Input: Return the list of items in a certain order ### Response: def order_by(self, order_attribute): ''' Return the list of items in a certain order ''' to_return = [] for f in sorted(self.items, key=lambda i: getattr(i, order_attribute)): to_return.append(f) return to_return
def MakeSuiteFromHist(hist, name=None): """Makes a normalized suite from a Hist object. Args: hist: Hist object name: string name Returns: Suite object """ if name is None: name = hist.name # make a copy of the dictionary d = dict(hist.GetDict()) return MakeSuiteFromDict(d, name)
Makes a normalized suite from a Hist object. Args: hist: Hist object name: string name Returns: Suite object
Below is the the instruction that describes the task: ### Input: Makes a normalized suite from a Hist object. Args: hist: Hist object name: string name Returns: Suite object ### Response: def MakeSuiteFromHist(hist, name=None): """Makes a normalized suite from a Hist object. Args: hist: Hist object name: string name Returns: Suite object """ if name is None: name = hist.name # make a copy of the dictionary d = dict(hist.GetDict()) return MakeSuiteFromDict(d, name)
def clean(args): """ %prog clean Removes all symlinks from current folder """ p = OptionParser(clean.__doc__) opts, args = p.parse_args(args) for link_name in os.listdir(os.getcwd()): if not op.islink(link_name): continue logging.debug("remove symlink `{0}`".format(link_name)) os.unlink(link_name)
%prog clean Removes all symlinks from current folder
Below is the the instruction that describes the task: ### Input: %prog clean Removes all symlinks from current folder ### Response: def clean(args): """ %prog clean Removes all symlinks from current folder """ p = OptionParser(clean.__doc__) opts, args = p.parse_args(args) for link_name in os.listdir(os.getcwd()): if not op.islink(link_name): continue logging.debug("remove symlink `{0}`".format(link_name)) os.unlink(link_name)
def prefix_items(self, prefix, strip_prefix=False): """Get all (key, value) pairs with keys that begin with ``prefix``. :param prefix: Lexical prefix for keys to search. :type prefix: bytes :param strip_prefix: True to strip the prefix from yielded items. :type strip_prefix: bool :yields: All (key, value) pairs in the store where the keys begin with the ``prefix``. """ items = self.items(key_from=prefix) start = 0 if strip_prefix: start = len(prefix) for key, value in items: if not key.startswith(prefix): break yield key[start:], value
Get all (key, value) pairs with keys that begin with ``prefix``. :param prefix: Lexical prefix for keys to search. :type prefix: bytes :param strip_prefix: True to strip the prefix from yielded items. :type strip_prefix: bool :yields: All (key, value) pairs in the store where the keys begin with the ``prefix``.
Below is the the instruction that describes the task: ### Input: Get all (key, value) pairs with keys that begin with ``prefix``. :param prefix: Lexical prefix for keys to search. :type prefix: bytes :param strip_prefix: True to strip the prefix from yielded items. :type strip_prefix: bool :yields: All (key, value) pairs in the store where the keys begin with the ``prefix``. ### Response: def prefix_items(self, prefix, strip_prefix=False): """Get all (key, value) pairs with keys that begin with ``prefix``. :param prefix: Lexical prefix for keys to search. :type prefix: bytes :param strip_prefix: True to strip the prefix from yielded items. :type strip_prefix: bool :yields: All (key, value) pairs in the store where the keys begin with the ``prefix``. """ items = self.items(key_from=prefix) start = 0 if strip_prefix: start = len(prefix) for key, value in items: if not key.startswith(prefix): break yield key[start:], value
def action(args): """Roll back commands on a refpkg. *args* should be an argparse object with fields refpkg (giving the path to the refpkg to operate on) and n (giving the number of operations to roll back). """ log.info('loading reference package') r = refpkg.Refpkg(args.refpkg, create=False) # First check if we can do n rollbacks q = r.contents for i in range(args.n): if q['rollback'] is None: log.error('Cannot rollback {} changes; ' 'refpkg only records {} changes.'.format(args.n, i)) return 1 else: q = q['rollback'] for i in range(args.n): r.rollback() return 0
Roll back commands on a refpkg. *args* should be an argparse object with fields refpkg (giving the path to the refpkg to operate on) and n (giving the number of operations to roll back).
Below is the the instruction that describes the task: ### Input: Roll back commands on a refpkg. *args* should be an argparse object with fields refpkg (giving the path to the refpkg to operate on) and n (giving the number of operations to roll back). ### Response: def action(args): """Roll back commands on a refpkg. *args* should be an argparse object with fields refpkg (giving the path to the refpkg to operate on) and n (giving the number of operations to roll back). """ log.info('loading reference package') r = refpkg.Refpkg(args.refpkg, create=False) # First check if we can do n rollbacks q = r.contents for i in range(args.n): if q['rollback'] is None: log.error('Cannot rollback {} changes; ' 'refpkg only records {} changes.'.format(args.n, i)) return 1 else: q = q['rollback'] for i in range(args.n): r.rollback() return 0
def on_created(self, event, dry_run=False, remove_uploaded=True): 'Called when a file (or directory) is created. ' super(ArchiveEventHandler, self).on_created(event) log.info("created: %s", event)
Called when a file (or directory) is created.
Below is the the instruction that describes the task: ### Input: Called when a file (or directory) is created. ### Response: def on_created(self, event, dry_run=False, remove_uploaded=True): 'Called when a file (or directory) is created. ' super(ArchiveEventHandler, self).on_created(event) log.info("created: %s", event)
def mouseUp(x=None, y=None, button='left', duration=0.0, tween=linear, pause=None, _pause=True): """Performs releasing a mouse button up (but not down beforehand). The x and y parameters detail where the mouse event happens. If None, the current mouse position is used. If a float value, it is rounded down. If outside the boundaries of the screen, the event happens at edge of the screen. Args: x (int, float, None, tuple, optional): The x position on the screen where the mouse up happens. None by default. If tuple, this is used for x and y. If x is a str, it's considered a filename of an image to find on the screen with locateOnScreen() and click the center of. y (int, float, None, optional): The y position on the screen where the mouse up happens. None by default. button (str, int, optional): The mouse button released. Must be one of 'left', 'middle', 'right' (or 1, 2, or 3) respectively. 'left' by default. Returns: None Raises: ValueError: If button is not one of 'left', 'middle', 'right', 1, 2, or 3 """ if button not in ('left', 'middle', 'right', 1, 2, 3): raise ValueError("button argument must be one of ('left', 'middle', 'right', 1, 2, 3), not %s" % button) _failSafeCheck() x, y = _unpackXY(x, y) _mouseMoveDrag('move', x, y, 0, 0, duration=0, tween=None) x, y = platformModule._position() if button == 1 or str(button).lower() == 'left': platformModule._mouseUp(x, y, 'left') elif button == 2 or str(button).lower() == 'middle': platformModule._mouseUp(x, y, 'middle') elif button == 3 or str(button).lower() == 'right': platformModule._mouseUp(x, y, 'right') _autoPause(pause, _pause)
Performs releasing a mouse button up (but not down beforehand). The x and y parameters detail where the mouse event happens. If None, the current mouse position is used. If a float value, it is rounded down. If outside the boundaries of the screen, the event happens at edge of the screen. Args: x (int, float, None, tuple, optional): The x position on the screen where the mouse up happens. None by default. If tuple, this is used for x and y. If x is a str, it's considered a filename of an image to find on the screen with locateOnScreen() and click the center of. y (int, float, None, optional): The y position on the screen where the mouse up happens. None by default. button (str, int, optional): The mouse button released. Must be one of 'left', 'middle', 'right' (or 1, 2, or 3) respectively. 'left' by default. Returns: None Raises: ValueError: If button is not one of 'left', 'middle', 'right', 1, 2, or 3
Below is the the instruction that describes the task: ### Input: Performs releasing a mouse button up (but not down beforehand). The x and y parameters detail where the mouse event happens. If None, the current mouse position is used. If a float value, it is rounded down. If outside the boundaries of the screen, the event happens at edge of the screen. Args: x (int, float, None, tuple, optional): The x position on the screen where the mouse up happens. None by default. If tuple, this is used for x and y. If x is a str, it's considered a filename of an image to find on the screen with locateOnScreen() and click the center of. y (int, float, None, optional): The y position on the screen where the mouse up happens. None by default. button (str, int, optional): The mouse button released. Must be one of 'left', 'middle', 'right' (or 1, 2, or 3) respectively. 'left' by default. Returns: None Raises: ValueError: If button is not one of 'left', 'middle', 'right', 1, 2, or 3 ### Response: def mouseUp(x=None, y=None, button='left', duration=0.0, tween=linear, pause=None, _pause=True): """Performs releasing a mouse button up (but not down beforehand). The x and y parameters detail where the mouse event happens. If None, the current mouse position is used. If a float value, it is rounded down. If outside the boundaries of the screen, the event happens at edge of the screen. Args: x (int, float, None, tuple, optional): The x position on the screen where the mouse up happens. None by default. If tuple, this is used for x and y. If x is a str, it's considered a filename of an image to find on the screen with locateOnScreen() and click the center of. y (int, float, None, optional): The y position on the screen where the mouse up happens. None by default. button (str, int, optional): The mouse button released. Must be one of 'left', 'middle', 'right' (or 1, 2, or 3) respectively. 'left' by default. Returns: None Raises: ValueError: If button is not one of 'left', 'middle', 'right', 1, 2, or 3 """ if button not in ('left', 'middle', 'right', 1, 2, 3): raise ValueError("button argument must be one of ('left', 'middle', 'right', 1, 2, 3), not %s" % button) _failSafeCheck() x, y = _unpackXY(x, y) _mouseMoveDrag('move', x, y, 0, 0, duration=0, tween=None) x, y = platformModule._position() if button == 1 or str(button).lower() == 'left': platformModule._mouseUp(x, y, 'left') elif button == 2 or str(button).lower() == 'middle': platformModule._mouseUp(x, y, 'middle') elif button == 3 or str(button).lower() == 'right': platformModule._mouseUp(x, y, 'right') _autoPause(pause, _pause)
def value(self): """returns object as dictionary""" return { "type" : "simple", "symbol" : self.symbol.value, "label" : self.label, "description" : self.description, "rotationType": self.rotationType, "rotationExpression": self.rotationExpression }
returns object as dictionary
Below is the the instruction that describes the task: ### Input: returns object as dictionary ### Response: def value(self): """returns object as dictionary""" return { "type" : "simple", "symbol" : self.symbol.value, "label" : self.label, "description" : self.description, "rotationType": self.rotationType, "rotationExpression": self.rotationExpression }
async def get_box_ids_json(self) -> str: """ Return json object on lists of all unique box identifiers for credentials in wallet: schema identifiers, credential definition identifiers, and revocation registry identifiers; e.g., :: { "schema_id": [ "R17v42T4pk...:2:tombstone:1.2", "9cHbp54C8n...:2:business:2.0", ... ], "cred_def_id": [ "R17v42T4pk...:3:CL:19:0", "9cHbp54C8n...:3:CL:37:0", ... ] "rev_reg_id": [ "R17v42T4pk...:4:R17v42T4pk...:3:CL:19:0:CL_ACCUM:0", "R17v42T4pk...:4:R17v42T4pk...:3:CL:19:0:CL_ACCUM:1", "9cHbp54C8n...:4:9cHbp54C8n...:3:CL:37:0:CL_ACCUM:0", "9cHbp54C8n...:4:9cHbp54C8n...:3:CL:37:0:CL_ACCUM:1", "9cHbp54C8n...:4:9cHbp54C8n...:3:CL:37:0:CL_ACCUM:2", ... ] } :return: tuple of sets for schema ids, cred def ids, rev reg ids """ LOGGER.debug('HolderProver.get_box_ids_json >>>') s_ids = set() cd_ids = set() rr_ids = set() for cred in json.loads(await self.get_creds_display_coarse()): s_ids.add(cred['schema_id']) cd_ids.add(cred['cred_def_id']) if cred['rev_reg_id']: rr_ids.add(cred['rev_reg_id']) rv = json.dumps({ 'schema_id': list(s_ids), 'cred_def_id': list(cd_ids), 'rev_reg_id': list(rr_ids) }) LOGGER.debug('HolderProver.get_box_ids_json <<< %s', rv) return rv
Return json object on lists of all unique box identifiers for credentials in wallet: schema identifiers, credential definition identifiers, and revocation registry identifiers; e.g., :: { "schema_id": [ "R17v42T4pk...:2:tombstone:1.2", "9cHbp54C8n...:2:business:2.0", ... ], "cred_def_id": [ "R17v42T4pk...:3:CL:19:0", "9cHbp54C8n...:3:CL:37:0", ... ] "rev_reg_id": [ "R17v42T4pk...:4:R17v42T4pk...:3:CL:19:0:CL_ACCUM:0", "R17v42T4pk...:4:R17v42T4pk...:3:CL:19:0:CL_ACCUM:1", "9cHbp54C8n...:4:9cHbp54C8n...:3:CL:37:0:CL_ACCUM:0", "9cHbp54C8n...:4:9cHbp54C8n...:3:CL:37:0:CL_ACCUM:1", "9cHbp54C8n...:4:9cHbp54C8n...:3:CL:37:0:CL_ACCUM:2", ... ] } :return: tuple of sets for schema ids, cred def ids, rev reg ids
Below is the the instruction that describes the task: ### Input: Return json object on lists of all unique box identifiers for credentials in wallet: schema identifiers, credential definition identifiers, and revocation registry identifiers; e.g., :: { "schema_id": [ "R17v42T4pk...:2:tombstone:1.2", "9cHbp54C8n...:2:business:2.0", ... ], "cred_def_id": [ "R17v42T4pk...:3:CL:19:0", "9cHbp54C8n...:3:CL:37:0", ... ] "rev_reg_id": [ "R17v42T4pk...:4:R17v42T4pk...:3:CL:19:0:CL_ACCUM:0", "R17v42T4pk...:4:R17v42T4pk...:3:CL:19:0:CL_ACCUM:1", "9cHbp54C8n...:4:9cHbp54C8n...:3:CL:37:0:CL_ACCUM:0", "9cHbp54C8n...:4:9cHbp54C8n...:3:CL:37:0:CL_ACCUM:1", "9cHbp54C8n...:4:9cHbp54C8n...:3:CL:37:0:CL_ACCUM:2", ... ] } :return: tuple of sets for schema ids, cred def ids, rev reg ids ### Response: async def get_box_ids_json(self) -> str: """ Return json object on lists of all unique box identifiers for credentials in wallet: schema identifiers, credential definition identifiers, and revocation registry identifiers; e.g., :: { "schema_id": [ "R17v42T4pk...:2:tombstone:1.2", "9cHbp54C8n...:2:business:2.0", ... ], "cred_def_id": [ "R17v42T4pk...:3:CL:19:0", "9cHbp54C8n...:3:CL:37:0", ... ] "rev_reg_id": [ "R17v42T4pk...:4:R17v42T4pk...:3:CL:19:0:CL_ACCUM:0", "R17v42T4pk...:4:R17v42T4pk...:3:CL:19:0:CL_ACCUM:1", "9cHbp54C8n...:4:9cHbp54C8n...:3:CL:37:0:CL_ACCUM:0", "9cHbp54C8n...:4:9cHbp54C8n...:3:CL:37:0:CL_ACCUM:1", "9cHbp54C8n...:4:9cHbp54C8n...:3:CL:37:0:CL_ACCUM:2", ... ] } :return: tuple of sets for schema ids, cred def ids, rev reg ids """ LOGGER.debug('HolderProver.get_box_ids_json >>>') s_ids = set() cd_ids = set() rr_ids = set() for cred in json.loads(await self.get_creds_display_coarse()): s_ids.add(cred['schema_id']) cd_ids.add(cred['cred_def_id']) if cred['rev_reg_id']: rr_ids.add(cred['rev_reg_id']) rv = json.dumps({ 'schema_id': list(s_ids), 'cred_def_id': list(cd_ids), 'rev_reg_id': list(rr_ids) }) LOGGER.debug('HolderProver.get_box_ids_json <<< %s', rv) return rv
def move(src, dest, user=None): """ Move or rename src to dest. """ src_host, src_port, src_path = path.split(src, user) dest_host, dest_port, dest_path = path.split(dest, user) src_fs = hdfs(src_host, src_port, user) dest_fs = hdfs(dest_host, dest_port, user) try: retval = src_fs.move(src_path, dest_fs, dest_path) return retval finally: src_fs.close() dest_fs.close()
Move or rename src to dest.
Below is the the instruction that describes the task: ### Input: Move or rename src to dest. ### Response: def move(src, dest, user=None): """ Move or rename src to dest. """ src_host, src_port, src_path = path.split(src, user) dest_host, dest_port, dest_path = path.split(dest, user) src_fs = hdfs(src_host, src_port, user) dest_fs = hdfs(dest_host, dest_port, user) try: retval = src_fs.move(src_path, dest_fs, dest_path) return retval finally: src_fs.close() dest_fs.close()
def do_flipper(parser, token): """The flipper tag takes two arguments: the user to look up and the feature to compare against. """ nodelist = parser.parse(('endflipper',)) tag_name, user_key, feature = token.split_contents() parser.delete_first_token() return FlipperNode(nodelist, user_key, feature)
The flipper tag takes two arguments: the user to look up and the feature to compare against.
Below is the the instruction that describes the task: ### Input: The flipper tag takes two arguments: the user to look up and the feature to compare against. ### Response: def do_flipper(parser, token): """The flipper tag takes two arguments: the user to look up and the feature to compare against. """ nodelist = parser.parse(('endflipper',)) tag_name, user_key, feature = token.split_contents() parser.delete_first_token() return FlipperNode(nodelist, user_key, feature)
def validate_values(self, definition): """This function checks that the fields have the correct values. :param definition: the dictionary containing the scalar properties. :raises ParserError: if a scalar definition field contains an unexpected value. """ if not self._strict_type_checks: return # Validate the scalar kind. scalar_kind = definition.get('kind') if scalar_kind not in SCALAR_TYPES_MAP.keys(): raise ParserError(self._name + ' - unknown scalar kind: ' + scalar_kind + '.\nSee: {}'.format(BASE_DOC_URL)) # Validate the collection policy. collection_policy = definition.get('release_channel_collection', None) if collection_policy and collection_policy not in ['opt-in', 'opt-out']: raise ParserError(self._name + ' - unknown collection policy: ' + collection_policy + '.\nSee: {}#optional-fields'.format(BASE_DOC_URL)) # Validate the cpp_guard. cpp_guard = definition.get('cpp_guard') if cpp_guard and re.match(r'\W', cpp_guard): raise ParserError(self._name + ' - invalid cpp_guard: ' + cpp_guard + '.\nSee: {}#optional-fields'.format(BASE_DOC_URL)) # Validate record_in_processes. record_in_processes = definition.get('record_in_processes', []) for proc in record_in_processes: if not utils.is_valid_process_name(proc): raise ParserError(self._name + ' - unknown value in record_in_processes: ' + proc + '.\nSee: {}'.format(BASE_DOC_URL)) # Validate the expiration version. # Historical versions of Scalars.json may contain expiration versions # using the deprecated format 'N.Na1'. Those scripts set # self._strict_type_checks to false. expires = definition.get('expires') if not utils.validate_expiration_version(expires) and self._strict_type_checks: raise ParserError('{} - invalid expires: {}.\nSee: {}#required-fields' .format(self._name, expires, BASE_DOC_URL))
This function checks that the fields have the correct values. :param definition: the dictionary containing the scalar properties. :raises ParserError: if a scalar definition field contains an unexpected value.
Below is the the instruction that describes the task: ### Input: This function checks that the fields have the correct values. :param definition: the dictionary containing the scalar properties. :raises ParserError: if a scalar definition field contains an unexpected value. ### Response: def validate_values(self, definition): """This function checks that the fields have the correct values. :param definition: the dictionary containing the scalar properties. :raises ParserError: if a scalar definition field contains an unexpected value. """ if not self._strict_type_checks: return # Validate the scalar kind. scalar_kind = definition.get('kind') if scalar_kind not in SCALAR_TYPES_MAP.keys(): raise ParserError(self._name + ' - unknown scalar kind: ' + scalar_kind + '.\nSee: {}'.format(BASE_DOC_URL)) # Validate the collection policy. collection_policy = definition.get('release_channel_collection', None) if collection_policy and collection_policy not in ['opt-in', 'opt-out']: raise ParserError(self._name + ' - unknown collection policy: ' + collection_policy + '.\nSee: {}#optional-fields'.format(BASE_DOC_URL)) # Validate the cpp_guard. cpp_guard = definition.get('cpp_guard') if cpp_guard and re.match(r'\W', cpp_guard): raise ParserError(self._name + ' - invalid cpp_guard: ' + cpp_guard + '.\nSee: {}#optional-fields'.format(BASE_DOC_URL)) # Validate record_in_processes. record_in_processes = definition.get('record_in_processes', []) for proc in record_in_processes: if not utils.is_valid_process_name(proc): raise ParserError(self._name + ' - unknown value in record_in_processes: ' + proc + '.\nSee: {}'.format(BASE_DOC_URL)) # Validate the expiration version. # Historical versions of Scalars.json may contain expiration versions # using the deprecated format 'N.Na1'. Those scripts set # self._strict_type_checks to false. expires = definition.get('expires') if not utils.validate_expiration_version(expires) and self._strict_type_checks: raise ParserError('{} - invalid expires: {}.\nSee: {}#required-fields' .format(self._name, expires, BASE_DOC_URL))
def draw_noisy_time_series(self, SNR=1.0, red_noise_ratio=0.25, outlier_ratio=0.0): """ A function to draw a noisy time series based on the clean model such that y_noisy = y + yw + yr, where yw is white noise, yr is red noise and y will be rescaled so that y_noisy complies with the specified signal-to-noise ratio (SNR). Parameters --------- SNR: float Signal-to-noise ratio of the resulting contaminated signal in decibels [dB]. SNR is defined as SNR = 10*log(var_signal/var_noise), hence NR var_signal/var_noise 10 10 7 5 3 2 0 1 -3 0.5 -7 0.2 -10 0.1 red_noise_variance: float in [0, 1] The variance of the red noise component is set according to Var(yw)*red_noise_ratio. Set this to zero to obtain uncertainties that explain the noise perfectly outlier_ratio: float in [0, 1] Percentage of outlier data points Returns ------- t: ndarray Vector containing the time instants y_noisy: ndarray Vector containing the contaminated signal s: ndarray Vector containing the uncertainties associated to the white noise component """ if outlier_ratio < 0.0 or outlier_ratio > 1.0: raise ValueError("Outlier ratio must be in [0, 1]") if red_noise_ratio < 0.0: raise ValueError("Red noise ratio must be positive") np.random.seed(self.rseed) t = self.t y_clean = self.y_clean N = len(t) # First we generate s s, mean_s_squared = generate_uncertainties(N, rseed=self.rseed) #print(mean_s_squared) #print(np.mean(s**2)) # Draw a heteroscedastic white noise vector white_noise = np.random.multivariate_normal(np.zeros(N,), np.diag(s**2)) # Now we generate a colored noise vector which is unaccounted by s red_noise_variance = mean_s_squared*red_noise_ratio # First order markovian process to generate red_noise = first_order_markov_process(t, red_noise_variance, 1.0, rseed=self.rseed) # The following is not ok for irregularly sampled time series because # it assumes constant dt=1 #phi=0.5 #red_noise = np.random.randn(N)*np.sqrt(red_noise_variance) #for i in range(1, N): # red_noise[i] = phi*red_noise[i-1] + np.sqrt(1 - phi**2)*red_noise[i] # The final noise vector #print("%f %f" % (np.var(white_noise)*red_noise_ratio, np.var(red_noise))) noise = white_noise + red_noise var_noise = mean_s_squared + red_noise_variance SNR_unitless = 10.0**(SNR/10.0) self.A = np.sqrt(SNR_unitless*var_noise) y = self.A*y_clean y_noisy = y + noise # Add outliers with a certain percentage rperm = np.where(np.random.uniform(size=N) < outlier_ratio)[0] outlier = np.random.uniform(5.0*np.std(y), 10.0*np.std(y), size=len(rperm)) y_noisy[rperm] += outlier return t, y_noisy, s
A function to draw a noisy time series based on the clean model such that y_noisy = y + yw + yr, where yw is white noise, yr is red noise and y will be rescaled so that y_noisy complies with the specified signal-to-noise ratio (SNR). Parameters --------- SNR: float Signal-to-noise ratio of the resulting contaminated signal in decibels [dB]. SNR is defined as SNR = 10*log(var_signal/var_noise), hence NR var_signal/var_noise 10 10 7 5 3 2 0 1 -3 0.5 -7 0.2 -10 0.1 red_noise_variance: float in [0, 1] The variance of the red noise component is set according to Var(yw)*red_noise_ratio. Set this to zero to obtain uncertainties that explain the noise perfectly outlier_ratio: float in [0, 1] Percentage of outlier data points Returns ------- t: ndarray Vector containing the time instants y_noisy: ndarray Vector containing the contaminated signal s: ndarray Vector containing the uncertainties associated to the white noise component
Below is the the instruction that describes the task: ### Input: A function to draw a noisy time series based on the clean model such that y_noisy = y + yw + yr, where yw is white noise, yr is red noise and y will be rescaled so that y_noisy complies with the specified signal-to-noise ratio (SNR). Parameters --------- SNR: float Signal-to-noise ratio of the resulting contaminated signal in decibels [dB]. SNR is defined as SNR = 10*log(var_signal/var_noise), hence NR var_signal/var_noise 10 10 7 5 3 2 0 1 -3 0.5 -7 0.2 -10 0.1 red_noise_variance: float in [0, 1] The variance of the red noise component is set according to Var(yw)*red_noise_ratio. Set this to zero to obtain uncertainties that explain the noise perfectly outlier_ratio: float in [0, 1] Percentage of outlier data points Returns ------- t: ndarray Vector containing the time instants y_noisy: ndarray Vector containing the contaminated signal s: ndarray Vector containing the uncertainties associated to the white noise component ### Response: def draw_noisy_time_series(self, SNR=1.0, red_noise_ratio=0.25, outlier_ratio=0.0): """ A function to draw a noisy time series based on the clean model such that y_noisy = y + yw + yr, where yw is white noise, yr is red noise and y will be rescaled so that y_noisy complies with the specified signal-to-noise ratio (SNR). Parameters --------- SNR: float Signal-to-noise ratio of the resulting contaminated signal in decibels [dB]. SNR is defined as SNR = 10*log(var_signal/var_noise), hence NR var_signal/var_noise 10 10 7 5 3 2 0 1 -3 0.5 -7 0.2 -10 0.1 red_noise_variance: float in [0, 1] The variance of the red noise component is set according to Var(yw)*red_noise_ratio. Set this to zero to obtain uncertainties that explain the noise perfectly outlier_ratio: float in [0, 1] Percentage of outlier data points Returns ------- t: ndarray Vector containing the time instants y_noisy: ndarray Vector containing the contaminated signal s: ndarray Vector containing the uncertainties associated to the white noise component """ if outlier_ratio < 0.0 or outlier_ratio > 1.0: raise ValueError("Outlier ratio must be in [0, 1]") if red_noise_ratio < 0.0: raise ValueError("Red noise ratio must be positive") np.random.seed(self.rseed) t = self.t y_clean = self.y_clean N = len(t) # First we generate s s, mean_s_squared = generate_uncertainties(N, rseed=self.rseed) #print(mean_s_squared) #print(np.mean(s**2)) # Draw a heteroscedastic white noise vector white_noise = np.random.multivariate_normal(np.zeros(N,), np.diag(s**2)) # Now we generate a colored noise vector which is unaccounted by s red_noise_variance = mean_s_squared*red_noise_ratio # First order markovian process to generate red_noise = first_order_markov_process(t, red_noise_variance, 1.0, rseed=self.rseed) # The following is not ok for irregularly sampled time series because # it assumes constant dt=1 #phi=0.5 #red_noise = np.random.randn(N)*np.sqrt(red_noise_variance) #for i in range(1, N): # red_noise[i] = phi*red_noise[i-1] + np.sqrt(1 - phi**2)*red_noise[i] # The final noise vector #print("%f %f" % (np.var(white_noise)*red_noise_ratio, np.var(red_noise))) noise = white_noise + red_noise var_noise = mean_s_squared + red_noise_variance SNR_unitless = 10.0**(SNR/10.0) self.A = np.sqrt(SNR_unitless*var_noise) y = self.A*y_clean y_noisy = y + noise # Add outliers with a certain percentage rperm = np.where(np.random.uniform(size=N) < outlier_ratio)[0] outlier = np.random.uniform(5.0*np.std(y), 10.0*np.std(y), size=len(rperm)) y_noisy[rperm] += outlier return t, y_noisy, s
def remove_task_db(self, fid, force=False): '''将任务从数据库中删除''' self.remove_slice_db(fid) sql = 'DELETE FROM upload WHERE fid=?' self.cursor.execute(sql, [fid, ]) self.check_commit(force=force)
将任务从数据库中删除
Below is the the instruction that describes the task: ### Input: 将任务从数据库中删除 ### Response: def remove_task_db(self, fid, force=False): '''将任务从数据库中删除''' self.remove_slice_db(fid) sql = 'DELETE FROM upload WHERE fid=?' self.cursor.execute(sql, [fid, ]) self.check_commit(force=force)
def migrate_abci_chain(self): """Generate and record a new ABCI chain ID. New blocks are not accepted until we receive an InitChain ABCI request with the matching chain ID and validator set. Chain ID is generated based on the current chain and height. `chain-X` => `chain-X-migrated-at-height-5`. `chain-X-migrated-at-height-5` => `chain-X-migrated-at-height-21`. If there is no known chain (we are at genesis), the function returns. """ latest_chain = self.get_latest_abci_chain() if latest_chain is None: return block = self.get_latest_block() suffix = '-migrated-at-height-' chain_id = latest_chain['chain_id'] block_height_str = str(block['height']) new_chain_id = chain_id.split(suffix)[0] + suffix + block_height_str self.store_abci_chain(block['height'] + 1, new_chain_id, False)
Generate and record a new ABCI chain ID. New blocks are not accepted until we receive an InitChain ABCI request with the matching chain ID and validator set. Chain ID is generated based on the current chain and height. `chain-X` => `chain-X-migrated-at-height-5`. `chain-X-migrated-at-height-5` => `chain-X-migrated-at-height-21`. If there is no known chain (we are at genesis), the function returns.
Below is the the instruction that describes the task: ### Input: Generate and record a new ABCI chain ID. New blocks are not accepted until we receive an InitChain ABCI request with the matching chain ID and validator set. Chain ID is generated based on the current chain and height. `chain-X` => `chain-X-migrated-at-height-5`. `chain-X-migrated-at-height-5` => `chain-X-migrated-at-height-21`. If there is no known chain (we are at genesis), the function returns. ### Response: def migrate_abci_chain(self): """Generate and record a new ABCI chain ID. New blocks are not accepted until we receive an InitChain ABCI request with the matching chain ID and validator set. Chain ID is generated based on the current chain and height. `chain-X` => `chain-X-migrated-at-height-5`. `chain-X-migrated-at-height-5` => `chain-X-migrated-at-height-21`. If there is no known chain (we are at genesis), the function returns. """ latest_chain = self.get_latest_abci_chain() if latest_chain is None: return block = self.get_latest_block() suffix = '-migrated-at-height-' chain_id = latest_chain['chain_id'] block_height_str = str(block['height']) new_chain_id = chain_id.split(suffix)[0] + suffix + block_height_str self.store_abci_chain(block['height'] + 1, new_chain_id, False)
def dict_to_source(dict): ''' Transform a dict with key 'citation' into a :class:`Source`. If the argument passed is already a :class:`Source`, this method just returns the argument. ''' if isinstance(dict, Source): return dict return Source( dict['citation'], dict.get('markup') )
Transform a dict with key 'citation' into a :class:`Source`. If the argument passed is already a :class:`Source`, this method just returns the argument.
Below is the the instruction that describes the task: ### Input: Transform a dict with key 'citation' into a :class:`Source`. If the argument passed is already a :class:`Source`, this method just returns the argument. ### Response: def dict_to_source(dict): ''' Transform a dict with key 'citation' into a :class:`Source`. If the argument passed is already a :class:`Source`, this method just returns the argument. ''' if isinstance(dict, Source): return dict return Source( dict['citation'], dict.get('markup') )
def GetFileSystems(): """Make syscalls to get the mounted filesystems. Returns: A list of Struct objects. Based on the information for getfsstat http://developer.apple.com/library/mac/#documentation/Darwin/ Reference/ManPages/man2/getfsstat.2.html """ version = OSXVersion() major, minor = version.VersionAsMajorMinor() libc = ctypes.cdll.LoadLibrary(ctypes.util.find_library("c")) if major <= 10 and minor <= 5: use_64 = False fs_struct = StatFSStruct else: use_64 = True fs_struct = StatFS64Struct # Get max 20 file systems. struct_size = fs_struct.GetSize() buf_size = struct_size * 20 cbuf = ctypes.create_string_buffer(buf_size) if use_64: # MNT_NOWAIT = 2 - don't ask the filesystems, just return cache. ret = libc.getfsstat64(ctypes.byref(cbuf), buf_size, 2) else: ret = libc.getfsstat(ctypes.byref(cbuf), buf_size, 2) if ret == 0: logging.debug("getfsstat failed err: %s", ret) return [] return ParseFileSystemsStruct(fs_struct, ret, cbuf)
Make syscalls to get the mounted filesystems. Returns: A list of Struct objects. Based on the information for getfsstat http://developer.apple.com/library/mac/#documentation/Darwin/ Reference/ManPages/man2/getfsstat.2.html
Below is the the instruction that describes the task: ### Input: Make syscalls to get the mounted filesystems. Returns: A list of Struct objects. Based on the information for getfsstat http://developer.apple.com/library/mac/#documentation/Darwin/ Reference/ManPages/man2/getfsstat.2.html ### Response: def GetFileSystems(): """Make syscalls to get the mounted filesystems. Returns: A list of Struct objects. Based on the information for getfsstat http://developer.apple.com/library/mac/#documentation/Darwin/ Reference/ManPages/man2/getfsstat.2.html """ version = OSXVersion() major, minor = version.VersionAsMajorMinor() libc = ctypes.cdll.LoadLibrary(ctypes.util.find_library("c")) if major <= 10 and minor <= 5: use_64 = False fs_struct = StatFSStruct else: use_64 = True fs_struct = StatFS64Struct # Get max 20 file systems. struct_size = fs_struct.GetSize() buf_size = struct_size * 20 cbuf = ctypes.create_string_buffer(buf_size) if use_64: # MNT_NOWAIT = 2 - don't ask the filesystems, just return cache. ret = libc.getfsstat64(ctypes.byref(cbuf), buf_size, 2) else: ret = libc.getfsstat(ctypes.byref(cbuf), buf_size, 2) if ret == 0: logging.debug("getfsstat failed err: %s", ret) return [] return ParseFileSystemsStruct(fs_struct, ret, cbuf)
def get_parent_until(path): """ Given a file path, determine the full module path. e.g. '/usr/lib/python2.7/dist-packages/numpy/core/__init__.pyc' yields 'numpy.core' """ dirname = osp.dirname(path) try: mod = osp.basename(path) mod = osp.splitext(mod)[0] imp.find_module(mod, [dirname]) except ImportError: return items = [mod] while 1: items.append(osp.basename(dirname)) try: dirname = osp.dirname(dirname) imp.find_module('__init__', [dirname + os.sep]) except ImportError: break return '.'.join(reversed(items))
Given a file path, determine the full module path. e.g. '/usr/lib/python2.7/dist-packages/numpy/core/__init__.pyc' yields 'numpy.core'
Below is the the instruction that describes the task: ### Input: Given a file path, determine the full module path. e.g. '/usr/lib/python2.7/dist-packages/numpy/core/__init__.pyc' yields 'numpy.core' ### Response: def get_parent_until(path): """ Given a file path, determine the full module path. e.g. '/usr/lib/python2.7/dist-packages/numpy/core/__init__.pyc' yields 'numpy.core' """ dirname = osp.dirname(path) try: mod = osp.basename(path) mod = osp.splitext(mod)[0] imp.find_module(mod, [dirname]) except ImportError: return items = [mod] while 1: items.append(osp.basename(dirname)) try: dirname = osp.dirname(dirname) imp.find_module('__init__', [dirname + os.sep]) except ImportError: break return '.'.join(reversed(items))
def report_idle_after(seconds): """Report_idle_after after certain number of seconds.""" def decorator(func): def wrapper(*args, **kwargs): def _handle_timeout(signum, frame): config = get_config() if not config.ready: config.load() message = { "subject": "Idle Experiment.", "body": idle_template.format( app_id=config.get("id"), minutes_so_far=round(seconds / 60) ), } log("Reporting problem with idle experiment...") get_messenger(config).send(message) signal.signal(signal.SIGALRM, _handle_timeout) signal.alarm(seconds) try: result = func(*args, **kwargs) finally: signal.alarm(0) return result return wraps(func)(wrapper) return decorator
Report_idle_after after certain number of seconds.
Below is the the instruction that describes the task: ### Input: Report_idle_after after certain number of seconds. ### Response: def report_idle_after(seconds): """Report_idle_after after certain number of seconds.""" def decorator(func): def wrapper(*args, **kwargs): def _handle_timeout(signum, frame): config = get_config() if not config.ready: config.load() message = { "subject": "Idle Experiment.", "body": idle_template.format( app_id=config.get("id"), minutes_so_far=round(seconds / 60) ), } log("Reporting problem with idle experiment...") get_messenger(config).send(message) signal.signal(signal.SIGALRM, _handle_timeout) signal.alarm(seconds) try: result = func(*args, **kwargs) finally: signal.alarm(0) return result return wraps(func)(wrapper) return decorator
def union(self, other, left_name="LEFT", right_name="RIGHT"): """ *Wrapper of* ``UNION`` The UNION operation is used to integrate homogeneous or heterogeneous samples of two datasets within a single dataset; for each sample of either one of the input datasets, a sample is created in the result as follows: * its metadata are the same as in the original sample; * its schema is the schema of the first (left) input dataset; new identifiers are assigned to each output sample; * its regions are the same (in coordinates and attribute values) as in the original sample. Region attributes which are missing in an input dataset sample (w.r.t. the merged schema) are set to null. :param other: a GMQLDataset :param left_name: name that you want to assign to the left dataset :param right_name: name tha t you want to assign to the right dataset :return: a new GMQLDataset Example of usage:: import gmql as gl d1 = gl.get_example_dataset("Example_Dataset_1") d2 = gl.get_example_dataset("Example_Dataset_2") result = d1.union(other=d2, left_name="D1", right_name="D2") """ if not isinstance(left_name, str) or \ not isinstance(right_name, str): raise TypeError("left_name and right_name must be strings. " "{} - {} was provided".format(type(left_name), type(right_name))) if isinstance(other, GMQLDataset): other_idx = other.__index else: raise TypeError("other must be a GMQLDataset. " "{} was provided".format(type(other))) if len(left_name) == 0 or len(right_name) == 0: raise ValueError("left_name and right_name must not be empty") new_index = self.opmng.union(self.__index, other_idx, left_name, right_name) new_local_sources, new_remote_sources = self.__combine_sources(self, other) new_location = self.__combine_locations(self, other) return GMQLDataset(index=new_index, location=new_location, local_sources=new_local_sources, remote_sources=new_remote_sources, meta_profile=self.meta_profile)
*Wrapper of* ``UNION`` The UNION operation is used to integrate homogeneous or heterogeneous samples of two datasets within a single dataset; for each sample of either one of the input datasets, a sample is created in the result as follows: * its metadata are the same as in the original sample; * its schema is the schema of the first (left) input dataset; new identifiers are assigned to each output sample; * its regions are the same (in coordinates and attribute values) as in the original sample. Region attributes which are missing in an input dataset sample (w.r.t. the merged schema) are set to null. :param other: a GMQLDataset :param left_name: name that you want to assign to the left dataset :param right_name: name tha t you want to assign to the right dataset :return: a new GMQLDataset Example of usage:: import gmql as gl d1 = gl.get_example_dataset("Example_Dataset_1") d2 = gl.get_example_dataset("Example_Dataset_2") result = d1.union(other=d2, left_name="D1", right_name="D2")
Below is the the instruction that describes the task: ### Input: *Wrapper of* ``UNION`` The UNION operation is used to integrate homogeneous or heterogeneous samples of two datasets within a single dataset; for each sample of either one of the input datasets, a sample is created in the result as follows: * its metadata are the same as in the original sample; * its schema is the schema of the first (left) input dataset; new identifiers are assigned to each output sample; * its regions are the same (in coordinates and attribute values) as in the original sample. Region attributes which are missing in an input dataset sample (w.r.t. the merged schema) are set to null. :param other: a GMQLDataset :param left_name: name that you want to assign to the left dataset :param right_name: name tha t you want to assign to the right dataset :return: a new GMQLDataset Example of usage:: import gmql as gl d1 = gl.get_example_dataset("Example_Dataset_1") d2 = gl.get_example_dataset("Example_Dataset_2") result = d1.union(other=d2, left_name="D1", right_name="D2") ### Response: def union(self, other, left_name="LEFT", right_name="RIGHT"): """ *Wrapper of* ``UNION`` The UNION operation is used to integrate homogeneous or heterogeneous samples of two datasets within a single dataset; for each sample of either one of the input datasets, a sample is created in the result as follows: * its metadata are the same as in the original sample; * its schema is the schema of the first (left) input dataset; new identifiers are assigned to each output sample; * its regions are the same (in coordinates and attribute values) as in the original sample. Region attributes which are missing in an input dataset sample (w.r.t. the merged schema) are set to null. :param other: a GMQLDataset :param left_name: name that you want to assign to the left dataset :param right_name: name tha t you want to assign to the right dataset :return: a new GMQLDataset Example of usage:: import gmql as gl d1 = gl.get_example_dataset("Example_Dataset_1") d2 = gl.get_example_dataset("Example_Dataset_2") result = d1.union(other=d2, left_name="D1", right_name="D2") """ if not isinstance(left_name, str) or \ not isinstance(right_name, str): raise TypeError("left_name and right_name must be strings. " "{} - {} was provided".format(type(left_name), type(right_name))) if isinstance(other, GMQLDataset): other_idx = other.__index else: raise TypeError("other must be a GMQLDataset. " "{} was provided".format(type(other))) if len(left_name) == 0 or len(right_name) == 0: raise ValueError("left_name and right_name must not be empty") new_index = self.opmng.union(self.__index, other_idx, left_name, right_name) new_local_sources, new_remote_sources = self.__combine_sources(self, other) new_location = self.__combine_locations(self, other) return GMQLDataset(index=new_index, location=new_location, local_sources=new_local_sources, remote_sources=new_remote_sources, meta_profile=self.meta_profile)
def get_uncompleted_tasks(self): """Return a list of all uncompleted tasks in this project. .. warning:: Requires Todoist premium. :return: A list of all uncompleted tasks in this project. :rtype: list of :class:`pytodoist.todoist.Task` >>> from pytodoist import todoist >>> user = todoist.login('[email protected]', 'password') >>> project = user.get_project('PyTodoist') >>> project.add_task('Install PyTodoist') >>> uncompleted_tasks = project.get_uncompleted_tasks() >>> for task in uncompleted_tasks: ... task.complete() """ all_tasks = self.get_tasks() completed_tasks = self.get_completed_tasks() return [t for t in all_tasks if t not in completed_tasks]
Return a list of all uncompleted tasks in this project. .. warning:: Requires Todoist premium. :return: A list of all uncompleted tasks in this project. :rtype: list of :class:`pytodoist.todoist.Task` >>> from pytodoist import todoist >>> user = todoist.login('[email protected]', 'password') >>> project = user.get_project('PyTodoist') >>> project.add_task('Install PyTodoist') >>> uncompleted_tasks = project.get_uncompleted_tasks() >>> for task in uncompleted_tasks: ... task.complete()
Below is the the instruction that describes the task: ### Input: Return a list of all uncompleted tasks in this project. .. warning:: Requires Todoist premium. :return: A list of all uncompleted tasks in this project. :rtype: list of :class:`pytodoist.todoist.Task` >>> from pytodoist import todoist >>> user = todoist.login('[email protected]', 'password') >>> project = user.get_project('PyTodoist') >>> project.add_task('Install PyTodoist') >>> uncompleted_tasks = project.get_uncompleted_tasks() >>> for task in uncompleted_tasks: ... task.complete() ### Response: def get_uncompleted_tasks(self): """Return a list of all uncompleted tasks in this project. .. warning:: Requires Todoist premium. :return: A list of all uncompleted tasks in this project. :rtype: list of :class:`pytodoist.todoist.Task` >>> from pytodoist import todoist >>> user = todoist.login('[email protected]', 'password') >>> project = user.get_project('PyTodoist') >>> project.add_task('Install PyTodoist') >>> uncompleted_tasks = project.get_uncompleted_tasks() >>> for task in uncompleted_tasks: ... task.complete() """ all_tasks = self.get_tasks() completed_tasks = self.get_completed_tasks() return [t for t in all_tasks if t not in completed_tasks]
def concretize_load_idx(self, idx, strategies=None): """ Concretizes a load index. :param idx: An expression for the index. :param strategies: A list of concretization strategies (to override the default). :param min_idx: Minimum value for a concretized index (inclusive). :param max_idx: Maximum value for a concretized index (exclusive). :returns: A list of concrete indexes. """ if isinstance(idx, int): return [idx] elif not self.state.solver.symbolic(idx): return [self.state.solver.eval(idx)] strategies = self.load_strategies if strategies is None else strategies return self._apply_concretization_strategies(idx, strategies, 'load')
Concretizes a load index. :param idx: An expression for the index. :param strategies: A list of concretization strategies (to override the default). :param min_idx: Minimum value for a concretized index (inclusive). :param max_idx: Maximum value for a concretized index (exclusive). :returns: A list of concrete indexes.
Below is the the instruction that describes the task: ### Input: Concretizes a load index. :param idx: An expression for the index. :param strategies: A list of concretization strategies (to override the default). :param min_idx: Minimum value for a concretized index (inclusive). :param max_idx: Maximum value for a concretized index (exclusive). :returns: A list of concrete indexes. ### Response: def concretize_load_idx(self, idx, strategies=None): """ Concretizes a load index. :param idx: An expression for the index. :param strategies: A list of concretization strategies (to override the default). :param min_idx: Minimum value for a concretized index (inclusive). :param max_idx: Maximum value for a concretized index (exclusive). :returns: A list of concrete indexes. """ if isinstance(idx, int): return [idx] elif not self.state.solver.symbolic(idx): return [self.state.solver.eval(idx)] strategies = self.load_strategies if strategies is None else strategies return self._apply_concretization_strategies(idx, strategies, 'load')
def parse_data_df(data_dset, ridx, cidx, row_meta, col_meta): """ Parses in data_df from hdf5, subsetting if specified. Input: -data_dset (h5py dset): HDF5 dataset from which to read data_df -ridx (list): list of indexes to subset from data_df (may be all of them if no subsetting) -cidx (list): list of indexes to subset from data_df (may be all of them if no subsetting) -row_meta (pandas DataFrame): the parsed in row metadata -col_meta (pandas DataFrame): the parsed in col metadata """ if len(ridx) == len(row_meta.index) and len(cidx) == len(col_meta.index): # no subset data_array = np.empty(data_dset.shape, dtype=np.float32) data_dset.read_direct(data_array) data_array = data_array.transpose() elif len(ridx) <= len(cidx): first_subset = data_dset[:, ridx].astype(np.float32) data_array = first_subset[cidx, :].transpose() elif len(cidx) < len(ridx): first_subset = data_dset[cidx, :].astype(np.float32) data_array = first_subset[:, ridx].transpose() # make DataFrame instance data_df = pd.DataFrame(data_array, index=row_meta.index[ridx], columns=col_meta.index[cidx]) return data_df
Parses in data_df from hdf5, subsetting if specified. Input: -data_dset (h5py dset): HDF5 dataset from which to read data_df -ridx (list): list of indexes to subset from data_df (may be all of them if no subsetting) -cidx (list): list of indexes to subset from data_df (may be all of them if no subsetting) -row_meta (pandas DataFrame): the parsed in row metadata -col_meta (pandas DataFrame): the parsed in col metadata
Below is the the instruction that describes the task: ### Input: Parses in data_df from hdf5, subsetting if specified. Input: -data_dset (h5py dset): HDF5 dataset from which to read data_df -ridx (list): list of indexes to subset from data_df (may be all of them if no subsetting) -cidx (list): list of indexes to subset from data_df (may be all of them if no subsetting) -row_meta (pandas DataFrame): the parsed in row metadata -col_meta (pandas DataFrame): the parsed in col metadata ### Response: def parse_data_df(data_dset, ridx, cidx, row_meta, col_meta): """ Parses in data_df from hdf5, subsetting if specified. Input: -data_dset (h5py dset): HDF5 dataset from which to read data_df -ridx (list): list of indexes to subset from data_df (may be all of them if no subsetting) -cidx (list): list of indexes to subset from data_df (may be all of them if no subsetting) -row_meta (pandas DataFrame): the parsed in row metadata -col_meta (pandas DataFrame): the parsed in col metadata """ if len(ridx) == len(row_meta.index) and len(cidx) == len(col_meta.index): # no subset data_array = np.empty(data_dset.shape, dtype=np.float32) data_dset.read_direct(data_array) data_array = data_array.transpose() elif len(ridx) <= len(cidx): first_subset = data_dset[:, ridx].astype(np.float32) data_array = first_subset[cidx, :].transpose() elif len(cidx) < len(ridx): first_subset = data_dset[cidx, :].astype(np.float32) data_array = first_subset[:, ridx].transpose() # make DataFrame instance data_df = pd.DataFrame(data_array, index=row_meta.index[ridx], columns=col_meta.index[cidx]) return data_df
def ms_panset(self, viewer, event, data_x, data_y, msg=True): """An interactive way to set the pan position. The location (data_x, data_y) will be centered in the window. """ if self.canpan and (event.state == 'down'): self._panset(viewer, data_x, data_y, msg=msg) return True
An interactive way to set the pan position. The location (data_x, data_y) will be centered in the window.
Below is the the instruction that describes the task: ### Input: An interactive way to set the pan position. The location (data_x, data_y) will be centered in the window. ### Response: def ms_panset(self, viewer, event, data_x, data_y, msg=True): """An interactive way to set the pan position. The location (data_x, data_y) will be centered in the window. """ if self.canpan and (event.state == 'down'): self._panset(viewer, data_x, data_y, msg=msg) return True
def capture_output_from_running_process(context: RunContext) -> None: """ Parses output from a running sub-process Decodes and filters the process output line by line, buffering it If "mute" is False, sends the output back in real time :param context: run context :type context: _RunContext """ # Get the raw output one line at a time _output = context.capture.readline(block=False) if _output: line = decode_and_filter(_output, context) if line: if not context.mute: # Print in real time _LOGGER_PROCESS.debug(line) # Buffer the line context.process_output_chunks.append(line) # Get additional output if any return capture_output_from_running_process(context) return None
Parses output from a running sub-process Decodes and filters the process output line by line, buffering it If "mute" is False, sends the output back in real time :param context: run context :type context: _RunContext
Below is the the instruction that describes the task: ### Input: Parses output from a running sub-process Decodes and filters the process output line by line, buffering it If "mute" is False, sends the output back in real time :param context: run context :type context: _RunContext ### Response: def capture_output_from_running_process(context: RunContext) -> None: """ Parses output from a running sub-process Decodes and filters the process output line by line, buffering it If "mute" is False, sends the output back in real time :param context: run context :type context: _RunContext """ # Get the raw output one line at a time _output = context.capture.readline(block=False) if _output: line = decode_and_filter(_output, context) if line: if not context.mute: # Print in real time _LOGGER_PROCESS.debug(line) # Buffer the line context.process_output_chunks.append(line) # Get additional output if any return capture_output_from_running_process(context) return None
def compare_last_two_snapshots(obj, raw=False): """Helper to compare the last two snapshots directly """ if get_snapshot_count(obj) < 2: return {} version = get_version(obj) snap1 = get_snapshot_by_version(obj, version - 1) snap2 = get_snapshot_by_version(obj, version) return compare_snapshots(snap1, snap2, raw=raw)
Helper to compare the last two snapshots directly
Below is the the instruction that describes the task: ### Input: Helper to compare the last two snapshots directly ### Response: def compare_last_two_snapshots(obj, raw=False): """Helper to compare the last two snapshots directly """ if get_snapshot_count(obj) < 2: return {} version = get_version(obj) snap1 = get_snapshot_by_version(obj, version - 1) snap2 = get_snapshot_by_version(obj, version) return compare_snapshots(snap1, snap2, raw=raw)
def get_scalingip(context, id, fields=None): """Retrieve a scaling IP. :param context: neutron api request context. :param id: The UUID of the scaling IP. :param fields: a list of strings that are valid keys in a scaling IP dictionary as listed in the RESOURCE_ATTRIBUTE_MAP object in neutron/api/v2/attributes.py. Only these fields will be returned. :returns: Dictionary containing details for the scaling IP. If values are declared in the fields parameter, then only those keys will be present. """ LOG.info('get_scalingip %s for tenant %s' % (id, context.tenant_id)) filters = {'address_type': ip_types.SCALING, '_deallocated': False} scaling_ip = db_api.floating_ip_find(context, id=id, scope=db_api.ONE, **filters) if not scaling_ip: raise q_exc.ScalingIpNotFound(id=id) return v._make_scaling_ip_dict(scaling_ip)
Retrieve a scaling IP. :param context: neutron api request context. :param id: The UUID of the scaling IP. :param fields: a list of strings that are valid keys in a scaling IP dictionary as listed in the RESOURCE_ATTRIBUTE_MAP object in neutron/api/v2/attributes.py. Only these fields will be returned. :returns: Dictionary containing details for the scaling IP. If values are declared in the fields parameter, then only those keys will be present.
Below is the the instruction that describes the task: ### Input: Retrieve a scaling IP. :param context: neutron api request context. :param id: The UUID of the scaling IP. :param fields: a list of strings that are valid keys in a scaling IP dictionary as listed in the RESOURCE_ATTRIBUTE_MAP object in neutron/api/v2/attributes.py. Only these fields will be returned. :returns: Dictionary containing details for the scaling IP. If values are declared in the fields parameter, then only those keys will be present. ### Response: def get_scalingip(context, id, fields=None): """Retrieve a scaling IP. :param context: neutron api request context. :param id: The UUID of the scaling IP. :param fields: a list of strings that are valid keys in a scaling IP dictionary as listed in the RESOURCE_ATTRIBUTE_MAP object in neutron/api/v2/attributes.py. Only these fields will be returned. :returns: Dictionary containing details for the scaling IP. If values are declared in the fields parameter, then only those keys will be present. """ LOG.info('get_scalingip %s for tenant %s' % (id, context.tenant_id)) filters = {'address_type': ip_types.SCALING, '_deallocated': False} scaling_ip = db_api.floating_ip_find(context, id=id, scope=db_api.ONE, **filters) if not scaling_ip: raise q_exc.ScalingIpNotFound(id=id) return v._make_scaling_ip_dict(scaling_ip)
def conservtion_profile_pid(region, genome_alignment, mi_seqs=MissingSequenceHandler.TREAT_AS_ALL_GAPS, species=None): """ build a conservation profile for the given region using the genome alignment. The scores in the profile will be the percent of bases identical to the reference sequence. :param miss_seqs: how to treat sequence with no actual sequence data for the column. :return: a list of the same length as the region where each entry is the PID at the corresponding locus. """ res = [] s = region.start if region.isPositiveStrand() else region.end - 1 e = region.end if region.isPositiveStrand() else region.start - 1 step = 1 if region.isPositiveStrand() else -1 for i in range(s, e, step): try: col = genome_alignment.get_column(region.chrom, i, mi_seqs, species) res.append(pid(col)) except NoSuchAlignmentColumnError: res.append(None) except NoUniqueColumnError: res.append(None) return res
build a conservation profile for the given region using the genome alignment. The scores in the profile will be the percent of bases identical to the reference sequence. :param miss_seqs: how to treat sequence with no actual sequence data for the column. :return: a list of the same length as the region where each entry is the PID at the corresponding locus.
Below is the the instruction that describes the task: ### Input: build a conservation profile for the given region using the genome alignment. The scores in the profile will be the percent of bases identical to the reference sequence. :param miss_seqs: how to treat sequence with no actual sequence data for the column. :return: a list of the same length as the region where each entry is the PID at the corresponding locus. ### Response: def conservtion_profile_pid(region, genome_alignment, mi_seqs=MissingSequenceHandler.TREAT_AS_ALL_GAPS, species=None): """ build a conservation profile for the given region using the genome alignment. The scores in the profile will be the percent of bases identical to the reference sequence. :param miss_seqs: how to treat sequence with no actual sequence data for the column. :return: a list of the same length as the region where each entry is the PID at the corresponding locus. """ res = [] s = region.start if region.isPositiveStrand() else region.end - 1 e = region.end if region.isPositiveStrand() else region.start - 1 step = 1 if region.isPositiveStrand() else -1 for i in range(s, e, step): try: col = genome_alignment.get_column(region.chrom, i, mi_seqs, species) res.append(pid(col)) except NoSuchAlignmentColumnError: res.append(None) except NoUniqueColumnError: res.append(None) return res
def parse_attr_signature(sig): """ Parse an attribute signature """ match = ATTR_SIG_RE.match(sig.strip()) if not match: raise RuntimeError('Attribute signature invalid, got ' + sig) name, _, params = match.groups() if params is not None and params.strip() != '': params = split_sig(params) params = [parse_param_signature(x) for x in params] else: params = [] return (name, params)
Parse an attribute signature
Below is the the instruction that describes the task: ### Input: Parse an attribute signature ### Response: def parse_attr_signature(sig): """ Parse an attribute signature """ match = ATTR_SIG_RE.match(sig.strip()) if not match: raise RuntimeError('Attribute signature invalid, got ' + sig) name, _, params = match.groups() if params is not None and params.strip() != '': params = split_sig(params) params = [parse_param_signature(x) for x in params] else: params = [] return (name, params)
def TriToBin(self, x, y, z): ''' Turn an x-y-z triangular coord to an a-b coord. if z is negative, calc with its abs then return (a, -b). :param x,y,z: the three numbers of the triangular coord :type x,y,z: float or double are both OK, just numbers :return: the corresponding a-b coord :rtype: a tuple consist of a and b ''' if (z >= 0): if (x + y + z == 0): return (0, 0) else: Sum = x + y + z X = 100.0 * x / Sum Y = 100.0 * y / Sum Z = 100.0 * z / Sum if (X + Y != 0): a = Z / 2.0 + (100.0 - Z) * Y / (Y + X) else: a = Z / 2.0 b = Z / 2.0 * (np.sqrt(3)) return (a, b) else: z = abs(z) if (x + y + z == 0): return (0, 0) else: Sum = x + y + z X = 100.0 * x / Sum Y = 100.0 * y / Sum Z = 100.0 * z / Sum if (X + Y != 0): a = Z / 2.0 + (100.0 - Z) * Y / (Y + X) else: a = Z / 2.0 b = Z / 2.0 * (np.sqrt(3)) return (a, -b)
Turn an x-y-z triangular coord to an a-b coord. if z is negative, calc with its abs then return (a, -b). :param x,y,z: the three numbers of the triangular coord :type x,y,z: float or double are both OK, just numbers :return: the corresponding a-b coord :rtype: a tuple consist of a and b
Below is the the instruction that describes the task: ### Input: Turn an x-y-z triangular coord to an a-b coord. if z is negative, calc with its abs then return (a, -b). :param x,y,z: the three numbers of the triangular coord :type x,y,z: float or double are both OK, just numbers :return: the corresponding a-b coord :rtype: a tuple consist of a and b ### Response: def TriToBin(self, x, y, z): ''' Turn an x-y-z triangular coord to an a-b coord. if z is negative, calc with its abs then return (a, -b). :param x,y,z: the three numbers of the triangular coord :type x,y,z: float or double are both OK, just numbers :return: the corresponding a-b coord :rtype: a tuple consist of a and b ''' if (z >= 0): if (x + y + z == 0): return (0, 0) else: Sum = x + y + z X = 100.0 * x / Sum Y = 100.0 * y / Sum Z = 100.0 * z / Sum if (X + Y != 0): a = Z / 2.0 + (100.0 - Z) * Y / (Y + X) else: a = Z / 2.0 b = Z / 2.0 * (np.sqrt(3)) return (a, b) else: z = abs(z) if (x + y + z == 0): return (0, 0) else: Sum = x + y + z X = 100.0 * x / Sum Y = 100.0 * y / Sum Z = 100.0 * z / Sum if (X + Y != 0): a = Z / 2.0 + (100.0 - Z) * Y / (Y + X) else: a = Z / 2.0 b = Z / 2.0 * (np.sqrt(3)) return (a, -b)
def validate_oath_hotp(self, params): """ Validate OATH-HOTP code using YubiHSM HMAC-SHA1 hashing with token keys secured in AEAD's that we have stored in an SQLite3 database. """ from_key = params["hotp"][0] if not re.match(hotp_valid_input, from_key): self.log_error("IN: %s, Invalid OATH-HOTP OTP" % (params)) return "ERR Invalid OATH-HOTP OTP" uid, otp, = get_oath_hotp_bits(params) if not uid or not otp: self.log_error("IN: %s, could not get UID/OTP ('%s'/'%s')" % (params, uid, otp)) return "ERR Invalid OATH-HOTP input" if args.debug: print "OATH-HOTP uid %s, OTP %s" % (uid, otp) # Fetch counter value for `uid' from database try: db = ValOathDb(args.db_file) entry = db.get(uid) except Exception, e: self.log_error("IN: %s, database error : '%s'" % (params, e)) return "ERR Internal error" # Check for correct OATH-HOTP OTP nonce = entry.data["nonce"].decode('hex') aead = entry.data["aead"].decode('hex') new_counter = pyhsm.oath_hotp.search_for_oath_code(hsm, entry.data["key_handle"], nonce, aead, \ entry.data["oath_c"], otp, args.look_ahead) if args.debug: print "OATH-HOTP %i..%i -> new C == %s" \ % (entry.data["oath_c"], entry.data["oath_c"] + args.look_ahead, new_counter) if type(new_counter) != int: # XXX increase 'throttling parameter' to make brute forcing harder/impossible return "ERR Could not validate OATH-HOTP OTP" try: # Must successfully store new_counter before we return OK if db.update_oath_hotp_c(entry, new_counter): return "OK counter=%04x" % (new_counter) else: return "ERR replayed OATH-HOTP" except Exception, e: self.log_error("IN: %s, database error updating counter : %s" % (params, e)) return "ERR Internal error"
Validate OATH-HOTP code using YubiHSM HMAC-SHA1 hashing with token keys secured in AEAD's that we have stored in an SQLite3 database.
Below is the the instruction that describes the task: ### Input: Validate OATH-HOTP code using YubiHSM HMAC-SHA1 hashing with token keys secured in AEAD's that we have stored in an SQLite3 database. ### Response: def validate_oath_hotp(self, params): """ Validate OATH-HOTP code using YubiHSM HMAC-SHA1 hashing with token keys secured in AEAD's that we have stored in an SQLite3 database. """ from_key = params["hotp"][0] if not re.match(hotp_valid_input, from_key): self.log_error("IN: %s, Invalid OATH-HOTP OTP" % (params)) return "ERR Invalid OATH-HOTP OTP" uid, otp, = get_oath_hotp_bits(params) if not uid or not otp: self.log_error("IN: %s, could not get UID/OTP ('%s'/'%s')" % (params, uid, otp)) return "ERR Invalid OATH-HOTP input" if args.debug: print "OATH-HOTP uid %s, OTP %s" % (uid, otp) # Fetch counter value for `uid' from database try: db = ValOathDb(args.db_file) entry = db.get(uid) except Exception, e: self.log_error("IN: %s, database error : '%s'" % (params, e)) return "ERR Internal error" # Check for correct OATH-HOTP OTP nonce = entry.data["nonce"].decode('hex') aead = entry.data["aead"].decode('hex') new_counter = pyhsm.oath_hotp.search_for_oath_code(hsm, entry.data["key_handle"], nonce, aead, \ entry.data["oath_c"], otp, args.look_ahead) if args.debug: print "OATH-HOTP %i..%i -> new C == %s" \ % (entry.data["oath_c"], entry.data["oath_c"] + args.look_ahead, new_counter) if type(new_counter) != int: # XXX increase 'throttling parameter' to make brute forcing harder/impossible return "ERR Could not validate OATH-HOTP OTP" try: # Must successfully store new_counter before we return OK if db.update_oath_hotp_c(entry, new_counter): return "OK counter=%04x" % (new_counter) else: return "ERR replayed OATH-HOTP" except Exception, e: self.log_error("IN: %s, database error updating counter : %s" % (params, e)) return "ERR Internal error"
def smooth_n_point(scalar_grid, n=5, passes=1): """Filter with normal distribution of weights. Parameters ---------- scalar_grid : array-like or `pint.Quantity` Some 2D scalar grid to be smoothed. n: int The number of points to use in smoothing, only valid inputs are 5 and 9. Defaults to 5. passes : int The number of times to apply the filter to the grid. Defaults to 1. Returns ------- array-like or `pint.Quantity` The filtered 2D scalar grid. Notes ----- This function is a close replication of the GEMPAK function SM5S and SM9S depending on the choice of the number of points to use for smoothing. This function can be applied multiple times to create a more smoothed field and will only smooth the interior points, leaving the end points with their original values. If a masked value or NaN values exists in the array, it will propagate to any point that uses that particular grid point in the smoothing calculation. Applying the smoothing function multiple times will propogate NaNs further throughout the domain. """ if n == 9: p = 0.25 q = 0.125 r = 0.0625 elif n == 5: p = 0.5 q = 0.125 r = 0.0 else: raise ValueError('The number of points to use in the smoothing ' 'calculation must be either 5 or 9.') smooth_grid = scalar_grid[:].copy() for _i in range(passes): smooth_grid[1:-1, 1:-1] = (p * smooth_grid[1:-1, 1:-1] + q * (smooth_grid[2:, 1:-1] + smooth_grid[1:-1, 2:] + smooth_grid[:-2, 1:-1] + smooth_grid[1:-1, :-2]) + r * (smooth_grid[2:, 2:] + smooth_grid[2:, :-2] + + smooth_grid[:-2, 2:] + smooth_grid[:-2, :-2])) return smooth_grid
Filter with normal distribution of weights. Parameters ---------- scalar_grid : array-like or `pint.Quantity` Some 2D scalar grid to be smoothed. n: int The number of points to use in smoothing, only valid inputs are 5 and 9. Defaults to 5. passes : int The number of times to apply the filter to the grid. Defaults to 1. Returns ------- array-like or `pint.Quantity` The filtered 2D scalar grid. Notes ----- This function is a close replication of the GEMPAK function SM5S and SM9S depending on the choice of the number of points to use for smoothing. This function can be applied multiple times to create a more smoothed field and will only smooth the interior points, leaving the end points with their original values. If a masked value or NaN values exists in the array, it will propagate to any point that uses that particular grid point in the smoothing calculation. Applying the smoothing function multiple times will propogate NaNs further throughout the domain.
Below is the the instruction that describes the task: ### Input: Filter with normal distribution of weights. Parameters ---------- scalar_grid : array-like or `pint.Quantity` Some 2D scalar grid to be smoothed. n: int The number of points to use in smoothing, only valid inputs are 5 and 9. Defaults to 5. passes : int The number of times to apply the filter to the grid. Defaults to 1. Returns ------- array-like or `pint.Quantity` The filtered 2D scalar grid. Notes ----- This function is a close replication of the GEMPAK function SM5S and SM9S depending on the choice of the number of points to use for smoothing. This function can be applied multiple times to create a more smoothed field and will only smooth the interior points, leaving the end points with their original values. If a masked value or NaN values exists in the array, it will propagate to any point that uses that particular grid point in the smoothing calculation. Applying the smoothing function multiple times will propogate NaNs further throughout the domain. ### Response: def smooth_n_point(scalar_grid, n=5, passes=1): """Filter with normal distribution of weights. Parameters ---------- scalar_grid : array-like or `pint.Quantity` Some 2D scalar grid to be smoothed. n: int The number of points to use in smoothing, only valid inputs are 5 and 9. Defaults to 5. passes : int The number of times to apply the filter to the grid. Defaults to 1. Returns ------- array-like or `pint.Quantity` The filtered 2D scalar grid. Notes ----- This function is a close replication of the GEMPAK function SM5S and SM9S depending on the choice of the number of points to use for smoothing. This function can be applied multiple times to create a more smoothed field and will only smooth the interior points, leaving the end points with their original values. If a masked value or NaN values exists in the array, it will propagate to any point that uses that particular grid point in the smoothing calculation. Applying the smoothing function multiple times will propogate NaNs further throughout the domain. """ if n == 9: p = 0.25 q = 0.125 r = 0.0625 elif n == 5: p = 0.5 q = 0.125 r = 0.0 else: raise ValueError('The number of points to use in the smoothing ' 'calculation must be either 5 or 9.') smooth_grid = scalar_grid[:].copy() for _i in range(passes): smooth_grid[1:-1, 1:-1] = (p * smooth_grid[1:-1, 1:-1] + q * (smooth_grid[2:, 1:-1] + smooth_grid[1:-1, 2:] + smooth_grid[:-2, 1:-1] + smooth_grid[1:-1, :-2]) + r * (smooth_grid[2:, 2:] + smooth_grid[2:, :-2] + + smooth_grid[:-2, 2:] + smooth_grid[:-2, :-2])) return smooth_grid
def credits(self, **kwargs): """ Get the TV episode credits by combination of season and episode number. Returns: A dict respresentation of the JSON returned from the API. """ path = self._get_series_id_season_number_episode_number_path('credits') response = self._GET(path, kwargs) self._set_attrs_to_values(response) return response
Get the TV episode credits by combination of season and episode number. Returns: A dict respresentation of the JSON returned from the API.
Below is the the instruction that describes the task: ### Input: Get the TV episode credits by combination of season and episode number. Returns: A dict respresentation of the JSON returned from the API. ### Response: def credits(self, **kwargs): """ Get the TV episode credits by combination of season and episode number. Returns: A dict respresentation of the JSON returned from the API. """ path = self._get_series_id_season_number_episode_number_path('credits') response = self._GET(path, kwargs) self._set_attrs_to_values(response) return response
def _totals(self, query): """ General method for returning total counts """ self.add_parameters(limit=1) query = self._build_query(query) self._retrieve_data(query) self.url_params = None # extract the 'total items' figure return int(self.request.headers["Total-Results"])
General method for returning total counts
Below is the the instruction that describes the task: ### Input: General method for returning total counts ### Response: def _totals(self, query): """ General method for returning total counts """ self.add_parameters(limit=1) query = self._build_query(query) self._retrieve_data(query) self.url_params = None # extract the 'total items' figure return int(self.request.headers["Total-Results"])
def manual_dir(self): """Returns the directory containing the manually extracted data.""" if not tf.io.gfile.exists(self._manual_dir): raise AssertionError( 'Manual directory {} does not exist. Create it and download/extract ' 'dataset artifacts in there.'.format(self._manual_dir)) return self._manual_dir
Returns the directory containing the manually extracted data.
Below is the the instruction that describes the task: ### Input: Returns the directory containing the manually extracted data. ### Response: def manual_dir(self): """Returns the directory containing the manually extracted data.""" if not tf.io.gfile.exists(self._manual_dir): raise AssertionError( 'Manual directory {} does not exist. Create it and download/extract ' 'dataset artifacts in there.'.format(self._manual_dir)) return self._manual_dir
def is_mutating(status): """Determines if the statement is mutating based on the status.""" if not status: return False mutating = set(['insert', 'update', 'delete', 'alter', 'create', 'drop', 'replace', 'truncate', 'load']) return status.split(None, 1)[0].lower() in mutating
Determines if the statement is mutating based on the status.
Below is the the instruction that describes the task: ### Input: Determines if the statement is mutating based on the status. ### Response: def is_mutating(status): """Determines if the statement is mutating based on the status.""" if not status: return False mutating = set(['insert', 'update', 'delete', 'alter', 'create', 'drop', 'replace', 'truncate', 'load']) return status.split(None, 1)[0].lower() in mutating