code
stringlengths 75
104k
| docstring
stringlengths 1
46.9k
| text
stringlengths 164
112k
|
---|---|---|
def stream(self, opNames=[], *args, **kwargs):
""" Yield specific operations (e.g. comments) only
:param array opNames: List of operations to filter for
:param int start: Start at this block
:param int stop: Stop at this block
:param str mode: We here have the choice between
* "head": the last block
* "irreversible": the block that is confirmed by 2/3 of all
block producers and is thus irreversible!
The dict output is formated such that ``type`` caries the
operation type, timestamp and block_num are taken from the
block the operation was stored in and the other key depend
on the actualy operation.
"""
for op in self.ops(**kwargs):
if not opNames or op["op"][0] in opNames:
r = {
"type": op["op"][0],
"timestamp": op.get("timestamp"),
"block_num": op.get("block_num"),
}
r.update(op["op"][1])
yield r | Yield specific operations (e.g. comments) only
:param array opNames: List of operations to filter for
:param int start: Start at this block
:param int stop: Stop at this block
:param str mode: We here have the choice between
* "head": the last block
* "irreversible": the block that is confirmed by 2/3 of all
block producers and is thus irreversible!
The dict output is formated such that ``type`` caries the
operation type, timestamp and block_num are taken from the
block the operation was stored in and the other key depend
on the actualy operation. | Below is the the instruction that describes the task:
### Input:
Yield specific operations (e.g. comments) only
:param array opNames: List of operations to filter for
:param int start: Start at this block
:param int stop: Stop at this block
:param str mode: We here have the choice between
* "head": the last block
* "irreversible": the block that is confirmed by 2/3 of all
block producers and is thus irreversible!
The dict output is formated such that ``type`` caries the
operation type, timestamp and block_num are taken from the
block the operation was stored in and the other key depend
on the actualy operation.
### Response:
def stream(self, opNames=[], *args, **kwargs):
""" Yield specific operations (e.g. comments) only
:param array opNames: List of operations to filter for
:param int start: Start at this block
:param int stop: Stop at this block
:param str mode: We here have the choice between
* "head": the last block
* "irreversible": the block that is confirmed by 2/3 of all
block producers and is thus irreversible!
The dict output is formated such that ``type`` caries the
operation type, timestamp and block_num are taken from the
block the operation was stored in and the other key depend
on the actualy operation.
"""
for op in self.ops(**kwargs):
if not opNames or op["op"][0] in opNames:
r = {
"type": op["op"][0],
"timestamp": op.get("timestamp"),
"block_num": op.get("block_num"),
}
r.update(op["op"][1])
yield r |
def apparent_dip_correction(axes):
"""
Produces a two-dimensional rotation matrix that
rotates a projected dataset to correct for apparent dip
"""
a1 = axes[0].copy()
a1[-1] = 0
cosa = angle(axes[0],a1,cos=True)
_ = 1-cosa**2
if _ > 1e-12:
sina = N.sqrt(_)
if cosa < 0:
sina *= -1
# Construct rotation matrix
R= N.array([[cosa,sina],[-sina,cosa]])
else:
# Small angle, don't bother
# (small angles can lead to spurious results)
R = N.identity(2)
#if axes[0,0] < 0:
# return R.T
#else:
return R | Produces a two-dimensional rotation matrix that
rotates a projected dataset to correct for apparent dip | Below is the the instruction that describes the task:
### Input:
Produces a two-dimensional rotation matrix that
rotates a projected dataset to correct for apparent dip
### Response:
def apparent_dip_correction(axes):
"""
Produces a two-dimensional rotation matrix that
rotates a projected dataset to correct for apparent dip
"""
a1 = axes[0].copy()
a1[-1] = 0
cosa = angle(axes[0],a1,cos=True)
_ = 1-cosa**2
if _ > 1e-12:
sina = N.sqrt(_)
if cosa < 0:
sina *= -1
# Construct rotation matrix
R= N.array([[cosa,sina],[-sina,cosa]])
else:
# Small angle, don't bother
# (small angles can lead to spurious results)
R = N.identity(2)
#if axes[0,0] < 0:
# return R.T
#else:
return R |
def keybd_event(bVk: int, bScan: int, dwFlags: int, dwExtraInfo: int) -> None:
"""keybd_event from Win32."""
ctypes.windll.user32.keybd_event(bVk, bScan, dwFlags, dwExtraInfo) | keybd_event from Win32. | Below is the the instruction that describes the task:
### Input:
keybd_event from Win32.
### Response:
def keybd_event(bVk: int, bScan: int, dwFlags: int, dwExtraInfo: int) -> None:
"""keybd_event from Win32."""
ctypes.windll.user32.keybd_event(bVk, bScan, dwFlags, dwExtraInfo) |
def _parse_document(self):
"""Parse system.profile doc, copy all values to member variables."""
self._reset()
doc = self._profile_doc
self._split_tokens_calculated = True
self._split_tokens = None
self._duration_calculated = True
self._duration = doc[u'millis']
self._datetime_calculated = True
self._datetime = doc[u'ts']
if self._datetime.tzinfo is None:
self._datetime = self._datetime.replace(tzinfo=tzutc())
self._datetime_format = None
self._reformat_timestamp('ctime', force=True)
self._thread_calculated = True
self._thread = doc['thread']
self._operation_calculated = True
self._operation = doc[u'op']
self._namespace = doc[u'ns']
self._command_calculated = True
if self.operation == 'command':
self._command = doc[u'command'].keys()[0]
# query pattern for system.profile events, all three cases.
# See SERVER-13245
if 'query' in doc:
if 'query' in doc['query'] and isinstance(doc['query']['query'],
dict):
self._pattern = str(doc['query']['query']).replace("'", '"')
elif '$query' in doc['query']:
self._pattern = str(doc['query']['$query']).replace("'", '"')
else:
self._pattern = str(doc['query']).replace("'", '"')
# sort pattern
if ('orderby' in doc['query'] and
isinstance(doc['query']['orderby'], dict)):
self._sort_pattern = str(doc['query']
['orderby']).replace("'", '"')
elif '$orderby' in doc['query']:
self._sort_pattern = str(doc['query']
['$orderby']).replace("'", '"')
else:
self._sort_pattern = None
self._counters_calculated = True
self._nscanned = doc[u'nscanned'] if 'nscanned' in doc else None
self._ntoreturn = doc[u'ntoreturn'] if 'ntoreturn' in doc else None
self._nupdated = doc[u'nupdated'] if 'nupdated' in doc else None
self._nreturned = doc[u'nreturned'] if 'nreturned' in doc else None
self._ninserted = doc[u'ninserted'] if 'ninserted' in doc else None
self._ndeleted = doc[u'ndeleted'] if 'ndeleted' in doc else None
self._numYields = doc[u'numYield'] if 'numYield' in doc else None
if u'lockStats' in doc:
self._r = doc[u'lockStats'][u'timeLockedMicros'][u'r']
self._w = doc[u'lockStats'][u'timeLockedMicros'][u'w']
self._r_acquiring = doc[u'lockStats']['timeAcquiringMicros'][u'r']
self._w_acquiring = doc[u'lockStats']['timeAcquiringMicros'][u'w']
locks = 'w:%i' % self.w if self.w is not None else 'r:%i' % self.r
elif u'locks' in doc:
locks = json.dumps(doc[u'locks'])
else:
locks = ''
# build a fake line_str
payload = ''
if 'query' in doc:
payload += ('query: %s' % str(doc[u'query'])
.replace("u'", "'").replace("'", '"'))
if 'command' in doc:
payload += ('command: %s' % str(doc[u'command'])
.replace("u'", "'").replace("'", '"'))
if 'updateobj' in doc:
payload += (' update: %s' % str(doc[u'updateobj'])
.replace("u'", "'").replace("'", '"'))
scanned = 'nscanned:%i' % self._nscanned if 'nscanned' in doc else ''
yields = 'numYields:%i' % self._numYields if 'numYield' in doc else ''
duration = '%ims' % self.duration if self.duration is not None else ''
self._line_str = ("[{thread}] {operation} {namespace} {payload} "
"{scanned} {yields} locks(micros) {locks} "
"{duration}".format(datetime=self.datetime,
thread=self.thread,
operation=self.operation,
namespace=self.namespace,
payload=payload, scanned=scanned,
yields=yields, locks=locks,
duration=duration)) | Parse system.profile doc, copy all values to member variables. | Below is the the instruction that describes the task:
### Input:
Parse system.profile doc, copy all values to member variables.
### Response:
def _parse_document(self):
"""Parse system.profile doc, copy all values to member variables."""
self._reset()
doc = self._profile_doc
self._split_tokens_calculated = True
self._split_tokens = None
self._duration_calculated = True
self._duration = doc[u'millis']
self._datetime_calculated = True
self._datetime = doc[u'ts']
if self._datetime.tzinfo is None:
self._datetime = self._datetime.replace(tzinfo=tzutc())
self._datetime_format = None
self._reformat_timestamp('ctime', force=True)
self._thread_calculated = True
self._thread = doc['thread']
self._operation_calculated = True
self._operation = doc[u'op']
self._namespace = doc[u'ns']
self._command_calculated = True
if self.operation == 'command':
self._command = doc[u'command'].keys()[0]
# query pattern for system.profile events, all three cases.
# See SERVER-13245
if 'query' in doc:
if 'query' in doc['query'] and isinstance(doc['query']['query'],
dict):
self._pattern = str(doc['query']['query']).replace("'", '"')
elif '$query' in doc['query']:
self._pattern = str(doc['query']['$query']).replace("'", '"')
else:
self._pattern = str(doc['query']).replace("'", '"')
# sort pattern
if ('orderby' in doc['query'] and
isinstance(doc['query']['orderby'], dict)):
self._sort_pattern = str(doc['query']
['orderby']).replace("'", '"')
elif '$orderby' in doc['query']:
self._sort_pattern = str(doc['query']
['$orderby']).replace("'", '"')
else:
self._sort_pattern = None
self._counters_calculated = True
self._nscanned = doc[u'nscanned'] if 'nscanned' in doc else None
self._ntoreturn = doc[u'ntoreturn'] if 'ntoreturn' in doc else None
self._nupdated = doc[u'nupdated'] if 'nupdated' in doc else None
self._nreturned = doc[u'nreturned'] if 'nreturned' in doc else None
self._ninserted = doc[u'ninserted'] if 'ninserted' in doc else None
self._ndeleted = doc[u'ndeleted'] if 'ndeleted' in doc else None
self._numYields = doc[u'numYield'] if 'numYield' in doc else None
if u'lockStats' in doc:
self._r = doc[u'lockStats'][u'timeLockedMicros'][u'r']
self._w = doc[u'lockStats'][u'timeLockedMicros'][u'w']
self._r_acquiring = doc[u'lockStats']['timeAcquiringMicros'][u'r']
self._w_acquiring = doc[u'lockStats']['timeAcquiringMicros'][u'w']
locks = 'w:%i' % self.w if self.w is not None else 'r:%i' % self.r
elif u'locks' in doc:
locks = json.dumps(doc[u'locks'])
else:
locks = ''
# build a fake line_str
payload = ''
if 'query' in doc:
payload += ('query: %s' % str(doc[u'query'])
.replace("u'", "'").replace("'", '"'))
if 'command' in doc:
payload += ('command: %s' % str(doc[u'command'])
.replace("u'", "'").replace("'", '"'))
if 'updateobj' in doc:
payload += (' update: %s' % str(doc[u'updateobj'])
.replace("u'", "'").replace("'", '"'))
scanned = 'nscanned:%i' % self._nscanned if 'nscanned' in doc else ''
yields = 'numYields:%i' % self._numYields if 'numYield' in doc else ''
duration = '%ims' % self.duration if self.duration is not None else ''
self._line_str = ("[{thread}] {operation} {namespace} {payload} "
"{scanned} {yields} locks(micros) {locks} "
"{duration}".format(datetime=self.datetime,
thread=self.thread,
operation=self.operation,
namespace=self.namespace,
payload=payload, scanned=scanned,
yields=yields, locks=locks,
duration=duration)) |
def buildhtmlheader(self):
"""generate HTML header content"""
#Highcharts lib/ needs to make sure it's up to date
if self.drilldown_flag:
self.add_JSsource('https://code.highcharts.com/maps/modules/drilldown.js')
self.header_css = [
'<link href="%s" rel="stylesheet" />' % h for h in self.CSSsource
]
self.header_js = [
'<script type="text/javascript" src="%s"></script>' % h for h in self.JSsource
]
self.htmlheader = ''
for css in self.header_css:
self.htmlheader += css
for js in self.header_js:
self.htmlheader += js | generate HTML header content | Below is the the instruction that describes the task:
### Input:
generate HTML header content
### Response:
def buildhtmlheader(self):
"""generate HTML header content"""
#Highcharts lib/ needs to make sure it's up to date
if self.drilldown_flag:
self.add_JSsource('https://code.highcharts.com/maps/modules/drilldown.js')
self.header_css = [
'<link href="%s" rel="stylesheet" />' % h for h in self.CSSsource
]
self.header_js = [
'<script type="text/javascript" src="%s"></script>' % h for h in self.JSsource
]
self.htmlheader = ''
for css in self.header_css:
self.htmlheader += css
for js in self.header_js:
self.htmlheader += js |
async def open_session(self, request: BaseRequestWebsocket) -> Session:
"""Open and return a Session using the request."""
return await ensure_coroutine(self.session_interface.open_session)(self, request) | Open and return a Session using the request. | Below is the the instruction that describes the task:
### Input:
Open and return a Session using the request.
### Response:
async def open_session(self, request: BaseRequestWebsocket) -> Session:
"""Open and return a Session using the request."""
return await ensure_coroutine(self.session_interface.open_session)(self, request) |
def clean_time(time_string):
"""Return a datetime from the Amazon-provided datetime string"""
# Get a timezone-aware datetime object from the string
time = dateutil.parser.parse(time_string)
if not settings.USE_TZ:
# If timezone support is not active, convert the time to UTC and
# remove the timezone field
time = time.astimezone(timezone.utc).replace(tzinfo=None)
return time | Return a datetime from the Amazon-provided datetime string | Below is the the instruction that describes the task:
### Input:
Return a datetime from the Amazon-provided datetime string
### Response:
def clean_time(time_string):
"""Return a datetime from the Amazon-provided datetime string"""
# Get a timezone-aware datetime object from the string
time = dateutil.parser.parse(time_string)
if not settings.USE_TZ:
# If timezone support is not active, convert the time to UTC and
# remove the timezone field
time = time.astimezone(timezone.utc).replace(tzinfo=None)
return time |
def SetFileAttributes(filepath, *attrs):
"""
Set file attributes. e.g.:
SetFileAttributes('C:\\foo', 'hidden')
Each attr must be either a numeric value, a constant defined in
jaraco.windows.filesystem.api, or one of the nice names
defined in this function.
"""
nice_names = collections.defaultdict(
lambda key: key,
hidden='FILE_ATTRIBUTE_HIDDEN',
read_only='FILE_ATTRIBUTE_READONLY',
)
flags = (getattr(api, nice_names[attr], attr) for attr in attrs)
flags = functools.reduce(operator.or_, flags)
handle_nonzero_success(api.SetFileAttributes(filepath, flags)) | Set file attributes. e.g.:
SetFileAttributes('C:\\foo', 'hidden')
Each attr must be either a numeric value, a constant defined in
jaraco.windows.filesystem.api, or one of the nice names
defined in this function. | Below is the the instruction that describes the task:
### Input:
Set file attributes. e.g.:
SetFileAttributes('C:\\foo', 'hidden')
Each attr must be either a numeric value, a constant defined in
jaraco.windows.filesystem.api, or one of the nice names
defined in this function.
### Response:
def SetFileAttributes(filepath, *attrs):
"""
Set file attributes. e.g.:
SetFileAttributes('C:\\foo', 'hidden')
Each attr must be either a numeric value, a constant defined in
jaraco.windows.filesystem.api, or one of the nice names
defined in this function.
"""
nice_names = collections.defaultdict(
lambda key: key,
hidden='FILE_ATTRIBUTE_HIDDEN',
read_only='FILE_ATTRIBUTE_READONLY',
)
flags = (getattr(api, nice_names[attr], attr) for attr in attrs)
flags = functools.reduce(operator.or_, flags)
handle_nonzero_success(api.SetFileAttributes(filepath, flags)) |
def _current_web_port(self):
"""
return just the port number for the web container, or None if
not running
"""
info = inspect_container(self._get_container_name('web'))
if info is None:
return None
try:
if not info['State']['Running']:
return None
return info['NetworkSettings']['Ports']['5000/tcp'][0]['HostPort']
except TypeError:
return None | return just the port number for the web container, or None if
not running | Below is the the instruction that describes the task:
### Input:
return just the port number for the web container, or None if
not running
### Response:
def _current_web_port(self):
"""
return just the port number for the web container, or None if
not running
"""
info = inspect_container(self._get_container_name('web'))
if info is None:
return None
try:
if not info['State']['Running']:
return None
return info['NetworkSettings']['Ports']['5000/tcp'][0]['HostPort']
except TypeError:
return None |
def get_storer(self, key):
""" return the storer object for a key, raise if not in the file """
group = self.get_node(key)
if group is None:
raise KeyError('No object named {key} in the file'.format(key=key))
s = self._create_storer(group)
s.infer_axes()
return s | return the storer object for a key, raise if not in the file | Below is the the instruction that describes the task:
### Input:
return the storer object for a key, raise if not in the file
### Response:
def get_storer(self, key):
""" return the storer object for a key, raise if not in the file """
group = self.get_node(key)
if group is None:
raise KeyError('No object named {key} in the file'.format(key=key))
s = self._create_storer(group)
s.infer_axes()
return s |
def main():
"""Main function calls the test functs"""
print("Python version %s" % sys.version)
print("Testing compatibility for function defined with *args")
test_func_args(func_old_args)
test_func_args(func_new)
print("Testing compatibility for function defined with **kwargs")
test_func_kwargs(func_old_kwargs)
test_func_kwargs(func_new)
print("All tests successful - we can change *args and **kwargs to' \
' named args.")
return 0 | Main function calls the test functs | Below is the the instruction that describes the task:
### Input:
Main function calls the test functs
### Response:
def main():
"""Main function calls the test functs"""
print("Python version %s" % sys.version)
print("Testing compatibility for function defined with *args")
test_func_args(func_old_args)
test_func_args(func_new)
print("Testing compatibility for function defined with **kwargs")
test_func_kwargs(func_old_kwargs)
test_func_kwargs(func_new)
print("All tests successful - we can change *args and **kwargs to' \
' named args.")
return 0 |
def CrearPlantillaPDF(self, papel="A4", orientacion="portrait"):
"Iniciar la creación del archivo PDF"
# genero el renderizador con propiedades del PDF
t = Template(
format=papel, orientation=orientacion,
title="F 1116 B/C %s" % (self.NroOrden),
author="CUIT %s" % self.Cuit,
subject="COE %s" % self.params_out.get('coe'),
keywords="AFIP Liquidacion Electronica Primaria de Granos",
creator='wslpg.py %s (http://www.PyAfipWs.com.ar)' % __version__,)
self.template = t
return True | Iniciar la creación del archivo PDF | Below is the the instruction that describes the task:
### Input:
Iniciar la creación del archivo PDF
### Response:
def CrearPlantillaPDF(self, papel="A4", orientacion="portrait"):
"Iniciar la creación del archivo PDF"
# genero el renderizador con propiedades del PDF
t = Template(
format=papel, orientation=orientacion,
title="F 1116 B/C %s" % (self.NroOrden),
author="CUIT %s" % self.Cuit,
subject="COE %s" % self.params_out.get('coe'),
keywords="AFIP Liquidacion Electronica Primaria de Granos",
creator='wslpg.py %s (http://www.PyAfipWs.com.ar)' % __version__,)
self.template = t
return True |
def safestr(value):
'''Ensure type to string serialization'''
if not value or isinstance(value, (int, float, bool, long)):
return value
elif isinstance(value, (date, datetime)):
return value.isoformat()
else:
return unicode(value) | Ensure type to string serialization | Below is the the instruction that describes the task:
### Input:
Ensure type to string serialization
### Response:
def safestr(value):
'''Ensure type to string serialization'''
if not value or isinstance(value, (int, float, bool, long)):
return value
elif isinstance(value, (date, datetime)):
return value.isoformat()
else:
return unicode(value) |
def get_comment_form_for_create(self, reference_id, comment_record_types):
"""Gets the comment form for creating new comments.
A new form should be requested for each create transaction.
arg: reference_id (osid.id.Id): the ``Id`` for the reference
object
arg: comment_record_types (osid.type.Type[]): array of
comment record types
return: (osid.commenting.CommentForm) - the comment form
raise: NullArgument - ``reference_id or comment_record_types``
is ``null``
raise: OperationFailed - unable to complete request
raise: PermissionDenied - authorization failure
raise: Unsupported - unable to get form for requested record
types
*compliance: mandatory -- This method must be implemented.*
"""
# Implemented from template for
# osid.relationship.CommentAdminSession.get_comment_form_for_create_template
# These really need to be in module imports:
if not isinstance(reference_id, ABCId):
raise errors.InvalidArgument('argument is not a valid OSID Id')
for arg in comment_record_types:
if not isinstance(arg, ABCType):
raise errors.InvalidArgument('one or more argument array elements is not a valid OSID Type')
if comment_record_types == []:
# WHY are we passing book_id = self._catalog_id below, seems redundant:
# Probably don't need to send effective_agent_id, since the form can get that from proxy.
obj_form = objects.CommentForm(
book_id=self._catalog_id,
reference_id=reference_id,
effective_agent_id=str(self.get_effective_agent_id()),
catalog_id=self._catalog_id,
runtime=self._runtime,
proxy=self._proxy)
else:
obj_form = objects.CommentForm(
book_id=self._catalog_id,
record_types=comment_record_types,
reference_id=reference_id,
effective_agent_id=self.get_effective_agent_id(),
catalog_id=self._catalog_id,
runtime=self._runtime,
proxy=self._proxy)
obj_form._for_update = False
self._forms[obj_form.get_id().get_identifier()] = not CREATED
return obj_form | Gets the comment form for creating new comments.
A new form should be requested for each create transaction.
arg: reference_id (osid.id.Id): the ``Id`` for the reference
object
arg: comment_record_types (osid.type.Type[]): array of
comment record types
return: (osid.commenting.CommentForm) - the comment form
raise: NullArgument - ``reference_id or comment_record_types``
is ``null``
raise: OperationFailed - unable to complete request
raise: PermissionDenied - authorization failure
raise: Unsupported - unable to get form for requested record
types
*compliance: mandatory -- This method must be implemented.* | Below is the the instruction that describes the task:
### Input:
Gets the comment form for creating new comments.
A new form should be requested for each create transaction.
arg: reference_id (osid.id.Id): the ``Id`` for the reference
object
arg: comment_record_types (osid.type.Type[]): array of
comment record types
return: (osid.commenting.CommentForm) - the comment form
raise: NullArgument - ``reference_id or comment_record_types``
is ``null``
raise: OperationFailed - unable to complete request
raise: PermissionDenied - authorization failure
raise: Unsupported - unable to get form for requested record
types
*compliance: mandatory -- This method must be implemented.*
### Response:
def get_comment_form_for_create(self, reference_id, comment_record_types):
"""Gets the comment form for creating new comments.
A new form should be requested for each create transaction.
arg: reference_id (osid.id.Id): the ``Id`` for the reference
object
arg: comment_record_types (osid.type.Type[]): array of
comment record types
return: (osid.commenting.CommentForm) - the comment form
raise: NullArgument - ``reference_id or comment_record_types``
is ``null``
raise: OperationFailed - unable to complete request
raise: PermissionDenied - authorization failure
raise: Unsupported - unable to get form for requested record
types
*compliance: mandatory -- This method must be implemented.*
"""
# Implemented from template for
# osid.relationship.CommentAdminSession.get_comment_form_for_create_template
# These really need to be in module imports:
if not isinstance(reference_id, ABCId):
raise errors.InvalidArgument('argument is not a valid OSID Id')
for arg in comment_record_types:
if not isinstance(arg, ABCType):
raise errors.InvalidArgument('one or more argument array elements is not a valid OSID Type')
if comment_record_types == []:
# WHY are we passing book_id = self._catalog_id below, seems redundant:
# Probably don't need to send effective_agent_id, since the form can get that from proxy.
obj_form = objects.CommentForm(
book_id=self._catalog_id,
reference_id=reference_id,
effective_agent_id=str(self.get_effective_agent_id()),
catalog_id=self._catalog_id,
runtime=self._runtime,
proxy=self._proxy)
else:
obj_form = objects.CommentForm(
book_id=self._catalog_id,
record_types=comment_record_types,
reference_id=reference_id,
effective_agent_id=self.get_effective_agent_id(),
catalog_id=self._catalog_id,
runtime=self._runtime,
proxy=self._proxy)
obj_form._for_update = False
self._forms[obj_form.get_id().get_identifier()] = not CREATED
return obj_form |
def gen_df_forcing(
path_csv_in='SSss_YYYY_data_tt.csv',
url_base=url_repo_input,)->pd.DataFrame:
'''Generate description info of supy forcing data into a dataframe
Parameters
----------
path_csv_in : str, optional
path to the input csv file relative to url_base (the default is '/input_files/SSss_YYYY_data_tt.csv'])
url_base : urlpath.URL, optional
URL to the input files of repo base (the default is url_repo_input, which is defined at the top of this file)
Returns
-------
pd.DataFrame
Description info of supy forcing data
'''
try:
# load info from SUEWS docs repo
# this is regarded as the official source
urlpath_table = url_base/path_csv_in
df_var_info = pd.read_csv(urlpath_table)
except:
print(f'{urlpath_table} not existing!')
else:
# clean info dataframe
df_var_forcing = df_var_info.drop(['No.', 'Use'], axis=1)
# set index with `Column name`
df_var_forcing = df_var_forcing.set_index('Column Name')
df_var_forcing.index = df_var_forcing.index\
.map(lambda x: x.replace('`', ''))\
.rename('variable')
# add `Second` info
df_var_forcing.loc['isec'] = 'Second [S]'
return df_var_forcing | Generate description info of supy forcing data into a dataframe
Parameters
----------
path_csv_in : str, optional
path to the input csv file relative to url_base (the default is '/input_files/SSss_YYYY_data_tt.csv'])
url_base : urlpath.URL, optional
URL to the input files of repo base (the default is url_repo_input, which is defined at the top of this file)
Returns
-------
pd.DataFrame
Description info of supy forcing data | Below is the the instruction that describes the task:
### Input:
Generate description info of supy forcing data into a dataframe
Parameters
----------
path_csv_in : str, optional
path to the input csv file relative to url_base (the default is '/input_files/SSss_YYYY_data_tt.csv'])
url_base : urlpath.URL, optional
URL to the input files of repo base (the default is url_repo_input, which is defined at the top of this file)
Returns
-------
pd.DataFrame
Description info of supy forcing data
### Response:
def gen_df_forcing(
path_csv_in='SSss_YYYY_data_tt.csv',
url_base=url_repo_input,)->pd.DataFrame:
'''Generate description info of supy forcing data into a dataframe
Parameters
----------
path_csv_in : str, optional
path to the input csv file relative to url_base (the default is '/input_files/SSss_YYYY_data_tt.csv'])
url_base : urlpath.URL, optional
URL to the input files of repo base (the default is url_repo_input, which is defined at the top of this file)
Returns
-------
pd.DataFrame
Description info of supy forcing data
'''
try:
# load info from SUEWS docs repo
# this is regarded as the official source
urlpath_table = url_base/path_csv_in
df_var_info = pd.read_csv(urlpath_table)
except:
print(f'{urlpath_table} not existing!')
else:
# clean info dataframe
df_var_forcing = df_var_info.drop(['No.', 'Use'], axis=1)
# set index with `Column name`
df_var_forcing = df_var_forcing.set_index('Column Name')
df_var_forcing.index = df_var_forcing.index\
.map(lambda x: x.replace('`', ''))\
.rename('variable')
# add `Second` info
df_var_forcing.loc['isec'] = 'Second [S]'
return df_var_forcing |
def window_size(self):
"""
Returns:
namedtuple: eg
Size(width=320, height=568)
"""
value = self.http.get('/window/size').value
w = roundint(value['width'])
h = roundint(value['height'])
return namedtuple('Size', ['width', 'height'])(w, h) | Returns:
namedtuple: eg
Size(width=320, height=568) | Below is the the instruction that describes the task:
### Input:
Returns:
namedtuple: eg
Size(width=320, height=568)
### Response:
def window_size(self):
"""
Returns:
namedtuple: eg
Size(width=320, height=568)
"""
value = self.http.get('/window/size').value
w = roundint(value['width'])
h = roundint(value['height'])
return namedtuple('Size', ['width', 'height'])(w, h) |
def p_const_vector_elem_list(p):
""" const_number_list : expr
"""
if p[1] is None:
return
if not is_static(p[1]):
if isinstance(p[1], symbols.UNARY):
tmp = make_constexpr(p.lineno(1), p[1])
else:
api.errmsg.syntax_error_not_constant(p.lexer.lineno)
p[0] = None
return
else:
tmp = p[1]
p[0] = [tmp] | const_number_list : expr | Below is the the instruction that describes the task:
### Input:
const_number_list : expr
### Response:
def p_const_vector_elem_list(p):
""" const_number_list : expr
"""
if p[1] is None:
return
if not is_static(p[1]):
if isinstance(p[1], symbols.UNARY):
tmp = make_constexpr(p.lineno(1), p[1])
else:
api.errmsg.syntax_error_not_constant(p.lexer.lineno)
p[0] = None
return
else:
tmp = p[1]
p[0] = [tmp] |
def get_loss_func(self, C=1.0, k=1):
"""Get loss function of VAE.
The loss value is equal to ELBO (Evidence Lower Bound)
multiplied by -1.
Args:
C (int): Usually this is 1.0. Can be changed to control the
second term of ELBO bound, which works as regularization.
k (int): Number of Monte Carlo samples used in encoded vector.
"""
def lf(x):
mu, ln_var = self.encode(x)
batchsize = len(mu.data)
# reconstruction loss
rec_loss = 0
for l in six.moves.range(k):
z = F.gaussian(mu, ln_var)
rec_loss += F.bernoulli_nll(x, self.decode(z, sigmoid=False)) \
/ (k * batchsize)
self.rec_loss = rec_loss
self.loss = self.rec_loss + \
C * gaussian_kl_divergence(mu, ln_var) / batchsize
return self.loss
return lf | Get loss function of VAE.
The loss value is equal to ELBO (Evidence Lower Bound)
multiplied by -1.
Args:
C (int): Usually this is 1.0. Can be changed to control the
second term of ELBO bound, which works as regularization.
k (int): Number of Monte Carlo samples used in encoded vector. | Below is the the instruction that describes the task:
### Input:
Get loss function of VAE.
The loss value is equal to ELBO (Evidence Lower Bound)
multiplied by -1.
Args:
C (int): Usually this is 1.0. Can be changed to control the
second term of ELBO bound, which works as regularization.
k (int): Number of Monte Carlo samples used in encoded vector.
### Response:
def get_loss_func(self, C=1.0, k=1):
"""Get loss function of VAE.
The loss value is equal to ELBO (Evidence Lower Bound)
multiplied by -1.
Args:
C (int): Usually this is 1.0. Can be changed to control the
second term of ELBO bound, which works as regularization.
k (int): Number of Monte Carlo samples used in encoded vector.
"""
def lf(x):
mu, ln_var = self.encode(x)
batchsize = len(mu.data)
# reconstruction loss
rec_loss = 0
for l in six.moves.range(k):
z = F.gaussian(mu, ln_var)
rec_loss += F.bernoulli_nll(x, self.decode(z, sigmoid=False)) \
/ (k * batchsize)
self.rec_loss = rec_loss
self.loss = self.rec_loss + \
C * gaussian_kl_divergence(mu, ln_var) / batchsize
return self.loss
return lf |
def send_request(self, kind, url_components, **kwargs):
"""
Send a request for this resource to the API
Parameters
----------
kind: str, {'get', 'delete', 'put', 'post', 'head'}
"""
return self.api.send_request(kind, self.resource_path, url_components,
**kwargs) | Send a request for this resource to the API
Parameters
----------
kind: str, {'get', 'delete', 'put', 'post', 'head'} | Below is the the instruction that describes the task:
### Input:
Send a request for this resource to the API
Parameters
----------
kind: str, {'get', 'delete', 'put', 'post', 'head'}
### Response:
def send_request(self, kind, url_components, **kwargs):
"""
Send a request for this resource to the API
Parameters
----------
kind: str, {'get', 'delete', 'put', 'post', 'head'}
"""
return self.api.send_request(kind, self.resource_path, url_components,
**kwargs) |
def well(self, well_x=1, well_y=1):
"""ScanWellData of specific well.
Parameters
----------
well_x : int
well_y : int
Returns
-------
lxml.objectify.ObjectifiedElement
"""
xpath = './ScanWellData'
xpath += _xpath_attrib('WellX', well_x)
xpath += _xpath_attrib('WellY', well_y)
# assume we find only one
return self.well_array.find(xpath) | ScanWellData of specific well.
Parameters
----------
well_x : int
well_y : int
Returns
-------
lxml.objectify.ObjectifiedElement | Below is the the instruction that describes the task:
### Input:
ScanWellData of specific well.
Parameters
----------
well_x : int
well_y : int
Returns
-------
lxml.objectify.ObjectifiedElement
### Response:
def well(self, well_x=1, well_y=1):
"""ScanWellData of specific well.
Parameters
----------
well_x : int
well_y : int
Returns
-------
lxml.objectify.ObjectifiedElement
"""
xpath = './ScanWellData'
xpath += _xpath_attrib('WellX', well_x)
xpath += _xpath_attrib('WellY', well_y)
# assume we find only one
return self.well_array.find(xpath) |
def _low_level_dispatch(pcapdev, devname, pktqueue):
'''
Thread entrypoint for doing low-level receive and dispatch
for a single pcap device.
'''
while LLNetReal.running:
# a non-zero timeout value is ok here; this is an
# independent thread that handles input for this
# one pcap device. it throws any packets received
# into the shared queue (which is read by the actual
# user code)
pktinfo = pcapdev.recv_packet(timeout=0.2)
if pktinfo is None:
continue
pktqueue.put( (devname,pcapdev.dlt,pktinfo) )
log_debug("Receiver thread for {} exiting".format(devname))
stats = pcapdev.stats()
log_debug("Final device statistics {}: {} received, {} dropped, {} dropped/if".format(devname, stats.ps_recv, stats.ps_drop, stats.ps_ifdrop)) | Thread entrypoint for doing low-level receive and dispatch
for a single pcap device. | Below is the the instruction that describes the task:
### Input:
Thread entrypoint for doing low-level receive and dispatch
for a single pcap device.
### Response:
def _low_level_dispatch(pcapdev, devname, pktqueue):
'''
Thread entrypoint for doing low-level receive and dispatch
for a single pcap device.
'''
while LLNetReal.running:
# a non-zero timeout value is ok here; this is an
# independent thread that handles input for this
# one pcap device. it throws any packets received
# into the shared queue (which is read by the actual
# user code)
pktinfo = pcapdev.recv_packet(timeout=0.2)
if pktinfo is None:
continue
pktqueue.put( (devname,pcapdev.dlt,pktinfo) )
log_debug("Receiver thread for {} exiting".format(devname))
stats = pcapdev.stats()
log_debug("Final device statistics {}: {} received, {} dropped, {} dropped/if".format(devname, stats.ps_recv, stats.ps_drop, stats.ps_ifdrop)) |
def fix_encoding_and_explain(text):
"""
Re-decodes text that has been decoded incorrectly, and also return a
"plan" indicating all the steps required to fix it.
The resulting plan could be used with :func:`ftfy.fixes.apply_plan`
to fix additional strings that are broken in the same way.
"""
best_version = text
best_cost = text_cost(text)
best_plan = []
plan_so_far = []
while True:
prevtext = text
text, plan = fix_one_step_and_explain(text)
plan_so_far.extend(plan)
cost = text_cost(text)
for _, _, step_cost in plan_so_far:
cost += step_cost
if cost < best_cost:
best_cost = cost
best_version = text
best_plan = list(plan_so_far)
if text == prevtext:
return best_version, best_plan | Re-decodes text that has been decoded incorrectly, and also return a
"plan" indicating all the steps required to fix it.
The resulting plan could be used with :func:`ftfy.fixes.apply_plan`
to fix additional strings that are broken in the same way. | Below is the the instruction that describes the task:
### Input:
Re-decodes text that has been decoded incorrectly, and also return a
"plan" indicating all the steps required to fix it.
The resulting plan could be used with :func:`ftfy.fixes.apply_plan`
to fix additional strings that are broken in the same way.
### Response:
def fix_encoding_and_explain(text):
"""
Re-decodes text that has been decoded incorrectly, and also return a
"plan" indicating all the steps required to fix it.
The resulting plan could be used with :func:`ftfy.fixes.apply_plan`
to fix additional strings that are broken in the same way.
"""
best_version = text
best_cost = text_cost(text)
best_plan = []
plan_so_far = []
while True:
prevtext = text
text, plan = fix_one_step_and_explain(text)
plan_so_far.extend(plan)
cost = text_cost(text)
for _, _, step_cost in plan_so_far:
cost += step_cost
if cost < best_cost:
best_cost = cost
best_version = text
best_plan = list(plan_so_far)
if text == prevtext:
return best_version, best_plan |
def washburn(target, surface_tension='pore.surface_tension',
contact_angle='pore.contact_angle',
diameter='throat.diameter'):
r"""
Computes the capillary entry pressure assuming the throat in a cylindrical
tube.
Parameters
----------
target : OpenPNM Object
The object for which these values are being calculated. This
controls the length of the calculated array, and also provides
access to other necessary thermofluid properties.
surface_tension : string
The dictionary key containing the surface tension values to be used. If
a pore property is given, it is interpolated to a throat list.
contact_angle : string
The dictionary key containing the contact angle values to be used. If
a pore property is given, it is interpolated to a throat list.
diameter : string
The dictionary key containing the throat diameter values to be used.
Notes
-----
The Washburn equation is:
.. math::
P_c = -\frac{2\sigma(cos(\theta))}{r}
This is the most basic approach to calculating entry pressure and is
suitable for highly non-wetting invading phases in most materials.
"""
network = target.project.network
phase = target.project.find_phase(target)
element, sigma, theta = _get_key_props(phase=phase,
diameter=diameter,
surface_tension=surface_tension,
contact_angle=contact_angle)
r = network[diameter]/2
value = -2*sigma*_sp.cos(_sp.radians(theta))/r
if diameter.split('.')[0] == 'throat':
value = value[phase.throats(target.name)]
else:
value = value[phase.pores(target.name)]
value[_sp.absolute(value) == _sp.inf] = 0
return value | r"""
Computes the capillary entry pressure assuming the throat in a cylindrical
tube.
Parameters
----------
target : OpenPNM Object
The object for which these values are being calculated. This
controls the length of the calculated array, and also provides
access to other necessary thermofluid properties.
surface_tension : string
The dictionary key containing the surface tension values to be used. If
a pore property is given, it is interpolated to a throat list.
contact_angle : string
The dictionary key containing the contact angle values to be used. If
a pore property is given, it is interpolated to a throat list.
diameter : string
The dictionary key containing the throat diameter values to be used.
Notes
-----
The Washburn equation is:
.. math::
P_c = -\frac{2\sigma(cos(\theta))}{r}
This is the most basic approach to calculating entry pressure and is
suitable for highly non-wetting invading phases in most materials. | Below is the the instruction that describes the task:
### Input:
r"""
Computes the capillary entry pressure assuming the throat in a cylindrical
tube.
Parameters
----------
target : OpenPNM Object
The object for which these values are being calculated. This
controls the length of the calculated array, and also provides
access to other necessary thermofluid properties.
surface_tension : string
The dictionary key containing the surface tension values to be used. If
a pore property is given, it is interpolated to a throat list.
contact_angle : string
The dictionary key containing the contact angle values to be used. If
a pore property is given, it is interpolated to a throat list.
diameter : string
The dictionary key containing the throat diameter values to be used.
Notes
-----
The Washburn equation is:
.. math::
P_c = -\frac{2\sigma(cos(\theta))}{r}
This is the most basic approach to calculating entry pressure and is
suitable for highly non-wetting invading phases in most materials.
### Response:
def washburn(target, surface_tension='pore.surface_tension',
contact_angle='pore.contact_angle',
diameter='throat.diameter'):
r"""
Computes the capillary entry pressure assuming the throat in a cylindrical
tube.
Parameters
----------
target : OpenPNM Object
The object for which these values are being calculated. This
controls the length of the calculated array, and also provides
access to other necessary thermofluid properties.
surface_tension : string
The dictionary key containing the surface tension values to be used. If
a pore property is given, it is interpolated to a throat list.
contact_angle : string
The dictionary key containing the contact angle values to be used. If
a pore property is given, it is interpolated to a throat list.
diameter : string
The dictionary key containing the throat diameter values to be used.
Notes
-----
The Washburn equation is:
.. math::
P_c = -\frac{2\sigma(cos(\theta))}{r}
This is the most basic approach to calculating entry pressure and is
suitable for highly non-wetting invading phases in most materials.
"""
network = target.project.network
phase = target.project.find_phase(target)
element, sigma, theta = _get_key_props(phase=phase,
diameter=diameter,
surface_tension=surface_tension,
contact_angle=contact_angle)
r = network[diameter]/2
value = -2*sigma*_sp.cos(_sp.radians(theta))/r
if diameter.split('.')[0] == 'throat':
value = value[phase.throats(target.name)]
else:
value = value[phase.pores(target.name)]
value[_sp.absolute(value) == _sp.inf] = 0
return value |
def _group_get_hostnames(self, group_name):
"""
Recursively fetch a list of each unique hostname that belongs in or
under the group. This includes hosts in children groups.
"""
hostnames = []
hosts_section = self._get_section(group_name, 'hosts')
if hosts_section:
for entry in hosts_section['entries']:
hostnames.extend(self.expand_hostdef(entry['name']))
children_section = self._get_section(group_name, 'children')
if children_section:
for entry in children_section['entries']:
hostnames.extend(self._group_get_hostnames(entry['name']))
return hostnames | Recursively fetch a list of each unique hostname that belongs in or
under the group. This includes hosts in children groups. | Below is the the instruction that describes the task:
### Input:
Recursively fetch a list of each unique hostname that belongs in or
under the group. This includes hosts in children groups.
### Response:
def _group_get_hostnames(self, group_name):
"""
Recursively fetch a list of each unique hostname that belongs in or
under the group. This includes hosts in children groups.
"""
hostnames = []
hosts_section = self._get_section(group_name, 'hosts')
if hosts_section:
for entry in hosts_section['entries']:
hostnames.extend(self.expand_hostdef(entry['name']))
children_section = self._get_section(group_name, 'children')
if children_section:
for entry in children_section['entries']:
hostnames.extend(self._group_get_hostnames(entry['name']))
return hostnames |
def preprocess_belscript(lines):
""" Convert any multi-line SET statements into single line SET statements"""
set_flag = False
for line in lines:
if set_flag is False and re.match("SET", line):
set_flag = True
set_line = [line.rstrip()]
# SET following SET
elif set_flag and re.match("SET", line):
yield f"{' '.join(set_line)}\n"
set_line = [line.rstrip()]
# Blank line following SET yields single line SET
elif set_flag and re.match("\s+$", line):
yield f"{' '.join(set_line)}\n"
yield line
set_flag = False
# Append second, third, ... lines to SET
elif set_flag:
set_line.append(line.rstrip())
else:
yield line | Convert any multi-line SET statements into single line SET statements | Below is the the instruction that describes the task:
### Input:
Convert any multi-line SET statements into single line SET statements
### Response:
def preprocess_belscript(lines):
""" Convert any multi-line SET statements into single line SET statements"""
set_flag = False
for line in lines:
if set_flag is False and re.match("SET", line):
set_flag = True
set_line = [line.rstrip()]
# SET following SET
elif set_flag and re.match("SET", line):
yield f"{' '.join(set_line)}\n"
set_line = [line.rstrip()]
# Blank line following SET yields single line SET
elif set_flag and re.match("\s+$", line):
yield f"{' '.join(set_line)}\n"
yield line
set_flag = False
# Append second, third, ... lines to SET
elif set_flag:
set_line.append(line.rstrip())
else:
yield line |
def get_jamo_class(jamo):
"""Determine if a jamo character is a lead, vowel, or tail.
Integers and U+11xx characters are valid arguments. HCJ consonants are not
valid here.
get_jamo_class should return the class ["lead" | "vowel" | "tail"] of a
given character or integer.
Note: jamo class directly corresponds to the Unicode 7.0 specification,
thus includes filler characters as having a class.
"""
# TODO: Perhaps raise a separate error for U+3xxx jamo.
if jamo in JAMO_LEADS or jamo == chr(0x115F):
return "lead"
if jamo in JAMO_VOWELS or jamo == chr(0x1160) or\
0x314F <= ord(jamo) <= 0x3163:
return "vowel"
if jamo in JAMO_TAILS:
return "tail"
else:
raise InvalidJamoError("Invalid or classless jamo argument.", jamo) | Determine if a jamo character is a lead, vowel, or tail.
Integers and U+11xx characters are valid arguments. HCJ consonants are not
valid here.
get_jamo_class should return the class ["lead" | "vowel" | "tail"] of a
given character or integer.
Note: jamo class directly corresponds to the Unicode 7.0 specification,
thus includes filler characters as having a class. | Below is the the instruction that describes the task:
### Input:
Determine if a jamo character is a lead, vowel, or tail.
Integers and U+11xx characters are valid arguments. HCJ consonants are not
valid here.
get_jamo_class should return the class ["lead" | "vowel" | "tail"] of a
given character or integer.
Note: jamo class directly corresponds to the Unicode 7.0 specification,
thus includes filler characters as having a class.
### Response:
def get_jamo_class(jamo):
"""Determine if a jamo character is a lead, vowel, or tail.
Integers and U+11xx characters are valid arguments. HCJ consonants are not
valid here.
get_jamo_class should return the class ["lead" | "vowel" | "tail"] of a
given character or integer.
Note: jamo class directly corresponds to the Unicode 7.0 specification,
thus includes filler characters as having a class.
"""
# TODO: Perhaps raise a separate error for U+3xxx jamo.
if jamo in JAMO_LEADS or jamo == chr(0x115F):
return "lead"
if jamo in JAMO_VOWELS or jamo == chr(0x1160) or\
0x314F <= ord(jamo) <= 0x3163:
return "vowel"
if jamo in JAMO_TAILS:
return "tail"
else:
raise InvalidJamoError("Invalid or classless jamo argument.", jamo) |
def upload_file(self, simple_upload_url, chunked_upload_url, file_obj,
chunk_size=CHUNK_SIZE, force_chunked=False,
extra_data=None):
"""
Generic method to upload files to AmigoCloud. Can be used for different
API endpoints.
`file_obj` could be a file-like object or a filepath.
If the size of the file is greater than MAX_SIZE_SIMPLE_UPLOAD (8MB)
`chunked_upload_url` will be used, otherwise `simple_upload_url` will
be.
If `simple_upload_url` evaluates to False, or `force_chunked` is True,
the `chunked_upload_url` will always be used.
"""
if isinstance(file_obj, string_types):
# file_obj is a filepath: open file and close it at the end
file_obj = open(file_obj, 'rb')
close_file = True
else:
# assume file_obj is a file-like object
close_file = False
# Get file size
file_obj.seek(0, os.SEEK_END)
file_size = file_obj.tell()
file_obj.seek(0)
try:
# Simple upload?
if (simple_upload_url and not force_chunked
and file_size < MAX_SIZE_SIMPLE_UPLOAD):
return self.post(simple_upload_url, data=extra_data,
files={'datafile': file_obj})
# Chunked upload
data = {}
md5_hash = hashlib.md5()
start_byte = 0
while True:
chunk = file_obj.read(chunk_size)
md5_hash.update(chunk)
end_byte = start_byte + len(chunk) - 1
content_range = 'bytes %d-%d/%d' % (start_byte, end_byte,
file_size)
ret = self.post(chunked_upload_url, data=data,
files={'datafile': chunk},
headers={'Content-Range': content_range})
data.setdefault('upload_id', ret['upload_id'])
start_byte = end_byte + 1
if start_byte == file_size:
break
# Complete request
if chunked_upload_url.endswith('/'):
chunked_upload_complete_url = chunked_upload_url + 'complete'
else:
chunked_upload_complete_url = chunked_upload_url + '/complete'
data['md5'] = md5_hash.hexdigest()
if extra_data:
data.update(extra_data)
return self.post(chunked_upload_complete_url, data=data)
finally:
if close_file:
file_obj.close() | Generic method to upload files to AmigoCloud. Can be used for different
API endpoints.
`file_obj` could be a file-like object or a filepath.
If the size of the file is greater than MAX_SIZE_SIMPLE_UPLOAD (8MB)
`chunked_upload_url` will be used, otherwise `simple_upload_url` will
be.
If `simple_upload_url` evaluates to False, or `force_chunked` is True,
the `chunked_upload_url` will always be used. | Below is the the instruction that describes the task:
### Input:
Generic method to upload files to AmigoCloud. Can be used for different
API endpoints.
`file_obj` could be a file-like object or a filepath.
If the size of the file is greater than MAX_SIZE_SIMPLE_UPLOAD (8MB)
`chunked_upload_url` will be used, otherwise `simple_upload_url` will
be.
If `simple_upload_url` evaluates to False, or `force_chunked` is True,
the `chunked_upload_url` will always be used.
### Response:
def upload_file(self, simple_upload_url, chunked_upload_url, file_obj,
chunk_size=CHUNK_SIZE, force_chunked=False,
extra_data=None):
"""
Generic method to upload files to AmigoCloud. Can be used for different
API endpoints.
`file_obj` could be a file-like object or a filepath.
If the size of the file is greater than MAX_SIZE_SIMPLE_UPLOAD (8MB)
`chunked_upload_url` will be used, otherwise `simple_upload_url` will
be.
If `simple_upload_url` evaluates to False, or `force_chunked` is True,
the `chunked_upload_url` will always be used.
"""
if isinstance(file_obj, string_types):
# file_obj is a filepath: open file and close it at the end
file_obj = open(file_obj, 'rb')
close_file = True
else:
# assume file_obj is a file-like object
close_file = False
# Get file size
file_obj.seek(0, os.SEEK_END)
file_size = file_obj.tell()
file_obj.seek(0)
try:
# Simple upload?
if (simple_upload_url and not force_chunked
and file_size < MAX_SIZE_SIMPLE_UPLOAD):
return self.post(simple_upload_url, data=extra_data,
files={'datafile': file_obj})
# Chunked upload
data = {}
md5_hash = hashlib.md5()
start_byte = 0
while True:
chunk = file_obj.read(chunk_size)
md5_hash.update(chunk)
end_byte = start_byte + len(chunk) - 1
content_range = 'bytes %d-%d/%d' % (start_byte, end_byte,
file_size)
ret = self.post(chunked_upload_url, data=data,
files={'datafile': chunk},
headers={'Content-Range': content_range})
data.setdefault('upload_id', ret['upload_id'])
start_byte = end_byte + 1
if start_byte == file_size:
break
# Complete request
if chunked_upload_url.endswith('/'):
chunked_upload_complete_url = chunked_upload_url + 'complete'
else:
chunked_upload_complete_url = chunked_upload_url + '/complete'
data['md5'] = md5_hash.hexdigest()
if extra_data:
data.update(extra_data)
return self.post(chunked_upload_complete_url, data=data)
finally:
if close_file:
file_obj.close() |
def daily_forecast_at_coords(self, lat, lon, limit=None):
"""
Queries the OWM Weather API for daily weather forecast for the specified
geographic coordinate (eg: latitude: 51.5073509, longitude: -0.1277583).
A *Forecaster* object is returned, containing a *Forecast* instance
covering a global streak of fourteen days by default: this instance
encapsulates *Weather* objects, with a time interval of one day one
from each other
:param lat: location's latitude, must be between -90.0 and 90.0
:type lat: int/float
:param lon: location's longitude, must be between -180.0 and 180.0
:type lon: int/float
:param limit: the maximum number of daily *Weather* items to be
retrieved (default is ``None``, which stands for any number of
items)
:type limit: int or ``None``
:returns: a *Forecaster* instance or ``None`` if forecast data is not
available for the specified location
:raises: *ParseResponseException* when OWM Weather API responses' data
cannot be parsed, *APICallException* when OWM Weather API can not be
reached, *ValueError* if negative values are supplied for limit
"""
geo.assert_is_lon(lon)
geo.assert_is_lat(lat)
if limit is not None:
assert isinstance(limit, int), "'limit' must be an int or None"
if limit < 1:
raise ValueError("'limit' must be None or greater than zero")
params = {'lon': lon, 'lat': lat, 'lang': self._language}
if limit is not None:
params['cnt'] = limit
uri = http_client.HttpClient.to_url(DAILY_FORECAST_URL,
self._API_key,
self._subscription_type,
self._use_ssl)
_, json_data = self._wapi.cacheable_get_json(uri, params=params)
forecast = self._parsers['forecast'].parse_JSON(json_data)
if forecast is not None:
forecast.set_interval("daily")
return forecaster.Forecaster(forecast)
else:
return None | Queries the OWM Weather API for daily weather forecast for the specified
geographic coordinate (eg: latitude: 51.5073509, longitude: -0.1277583).
A *Forecaster* object is returned, containing a *Forecast* instance
covering a global streak of fourteen days by default: this instance
encapsulates *Weather* objects, with a time interval of one day one
from each other
:param lat: location's latitude, must be between -90.0 and 90.0
:type lat: int/float
:param lon: location's longitude, must be between -180.0 and 180.0
:type lon: int/float
:param limit: the maximum number of daily *Weather* items to be
retrieved (default is ``None``, which stands for any number of
items)
:type limit: int or ``None``
:returns: a *Forecaster* instance or ``None`` if forecast data is not
available for the specified location
:raises: *ParseResponseException* when OWM Weather API responses' data
cannot be parsed, *APICallException* when OWM Weather API can not be
reached, *ValueError* if negative values are supplied for limit | Below is the the instruction that describes the task:
### Input:
Queries the OWM Weather API for daily weather forecast for the specified
geographic coordinate (eg: latitude: 51.5073509, longitude: -0.1277583).
A *Forecaster* object is returned, containing a *Forecast* instance
covering a global streak of fourteen days by default: this instance
encapsulates *Weather* objects, with a time interval of one day one
from each other
:param lat: location's latitude, must be between -90.0 and 90.0
:type lat: int/float
:param lon: location's longitude, must be between -180.0 and 180.0
:type lon: int/float
:param limit: the maximum number of daily *Weather* items to be
retrieved (default is ``None``, which stands for any number of
items)
:type limit: int or ``None``
:returns: a *Forecaster* instance or ``None`` if forecast data is not
available for the specified location
:raises: *ParseResponseException* when OWM Weather API responses' data
cannot be parsed, *APICallException* when OWM Weather API can not be
reached, *ValueError* if negative values are supplied for limit
### Response:
def daily_forecast_at_coords(self, lat, lon, limit=None):
"""
Queries the OWM Weather API for daily weather forecast for the specified
geographic coordinate (eg: latitude: 51.5073509, longitude: -0.1277583).
A *Forecaster* object is returned, containing a *Forecast* instance
covering a global streak of fourteen days by default: this instance
encapsulates *Weather* objects, with a time interval of one day one
from each other
:param lat: location's latitude, must be between -90.0 and 90.0
:type lat: int/float
:param lon: location's longitude, must be between -180.0 and 180.0
:type lon: int/float
:param limit: the maximum number of daily *Weather* items to be
retrieved (default is ``None``, which stands for any number of
items)
:type limit: int or ``None``
:returns: a *Forecaster* instance or ``None`` if forecast data is not
available for the specified location
:raises: *ParseResponseException* when OWM Weather API responses' data
cannot be parsed, *APICallException* when OWM Weather API can not be
reached, *ValueError* if negative values are supplied for limit
"""
geo.assert_is_lon(lon)
geo.assert_is_lat(lat)
if limit is not None:
assert isinstance(limit, int), "'limit' must be an int or None"
if limit < 1:
raise ValueError("'limit' must be None or greater than zero")
params = {'lon': lon, 'lat': lat, 'lang': self._language}
if limit is not None:
params['cnt'] = limit
uri = http_client.HttpClient.to_url(DAILY_FORECAST_URL,
self._API_key,
self._subscription_type,
self._use_ssl)
_, json_data = self._wapi.cacheable_get_json(uri, params=params)
forecast = self._parsers['forecast'].parse_JSON(json_data)
if forecast is not None:
forecast.set_interval("daily")
return forecaster.Forecaster(forecast)
else:
return None |
def perform_extended_selection(self, event=None):
"""
Performs extended word selection.
:param event: QMouseEvent
"""
TextHelper(self.editor).select_extended_word(
continuation_chars=self.continuation_characters)
if event:
event.accept() | Performs extended word selection.
:param event: QMouseEvent | Below is the the instruction that describes the task:
### Input:
Performs extended word selection.
:param event: QMouseEvent
### Response:
def perform_extended_selection(self, event=None):
"""
Performs extended word selection.
:param event: QMouseEvent
"""
TextHelper(self.editor).select_extended_word(
continuation_chars=self.continuation_characters)
if event:
event.accept() |
def p_delays_floatnumber(self, p):
'delays : DELAY floatnumber'
p[0] = DelayStatement(FloatConst(
p[2], lineno=p.lineno(1)), lineno=p.lineno(1))
p.set_lineno(0, p.lineno(1)) | delays : DELAY floatnumber | Below is the the instruction that describes the task:
### Input:
delays : DELAY floatnumber
### Response:
def p_delays_floatnumber(self, p):
'delays : DELAY floatnumber'
p[0] = DelayStatement(FloatConst(
p[2], lineno=p.lineno(1)), lineno=p.lineno(1))
p.set_lineno(0, p.lineno(1)) |
def _is_builtin_module(module):
"""Is builtin or part of standard library
"""
if (not hasattr(module, '__file__')) or module.__name__ in sys.builtin_module_names:
return True
if module.__name__ in _stdlib._STD_LIB_MODULES:
return True
amp = os.path.abspath(module.__file__)
if 'site-packages' in amp:
return False
if amp.startswith(_STD_MODULE_DIR):
return True
if not '.' in module.__name__:
return False
mn_top = module.__name__.split('.')[0]
return mn_top in _stdlib._STD_LIB_MODULES | Is builtin or part of standard library | Below is the the instruction that describes the task:
### Input:
Is builtin or part of standard library
### Response:
def _is_builtin_module(module):
"""Is builtin or part of standard library
"""
if (not hasattr(module, '__file__')) or module.__name__ in sys.builtin_module_names:
return True
if module.__name__ in _stdlib._STD_LIB_MODULES:
return True
amp = os.path.abspath(module.__file__)
if 'site-packages' in amp:
return False
if amp.startswith(_STD_MODULE_DIR):
return True
if not '.' in module.__name__:
return False
mn_top = module.__name__.split('.')[0]
return mn_top in _stdlib._STD_LIB_MODULES |
def services(doc):
"""View for getting services"""
for service_id, service in doc.get('services', {}).items():
service_type = service.get('service_type')
org = doc['_id']
service['id'] = service_id
service['organisation_id'] = org
yield service_id, service
yield [service_type, org], service
yield [service_type, None], service
yield [None, org], service
yield [None, None], service | View for getting services | Below is the the instruction that describes the task:
### Input:
View for getting services
### Response:
def services(doc):
"""View for getting services"""
for service_id, service in doc.get('services', {}).items():
service_type = service.get('service_type')
org = doc['_id']
service['id'] = service_id
service['organisation_id'] = org
yield service_id, service
yield [service_type, org], service
yield [service_type, None], service
yield [None, org], service
yield [None, None], service |
def get_checksum32(oqparam, hazard=False):
"""
Build an unsigned 32 bit integer from the input files of a calculation.
:param oqparam: an OqParam instance
:param hazard: if True, consider only the hazard files
:returns: the checkume
"""
# NB: using adler32 & 0xffffffff is the documented way to get a checksum
# which is the same between Python 2 and Python 3
checksum = 0
for fname in get_input_files(oqparam, hazard):
checksum = _checksum(fname, checksum)
if hazard:
hazard_params = []
for key, val in vars(oqparam).items():
if key in ('rupture_mesh_spacing', 'complex_fault_mesh_spacing',
'width_of_mfd_bin', 'area_source_discretization',
'random_seed', 'ses_seed', 'truncation_level',
'maximum_distance', 'investigation_time',
'number_of_logic_tree_samples', 'imtls',
'ses_per_logic_tree_path', 'minimum_magnitude',
'prefilter_sources', 'sites',
'pointsource_distance', 'filter_distance'):
hazard_params.append('%s = %s' % (key, val))
data = '\n'.join(hazard_params).encode('utf8')
checksum = zlib.adler32(data, checksum) & 0xffffffff
return checksum | Build an unsigned 32 bit integer from the input files of a calculation.
:param oqparam: an OqParam instance
:param hazard: if True, consider only the hazard files
:returns: the checkume | Below is the the instruction that describes the task:
### Input:
Build an unsigned 32 bit integer from the input files of a calculation.
:param oqparam: an OqParam instance
:param hazard: if True, consider only the hazard files
:returns: the checkume
### Response:
def get_checksum32(oqparam, hazard=False):
"""
Build an unsigned 32 bit integer from the input files of a calculation.
:param oqparam: an OqParam instance
:param hazard: if True, consider only the hazard files
:returns: the checkume
"""
# NB: using adler32 & 0xffffffff is the documented way to get a checksum
# which is the same between Python 2 and Python 3
checksum = 0
for fname in get_input_files(oqparam, hazard):
checksum = _checksum(fname, checksum)
if hazard:
hazard_params = []
for key, val in vars(oqparam).items():
if key in ('rupture_mesh_spacing', 'complex_fault_mesh_spacing',
'width_of_mfd_bin', 'area_source_discretization',
'random_seed', 'ses_seed', 'truncation_level',
'maximum_distance', 'investigation_time',
'number_of_logic_tree_samples', 'imtls',
'ses_per_logic_tree_path', 'minimum_magnitude',
'prefilter_sources', 'sites',
'pointsource_distance', 'filter_distance'):
hazard_params.append('%s = %s' % (key, val))
data = '\n'.join(hazard_params).encode('utf8')
checksum = zlib.adler32(data, checksum) & 0xffffffff
return checksum |
def traverse(self, node):
"""Traverse the document tree rooted at node.
node : docutil node
current root node to traverse
"""
old_level = self.current_level
if isinstance(node, nodes.section):
if 'level' in node:
self.current_level = node['level']
to_visit = []
to_replace = []
for c in node.children[:]:
newnode = self.find_replace(c)
if newnode is not None:
to_replace.append((c, newnode))
else:
to_visit.append(c)
for oldnode, newnodes in to_replace:
node.replace(oldnode, newnodes)
for child in to_visit:
self.traverse(child)
self.current_level = old_level | Traverse the document tree rooted at node.
node : docutil node
current root node to traverse | Below is the the instruction that describes the task:
### Input:
Traverse the document tree rooted at node.
node : docutil node
current root node to traverse
### Response:
def traverse(self, node):
"""Traverse the document tree rooted at node.
node : docutil node
current root node to traverse
"""
old_level = self.current_level
if isinstance(node, nodes.section):
if 'level' in node:
self.current_level = node['level']
to_visit = []
to_replace = []
for c in node.children[:]:
newnode = self.find_replace(c)
if newnode is not None:
to_replace.append((c, newnode))
else:
to_visit.append(c)
for oldnode, newnodes in to_replace:
node.replace(oldnode, newnodes)
for child in to_visit:
self.traverse(child)
self.current_level = old_level |
def get_closest(cls, *locale_codes: str) -> "Locale":
"""Returns the closest match for the given locale code."""
for code in locale_codes:
if not code:
continue
code = code.replace("-", "_")
parts = code.split("_")
if len(parts) > 2:
continue
elif len(parts) == 2:
code = parts[0].lower() + "_" + parts[1].upper()
if code in _supported_locales:
return cls.get(code)
if parts[0].lower() in _supported_locales:
return cls.get(parts[0].lower())
return cls.get(_default_locale) | Returns the closest match for the given locale code. | Below is the the instruction that describes the task:
### Input:
Returns the closest match for the given locale code.
### Response:
def get_closest(cls, *locale_codes: str) -> "Locale":
"""Returns the closest match for the given locale code."""
for code in locale_codes:
if not code:
continue
code = code.replace("-", "_")
parts = code.split("_")
if len(parts) > 2:
continue
elif len(parts) == 2:
code = parts[0].lower() + "_" + parts[1].upper()
if code in _supported_locales:
return cls.get(code)
if parts[0].lower() in _supported_locales:
return cls.get(parts[0].lower())
return cls.get(_default_locale) |
def ParseFileSystemsStruct(struct_class, fs_count, data):
"""Take the struct type and parse it into a list of structs."""
results = []
cstr = lambda x: x.split(b"\x00", 1)[0]
for count in range(0, fs_count):
struct_size = struct_class.GetSize()
s_data = data[count * struct_size:(count + 1) * struct_size]
s = struct_class(s_data)
s.f_fstypename = cstr(s.f_fstypename)
s.f_mntonname = cstr(s.f_mntonname)
s.f_mntfromname = cstr(s.f_mntfromname)
results.append(s)
return results | Take the struct type and parse it into a list of structs. | Below is the the instruction that describes the task:
### Input:
Take the struct type and parse it into a list of structs.
### Response:
def ParseFileSystemsStruct(struct_class, fs_count, data):
"""Take the struct type and parse it into a list of structs."""
results = []
cstr = lambda x: x.split(b"\x00", 1)[0]
for count in range(0, fs_count):
struct_size = struct_class.GetSize()
s_data = data[count * struct_size:(count + 1) * struct_size]
s = struct_class(s_data)
s.f_fstypename = cstr(s.f_fstypename)
s.f_mntonname = cstr(s.f_mntonname)
s.f_mntfromname = cstr(s.f_mntfromname)
results.append(s)
return results |
def dumps_content(self):
"""Return a string representing the matrix in LaTeX syntax.
Returns
-------
str
"""
import numpy as np
string = ''
shape = self.matrix.shape
for (y, x), value in np.ndenumerate(self.matrix):
if x:
string += '&'
string += str(value)
if x == shape[1] - 1 and y != shape[0] - 1:
string += r'\\' + '%\n'
super().dumps_content()
return string | Return a string representing the matrix in LaTeX syntax.
Returns
-------
str | Below is the the instruction that describes the task:
### Input:
Return a string representing the matrix in LaTeX syntax.
Returns
-------
str
### Response:
def dumps_content(self):
"""Return a string representing the matrix in LaTeX syntax.
Returns
-------
str
"""
import numpy as np
string = ''
shape = self.matrix.shape
for (y, x), value in np.ndenumerate(self.matrix):
if x:
string += '&'
string += str(value)
if x == shape[1] - 1 and y != shape[0] - 1:
string += r'\\' + '%\n'
super().dumps_content()
return string |
def diff(left, right):
"""
Take two VCALENDAR components, compare VEVENTs and VTODOs in them,
return a list of object pairs containing just UID and the bits
that didn't match, using None for objects that weren't present in one
version or the other.
When there are multiple ContentLines in one VEVENT, for instance many
DESCRIPTION lines, such lines original order is assumed to be
meaningful. Order is also preserved when comparing (the unlikely case
of) multiple parameters of the same type in a ContentLine
"""
def processComponentLists(leftList, rightList):
output = []
rightIndex = 0
rightListSize = len(rightList)
for comp in leftList:
if rightIndex >= rightListSize:
output.append((comp, None))
else:
leftKey = getSortKey(comp)
rightComp = rightList[rightIndex]
rightKey = getSortKey(rightComp)
while leftKey > rightKey:
output.append((None, rightComp))
rightIndex += 1
if rightIndex >= rightListSize:
output.append((comp, None))
break
else:
rightComp = rightList[rightIndex]
rightKey = getSortKey(rightComp)
if leftKey < rightKey:
output.append((comp, None))
elif leftKey == rightKey:
rightIndex += 1
matchResult = processComponentPair(comp, rightComp)
if matchResult is not None:
output.append(matchResult)
return output
def newComponent(name, body):
if body is None:
return None
else:
c = Component(name)
c.behavior = getBehavior(name)
c.isNative = True
return c
def processComponentPair(leftComp, rightComp):
"""
Return None if a match, or a pair of components including UIDs and
any differing children.
"""
leftChildKeys = leftComp.contents.keys()
rightChildKeys = rightComp.contents.keys()
differentContentLines = []
differentComponents = {}
for key in leftChildKeys:
rightList = rightComp.contents.get(key, [])
if isinstance(leftComp.contents[key][0], Component):
compDifference = processComponentLists(leftComp.contents[key],
rightList)
if len(compDifference) > 0:
differentComponents[key] = compDifference
elif leftComp.contents[key] != rightList:
differentContentLines.append((leftComp.contents[key],
rightList))
for key in rightChildKeys:
if key not in leftChildKeys:
if isinstance(rightComp.contents[key][0], Component):
differentComponents[key] = ([], rightComp.contents[key])
else:
differentContentLines.append(([], rightComp.contents[key]))
if len(differentContentLines) == 0 and len(differentComponents) == 0:
return None
else:
left = newFromBehavior(leftComp.name)
right = newFromBehavior(leftComp.name)
# add a UID, if one existed, despite the fact that they'll always be
# the same
uid = leftComp.getChildValue('uid')
if uid is not None:
left.add( 'uid').value = uid
right.add('uid').value = uid
for name, childPairList in differentComponents.items():
leftComponents, rightComponents = zip(*childPairList)
if len(leftComponents) > 0:
# filter out None
left.contents[name] = filter(None, leftComponents)
if len(rightComponents) > 0:
# filter out None
right.contents[name] = filter(None, rightComponents)
for leftChildLine, rightChildLine in differentContentLines:
nonEmpty = leftChildLine or rightChildLine
name = nonEmpty[0].name
if leftChildLine is not None:
left.contents[name] = leftChildLine
if rightChildLine is not None:
right.contents[name] = rightChildLine
return left, right
vevents = processComponentLists(sortByUID(getattr(left, 'vevent_list', [])),
sortByUID(getattr(right, 'vevent_list', [])))
vtodos = processComponentLists(sortByUID(getattr(left, 'vtodo_list', [])),
sortByUID(getattr(right, 'vtodo_list', [])))
return vevents + vtodos | Take two VCALENDAR components, compare VEVENTs and VTODOs in them,
return a list of object pairs containing just UID and the bits
that didn't match, using None for objects that weren't present in one
version or the other.
When there are multiple ContentLines in one VEVENT, for instance many
DESCRIPTION lines, such lines original order is assumed to be
meaningful. Order is also preserved when comparing (the unlikely case
of) multiple parameters of the same type in a ContentLine | Below is the the instruction that describes the task:
### Input:
Take two VCALENDAR components, compare VEVENTs and VTODOs in them,
return a list of object pairs containing just UID and the bits
that didn't match, using None for objects that weren't present in one
version or the other.
When there are multiple ContentLines in one VEVENT, for instance many
DESCRIPTION lines, such lines original order is assumed to be
meaningful. Order is also preserved when comparing (the unlikely case
of) multiple parameters of the same type in a ContentLine
### Response:
def diff(left, right):
"""
Take two VCALENDAR components, compare VEVENTs and VTODOs in them,
return a list of object pairs containing just UID and the bits
that didn't match, using None for objects that weren't present in one
version or the other.
When there are multiple ContentLines in one VEVENT, for instance many
DESCRIPTION lines, such lines original order is assumed to be
meaningful. Order is also preserved when comparing (the unlikely case
of) multiple parameters of the same type in a ContentLine
"""
def processComponentLists(leftList, rightList):
output = []
rightIndex = 0
rightListSize = len(rightList)
for comp in leftList:
if rightIndex >= rightListSize:
output.append((comp, None))
else:
leftKey = getSortKey(comp)
rightComp = rightList[rightIndex]
rightKey = getSortKey(rightComp)
while leftKey > rightKey:
output.append((None, rightComp))
rightIndex += 1
if rightIndex >= rightListSize:
output.append((comp, None))
break
else:
rightComp = rightList[rightIndex]
rightKey = getSortKey(rightComp)
if leftKey < rightKey:
output.append((comp, None))
elif leftKey == rightKey:
rightIndex += 1
matchResult = processComponentPair(comp, rightComp)
if matchResult is not None:
output.append(matchResult)
return output
def newComponent(name, body):
if body is None:
return None
else:
c = Component(name)
c.behavior = getBehavior(name)
c.isNative = True
return c
def processComponentPair(leftComp, rightComp):
"""
Return None if a match, or a pair of components including UIDs and
any differing children.
"""
leftChildKeys = leftComp.contents.keys()
rightChildKeys = rightComp.contents.keys()
differentContentLines = []
differentComponents = {}
for key in leftChildKeys:
rightList = rightComp.contents.get(key, [])
if isinstance(leftComp.contents[key][0], Component):
compDifference = processComponentLists(leftComp.contents[key],
rightList)
if len(compDifference) > 0:
differentComponents[key] = compDifference
elif leftComp.contents[key] != rightList:
differentContentLines.append((leftComp.contents[key],
rightList))
for key in rightChildKeys:
if key not in leftChildKeys:
if isinstance(rightComp.contents[key][0], Component):
differentComponents[key] = ([], rightComp.contents[key])
else:
differentContentLines.append(([], rightComp.contents[key]))
if len(differentContentLines) == 0 and len(differentComponents) == 0:
return None
else:
left = newFromBehavior(leftComp.name)
right = newFromBehavior(leftComp.name)
# add a UID, if one existed, despite the fact that they'll always be
# the same
uid = leftComp.getChildValue('uid')
if uid is not None:
left.add( 'uid').value = uid
right.add('uid').value = uid
for name, childPairList in differentComponents.items():
leftComponents, rightComponents = zip(*childPairList)
if len(leftComponents) > 0:
# filter out None
left.contents[name] = filter(None, leftComponents)
if len(rightComponents) > 0:
# filter out None
right.contents[name] = filter(None, rightComponents)
for leftChildLine, rightChildLine in differentContentLines:
nonEmpty = leftChildLine or rightChildLine
name = nonEmpty[0].name
if leftChildLine is not None:
left.contents[name] = leftChildLine
if rightChildLine is not None:
right.contents[name] = rightChildLine
return left, right
vevents = processComponentLists(sortByUID(getattr(left, 'vevent_list', [])),
sortByUID(getattr(right, 'vevent_list', [])))
vtodos = processComponentLists(sortByUID(getattr(left, 'vtodo_list', [])),
sortByUID(getattr(right, 'vtodo_list', [])))
return vevents + vtodos |
def get_platform_info():
"""Gets platform info
:return: platform info
"""
try:
system_name = platform.system()
release_name = platform.release()
except:
system_name = "Unknown"
release_name = "Unknown"
return {
'system': system_name,
'release': release_name,
} | Gets platform info
:return: platform info | Below is the the instruction that describes the task:
### Input:
Gets platform info
:return: platform info
### Response:
def get_platform_info():
"""Gets platform info
:return: platform info
"""
try:
system_name = platform.system()
release_name = platform.release()
except:
system_name = "Unknown"
release_name = "Unknown"
return {
'system': system_name,
'release': release_name,
} |
def merge(self, other_rel):
"""
Ingest another DistributedReliability and add its contents to the current object.
Args:
other_rel: a Distributed reliability object.
"""
if other_rel.thresholds.size == self.thresholds.size and np.all(other_rel.thresholds == self.thresholds):
self.frequencies += other_rel.frequencies
else:
print("Input table thresholds do not match.") | Ingest another DistributedReliability and add its contents to the current object.
Args:
other_rel: a Distributed reliability object. | Below is the the instruction that describes the task:
### Input:
Ingest another DistributedReliability and add its contents to the current object.
Args:
other_rel: a Distributed reliability object.
### Response:
def merge(self, other_rel):
"""
Ingest another DistributedReliability and add its contents to the current object.
Args:
other_rel: a Distributed reliability object.
"""
if other_rel.thresholds.size == self.thresholds.size and np.all(other_rel.thresholds == self.thresholds):
self.frequencies += other_rel.frequencies
else:
print("Input table thresholds do not match.") |
def emailComment(comment, obj, request):
"""Send an email to the author about a new comment"""
if not obj.author.frog_prefs.get().json()['emailComments']:
return
if obj.author == request.user:
return
html = render_to_string('frog/comment_email.html', {
'user': comment.user,
'comment': comment.comment,
'object': obj,
'action_type': 'commented on',
'image': isinstance(obj, Image),
'SITE_URL': FROG_SITE_URL,
})
subject = '{}: Comment from {}'.format(getSiteConfig()['name'], comment.user_name)
fromemail = comment.user_email
to = obj.author.email
text_content = 'This is an important message.'
html_content = html
send_mail(subject, text_content, fromemail, [to], html_message=html_content) | Send an email to the author about a new comment | Below is the the instruction that describes the task:
### Input:
Send an email to the author about a new comment
### Response:
def emailComment(comment, obj, request):
"""Send an email to the author about a new comment"""
if not obj.author.frog_prefs.get().json()['emailComments']:
return
if obj.author == request.user:
return
html = render_to_string('frog/comment_email.html', {
'user': comment.user,
'comment': comment.comment,
'object': obj,
'action_type': 'commented on',
'image': isinstance(obj, Image),
'SITE_URL': FROG_SITE_URL,
})
subject = '{}: Comment from {}'.format(getSiteConfig()['name'], comment.user_name)
fromemail = comment.user_email
to = obj.author.email
text_content = 'This is an important message.'
html_content = html
send_mail(subject, text_content, fromemail, [to], html_message=html_content) |
def _hole_end(self, position, ignore=None):
"""
Retrieves the end of hole index from position.
:param position:
:type position:
:param ignore:
:type ignore:
:return:
:rtype:
"""
for rindex in range(position, self.max_end):
for starting in self.starting(rindex):
if not ignore or not ignore(starting):
return rindex
return self.max_end | Retrieves the end of hole index from position.
:param position:
:type position:
:param ignore:
:type ignore:
:return:
:rtype: | Below is the the instruction that describes the task:
### Input:
Retrieves the end of hole index from position.
:param position:
:type position:
:param ignore:
:type ignore:
:return:
:rtype:
### Response:
def _hole_end(self, position, ignore=None):
"""
Retrieves the end of hole index from position.
:param position:
:type position:
:param ignore:
:type ignore:
:return:
:rtype:
"""
for rindex in range(position, self.max_end):
for starting in self.starting(rindex):
if not ignore or not ignore(starting):
return rindex
return self.max_end |
def run(self, input):
"""Runs :attr:`executable` with ``input`` as stdin.
:class:`AssetHandlerError` exception is raised, if execution is failed,
otherwise stdout is returned.
"""
p = self.get_process()
output, errors = p.communicate(input=input.encode('utf-8'))
if p.returncode != 0:
raise AssetHandlerError(errors)
return output.decode('utf-8') | Runs :attr:`executable` with ``input`` as stdin.
:class:`AssetHandlerError` exception is raised, if execution is failed,
otherwise stdout is returned. | Below is the the instruction that describes the task:
### Input:
Runs :attr:`executable` with ``input`` as stdin.
:class:`AssetHandlerError` exception is raised, if execution is failed,
otherwise stdout is returned.
### Response:
def run(self, input):
"""Runs :attr:`executable` with ``input`` as stdin.
:class:`AssetHandlerError` exception is raised, if execution is failed,
otherwise stdout is returned.
"""
p = self.get_process()
output, errors = p.communicate(input=input.encode('utf-8'))
if p.returncode != 0:
raise AssetHandlerError(errors)
return output.decode('utf-8') |
def check( state_engine, nameop, block_id, checked_ops ):
"""
Given a NAMESPACE_PREORDER nameop, see if we can preorder it.
It must be unqiue.
Return True if accepted.
Return False if not.
"""
namespace_id_hash = nameop['preorder_hash']
consensus_hash = nameop['consensus_hash']
token_fee = nameop['token_fee']
# cannot be preordered already
if not state_engine.is_new_namespace_preorder( namespace_id_hash ):
log.warning("Namespace preorder '%s' already in use" % namespace_id_hash)
return False
# has to have a reasonable consensus hash
if not state_engine.is_consensus_hash_valid( block_id, consensus_hash ):
valid_consensus_hashes = state_engine.get_valid_consensus_hashes( block_id )
log.warning("Invalid consensus hash '%s': expected any of %s" % (consensus_hash, ",".join( valid_consensus_hashes )) )
return False
# has to have paid a fee
if not 'op_fee' in nameop:
log.warning("Missing namespace preorder fee")
return False
# paid to the right burn address
if nameop['burn_address'] != BLOCKSTACK_BURN_ADDRESS:
log.warning("Invalid burn address: expected {}, got {}".format(BLOCKSTACK_BURN_ADDRESS, nameop['burn_address']))
return False
# token burn fee must be present, if we're in the right epoch for it
epoch_features = get_epoch_features(block_id)
if EPOCH_FEATURE_STACKS_BUY_NAMESPACES in epoch_features:
# must pay in STACKs
if 'token_fee' not in nameop:
log.warning("Missing token fee")
return False
token_fee = nameop['token_fee']
token_address = nameop['address']
token_type = TOKEN_TYPE_STACKS
# was a token fee paid?
if token_fee is None:
log.warning("No tokens paid by this NAMESPACE_PREORDER")
return False
# does this account have enough balance?
account_info = state_engine.get_account(token_address, token_type)
if account_info is None:
log.warning("No account for {} ({})".format(token_address, token_type))
return False
account_balance = state_engine.get_account_balance(account_info)
assert isinstance(account_balance, (int,long)), 'BUG: account_balance of {} is {} (type {})'.format(token_address, account_balance, type(account_balance))
assert isinstance(token_fee, (int,long)), 'BUG: token_fee is {} (type {})'.format(token_fee, type(token_fee))
if account_balance < token_fee:
# can't afford
log.warning("Account {} has balance {} {}, but needs to pay {} {}".format(token_address, account_balance, token_type, token_fee, token_type))
return False
# debit this account when we commit
state_preorder_put_account_payment_info(nameop, token_address, token_type, token_fee)
# NOTE: must be a string, to avoid overflow
nameop['token_fee'] = '{}'.format(token_fee)
nameop['token_units'] = TOKEN_TYPE_STACKS
else:
# must pay in BTC
# not paying in tokens, but say so!
state_preorder_put_account_payment_info(nameop, None, None, None)
nameop['token_fee'] = '0'
nameop['token_units'] = 'BTC'
return True | Given a NAMESPACE_PREORDER nameop, see if we can preorder it.
It must be unqiue.
Return True if accepted.
Return False if not. | Below is the the instruction that describes the task:
### Input:
Given a NAMESPACE_PREORDER nameop, see if we can preorder it.
It must be unqiue.
Return True if accepted.
Return False if not.
### Response:
def check( state_engine, nameop, block_id, checked_ops ):
"""
Given a NAMESPACE_PREORDER nameop, see if we can preorder it.
It must be unqiue.
Return True if accepted.
Return False if not.
"""
namespace_id_hash = nameop['preorder_hash']
consensus_hash = nameop['consensus_hash']
token_fee = nameop['token_fee']
# cannot be preordered already
if not state_engine.is_new_namespace_preorder( namespace_id_hash ):
log.warning("Namespace preorder '%s' already in use" % namespace_id_hash)
return False
# has to have a reasonable consensus hash
if not state_engine.is_consensus_hash_valid( block_id, consensus_hash ):
valid_consensus_hashes = state_engine.get_valid_consensus_hashes( block_id )
log.warning("Invalid consensus hash '%s': expected any of %s" % (consensus_hash, ",".join( valid_consensus_hashes )) )
return False
# has to have paid a fee
if not 'op_fee' in nameop:
log.warning("Missing namespace preorder fee")
return False
# paid to the right burn address
if nameop['burn_address'] != BLOCKSTACK_BURN_ADDRESS:
log.warning("Invalid burn address: expected {}, got {}".format(BLOCKSTACK_BURN_ADDRESS, nameop['burn_address']))
return False
# token burn fee must be present, if we're in the right epoch for it
epoch_features = get_epoch_features(block_id)
if EPOCH_FEATURE_STACKS_BUY_NAMESPACES in epoch_features:
# must pay in STACKs
if 'token_fee' not in nameop:
log.warning("Missing token fee")
return False
token_fee = nameop['token_fee']
token_address = nameop['address']
token_type = TOKEN_TYPE_STACKS
# was a token fee paid?
if token_fee is None:
log.warning("No tokens paid by this NAMESPACE_PREORDER")
return False
# does this account have enough balance?
account_info = state_engine.get_account(token_address, token_type)
if account_info is None:
log.warning("No account for {} ({})".format(token_address, token_type))
return False
account_balance = state_engine.get_account_balance(account_info)
assert isinstance(account_balance, (int,long)), 'BUG: account_balance of {} is {} (type {})'.format(token_address, account_balance, type(account_balance))
assert isinstance(token_fee, (int,long)), 'BUG: token_fee is {} (type {})'.format(token_fee, type(token_fee))
if account_balance < token_fee:
# can't afford
log.warning("Account {} has balance {} {}, but needs to pay {} {}".format(token_address, account_balance, token_type, token_fee, token_type))
return False
# debit this account when we commit
state_preorder_put_account_payment_info(nameop, token_address, token_type, token_fee)
# NOTE: must be a string, to avoid overflow
nameop['token_fee'] = '{}'.format(token_fee)
nameop['token_units'] = TOKEN_TYPE_STACKS
else:
# must pay in BTC
# not paying in tokens, but say so!
state_preorder_put_account_payment_info(nameop, None, None, None)
nameop['token_fee'] = '0'
nameop['token_units'] = 'BTC'
return True |
def opt_pagesize(self, pagesize):
""" Get or set the page size of the query output """
if pagesize != "auto":
pagesize = int(pagesize)
self.conf["pagesize"] = pagesize | Get or set the page size of the query output | Below is the the instruction that describes the task:
### Input:
Get or set the page size of the query output
### Response:
def opt_pagesize(self, pagesize):
""" Get or set the page size of the query output """
if pagesize != "auto":
pagesize = int(pagesize)
self.conf["pagesize"] = pagesize |
def swarm(self, predictedField=None, swarmParams=None):
"""
Runs a swarm on data and swarm description found within the given working
directory.
If no predictedField is provided, it is assumed that the first stream listed
in the streamIds provided to the Menorah constructor is the predicted field.
:param predictedField: (string)
:param swarmParams: (dict) overrides any swarm params
:return:
"""
self.prepareSwarm(
predictedField=predictedField, swarmParams=swarmParams
)
self.runSwarm(self._workingDir) | Runs a swarm on data and swarm description found within the given working
directory.
If no predictedField is provided, it is assumed that the first stream listed
in the streamIds provided to the Menorah constructor is the predicted field.
:param predictedField: (string)
:param swarmParams: (dict) overrides any swarm params
:return: | Below is the the instruction that describes the task:
### Input:
Runs a swarm on data and swarm description found within the given working
directory.
If no predictedField is provided, it is assumed that the first stream listed
in the streamIds provided to the Menorah constructor is the predicted field.
:param predictedField: (string)
:param swarmParams: (dict) overrides any swarm params
:return:
### Response:
def swarm(self, predictedField=None, swarmParams=None):
"""
Runs a swarm on data and swarm description found within the given working
directory.
If no predictedField is provided, it is assumed that the first stream listed
in the streamIds provided to the Menorah constructor is the predicted field.
:param predictedField: (string)
:param swarmParams: (dict) overrides any swarm params
:return:
"""
self.prepareSwarm(
predictedField=predictedField, swarmParams=swarmParams
)
self.runSwarm(self._workingDir) |
def create_button_label(icon, font_size=constants.FONT_SIZE_NORMAL):
"""Create a button label with a chosen icon.
:param icon: The icon
:param font_size: The size of the icon
:return: The created label
"""
label = Gtk.Label()
set_label_markup(label, '&#x' + icon + ';', constants.ICON_FONT, font_size)
label.show()
return label | Create a button label with a chosen icon.
:param icon: The icon
:param font_size: The size of the icon
:return: The created label | Below is the the instruction that describes the task:
### Input:
Create a button label with a chosen icon.
:param icon: The icon
:param font_size: The size of the icon
:return: The created label
### Response:
def create_button_label(icon, font_size=constants.FONT_SIZE_NORMAL):
"""Create a button label with a chosen icon.
:param icon: The icon
:param font_size: The size of the icon
:return: The created label
"""
label = Gtk.Label()
set_label_markup(label, '&#x' + icon + ';', constants.ICON_FONT, font_size)
label.show()
return label |
def draw(self, label, expire):
"""
Return a Serial number for this resource queue, after bootstrapping.
"""
# get next number
with self.client.pipeline() as pipe:
pipe.msetnx({self.keys.dispenser: 0, self.keys.indicator: 1})
pipe.incr(self.keys.dispenser)
number = pipe.execute()[-1]
# publish for humans
self.message('{} assigned to "{}"'.format(number, label))
# launch keeper
kwargs = {'client': self.client, 'key': self.keys.key(number)}
keeper = Keeper(label=label, expire=expire, **kwargs)
try:
yield number
except:
self.message('{} crashed!'.format(number))
raise
finally:
keeper.close()
self.message('{} completed by "{}"'.format(number, label))
number += 1
self.client.set(self.keys.indicator, number)
self.announce(number) | Return a Serial number for this resource queue, after bootstrapping. | Below is the the instruction that describes the task:
### Input:
Return a Serial number for this resource queue, after bootstrapping.
### Response:
def draw(self, label, expire):
"""
Return a Serial number for this resource queue, after bootstrapping.
"""
# get next number
with self.client.pipeline() as pipe:
pipe.msetnx({self.keys.dispenser: 0, self.keys.indicator: 1})
pipe.incr(self.keys.dispenser)
number = pipe.execute()[-1]
# publish for humans
self.message('{} assigned to "{}"'.format(number, label))
# launch keeper
kwargs = {'client': self.client, 'key': self.keys.key(number)}
keeper = Keeper(label=label, expire=expire, **kwargs)
try:
yield number
except:
self.message('{} crashed!'.format(number))
raise
finally:
keeper.close()
self.message('{} completed by "{}"'.format(number, label))
number += 1
self.client.set(self.keys.indicator, number)
self.announce(number) |
def highlight(self, rect, color="red", seconds=None):
""" Simulates a transparent rectangle over the specified ``rect`` on the screen.
Actually takes a screenshot of the region and displays with a
rectangle border in a borderless window (due to Tkinter limitations)
If a Tkinter root window has already been created somewhere else,
uses that instead of creating a new one.
"""
if tk._default_root is None:
Debug.log(3, "Creating new temporary Tkinter root")
temporary_root = True
root = tk.Tk()
root.withdraw()
else:
Debug.log(3, "Borrowing existing Tkinter root")
temporary_root = False
root = tk._default_root
image_to_show = self.getBitmapFromRect(*rect)
app = highlightWindow(root, rect, color, image_to_show)
if seconds == 0:
t = threading.Thread(target=app.do_until_timeout)
t.start()
return app
app.do_until_timeout(seconds) | Simulates a transparent rectangle over the specified ``rect`` on the screen.
Actually takes a screenshot of the region and displays with a
rectangle border in a borderless window (due to Tkinter limitations)
If a Tkinter root window has already been created somewhere else,
uses that instead of creating a new one. | Below is the the instruction that describes the task:
### Input:
Simulates a transparent rectangle over the specified ``rect`` on the screen.
Actually takes a screenshot of the region and displays with a
rectangle border in a borderless window (due to Tkinter limitations)
If a Tkinter root window has already been created somewhere else,
uses that instead of creating a new one.
### Response:
def highlight(self, rect, color="red", seconds=None):
""" Simulates a transparent rectangle over the specified ``rect`` on the screen.
Actually takes a screenshot of the region and displays with a
rectangle border in a borderless window (due to Tkinter limitations)
If a Tkinter root window has already been created somewhere else,
uses that instead of creating a new one.
"""
if tk._default_root is None:
Debug.log(3, "Creating new temporary Tkinter root")
temporary_root = True
root = tk.Tk()
root.withdraw()
else:
Debug.log(3, "Borrowing existing Tkinter root")
temporary_root = False
root = tk._default_root
image_to_show = self.getBitmapFromRect(*rect)
app = highlightWindow(root, rect, color, image_to_show)
if seconds == 0:
t = threading.Thread(target=app.do_until_timeout)
t.start()
return app
app.do_until_timeout(seconds) |
def img(self):
'''return a cv image for the icon'''
SlipThumbnail.img(self)
if self.rotation:
# rotate the image
mat = cv2.getRotationMatrix2D((self.height//2, self.width//2), -self.rotation, 1.0)
self._rotated = cv2.warpAffine(self._img, mat, (self.height, self.width))
else:
self._rotated = self._img
return self._rotated | return a cv image for the icon | Below is the the instruction that describes the task:
### Input:
return a cv image for the icon
### Response:
def img(self):
'''return a cv image for the icon'''
SlipThumbnail.img(self)
if self.rotation:
# rotate the image
mat = cv2.getRotationMatrix2D((self.height//2, self.width//2), -self.rotation, 1.0)
self._rotated = cv2.warpAffine(self._img, mat, (self.height, self.width))
else:
self._rotated = self._img
return self._rotated |
def _proxy(self):
"""
Generate an instance context for the instance, the context is capable of
performing various actions. All instance actions are proxied to the context
:returns: TerminatingSipDomainContext for this TerminatingSipDomainInstance
:rtype: twilio.rest.trunking.v1.trunk.terminating_sip_domain.TerminatingSipDomainContext
"""
if self._context is None:
self._context = TerminatingSipDomainContext(
self._version,
trunk_sid=self._solution['trunk_sid'],
sid=self._solution['sid'],
)
return self._context | Generate an instance context for the instance, the context is capable of
performing various actions. All instance actions are proxied to the context
:returns: TerminatingSipDomainContext for this TerminatingSipDomainInstance
:rtype: twilio.rest.trunking.v1.trunk.terminating_sip_domain.TerminatingSipDomainContext | Below is the the instruction that describes the task:
### Input:
Generate an instance context for the instance, the context is capable of
performing various actions. All instance actions are proxied to the context
:returns: TerminatingSipDomainContext for this TerminatingSipDomainInstance
:rtype: twilio.rest.trunking.v1.trunk.terminating_sip_domain.TerminatingSipDomainContext
### Response:
def _proxy(self):
"""
Generate an instance context for the instance, the context is capable of
performing various actions. All instance actions are proxied to the context
:returns: TerminatingSipDomainContext for this TerminatingSipDomainInstance
:rtype: twilio.rest.trunking.v1.trunk.terminating_sip_domain.TerminatingSipDomainContext
"""
if self._context is None:
self._context = TerminatingSipDomainContext(
self._version,
trunk_sid=self._solution['trunk_sid'],
sid=self._solution['sid'],
)
return self._context |
def fft(a, n=None, axis=-1, norm=None):
"""
Compute the one-dimensional discrete Fourier Transform.
This function computes the one-dimensional *n*-point discrete Fourier
Transform (DFT) with the efficient Fast Fourier Transform (FFT)
algorithm [CT].
Parameters
----------
a : array_like
Input array, can be complex.
n : int, optional
Length of the transformed axis of the output.
If `n` is smaller than the length of the input, the input is cropped.
If it is larger, the input is padded with zeros. If `n` is not given,
the length of the input along the axis specified by `axis` is used.
axis : int, optional
Axis over which to compute the FFT. If not given, the last axis is
used.
norm : {None, "ortho"}, optional
.. versionadded:: 1.10.0
Normalization mode (see `numpy.fft`). Default is None.
Returns
-------
out : complex ndarray
The truncated or zero-padded input, transformed along the axis
indicated by `axis`, or the last one if `axis` is not specified.
Raises
------
IndexError
if `axes` is larger than the last axis of `a`.
See Also
--------
numpy.fft : for definition of the DFT and conventions used.
ifft : The inverse of `fft`.
fft2 : The two-dimensional FFT.
fftn : The *n*-dimensional FFT.
rfftn : The *n*-dimensional FFT of real input.
fftfreq : Frequency bins for given FFT parameters.
Notes
-----
FFT (Fast Fourier Transform) refers to a way the discrete Fourier
Transform (DFT) can be calculated efficiently, by using symmetries in the
calculated terms. The symmetry is highest when `n` is a power of 2, and
the transform is therefore most efficient for these sizes.
The DFT is defined, with the conventions used in this implementation, in
the documentation for the `numpy.fft` module.
References
----------
.. [CT] Cooley, James W., and John W. Tukey, 1965, "An algorithm for the
machine calculation of complex Fourier series," *Math. Comput.*
19: 297-301.
Examples
--------
>>> np.fft.fft(np.exp(2j * np.pi * np.arange(8) / 8))
array([ -3.44505240e-16 +1.14383329e-17j,
8.00000000e+00 -5.71092652e-15j,
2.33482938e-16 +1.22460635e-16j,
1.64863782e-15 +1.77635684e-15j,
9.95839695e-17 +2.33482938e-16j,
0.00000000e+00 +1.66837030e-15j,
1.14383329e-17 +1.22460635e-16j,
-1.64863782e-15 +1.77635684e-15j])
>>> import matplotlib.pyplot as plt
>>> t = np.arange(256)
>>> sp = np.fft.fft(np.sin(t))
>>> freq = np.fft.fftfreq(t.shape[-1])
>>> plt.plot(freq, sp.real, freq, sp.imag)
[<matplotlib.lines.Line2D object at 0x...>, <matplotlib.lines.Line2D object at 0x...>]
>>> plt.show()
In this example, real input has an FFT which is Hermitian, i.e., symmetric
in the real part and anti-symmetric in the imaginary part, as described in
the `numpy.fft` documentation.
"""
output = mkl_fft.fft(a, n, axis)
if _unitary(norm):
output *= 1 / sqrt(output.shape[axis])
return output | Compute the one-dimensional discrete Fourier Transform.
This function computes the one-dimensional *n*-point discrete Fourier
Transform (DFT) with the efficient Fast Fourier Transform (FFT)
algorithm [CT].
Parameters
----------
a : array_like
Input array, can be complex.
n : int, optional
Length of the transformed axis of the output.
If `n` is smaller than the length of the input, the input is cropped.
If it is larger, the input is padded with zeros. If `n` is not given,
the length of the input along the axis specified by `axis` is used.
axis : int, optional
Axis over which to compute the FFT. If not given, the last axis is
used.
norm : {None, "ortho"}, optional
.. versionadded:: 1.10.0
Normalization mode (see `numpy.fft`). Default is None.
Returns
-------
out : complex ndarray
The truncated or zero-padded input, transformed along the axis
indicated by `axis`, or the last one if `axis` is not specified.
Raises
------
IndexError
if `axes` is larger than the last axis of `a`.
See Also
--------
numpy.fft : for definition of the DFT and conventions used.
ifft : The inverse of `fft`.
fft2 : The two-dimensional FFT.
fftn : The *n*-dimensional FFT.
rfftn : The *n*-dimensional FFT of real input.
fftfreq : Frequency bins for given FFT parameters.
Notes
-----
FFT (Fast Fourier Transform) refers to a way the discrete Fourier
Transform (DFT) can be calculated efficiently, by using symmetries in the
calculated terms. The symmetry is highest when `n` is a power of 2, and
the transform is therefore most efficient for these sizes.
The DFT is defined, with the conventions used in this implementation, in
the documentation for the `numpy.fft` module.
References
----------
.. [CT] Cooley, James W., and John W. Tukey, 1965, "An algorithm for the
machine calculation of complex Fourier series," *Math. Comput.*
19: 297-301.
Examples
--------
>>> np.fft.fft(np.exp(2j * np.pi * np.arange(8) / 8))
array([ -3.44505240e-16 +1.14383329e-17j,
8.00000000e+00 -5.71092652e-15j,
2.33482938e-16 +1.22460635e-16j,
1.64863782e-15 +1.77635684e-15j,
9.95839695e-17 +2.33482938e-16j,
0.00000000e+00 +1.66837030e-15j,
1.14383329e-17 +1.22460635e-16j,
-1.64863782e-15 +1.77635684e-15j])
>>> import matplotlib.pyplot as plt
>>> t = np.arange(256)
>>> sp = np.fft.fft(np.sin(t))
>>> freq = np.fft.fftfreq(t.shape[-1])
>>> plt.plot(freq, sp.real, freq, sp.imag)
[<matplotlib.lines.Line2D object at 0x...>, <matplotlib.lines.Line2D object at 0x...>]
>>> plt.show()
In this example, real input has an FFT which is Hermitian, i.e., symmetric
in the real part and anti-symmetric in the imaginary part, as described in
the `numpy.fft` documentation. | Below is the the instruction that describes the task:
### Input:
Compute the one-dimensional discrete Fourier Transform.
This function computes the one-dimensional *n*-point discrete Fourier
Transform (DFT) with the efficient Fast Fourier Transform (FFT)
algorithm [CT].
Parameters
----------
a : array_like
Input array, can be complex.
n : int, optional
Length of the transformed axis of the output.
If `n` is smaller than the length of the input, the input is cropped.
If it is larger, the input is padded with zeros. If `n` is not given,
the length of the input along the axis specified by `axis` is used.
axis : int, optional
Axis over which to compute the FFT. If not given, the last axis is
used.
norm : {None, "ortho"}, optional
.. versionadded:: 1.10.0
Normalization mode (see `numpy.fft`). Default is None.
Returns
-------
out : complex ndarray
The truncated or zero-padded input, transformed along the axis
indicated by `axis`, or the last one if `axis` is not specified.
Raises
------
IndexError
if `axes` is larger than the last axis of `a`.
See Also
--------
numpy.fft : for definition of the DFT and conventions used.
ifft : The inverse of `fft`.
fft2 : The two-dimensional FFT.
fftn : The *n*-dimensional FFT.
rfftn : The *n*-dimensional FFT of real input.
fftfreq : Frequency bins for given FFT parameters.
Notes
-----
FFT (Fast Fourier Transform) refers to a way the discrete Fourier
Transform (DFT) can be calculated efficiently, by using symmetries in the
calculated terms. The symmetry is highest when `n` is a power of 2, and
the transform is therefore most efficient for these sizes.
The DFT is defined, with the conventions used in this implementation, in
the documentation for the `numpy.fft` module.
References
----------
.. [CT] Cooley, James W., and John W. Tukey, 1965, "An algorithm for the
machine calculation of complex Fourier series," *Math. Comput.*
19: 297-301.
Examples
--------
>>> np.fft.fft(np.exp(2j * np.pi * np.arange(8) / 8))
array([ -3.44505240e-16 +1.14383329e-17j,
8.00000000e+00 -5.71092652e-15j,
2.33482938e-16 +1.22460635e-16j,
1.64863782e-15 +1.77635684e-15j,
9.95839695e-17 +2.33482938e-16j,
0.00000000e+00 +1.66837030e-15j,
1.14383329e-17 +1.22460635e-16j,
-1.64863782e-15 +1.77635684e-15j])
>>> import matplotlib.pyplot as plt
>>> t = np.arange(256)
>>> sp = np.fft.fft(np.sin(t))
>>> freq = np.fft.fftfreq(t.shape[-1])
>>> plt.plot(freq, sp.real, freq, sp.imag)
[<matplotlib.lines.Line2D object at 0x...>, <matplotlib.lines.Line2D object at 0x...>]
>>> plt.show()
In this example, real input has an FFT which is Hermitian, i.e., symmetric
in the real part and anti-symmetric in the imaginary part, as described in
the `numpy.fft` documentation.
### Response:
def fft(a, n=None, axis=-1, norm=None):
"""
Compute the one-dimensional discrete Fourier Transform.
This function computes the one-dimensional *n*-point discrete Fourier
Transform (DFT) with the efficient Fast Fourier Transform (FFT)
algorithm [CT].
Parameters
----------
a : array_like
Input array, can be complex.
n : int, optional
Length of the transformed axis of the output.
If `n` is smaller than the length of the input, the input is cropped.
If it is larger, the input is padded with zeros. If `n` is not given,
the length of the input along the axis specified by `axis` is used.
axis : int, optional
Axis over which to compute the FFT. If not given, the last axis is
used.
norm : {None, "ortho"}, optional
.. versionadded:: 1.10.0
Normalization mode (see `numpy.fft`). Default is None.
Returns
-------
out : complex ndarray
The truncated or zero-padded input, transformed along the axis
indicated by `axis`, or the last one if `axis` is not specified.
Raises
------
IndexError
if `axes` is larger than the last axis of `a`.
See Also
--------
numpy.fft : for definition of the DFT and conventions used.
ifft : The inverse of `fft`.
fft2 : The two-dimensional FFT.
fftn : The *n*-dimensional FFT.
rfftn : The *n*-dimensional FFT of real input.
fftfreq : Frequency bins for given FFT parameters.
Notes
-----
FFT (Fast Fourier Transform) refers to a way the discrete Fourier
Transform (DFT) can be calculated efficiently, by using symmetries in the
calculated terms. The symmetry is highest when `n` is a power of 2, and
the transform is therefore most efficient for these sizes.
The DFT is defined, with the conventions used in this implementation, in
the documentation for the `numpy.fft` module.
References
----------
.. [CT] Cooley, James W., and John W. Tukey, 1965, "An algorithm for the
machine calculation of complex Fourier series," *Math. Comput.*
19: 297-301.
Examples
--------
>>> np.fft.fft(np.exp(2j * np.pi * np.arange(8) / 8))
array([ -3.44505240e-16 +1.14383329e-17j,
8.00000000e+00 -5.71092652e-15j,
2.33482938e-16 +1.22460635e-16j,
1.64863782e-15 +1.77635684e-15j,
9.95839695e-17 +2.33482938e-16j,
0.00000000e+00 +1.66837030e-15j,
1.14383329e-17 +1.22460635e-16j,
-1.64863782e-15 +1.77635684e-15j])
>>> import matplotlib.pyplot as plt
>>> t = np.arange(256)
>>> sp = np.fft.fft(np.sin(t))
>>> freq = np.fft.fftfreq(t.shape[-1])
>>> plt.plot(freq, sp.real, freq, sp.imag)
[<matplotlib.lines.Line2D object at 0x...>, <matplotlib.lines.Line2D object at 0x...>]
>>> plt.show()
In this example, real input has an FFT which is Hermitian, i.e., symmetric
in the real part and anti-symmetric in the imaginary part, as described in
the `numpy.fft` documentation.
"""
output = mkl_fft.fft(a, n, axis)
if _unitary(norm):
output *= 1 / sqrt(output.shape[axis])
return output |
def render_cheetah_tmpl(tmplstr, context, tmplpath=None):
'''
Render a Cheetah template.
'''
from Cheetah.Template import Template
return salt.utils.data.decode(Template(tmplstr, searchList=[context])) | Render a Cheetah template. | Below is the the instruction that describes the task:
### Input:
Render a Cheetah template.
### Response:
def render_cheetah_tmpl(tmplstr, context, tmplpath=None):
'''
Render a Cheetah template.
'''
from Cheetah.Template import Template
return salt.utils.data.decode(Template(tmplstr, searchList=[context])) |
def appendData(self, content):
"""
Add characters to the element's pcdata.
"""
if self.pcdata is not None:
self.pcdata += content
else:
self.pcdata = content | Add characters to the element's pcdata. | Below is the the instruction that describes the task:
### Input:
Add characters to the element's pcdata.
### Response:
def appendData(self, content):
"""
Add characters to the element's pcdata.
"""
if self.pcdata is not None:
self.pcdata += content
else:
self.pcdata = content |
def _zforce(self,R,z,phi=0.,t=0.):
"""
NAME:
_zforce
PURPOSE:
evaluate the vertical force for this potential
INPUT:
R - Galactocentric cylindrical radius
z - vertical height
phi - azimuth
t - time
OUTPUT:
the vertical force
HISTORY:
2011-04-10 - Written - Bovy (NYU)
2018-10-18 - Updated for general object potential - James Lane (UofT)
"""
#Cylindrical distance
Rdist = _cylR(R,phi,self._orb.R(t),self._orb.phi(t))
# Difference vector
(xd,yd,zd) = _cyldiff(self._orb.R(t), self._orb.phi(t), self._orb.z(t),
R, phi, z)
#Evaluate and return z force
return -evaluatezforces(self._pot,Rdist,zd, use_physical=False) | NAME:
_zforce
PURPOSE:
evaluate the vertical force for this potential
INPUT:
R - Galactocentric cylindrical radius
z - vertical height
phi - azimuth
t - time
OUTPUT:
the vertical force
HISTORY:
2011-04-10 - Written - Bovy (NYU)
2018-10-18 - Updated for general object potential - James Lane (UofT) | Below is the the instruction that describes the task:
### Input:
NAME:
_zforce
PURPOSE:
evaluate the vertical force for this potential
INPUT:
R - Galactocentric cylindrical radius
z - vertical height
phi - azimuth
t - time
OUTPUT:
the vertical force
HISTORY:
2011-04-10 - Written - Bovy (NYU)
2018-10-18 - Updated for general object potential - James Lane (UofT)
### Response:
def _zforce(self,R,z,phi=0.,t=0.):
"""
NAME:
_zforce
PURPOSE:
evaluate the vertical force for this potential
INPUT:
R - Galactocentric cylindrical radius
z - vertical height
phi - azimuth
t - time
OUTPUT:
the vertical force
HISTORY:
2011-04-10 - Written - Bovy (NYU)
2018-10-18 - Updated for general object potential - James Lane (UofT)
"""
#Cylindrical distance
Rdist = _cylR(R,phi,self._orb.R(t),self._orb.phi(t))
# Difference vector
(xd,yd,zd) = _cyldiff(self._orb.R(t), self._orb.phi(t), self._orb.z(t),
R, phi, z)
#Evaluate and return z force
return -evaluatezforces(self._pot,Rdist,zd, use_physical=False) |
def header_body_from_content(content):
"""\
Tries to extract the header and the message from the cable content.
The header is something like
UNCLASSIFIED ...
SUBJECT ...
REF ...
while the message begins usually with a summary
1. SUMMARY ...
...
10. ...
Returns (header, msg) or (None, None) if the header/message cannot be
detected.
`content`
The "content" part of a cable.
"""
m = _CLASSIFIED_BY_PATTERN.search(content)
idx = m and m.end() or 0
m = _SUMMARY_PATTERN.search(content)
summary_idx = m and m.start() or None
m = _FIRST_PARAGRAPH_PATTERN.search(content)
para_idx = m and m.start() or None
if summary_idx and para_idx:
idx = max(idx, min(summary_idx, para_idx))
elif summary_idx:
idx = max(summary_idx, idx)
elif para_idx:
idx = max(para_idx, idx)
if idx > 0:
return content[:idx], content[idx:]
return None, None | \
Tries to extract the header and the message from the cable content.
The header is something like
UNCLASSIFIED ...
SUBJECT ...
REF ...
while the message begins usually with a summary
1. SUMMARY ...
...
10. ...
Returns (header, msg) or (None, None) if the header/message cannot be
detected.
`content`
The "content" part of a cable. | Below is the the instruction that describes the task:
### Input:
\
Tries to extract the header and the message from the cable content.
The header is something like
UNCLASSIFIED ...
SUBJECT ...
REF ...
while the message begins usually with a summary
1. SUMMARY ...
...
10. ...
Returns (header, msg) or (None, None) if the header/message cannot be
detected.
`content`
The "content" part of a cable.
### Response:
def header_body_from_content(content):
"""\
Tries to extract the header and the message from the cable content.
The header is something like
UNCLASSIFIED ...
SUBJECT ...
REF ...
while the message begins usually with a summary
1. SUMMARY ...
...
10. ...
Returns (header, msg) or (None, None) if the header/message cannot be
detected.
`content`
The "content" part of a cable.
"""
m = _CLASSIFIED_BY_PATTERN.search(content)
idx = m and m.end() or 0
m = _SUMMARY_PATTERN.search(content)
summary_idx = m and m.start() or None
m = _FIRST_PARAGRAPH_PATTERN.search(content)
para_idx = m and m.start() or None
if summary_idx and para_idx:
idx = max(idx, min(summary_idx, para_idx))
elif summary_idx:
idx = max(summary_idx, idx)
elif para_idx:
idx = max(para_idx, idx)
if idx > 0:
return content[:idx], content[idx:]
return None, None |
def parallel_apply(func, arg_iterable, **kwargs):
"""Apply function to iterable with parallelisation and a tqdm progress bar.
Roughly equivalent to
>>> [func(*func_pre_args, x, *func_args, **func_kwargs) for x in
arg_iterable]
but will **not** necessarily return results in input order.
Parameters
----------
func: function
Function to apply to list of args.
arg_iterable: iterable
argument to iterate over.
func_args: tuple, optional
Additional positional arguments for func.
func_pre_args: tuple, optional
Positional arguments to place before the iterable argument in func.
func_kwargs: dict, optional
Additional keyword arguments for func.
parallel: bool, optional
To turn off parallelisation if needed.
parallel_warning: bool, optional
To turn off warning for no parallelisation if needed.
max_workers: int or None, optional
Number of processes.
If max_workers is None then concurrent.futures.ProcessPoolExecutor
defaults to using the number of processors of the machine.
N.B. If max_workers=None and running on supercomputer clusters with
multiple nodes, this may default to the number of processors on a
single node.
Returns
-------
results_list: list of function outputs
"""
max_workers = kwargs.pop('max_workers', None)
parallel = kwargs.pop('parallel', True)
parallel_warning = kwargs.pop('parallel_warning', True)
func_args = kwargs.pop('func_args', ())
func_pre_args = kwargs.pop('func_pre_args', ())
func_kwargs = kwargs.pop('func_kwargs', {})
tqdm_kwargs = kwargs.pop('tqdm_kwargs', {})
if kwargs:
raise TypeError('Unexpected **kwargs: {0}'.format(kwargs))
if 'leave' not in tqdm_kwargs: # default to leave=False
tqdm_kwargs['leave'] = False
assert isinstance(func_args, tuple), (
str(func_args) + ' is type ' + str(type(func_args)))
assert isinstance(func_pre_args, tuple), (
str(func_pre_args) + ' is type ' + str(type(func_pre_args)))
progress = select_tqdm()
if not parallel:
if parallel_warning:
warnings.warn(('parallel_map has parallel=False - turn on '
'parallelisation for faster processing'),
UserWarning)
return [func(*(func_pre_args + (x,) + func_args), **func_kwargs) for
x in progress(arg_iterable, **tqdm_kwargs)]
else:
pool = concurrent.futures.ProcessPoolExecutor(max_workers=max_workers)
futures = []
for element in arg_iterable:
futures.append(pool.submit(
func, *(func_pre_args + (element,) + func_args),
**func_kwargs))
results = []
for fut in progress(concurrent.futures.as_completed(futures),
total=len(arg_iterable), **tqdm_kwargs):
results.append(fut.result())
return results | Apply function to iterable with parallelisation and a tqdm progress bar.
Roughly equivalent to
>>> [func(*func_pre_args, x, *func_args, **func_kwargs) for x in
arg_iterable]
but will **not** necessarily return results in input order.
Parameters
----------
func: function
Function to apply to list of args.
arg_iterable: iterable
argument to iterate over.
func_args: tuple, optional
Additional positional arguments for func.
func_pre_args: tuple, optional
Positional arguments to place before the iterable argument in func.
func_kwargs: dict, optional
Additional keyword arguments for func.
parallel: bool, optional
To turn off parallelisation if needed.
parallel_warning: bool, optional
To turn off warning for no parallelisation if needed.
max_workers: int or None, optional
Number of processes.
If max_workers is None then concurrent.futures.ProcessPoolExecutor
defaults to using the number of processors of the machine.
N.B. If max_workers=None and running on supercomputer clusters with
multiple nodes, this may default to the number of processors on a
single node.
Returns
-------
results_list: list of function outputs | Below is the the instruction that describes the task:
### Input:
Apply function to iterable with parallelisation and a tqdm progress bar.
Roughly equivalent to
>>> [func(*func_pre_args, x, *func_args, **func_kwargs) for x in
arg_iterable]
but will **not** necessarily return results in input order.
Parameters
----------
func: function
Function to apply to list of args.
arg_iterable: iterable
argument to iterate over.
func_args: tuple, optional
Additional positional arguments for func.
func_pre_args: tuple, optional
Positional arguments to place before the iterable argument in func.
func_kwargs: dict, optional
Additional keyword arguments for func.
parallel: bool, optional
To turn off parallelisation if needed.
parallel_warning: bool, optional
To turn off warning for no parallelisation if needed.
max_workers: int or None, optional
Number of processes.
If max_workers is None then concurrent.futures.ProcessPoolExecutor
defaults to using the number of processors of the machine.
N.B. If max_workers=None and running on supercomputer clusters with
multiple nodes, this may default to the number of processors on a
single node.
Returns
-------
results_list: list of function outputs
### Response:
def parallel_apply(func, arg_iterable, **kwargs):
"""Apply function to iterable with parallelisation and a tqdm progress bar.
Roughly equivalent to
>>> [func(*func_pre_args, x, *func_args, **func_kwargs) for x in
arg_iterable]
but will **not** necessarily return results in input order.
Parameters
----------
func: function
Function to apply to list of args.
arg_iterable: iterable
argument to iterate over.
func_args: tuple, optional
Additional positional arguments for func.
func_pre_args: tuple, optional
Positional arguments to place before the iterable argument in func.
func_kwargs: dict, optional
Additional keyword arguments for func.
parallel: bool, optional
To turn off parallelisation if needed.
parallel_warning: bool, optional
To turn off warning for no parallelisation if needed.
max_workers: int or None, optional
Number of processes.
If max_workers is None then concurrent.futures.ProcessPoolExecutor
defaults to using the number of processors of the machine.
N.B. If max_workers=None and running on supercomputer clusters with
multiple nodes, this may default to the number of processors on a
single node.
Returns
-------
results_list: list of function outputs
"""
max_workers = kwargs.pop('max_workers', None)
parallel = kwargs.pop('parallel', True)
parallel_warning = kwargs.pop('parallel_warning', True)
func_args = kwargs.pop('func_args', ())
func_pre_args = kwargs.pop('func_pre_args', ())
func_kwargs = kwargs.pop('func_kwargs', {})
tqdm_kwargs = kwargs.pop('tqdm_kwargs', {})
if kwargs:
raise TypeError('Unexpected **kwargs: {0}'.format(kwargs))
if 'leave' not in tqdm_kwargs: # default to leave=False
tqdm_kwargs['leave'] = False
assert isinstance(func_args, tuple), (
str(func_args) + ' is type ' + str(type(func_args)))
assert isinstance(func_pre_args, tuple), (
str(func_pre_args) + ' is type ' + str(type(func_pre_args)))
progress = select_tqdm()
if not parallel:
if parallel_warning:
warnings.warn(('parallel_map has parallel=False - turn on '
'parallelisation for faster processing'),
UserWarning)
return [func(*(func_pre_args + (x,) + func_args), **func_kwargs) for
x in progress(arg_iterable, **tqdm_kwargs)]
else:
pool = concurrent.futures.ProcessPoolExecutor(max_workers=max_workers)
futures = []
for element in arg_iterable:
futures.append(pool.submit(
func, *(func_pre_args + (element,) + func_args),
**func_kwargs))
results = []
for fut in progress(concurrent.futures.as_completed(futures),
total=len(arg_iterable), **tqdm_kwargs):
results.append(fut.result())
return results |
def remove_masquerade(zone=None, permanent=True):
'''
Remove masquerade on a zone.
If zone is omitted, default zone will be used.
.. versionadded:: 2015.8.0
CLI Example:
.. code-block:: bash
salt '*' firewalld.remove_masquerade
To remove masquerade on a specific zone
.. code-block:: bash
salt '*' firewalld.remove_masquerade dmz
'''
if zone:
cmd = '--zone={0} --remove-masquerade'.format(zone)
else:
cmd = '--remove-masquerade'
if permanent:
cmd += ' --permanent'
return __firewall_cmd(cmd) | Remove masquerade on a zone.
If zone is omitted, default zone will be used.
.. versionadded:: 2015.8.0
CLI Example:
.. code-block:: bash
salt '*' firewalld.remove_masquerade
To remove masquerade on a specific zone
.. code-block:: bash
salt '*' firewalld.remove_masquerade dmz | Below is the the instruction that describes the task:
### Input:
Remove masquerade on a zone.
If zone is omitted, default zone will be used.
.. versionadded:: 2015.8.0
CLI Example:
.. code-block:: bash
salt '*' firewalld.remove_masquerade
To remove masquerade on a specific zone
.. code-block:: bash
salt '*' firewalld.remove_masquerade dmz
### Response:
def remove_masquerade(zone=None, permanent=True):
'''
Remove masquerade on a zone.
If zone is omitted, default zone will be used.
.. versionadded:: 2015.8.0
CLI Example:
.. code-block:: bash
salt '*' firewalld.remove_masquerade
To remove masquerade on a specific zone
.. code-block:: bash
salt '*' firewalld.remove_masquerade dmz
'''
if zone:
cmd = '--zone={0} --remove-masquerade'.format(zone)
else:
cmd = '--remove-masquerade'
if permanent:
cmd += ' --permanent'
return __firewall_cmd(cmd) |
def get_page_full_export(self, page_id):
""" Get full page info for export and body html code """
try:
result = self._request('/getpagefullexport/',
{'pageid': page_id})
return TildaPage(**result)
except NetworkError:
return [] | Get full page info for export and body html code | Below is the the instruction that describes the task:
### Input:
Get full page info for export and body html code
### Response:
def get_page_full_export(self, page_id):
""" Get full page info for export and body html code """
try:
result = self._request('/getpagefullexport/',
{'pageid': page_id})
return TildaPage(**result)
except NetworkError:
return [] |
def elemc(item, inset):
"""
Determine whether an item is an element of a character set.
http://naif.jpl.nasa.gov/pub/naif/toolkit_docs/C/cspice/elemc_c.html
:param item: Item to be tested.
:type item: str
:param inset: Set to be tested.
:type inset: spiceypy.utils.support_types.SpiceCell
:return: True if item is an element of set.
:rtype: bool
"""
assert isinstance(inset, stypes.SpiceCell)
item = stypes.stringToCharP(item)
return bool(libspice.elemc_c(item, ctypes.byref(inset))) | Determine whether an item is an element of a character set.
http://naif.jpl.nasa.gov/pub/naif/toolkit_docs/C/cspice/elemc_c.html
:param item: Item to be tested.
:type item: str
:param inset: Set to be tested.
:type inset: spiceypy.utils.support_types.SpiceCell
:return: True if item is an element of set.
:rtype: bool | Below is the the instruction that describes the task:
### Input:
Determine whether an item is an element of a character set.
http://naif.jpl.nasa.gov/pub/naif/toolkit_docs/C/cspice/elemc_c.html
:param item: Item to be tested.
:type item: str
:param inset: Set to be tested.
:type inset: spiceypy.utils.support_types.SpiceCell
:return: True if item is an element of set.
:rtype: bool
### Response:
def elemc(item, inset):
"""
Determine whether an item is an element of a character set.
http://naif.jpl.nasa.gov/pub/naif/toolkit_docs/C/cspice/elemc_c.html
:param item: Item to be tested.
:type item: str
:param inset: Set to be tested.
:type inset: spiceypy.utils.support_types.SpiceCell
:return: True if item is an element of set.
:rtype: bool
"""
assert isinstance(inset, stypes.SpiceCell)
item = stypes.stringToCharP(item)
return bool(libspice.elemc_c(item, ctypes.byref(inset))) |
def override_root_main_ref(config, remotes, banner):
"""Override root_ref or banner_main_ref with tags in config if user requested.
:param sphinxcontrib.versioning.lib.Config config: Runtime configuration.
:param iter remotes: List of dicts from Versions.remotes.
:param bool banner: Evaluate banner main ref instead of root ref.
:return: If root/main ref exists.
:rtype: bool
"""
log = logging.getLogger(__name__)
greatest_tag = config.banner_greatest_tag if banner else config.greatest_tag
recent_tag = config.banner_recent_tag if banner else config.recent_tag
if greatest_tag or recent_tag:
candidates = [r for r in remotes if r['kind'] == 'tags']
if candidates:
multi_sort(candidates, ['semver' if greatest_tag else 'time'])
config.update({'banner_main_ref' if banner else 'root_ref': candidates[0]['name']}, overwrite=True)
else:
flag = '--banner-main-ref' if banner else '--root-ref'
log.warning('No git tags with docs found in remote. Falling back to %s value.', flag)
ref = config.banner_main_ref if banner else config.root_ref
return ref in [r['name'] for r in remotes] | Override root_ref or banner_main_ref with tags in config if user requested.
:param sphinxcontrib.versioning.lib.Config config: Runtime configuration.
:param iter remotes: List of dicts from Versions.remotes.
:param bool banner: Evaluate banner main ref instead of root ref.
:return: If root/main ref exists.
:rtype: bool | Below is the the instruction that describes the task:
### Input:
Override root_ref or banner_main_ref with tags in config if user requested.
:param sphinxcontrib.versioning.lib.Config config: Runtime configuration.
:param iter remotes: List of dicts from Versions.remotes.
:param bool banner: Evaluate banner main ref instead of root ref.
:return: If root/main ref exists.
:rtype: bool
### Response:
def override_root_main_ref(config, remotes, banner):
"""Override root_ref or banner_main_ref with tags in config if user requested.
:param sphinxcontrib.versioning.lib.Config config: Runtime configuration.
:param iter remotes: List of dicts from Versions.remotes.
:param bool banner: Evaluate banner main ref instead of root ref.
:return: If root/main ref exists.
:rtype: bool
"""
log = logging.getLogger(__name__)
greatest_tag = config.banner_greatest_tag if banner else config.greatest_tag
recent_tag = config.banner_recent_tag if banner else config.recent_tag
if greatest_tag or recent_tag:
candidates = [r for r in remotes if r['kind'] == 'tags']
if candidates:
multi_sort(candidates, ['semver' if greatest_tag else 'time'])
config.update({'banner_main_ref' if banner else 'root_ref': candidates[0]['name']}, overwrite=True)
else:
flag = '--banner-main-ref' if banner else '--root-ref'
log.warning('No git tags with docs found in remote. Falling back to %s value.', flag)
ref = config.banner_main_ref if banner else config.root_ref
return ref in [r['name'] for r in remotes] |
def get_object(model, meteor_id, *args, **kwargs):
"""Return an object for the given meteor_id."""
# Django model._meta is now public API -> pylint: disable=W0212
meta = model._meta
if isinstance(meta.pk, AleaIdField):
# meteor_id is the primary key
return model.objects.filter(*args, **kwargs).get(pk=meteor_id)
alea_unique_fields = [
field
for field in meta.local_fields
if isinstance(field, AleaIdField) and field.unique and not field.null
]
if len(alea_unique_fields) == 1:
return model.objects.filter(*args, **kwargs).get(**{
alea_unique_fields[0].name: meteor_id,
})
return model.objects.filter(*args, **kwargs).get(
pk=get_object_id(model, meteor_id),
) | Return an object for the given meteor_id. | Below is the the instruction that describes the task:
### Input:
Return an object for the given meteor_id.
### Response:
def get_object(model, meteor_id, *args, **kwargs):
"""Return an object for the given meteor_id."""
# Django model._meta is now public API -> pylint: disable=W0212
meta = model._meta
if isinstance(meta.pk, AleaIdField):
# meteor_id is the primary key
return model.objects.filter(*args, **kwargs).get(pk=meteor_id)
alea_unique_fields = [
field
for field in meta.local_fields
if isinstance(field, AleaIdField) and field.unique and not field.null
]
if len(alea_unique_fields) == 1:
return model.objects.filter(*args, **kwargs).get(**{
alea_unique_fields[0].name: meteor_id,
})
return model.objects.filter(*args, **kwargs).get(
pk=get_object_id(model, meteor_id),
) |
def GetTransactionResults(self):
"""
Get the execution results of the transaction.
Returns:
None: if the transaction has no references.
list: of TransactionResult objects.
"""
if self.References is None:
return None
results = []
realresults = []
for ref_output in self.References.values():
results.append(TransactionResult(ref_output.AssetId, ref_output.Value))
for output in self.outputs:
results.append(TransactionResult(output.AssetId, output.Value * Fixed8(-1)))
for key, group in groupby(results, lambda x: x.AssetId):
sum = Fixed8(0)
for item in group:
sum = sum + item.Amount
if sum != Fixed8.Zero():
realresults.append(TransactionResult(key, sum))
return realresults | Get the execution results of the transaction.
Returns:
None: if the transaction has no references.
list: of TransactionResult objects. | Below is the the instruction that describes the task:
### Input:
Get the execution results of the transaction.
Returns:
None: if the transaction has no references.
list: of TransactionResult objects.
### Response:
def GetTransactionResults(self):
"""
Get the execution results of the transaction.
Returns:
None: if the transaction has no references.
list: of TransactionResult objects.
"""
if self.References is None:
return None
results = []
realresults = []
for ref_output in self.References.values():
results.append(TransactionResult(ref_output.AssetId, ref_output.Value))
for output in self.outputs:
results.append(TransactionResult(output.AssetId, output.Value * Fixed8(-1)))
for key, group in groupby(results, lambda x: x.AssetId):
sum = Fixed8(0)
for item in group:
sum = sum + item.Amount
if sum != Fixed8.Zero():
realresults.append(TransactionResult(key, sum))
return realresults |
def to_pydatetime(self):
"""
Converts datetime2 object into Python's datetime.datetime object
@return: naive datetime.datetime
"""
return datetime.datetime.combine(self._date.to_pydate(), self._time.to_pytime()) | Converts datetime2 object into Python's datetime.datetime object
@return: naive datetime.datetime | Below is the the instruction that describes the task:
### Input:
Converts datetime2 object into Python's datetime.datetime object
@return: naive datetime.datetime
### Response:
def to_pydatetime(self):
"""
Converts datetime2 object into Python's datetime.datetime object
@return: naive datetime.datetime
"""
return datetime.datetime.combine(self._date.to_pydate(), self._time.to_pytime()) |
def schemaValidateDoc(self, ctxt):
"""Validate a document tree in memory. """
if ctxt is None: ctxt__o = None
else: ctxt__o = ctxt._o
ret = libxml2mod.xmlSchemaValidateDoc(ctxt__o, self._o)
return ret | Validate a document tree in memory. | Below is the the instruction that describes the task:
### Input:
Validate a document tree in memory.
### Response:
def schemaValidateDoc(self, ctxt):
"""Validate a document tree in memory. """
if ctxt is None: ctxt__o = None
else: ctxt__o = ctxt._o
ret = libxml2mod.xmlSchemaValidateDoc(ctxt__o, self._o)
return ret |
def _apply_axis_properties(self, axis, rot=None, fontsize=None):
""" Tick creation within matplotlib is reasonably expensive and is
internally deferred until accessed as Ticks are created/destroyed
multiple times per draw. It's therefore beneficial for us to avoid
accessing unless we will act on the Tick.
"""
if rot is not None or fontsize is not None:
# rot=0 is a valid setting, hence the explicit None check
labels = axis.get_majorticklabels() + axis.get_minorticklabels()
for label in labels:
if rot is not None:
label.set_rotation(rot)
if fontsize is not None:
label.set_fontsize(fontsize) | Tick creation within matplotlib is reasonably expensive and is
internally deferred until accessed as Ticks are created/destroyed
multiple times per draw. It's therefore beneficial for us to avoid
accessing unless we will act on the Tick. | Below is the the instruction that describes the task:
### Input:
Tick creation within matplotlib is reasonably expensive and is
internally deferred until accessed as Ticks are created/destroyed
multiple times per draw. It's therefore beneficial for us to avoid
accessing unless we will act on the Tick.
### Response:
def _apply_axis_properties(self, axis, rot=None, fontsize=None):
""" Tick creation within matplotlib is reasonably expensive and is
internally deferred until accessed as Ticks are created/destroyed
multiple times per draw. It's therefore beneficial for us to avoid
accessing unless we will act on the Tick.
"""
if rot is not None or fontsize is not None:
# rot=0 is a valid setting, hence the explicit None check
labels = axis.get_majorticklabels() + axis.get_minorticklabels()
for label in labels:
if rot is not None:
label.set_rotation(rot)
if fontsize is not None:
label.set_fontsize(fontsize) |
def convolutional_layer_series(initial_size, layer_sequence):
""" Execute a series of convolutional layer transformations to the size number """
size = initial_size
for filter_size, padding, stride in layer_sequence:
size = convolution_size_equation(size, filter_size, padding, stride)
return size | Execute a series of convolutional layer transformations to the size number | Below is the the instruction that describes the task:
### Input:
Execute a series of convolutional layer transformations to the size number
### Response:
def convolutional_layer_series(initial_size, layer_sequence):
""" Execute a series of convolutional layer transformations to the size number """
size = initial_size
for filter_size, padding, stride in layer_sequence:
size = convolution_size_equation(size, filter_size, padding, stride)
return size |
def error(self, message):
"""Prints error message, then help."""
sys.stderr.write('error: %s\n\n' % message)
self.print_help()
sys.exit(2) | Prints error message, then help. | Below is the the instruction that describes the task:
### Input:
Prints error message, then help.
### Response:
def error(self, message):
"""Prints error message, then help."""
sys.stderr.write('error: %s\n\n' % message)
self.print_help()
sys.exit(2) |
def mb_handler(self, args):
'''Handler for mb command'''
if len(args) == 1:
raise InvalidArgument('No s3 bucketname provided')
self.validate('cmd|s3', args)
self.s3handler().create_bucket(args[1]) | Handler for mb command | Below is the the instruction that describes the task:
### Input:
Handler for mb command
### Response:
def mb_handler(self, args):
'''Handler for mb command'''
if len(args) == 1:
raise InvalidArgument('No s3 bucketname provided')
self.validate('cmd|s3', args)
self.s3handler().create_bucket(args[1]) |
def _periodicfeatures_worker(task):
'''
This is a parallel worker for the drivers below.
'''
pfpickle, lcbasedir, outdir, starfeatures, kwargs = task
try:
return get_periodicfeatures(pfpickle,
lcbasedir,
outdir,
starfeatures=starfeatures,
**kwargs)
except Exception as e:
LOGEXCEPTION('failed to get periodicfeatures for %s' % pfpickle) | This is a parallel worker for the drivers below. | Below is the the instruction that describes the task:
### Input:
This is a parallel worker for the drivers below.
### Response:
def _periodicfeatures_worker(task):
'''
This is a parallel worker for the drivers below.
'''
pfpickle, lcbasedir, outdir, starfeatures, kwargs = task
try:
return get_periodicfeatures(pfpickle,
lcbasedir,
outdir,
starfeatures=starfeatures,
**kwargs)
except Exception as e:
LOGEXCEPTION('failed to get periodicfeatures for %s' % pfpickle) |
def from_object(self, instance: Union[object, str]) -> None:
"""Load the configuration from a Python object.
This can be used to reference modules or objects within
modules for example,
.. code-block:: python
app.config.from_object('module')
app.config.from_object('module.instance')
from module import instance
app.config.from_object(instance)
are valid.
Arguments:
instance: Either a str referencing a python object or the
object itself.
"""
if isinstance(instance, str):
try:
path, config = instance.rsplit('.', 1)
except ValueError:
path = instance
instance = importlib.import_module(path)
else:
module = importlib.import_module(path)
instance = getattr(module, config)
for key in dir(instance):
if key.isupper():
self[key] = getattr(instance, key) | Load the configuration from a Python object.
This can be used to reference modules or objects within
modules for example,
.. code-block:: python
app.config.from_object('module')
app.config.from_object('module.instance')
from module import instance
app.config.from_object(instance)
are valid.
Arguments:
instance: Either a str referencing a python object or the
object itself. | Below is the the instruction that describes the task:
### Input:
Load the configuration from a Python object.
This can be used to reference modules or objects within
modules for example,
.. code-block:: python
app.config.from_object('module')
app.config.from_object('module.instance')
from module import instance
app.config.from_object(instance)
are valid.
Arguments:
instance: Either a str referencing a python object or the
object itself.
### Response:
def from_object(self, instance: Union[object, str]) -> None:
"""Load the configuration from a Python object.
This can be used to reference modules or objects within
modules for example,
.. code-block:: python
app.config.from_object('module')
app.config.from_object('module.instance')
from module import instance
app.config.from_object(instance)
are valid.
Arguments:
instance: Either a str referencing a python object or the
object itself.
"""
if isinstance(instance, str):
try:
path, config = instance.rsplit('.', 1)
except ValueError:
path = instance
instance = importlib.import_module(path)
else:
module = importlib.import_module(path)
instance = getattr(module, config)
for key in dir(instance):
if key.isupper():
self[key] = getattr(instance, key) |
def registry_adapter(obj, request):
"""
Adapter for rendering a :class:`pyramid_urireferencer.models.RegistryResponse` to json.
:param pyramid_urireferencer.models.RegistryResponse obj: The response to be rendered.
:rtype: :class:`dict`
"""
return {
'query_uri': obj.query_uri,
'success': obj.success,
'has_references': obj.has_references,
'count': obj.count,
'applications': [{
'title': a.title,
'uri': a.uri,
'service_url': a.service_url,
'success': a.success,
'has_references': a.has_references,
'count': a.count,
'items': [{
'uri': i.uri,
'title': i.title
} for i in a.items] if a.items is not None else None
} for a in obj.applications] if obj.applications is not None else None
} | Adapter for rendering a :class:`pyramid_urireferencer.models.RegistryResponse` to json.
:param pyramid_urireferencer.models.RegistryResponse obj: The response to be rendered.
:rtype: :class:`dict` | Below is the the instruction that describes the task:
### Input:
Adapter for rendering a :class:`pyramid_urireferencer.models.RegistryResponse` to json.
:param pyramid_urireferencer.models.RegistryResponse obj: The response to be rendered.
:rtype: :class:`dict`
### Response:
def registry_adapter(obj, request):
"""
Adapter for rendering a :class:`pyramid_urireferencer.models.RegistryResponse` to json.
:param pyramid_urireferencer.models.RegistryResponse obj: The response to be rendered.
:rtype: :class:`dict`
"""
return {
'query_uri': obj.query_uri,
'success': obj.success,
'has_references': obj.has_references,
'count': obj.count,
'applications': [{
'title': a.title,
'uri': a.uri,
'service_url': a.service_url,
'success': a.success,
'has_references': a.has_references,
'count': a.count,
'items': [{
'uri': i.uri,
'title': i.title
} for i in a.items] if a.items is not None else None
} for a in obj.applications] if obj.applications is not None else None
} |
def IPID_count(lst, funcID=lambda x: x[1].id, funcpres=lambda x: x[1].summary()): # noqa: E501
"""Identify IP id values classes in a list of packets
lst: a list of packets
funcID: a function that returns IP id values
funcpres: a function used to summarize packets"""
idlst = [funcID(e) for e in lst]
idlst.sort()
classes = [idlst[0]]
classes += [t[1] for t in zip(idlst[:-1], idlst[1:]) if abs(t[0] - t[1]) > 50] # noqa: E501
lst = [(funcID(x), funcpres(x)) for x in lst]
lst.sort()
print("Probably %i classes:" % len(classes), classes)
for id, pr in lst:
print("%5i" % id, pr) | Identify IP id values classes in a list of packets
lst: a list of packets
funcID: a function that returns IP id values
funcpres: a function used to summarize packets | Below is the the instruction that describes the task:
### Input:
Identify IP id values classes in a list of packets
lst: a list of packets
funcID: a function that returns IP id values
funcpres: a function used to summarize packets
### Response:
def IPID_count(lst, funcID=lambda x: x[1].id, funcpres=lambda x: x[1].summary()): # noqa: E501
"""Identify IP id values classes in a list of packets
lst: a list of packets
funcID: a function that returns IP id values
funcpres: a function used to summarize packets"""
idlst = [funcID(e) for e in lst]
idlst.sort()
classes = [idlst[0]]
classes += [t[1] for t in zip(idlst[:-1], idlst[1:]) if abs(t[0] - t[1]) > 50] # noqa: E501
lst = [(funcID(x), funcpres(x)) for x in lst]
lst.sort()
print("Probably %i classes:" % len(classes), classes)
for id, pr in lst:
print("%5i" % id, pr) |
def filter(self, extractions, case_sensitive=False) -> List[Extraction]:
"""filters out the extraction if extracted value is in the blacklist"""
filtered_extractions = []
if not isinstance(extractions, list):
extractions = [extractions]
for extraction in extractions:
if case_sensitive:
try:
if extraction.value.lower() not in self.black_list:
filtered_extractions.append(extraction)
except Exception as e:
print('Error in BlackListFilter: {} while filtering out extraction: {}'.format(e, extraction.value))
# most likely it s a unicode character which is messing things up, return it
filtered_extractions.append(extraction)
else:
if extraction.value not in self.black_list:
filtered_extractions.append(extraction)
return filtered_extractions | filters out the extraction if extracted value is in the blacklist | Below is the the instruction that describes the task:
### Input:
filters out the extraction if extracted value is in the blacklist
### Response:
def filter(self, extractions, case_sensitive=False) -> List[Extraction]:
"""filters out the extraction if extracted value is in the blacklist"""
filtered_extractions = []
if not isinstance(extractions, list):
extractions = [extractions]
for extraction in extractions:
if case_sensitive:
try:
if extraction.value.lower() not in self.black_list:
filtered_extractions.append(extraction)
except Exception as e:
print('Error in BlackListFilter: {} while filtering out extraction: {}'.format(e, extraction.value))
# most likely it s a unicode character which is messing things up, return it
filtered_extractions.append(extraction)
else:
if extraction.value not in self.black_list:
filtered_extractions.append(extraction)
return filtered_extractions |
def mixed_list_file(cls, filename, values, bits):
"""
Write a list of mixed values to a file.
If a file of the same name exists, it's contents are replaced.
See L{HexInput.mixed_list_file} for a description of the file format.
@type filename: str
@param filename: Name of the file to write.
@type values: list( int )
@param values: List of mixed values to write to the file.
@type bits: int
@param bits:
(Optional) Number of bits of the target architecture.
The default is platform dependent. See: L{HexOutput.integer_size}
"""
fd = open(filename, 'w')
for original in values:
try:
parsed = cls.integer(original, bits)
except TypeError:
parsed = repr(original)
print >> fd, parsed
fd.close() | Write a list of mixed values to a file.
If a file of the same name exists, it's contents are replaced.
See L{HexInput.mixed_list_file} for a description of the file format.
@type filename: str
@param filename: Name of the file to write.
@type values: list( int )
@param values: List of mixed values to write to the file.
@type bits: int
@param bits:
(Optional) Number of bits of the target architecture.
The default is platform dependent. See: L{HexOutput.integer_size} | Below is the the instruction that describes the task:
### Input:
Write a list of mixed values to a file.
If a file of the same name exists, it's contents are replaced.
See L{HexInput.mixed_list_file} for a description of the file format.
@type filename: str
@param filename: Name of the file to write.
@type values: list( int )
@param values: List of mixed values to write to the file.
@type bits: int
@param bits:
(Optional) Number of bits of the target architecture.
The default is platform dependent. See: L{HexOutput.integer_size}
### Response:
def mixed_list_file(cls, filename, values, bits):
"""
Write a list of mixed values to a file.
If a file of the same name exists, it's contents are replaced.
See L{HexInput.mixed_list_file} for a description of the file format.
@type filename: str
@param filename: Name of the file to write.
@type values: list( int )
@param values: List of mixed values to write to the file.
@type bits: int
@param bits:
(Optional) Number of bits of the target architecture.
The default is platform dependent. See: L{HexOutput.integer_size}
"""
fd = open(filename, 'w')
for original in values:
try:
parsed = cls.integer(original, bits)
except TypeError:
parsed = repr(original)
print >> fd, parsed
fd.close() |
def setup(self):
"""Initialize filter just before it will be used."""
super(CleanCSSFilter, self).setup()
self.root = current_app.config.get('COLLECT_STATIC_ROOT') | Initialize filter just before it will be used. | Below is the the instruction that describes the task:
### Input:
Initialize filter just before it will be used.
### Response:
def setup(self):
"""Initialize filter just before it will be used."""
super(CleanCSSFilter, self).setup()
self.root = current_app.config.get('COLLECT_STATIC_ROOT') |
def get_default_home_dir():
"""
Return default home directory of Ding0
Returns
-------
:any:`str`
Default home directory including its path
"""
ding0_dir = str(cfg_ding0.get('config',
'config_dir'))
return os.path.join(os.path.expanduser('~'), ding0_dir) | Return default home directory of Ding0
Returns
-------
:any:`str`
Default home directory including its path | Below is the the instruction that describes the task:
### Input:
Return default home directory of Ding0
Returns
-------
:any:`str`
Default home directory including its path
### Response:
def get_default_home_dir():
"""
Return default home directory of Ding0
Returns
-------
:any:`str`
Default home directory including its path
"""
ding0_dir = str(cfg_ding0.get('config',
'config_dir'))
return os.path.join(os.path.expanduser('~'), ding0_dir) |
def _checkCanIndex(self):
'''
_checkCanIndex - Check if we CAN index (if all fields are indexable).
Also checks the right-most field for "hashIndex" - if it needs to hash we will hash.
'''
# NOTE: We can't just check the right-most field. For types like pickle that don't support indexing, they don't
# support it because python2 and python3 have different results for pickle.dumps on the same object.
# So if we have a field chain like Pickle, Compressed then we will have two different results.
if not self.chainedFields:
return (False, False)
for chainedField in self.chainedFields:
if chainedField.CAN_INDEX is False:
return (False, False)
return (True, self.chainedFields[-1].hashIndex) | _checkCanIndex - Check if we CAN index (if all fields are indexable).
Also checks the right-most field for "hashIndex" - if it needs to hash we will hash. | Below is the the instruction that describes the task:
### Input:
_checkCanIndex - Check if we CAN index (if all fields are indexable).
Also checks the right-most field for "hashIndex" - if it needs to hash we will hash.
### Response:
def _checkCanIndex(self):
'''
_checkCanIndex - Check if we CAN index (if all fields are indexable).
Also checks the right-most field for "hashIndex" - if it needs to hash we will hash.
'''
# NOTE: We can't just check the right-most field. For types like pickle that don't support indexing, they don't
# support it because python2 and python3 have different results for pickle.dumps on the same object.
# So if we have a field chain like Pickle, Compressed then we will have two different results.
if not self.chainedFields:
return (False, False)
for chainedField in self.chainedFields:
if chainedField.CAN_INDEX is False:
return (False, False)
return (True, self.chainedFields[-1].hashIndex) |
def Beta(alpha, beta, low=0, high=1, tag=None):
"""
A Beta random variate
Parameters
----------
alpha : scalar
The first shape parameter
beta : scalar
The second shape parameter
Optional
--------
low : scalar
Lower bound of the distribution support (default=0)
high : scalar
Upper bound of the distribution support (default=1)
"""
assert (
alpha > 0 and beta > 0
), 'Beta "alpha" and "beta" parameters must be greater than zero'
assert low < high, 'Beta "low" must be less than "high"'
return uv(ss.beta(alpha, beta, loc=low, scale=high - low), tag=tag) | A Beta random variate
Parameters
----------
alpha : scalar
The first shape parameter
beta : scalar
The second shape parameter
Optional
--------
low : scalar
Lower bound of the distribution support (default=0)
high : scalar
Upper bound of the distribution support (default=1) | Below is the the instruction that describes the task:
### Input:
A Beta random variate
Parameters
----------
alpha : scalar
The first shape parameter
beta : scalar
The second shape parameter
Optional
--------
low : scalar
Lower bound of the distribution support (default=0)
high : scalar
Upper bound of the distribution support (default=1)
### Response:
def Beta(alpha, beta, low=0, high=1, tag=None):
"""
A Beta random variate
Parameters
----------
alpha : scalar
The first shape parameter
beta : scalar
The second shape parameter
Optional
--------
low : scalar
Lower bound of the distribution support (default=0)
high : scalar
Upper bound of the distribution support (default=1)
"""
assert (
alpha > 0 and beta > 0
), 'Beta "alpha" and "beta" parameters must be greater than zero'
assert low < high, 'Beta "low" must be less than "high"'
return uv(ss.beta(alpha, beta, loc=low, scale=high - low), tag=tag) |
def __balance(self, account_id, **kwargs):
"""Call documentation: `/account/balance
<https://www.wepay.com/developer/reference/account-2011-01-15#balance>`_, plus
extra keyword parameters:
:keyword str access_token: will be used instead of instance's
``access_token``, with ``batch_mode=True`` will set `authorization`
param to it's value.
:keyword bool batch_mode: turn on/off the batch_mode, see
:class:`wepay.api.WePay`
:keyword str batch_reference_id: `reference_id` param for batch call,
see :class:`wepay.api.WePay`
:keyword str api_version: WePay API version, see
:class:`wepay.api.WePay`
.. warning ::
This call is depricated as of API version '2014-01-08'.
"""
params = {
'account_id': account_id
}
return self.make_call(self.__balance, params, kwargs) | Call documentation: `/account/balance
<https://www.wepay.com/developer/reference/account-2011-01-15#balance>`_, plus
extra keyword parameters:
:keyword str access_token: will be used instead of instance's
``access_token``, with ``batch_mode=True`` will set `authorization`
param to it's value.
:keyword bool batch_mode: turn on/off the batch_mode, see
:class:`wepay.api.WePay`
:keyword str batch_reference_id: `reference_id` param for batch call,
see :class:`wepay.api.WePay`
:keyword str api_version: WePay API version, see
:class:`wepay.api.WePay`
.. warning ::
This call is depricated as of API version '2014-01-08'. | Below is the the instruction that describes the task:
### Input:
Call documentation: `/account/balance
<https://www.wepay.com/developer/reference/account-2011-01-15#balance>`_, plus
extra keyword parameters:
:keyword str access_token: will be used instead of instance's
``access_token``, with ``batch_mode=True`` will set `authorization`
param to it's value.
:keyword bool batch_mode: turn on/off the batch_mode, see
:class:`wepay.api.WePay`
:keyword str batch_reference_id: `reference_id` param for batch call,
see :class:`wepay.api.WePay`
:keyword str api_version: WePay API version, see
:class:`wepay.api.WePay`
.. warning ::
This call is depricated as of API version '2014-01-08'.
### Response:
def __balance(self, account_id, **kwargs):
"""Call documentation: `/account/balance
<https://www.wepay.com/developer/reference/account-2011-01-15#balance>`_, plus
extra keyword parameters:
:keyword str access_token: will be used instead of instance's
``access_token``, with ``batch_mode=True`` will set `authorization`
param to it's value.
:keyword bool batch_mode: turn on/off the batch_mode, see
:class:`wepay.api.WePay`
:keyword str batch_reference_id: `reference_id` param for batch call,
see :class:`wepay.api.WePay`
:keyword str api_version: WePay API version, see
:class:`wepay.api.WePay`
.. warning ::
This call is depricated as of API version '2014-01-08'.
"""
params = {
'account_id': account_id
}
return self.make_call(self.__balance, params, kwargs) |
def get_checklists( self ):
"""
Get the checklists for this board. Returns a list of Checklist objects.
"""
checklists = self.getChecklistsJson( self.base_uri )
checklists_list = []
for checklist_json in checklists:
checklists_list.append( self.createChecklist( checklist_json ) )
return checklists_list | Get the checklists for this board. Returns a list of Checklist objects. | Below is the the instruction that describes the task:
### Input:
Get the checklists for this board. Returns a list of Checklist objects.
### Response:
def get_checklists( self ):
"""
Get the checklists for this board. Returns a list of Checklist objects.
"""
checklists = self.getChecklistsJson( self.base_uri )
checklists_list = []
for checklist_json in checklists:
checklists_list.append( self.createChecklist( checklist_json ) )
return checklists_list |
def sort_data(x_vals, y_vals):
"""Sort the data so that x is monotonically increasing and contains
no duplicates.
"""
# Sort data
idxs = np.argsort(x_vals)
x_vals = x_vals[idxs]
y_vals = y_vals[idxs]
# De-duplicate data
mask = np.r_[True, (np.diff(x_vals) > 0)]
if not mask.all():
# what is this for?
numof_duplicates = np.repeat(mask, np.equal(mask, False)).shape[0]
del numof_duplicates
x_vals = x_vals[mask]
y_vals = y_vals[mask]
return x_vals, y_vals | Sort the data so that x is monotonically increasing and contains
no duplicates. | Below is the the instruction that describes the task:
### Input:
Sort the data so that x is monotonically increasing and contains
no duplicates.
### Response:
def sort_data(x_vals, y_vals):
"""Sort the data so that x is monotonically increasing and contains
no duplicates.
"""
# Sort data
idxs = np.argsort(x_vals)
x_vals = x_vals[idxs]
y_vals = y_vals[idxs]
# De-duplicate data
mask = np.r_[True, (np.diff(x_vals) > 0)]
if not mask.all():
# what is this for?
numof_duplicates = np.repeat(mask, np.equal(mask, False)).shape[0]
del numof_duplicates
x_vals = x_vals[mask]
y_vals = y_vals[mask]
return x_vals, y_vals |
def resolve_object_property(obj, path: str):
"""Resolves the value of a property on an object.
Is able to resolve nested properties. For example,
a path can be specified:
'other.beer.name'
Raises:
AttributeError:
In case the property could not be resolved.
Returns:
The value of the specified property.
"""
value = obj
for path_part in path.split('.'):
value = getattr(value, path_part)
return value | Resolves the value of a property on an object.
Is able to resolve nested properties. For example,
a path can be specified:
'other.beer.name'
Raises:
AttributeError:
In case the property could not be resolved.
Returns:
The value of the specified property. | Below is the the instruction that describes the task:
### Input:
Resolves the value of a property on an object.
Is able to resolve nested properties. For example,
a path can be specified:
'other.beer.name'
Raises:
AttributeError:
In case the property could not be resolved.
Returns:
The value of the specified property.
### Response:
def resolve_object_property(obj, path: str):
"""Resolves the value of a property on an object.
Is able to resolve nested properties. For example,
a path can be specified:
'other.beer.name'
Raises:
AttributeError:
In case the property could not be resolved.
Returns:
The value of the specified property.
"""
value = obj
for path_part in path.split('.'):
value = getattr(value, path_part)
return value |
def computeEntropyAndEnthalpy(self, uncertainty_method=None, verbose=False, warning_cutoff=1.0e-10):
"""Decompose free energy differences into enthalpy and entropy differences.
Compute the decomposition of the free energy difference between
states 1 and N into reduced free energy differences, reduced potential
(enthalpy) differences, and reduced entropy (S/k) differences.
Parameters
----------
uncertainty_method : string , optional
Choice of method used to compute asymptotic covariance method, or None to use default
See help for computeAsymptoticCovarianceMatrix() for more information on various methods. (default: None)
warning_cutoff : float, optional
Warn if squared-uncertainty is negative and larger in magnitude than this number (default: 1.0e-10)
Returns
-------
Delta_f_ij : np.ndarray, float, shape=(K, K)
Delta_f_ij[i,j] is the dimensionless free energy difference f_j - f_i
dDelta_f_ij : np.ndarray, float, shape=(K, K)
uncertainty in Delta_f_ij
Delta_u_ij : np.ndarray, float, shape=(K, K)
Delta_u_ij[i,j] is the reduced potential energy difference u_j - u_i
dDelta_u_ij : np.ndarray, float, shape=(K, K)
uncertainty in Delta_f_ij
Delta_s_ij : np.ndarray, float, shape=(K, K)
Delta_s_ij[i,j] is the reduced entropy difference S/k between states i and j (s_j - s_i)
dDelta_s_ij : np.ndarray, float, shape=(K, K)
uncertainty in Delta_s_ij
Notes
-----
This method is EXPERIMENTAL and should be used at your own risk.
Examples
--------
>>> from pymbar import testsystems
>>> (x_n, u_kn, N_k, s_n) = testsystems.HarmonicOscillatorsTestCase().sample(mode='u_kn')
>>> mbar = MBAR(u_kn, N_k)
>>> [Delta_f_ij, dDelta_f_ij, Delta_u_ij, dDelta_u_ij, Delta_s_ij, dDelta_s_ij] = mbar.computeEntropyAndEnthalpy()
"""
if verbose:
print("Computing average energy and entropy by MBAR.")
# Retrieve N and K for convenience.
N = self.N
K = self.K
# Augment W_nk, N_k, and c_k for q_A(x) for the potential energies,
# with one extra row/column for each state.
# weight matrix
Log_W_nk = np.zeros([N, K * 2], dtype=np.float64)
N_k = np.zeros([K * 2], dtype=np.int32) # counts
# "free energies" of average states
f_k = np.zeros(K, dtype=np.float64)
# Fill in first half of matrix with existing q_k(x) from states.
Log_W_nk[:, 0:K] = self.Log_W_nk
N_k[0:K] = self.N_k
# Compute the remaining rows/columns of W_nk and c_k for the potential
# energy observable.
u_min = self.u_kn.min()
u_i = np.zeros([K], dtype=np.float64)
for l in range(0, K):
u_kn = self.u_kn[l, :] - (u_min-1) # all positive now! Subtracting off arbitrary constants doesn't affect results
# since they are all differences.
# Compute unnormalized weights.
# A(x_n) exp[f_{k} - q_{k}(x_n)] / \sum_{k'=1}^K N_{k'} exp[f_{k'} - q_{k'}(x_n)]
# harden for over/underflow with logarithms
Log_W_nk[:, K + l] = np.log(u_kn) + self.Log_W_nk[:, l]
f_k[l] = -_logsum(Log_W_nk[:, K + l])
Log_W_nk[:, K + l] += f_k[l] # normalize the row
u_i[l] = np.exp(-f_k[l])
# print "MBAR u_i[%d]: %10.5f,%10.5f" % (l,u_i[l]+u_min, u_i[l])
# Compute augmented asymptotic covariance matrix.
W_nk = np.exp(Log_W_nk)
Theta_ij = self._computeAsymptoticCovarianceMatrix(
W_nk, N_k, method=uncertainty_method)
# Compute estimators and uncertainties.
dDelta_f_ij = np.zeros([K, K], dtype=np.float64)
dDelta_u_ij = np.zeros([K, K], dtype=np.float64)
dDelta_s_ij = np.zeros([K, K], dtype=np.float64)
# Compute reduced free energy difference.
f_k = np.matrix(self.f_k)
Delta_f_ij = f_k - f_k.transpose()
# Compute reduced enthalpy difference.
u_k = np.matrix(u_i)
Delta_u_ij = u_k - u_k.transpose()
# Compute reduced entropy difference
s_k = u_k - f_k
Delta_s_ij = s_k - s_k.transpose()
# compute uncertainty matrix in free energies:
# d2DeltaF = Theta_ij[i,i] + Theta_ij[j,j] - 2.0 * Theta_ij[i,j]
diag = Theta_ij.diagonal()
dii = diag[0:K, 0:K]
d2DeltaF = dii + dii.transpose() - 2 * Theta_ij[0:K, 0:K]
# check for any numbers below zero.
if (np.any(d2DeltaF < 0.0)):
if(np.any(d2DeltaF) < warning_cutoff):
# Hmm. Will this print correctly?
print("A squared uncertainty is negative. d2DeltaF = %e" % d2DeltaF[(np.any(d2DeltaF) < warning_cutoff)])
else:
d2DeltaF[(np.any(d2DeltaF) < warning_cutoff)] = 0.0
# take the square root of the entries of matrix
dDelta_f_ij = np.sqrt(d2DeltaF)
# TODO -- vectorize this calculation for entropy and enthalpy!
for i in range(0, K):
for j in range(0, K):
try:
dDelta_u_ij[i, j] = math.sqrt(
+ u_i[i] * Theta_ij[i, i] * u_i[i] - u_i[i] * Theta_ij[i, j] * u_i[j] - u_i[
i] * Theta_ij[i, K + i] * u_i[i] + u_i[i] * Theta_ij[i, K + j] * u_i[j]
- u_i[j] * Theta_ij[j, i] * u_i[i] + u_i[j] * Theta_ij[j, j] * u_i[j] + u_i[
j] * Theta_ij[j, K + i] * u_i[i] - u_i[j] * Theta_ij[j, K + j] * u_i[j]
- u_i[i] * Theta_ij[K + i, i] * u_i[i] + u_i[i] * Theta_ij[K + i, j] * u_i[
j] + u_i[i] * Theta_ij[K + i, K + i] * u_i[i] - u_i[i] * Theta_ij[K + i, K + j] * u_i[j]
+ u_i[j] * Theta_ij[K + j, i] * u_i[i] - u_i[j] * Theta_ij[K + j, j] * u_i[
j] - u_i[j] * Theta_ij[K + j, K + i] * u_i[i] + u_i[j] * Theta_ij[K + j, K + j] * u_i[j]
)
except:
dDelta_u_ij[i, j] = 0.0
# Compute reduced entropy difference.
try:
dDelta_s_ij[i, j] = math.sqrt(
+ (u_i[i] - 1) * Theta_ij[i, i] * (u_i[i] - 1) + (u_i[i] - 1) * Theta_ij[i, j] * (-u_i[j] + 1) + (
u_i[i] - 1) * Theta_ij[i, K + i] * (-u_i[i]) + (u_i[i] - 1) * Theta_ij[i, K + j] * u_i[j]
+ (-u_i[j] + 1) * Theta_ij[j, i] * (u_i[i] - 1) + (-u_i[j] + 1) * Theta_ij[j, j] * (-u_i[j] + 1) +
(-u_i[j] + 1) * Theta_ij[j, K + i] * (-u_i[i]) +
(-u_i[j] + 1) * Theta_ij[j, K + j] * u_i[j]
+ (-u_i[i]) * Theta_ij[K + i, i] * (u_i[i] - 1) + (-u_i[i]) * Theta_ij[K + i, j] * (-u_i[j] + 1) +
(-u_i[i]) * Theta_ij[K + i, K + i] * (-u_i[i]) +
(-u_i[i]) * Theta_ij[K + i, K + j] * u_i[j]
+ u_i[j] * Theta_ij[K + j, i] * (u_i[i] - 1) + u_i[j] * Theta_ij[K + j, j] * (-u_i[j] + 1) + u_i[
j] * Theta_ij[K + j, K + i] * (-u_i[i]) + u_i[j] * Theta_ij[K + j, K + j] * u_i[j]
)
except:
dDelta_s_ij[i, j] = 0.0
# Return expectations and uncertainties.
return (Delta_f_ij, dDelta_f_ij, Delta_u_ij, dDelta_u_ij, Delta_s_ij, dDelta_s_ij) | Decompose free energy differences into enthalpy and entropy differences.
Compute the decomposition of the free energy difference between
states 1 and N into reduced free energy differences, reduced potential
(enthalpy) differences, and reduced entropy (S/k) differences.
Parameters
----------
uncertainty_method : string , optional
Choice of method used to compute asymptotic covariance method, or None to use default
See help for computeAsymptoticCovarianceMatrix() for more information on various methods. (default: None)
warning_cutoff : float, optional
Warn if squared-uncertainty is negative and larger in magnitude than this number (default: 1.0e-10)
Returns
-------
Delta_f_ij : np.ndarray, float, shape=(K, K)
Delta_f_ij[i,j] is the dimensionless free energy difference f_j - f_i
dDelta_f_ij : np.ndarray, float, shape=(K, K)
uncertainty in Delta_f_ij
Delta_u_ij : np.ndarray, float, shape=(K, K)
Delta_u_ij[i,j] is the reduced potential energy difference u_j - u_i
dDelta_u_ij : np.ndarray, float, shape=(K, K)
uncertainty in Delta_f_ij
Delta_s_ij : np.ndarray, float, shape=(K, K)
Delta_s_ij[i,j] is the reduced entropy difference S/k between states i and j (s_j - s_i)
dDelta_s_ij : np.ndarray, float, shape=(K, K)
uncertainty in Delta_s_ij
Notes
-----
This method is EXPERIMENTAL and should be used at your own risk.
Examples
--------
>>> from pymbar import testsystems
>>> (x_n, u_kn, N_k, s_n) = testsystems.HarmonicOscillatorsTestCase().sample(mode='u_kn')
>>> mbar = MBAR(u_kn, N_k)
>>> [Delta_f_ij, dDelta_f_ij, Delta_u_ij, dDelta_u_ij, Delta_s_ij, dDelta_s_ij] = mbar.computeEntropyAndEnthalpy() | Below is the the instruction that describes the task:
### Input:
Decompose free energy differences into enthalpy and entropy differences.
Compute the decomposition of the free energy difference between
states 1 and N into reduced free energy differences, reduced potential
(enthalpy) differences, and reduced entropy (S/k) differences.
Parameters
----------
uncertainty_method : string , optional
Choice of method used to compute asymptotic covariance method, or None to use default
See help for computeAsymptoticCovarianceMatrix() for more information on various methods. (default: None)
warning_cutoff : float, optional
Warn if squared-uncertainty is negative and larger in magnitude than this number (default: 1.0e-10)
Returns
-------
Delta_f_ij : np.ndarray, float, shape=(K, K)
Delta_f_ij[i,j] is the dimensionless free energy difference f_j - f_i
dDelta_f_ij : np.ndarray, float, shape=(K, K)
uncertainty in Delta_f_ij
Delta_u_ij : np.ndarray, float, shape=(K, K)
Delta_u_ij[i,j] is the reduced potential energy difference u_j - u_i
dDelta_u_ij : np.ndarray, float, shape=(K, K)
uncertainty in Delta_f_ij
Delta_s_ij : np.ndarray, float, shape=(K, K)
Delta_s_ij[i,j] is the reduced entropy difference S/k between states i and j (s_j - s_i)
dDelta_s_ij : np.ndarray, float, shape=(K, K)
uncertainty in Delta_s_ij
Notes
-----
This method is EXPERIMENTAL and should be used at your own risk.
Examples
--------
>>> from pymbar import testsystems
>>> (x_n, u_kn, N_k, s_n) = testsystems.HarmonicOscillatorsTestCase().sample(mode='u_kn')
>>> mbar = MBAR(u_kn, N_k)
>>> [Delta_f_ij, dDelta_f_ij, Delta_u_ij, dDelta_u_ij, Delta_s_ij, dDelta_s_ij] = mbar.computeEntropyAndEnthalpy()
### Response:
def computeEntropyAndEnthalpy(self, uncertainty_method=None, verbose=False, warning_cutoff=1.0e-10):
"""Decompose free energy differences into enthalpy and entropy differences.
Compute the decomposition of the free energy difference between
states 1 and N into reduced free energy differences, reduced potential
(enthalpy) differences, and reduced entropy (S/k) differences.
Parameters
----------
uncertainty_method : string , optional
Choice of method used to compute asymptotic covariance method, or None to use default
See help for computeAsymptoticCovarianceMatrix() for more information on various methods. (default: None)
warning_cutoff : float, optional
Warn if squared-uncertainty is negative and larger in magnitude than this number (default: 1.0e-10)
Returns
-------
Delta_f_ij : np.ndarray, float, shape=(K, K)
Delta_f_ij[i,j] is the dimensionless free energy difference f_j - f_i
dDelta_f_ij : np.ndarray, float, shape=(K, K)
uncertainty in Delta_f_ij
Delta_u_ij : np.ndarray, float, shape=(K, K)
Delta_u_ij[i,j] is the reduced potential energy difference u_j - u_i
dDelta_u_ij : np.ndarray, float, shape=(K, K)
uncertainty in Delta_f_ij
Delta_s_ij : np.ndarray, float, shape=(K, K)
Delta_s_ij[i,j] is the reduced entropy difference S/k between states i and j (s_j - s_i)
dDelta_s_ij : np.ndarray, float, shape=(K, K)
uncertainty in Delta_s_ij
Notes
-----
This method is EXPERIMENTAL and should be used at your own risk.
Examples
--------
>>> from pymbar import testsystems
>>> (x_n, u_kn, N_k, s_n) = testsystems.HarmonicOscillatorsTestCase().sample(mode='u_kn')
>>> mbar = MBAR(u_kn, N_k)
>>> [Delta_f_ij, dDelta_f_ij, Delta_u_ij, dDelta_u_ij, Delta_s_ij, dDelta_s_ij] = mbar.computeEntropyAndEnthalpy()
"""
if verbose:
print("Computing average energy and entropy by MBAR.")
# Retrieve N and K for convenience.
N = self.N
K = self.K
# Augment W_nk, N_k, and c_k for q_A(x) for the potential energies,
# with one extra row/column for each state.
# weight matrix
Log_W_nk = np.zeros([N, K * 2], dtype=np.float64)
N_k = np.zeros([K * 2], dtype=np.int32) # counts
# "free energies" of average states
f_k = np.zeros(K, dtype=np.float64)
# Fill in first half of matrix with existing q_k(x) from states.
Log_W_nk[:, 0:K] = self.Log_W_nk
N_k[0:K] = self.N_k
# Compute the remaining rows/columns of W_nk and c_k for the potential
# energy observable.
u_min = self.u_kn.min()
u_i = np.zeros([K], dtype=np.float64)
for l in range(0, K):
u_kn = self.u_kn[l, :] - (u_min-1) # all positive now! Subtracting off arbitrary constants doesn't affect results
# since they are all differences.
# Compute unnormalized weights.
# A(x_n) exp[f_{k} - q_{k}(x_n)] / \sum_{k'=1}^K N_{k'} exp[f_{k'} - q_{k'}(x_n)]
# harden for over/underflow with logarithms
Log_W_nk[:, K + l] = np.log(u_kn) + self.Log_W_nk[:, l]
f_k[l] = -_logsum(Log_W_nk[:, K + l])
Log_W_nk[:, K + l] += f_k[l] # normalize the row
u_i[l] = np.exp(-f_k[l])
# print "MBAR u_i[%d]: %10.5f,%10.5f" % (l,u_i[l]+u_min, u_i[l])
# Compute augmented asymptotic covariance matrix.
W_nk = np.exp(Log_W_nk)
Theta_ij = self._computeAsymptoticCovarianceMatrix(
W_nk, N_k, method=uncertainty_method)
# Compute estimators and uncertainties.
dDelta_f_ij = np.zeros([K, K], dtype=np.float64)
dDelta_u_ij = np.zeros([K, K], dtype=np.float64)
dDelta_s_ij = np.zeros([K, K], dtype=np.float64)
# Compute reduced free energy difference.
f_k = np.matrix(self.f_k)
Delta_f_ij = f_k - f_k.transpose()
# Compute reduced enthalpy difference.
u_k = np.matrix(u_i)
Delta_u_ij = u_k - u_k.transpose()
# Compute reduced entropy difference
s_k = u_k - f_k
Delta_s_ij = s_k - s_k.transpose()
# compute uncertainty matrix in free energies:
# d2DeltaF = Theta_ij[i,i] + Theta_ij[j,j] - 2.0 * Theta_ij[i,j]
diag = Theta_ij.diagonal()
dii = diag[0:K, 0:K]
d2DeltaF = dii + dii.transpose() - 2 * Theta_ij[0:K, 0:K]
# check for any numbers below zero.
if (np.any(d2DeltaF < 0.0)):
if(np.any(d2DeltaF) < warning_cutoff):
# Hmm. Will this print correctly?
print("A squared uncertainty is negative. d2DeltaF = %e" % d2DeltaF[(np.any(d2DeltaF) < warning_cutoff)])
else:
d2DeltaF[(np.any(d2DeltaF) < warning_cutoff)] = 0.0
# take the square root of the entries of matrix
dDelta_f_ij = np.sqrt(d2DeltaF)
# TODO -- vectorize this calculation for entropy and enthalpy!
for i in range(0, K):
for j in range(0, K):
try:
dDelta_u_ij[i, j] = math.sqrt(
+ u_i[i] * Theta_ij[i, i] * u_i[i] - u_i[i] * Theta_ij[i, j] * u_i[j] - u_i[
i] * Theta_ij[i, K + i] * u_i[i] + u_i[i] * Theta_ij[i, K + j] * u_i[j]
- u_i[j] * Theta_ij[j, i] * u_i[i] + u_i[j] * Theta_ij[j, j] * u_i[j] + u_i[
j] * Theta_ij[j, K + i] * u_i[i] - u_i[j] * Theta_ij[j, K + j] * u_i[j]
- u_i[i] * Theta_ij[K + i, i] * u_i[i] + u_i[i] * Theta_ij[K + i, j] * u_i[
j] + u_i[i] * Theta_ij[K + i, K + i] * u_i[i] - u_i[i] * Theta_ij[K + i, K + j] * u_i[j]
+ u_i[j] * Theta_ij[K + j, i] * u_i[i] - u_i[j] * Theta_ij[K + j, j] * u_i[
j] - u_i[j] * Theta_ij[K + j, K + i] * u_i[i] + u_i[j] * Theta_ij[K + j, K + j] * u_i[j]
)
except:
dDelta_u_ij[i, j] = 0.0
# Compute reduced entropy difference.
try:
dDelta_s_ij[i, j] = math.sqrt(
+ (u_i[i] - 1) * Theta_ij[i, i] * (u_i[i] - 1) + (u_i[i] - 1) * Theta_ij[i, j] * (-u_i[j] + 1) + (
u_i[i] - 1) * Theta_ij[i, K + i] * (-u_i[i]) + (u_i[i] - 1) * Theta_ij[i, K + j] * u_i[j]
+ (-u_i[j] + 1) * Theta_ij[j, i] * (u_i[i] - 1) + (-u_i[j] + 1) * Theta_ij[j, j] * (-u_i[j] + 1) +
(-u_i[j] + 1) * Theta_ij[j, K + i] * (-u_i[i]) +
(-u_i[j] + 1) * Theta_ij[j, K + j] * u_i[j]
+ (-u_i[i]) * Theta_ij[K + i, i] * (u_i[i] - 1) + (-u_i[i]) * Theta_ij[K + i, j] * (-u_i[j] + 1) +
(-u_i[i]) * Theta_ij[K + i, K + i] * (-u_i[i]) +
(-u_i[i]) * Theta_ij[K + i, K + j] * u_i[j]
+ u_i[j] * Theta_ij[K + j, i] * (u_i[i] - 1) + u_i[j] * Theta_ij[K + j, j] * (-u_i[j] + 1) + u_i[
j] * Theta_ij[K + j, K + i] * (-u_i[i]) + u_i[j] * Theta_ij[K + j, K + j] * u_i[j]
)
except:
dDelta_s_ij[i, j] = 0.0
# Return expectations and uncertainties.
return (Delta_f_ij, dDelta_f_ij, Delta_u_ij, dDelta_u_ij, Delta_s_ij, dDelta_s_ij) |
def savefits(cube, fitsname, **kwargs):
"""Save a cube to a 3D-cube FITS file.
Args:
cube (xarray.DataArray): Cube to be saved.
fitsname (str): Name of output FITS file.
kwargs (optional): Other arguments common with astropy.io.fits.writeto().
"""
### pick up kwargs
dropdeg = kwargs.pop('dropdeg', False)
ndim = len(cube.dims)
### load yaml
FITSINFO = get_data('decode', 'data/fitsinfo.yaml')
hdrdata = yaml.load(FITSINFO, dc.utils.OrderedLoader)
### default header
if ndim == 2:
header = fits.Header(hdrdata['dcube_2d'])
data = cube.values.T
elif ndim == 3:
if dropdeg:
header = fits.Header(hdrdata['dcube_2d'])
data = cube.values[:, :, 0].T
else:
header = fits.Header(hdrdata['dcube_3d'])
kidfq = cube.kidfq.values
freqrange = ~np.isnan(kidfq)
orderedfq = np.argsort(kidfq[freqrange])
newcube = cube[:, :, orderedfq]
data = newcube.values.T
else:
raise TypeError(ndim)
### update Header
if cube.coordsys == 'AZEL':
header.update({'CTYPE1': 'dAZ', 'CTYPE2': 'dEL'})
elif cube.coordsys == 'RADEC':
header.update({'OBSRA': float(cube.xref), 'OBSDEC': float(cube.yref)})
else:
pass
header.update({'CRVAL1': float(cube.x[0]),
'CDELT1': float(cube.x[1] - cube.x[0]),
'CRVAL2': float(cube.y[0]),
'CDELT2': float(cube.y[1] - cube.y[0]),
'DATE': datetime.now(timezone('UTC')).isoformat()})
if (ndim == 3) and (not dropdeg):
header.update({'CRVAL3': float(newcube.kidfq[0]),
'CDELT3': float(newcube.kidfq[1] - newcube.kidfq[0])})
fitsname = str(Path(fitsname).expanduser())
fits.writeto(fitsname, data, header, **kwargs)
logger.info('{} has been created.'.format(fitsname)) | Save a cube to a 3D-cube FITS file.
Args:
cube (xarray.DataArray): Cube to be saved.
fitsname (str): Name of output FITS file.
kwargs (optional): Other arguments common with astropy.io.fits.writeto(). | Below is the the instruction that describes the task:
### Input:
Save a cube to a 3D-cube FITS file.
Args:
cube (xarray.DataArray): Cube to be saved.
fitsname (str): Name of output FITS file.
kwargs (optional): Other arguments common with astropy.io.fits.writeto().
### Response:
def savefits(cube, fitsname, **kwargs):
"""Save a cube to a 3D-cube FITS file.
Args:
cube (xarray.DataArray): Cube to be saved.
fitsname (str): Name of output FITS file.
kwargs (optional): Other arguments common with astropy.io.fits.writeto().
"""
### pick up kwargs
dropdeg = kwargs.pop('dropdeg', False)
ndim = len(cube.dims)
### load yaml
FITSINFO = get_data('decode', 'data/fitsinfo.yaml')
hdrdata = yaml.load(FITSINFO, dc.utils.OrderedLoader)
### default header
if ndim == 2:
header = fits.Header(hdrdata['dcube_2d'])
data = cube.values.T
elif ndim == 3:
if dropdeg:
header = fits.Header(hdrdata['dcube_2d'])
data = cube.values[:, :, 0].T
else:
header = fits.Header(hdrdata['dcube_3d'])
kidfq = cube.kidfq.values
freqrange = ~np.isnan(kidfq)
orderedfq = np.argsort(kidfq[freqrange])
newcube = cube[:, :, orderedfq]
data = newcube.values.T
else:
raise TypeError(ndim)
### update Header
if cube.coordsys == 'AZEL':
header.update({'CTYPE1': 'dAZ', 'CTYPE2': 'dEL'})
elif cube.coordsys == 'RADEC':
header.update({'OBSRA': float(cube.xref), 'OBSDEC': float(cube.yref)})
else:
pass
header.update({'CRVAL1': float(cube.x[0]),
'CDELT1': float(cube.x[1] - cube.x[0]),
'CRVAL2': float(cube.y[0]),
'CDELT2': float(cube.y[1] - cube.y[0]),
'DATE': datetime.now(timezone('UTC')).isoformat()})
if (ndim == 3) and (not dropdeg):
header.update({'CRVAL3': float(newcube.kidfq[0]),
'CDELT3': float(newcube.kidfq[1] - newcube.kidfq[0])})
fitsname = str(Path(fitsname).expanduser())
fits.writeto(fitsname, data, header, **kwargs)
logger.info('{} has been created.'.format(fitsname)) |
def kibana_install(self):
"""
kibana install
:return:
"""
with cd('/tmp'):
if not exists('kibana.deb'):
sudo('wget {0} -O kibana.deb'.format(
bigdata_conf.kibana_download_url
))
sudo('dpkg -i kibana.deb')
sudo('apt-get install -y') | kibana install
:return: | Below is the the instruction that describes the task:
### Input:
kibana install
:return:
### Response:
def kibana_install(self):
"""
kibana install
:return:
"""
with cd('/tmp'):
if not exists('kibana.deb'):
sudo('wget {0} -O kibana.deb'.format(
bigdata_conf.kibana_download_url
))
sudo('dpkg -i kibana.deb')
sudo('apt-get install -y') |
def feed_data(self, data: bytes) -> None:
"""
代理 feed_data
"""
if self._parser is not None:
self._parser.feed_data(data) | 代理 feed_data | Below is the the instruction that describes the task:
### Input:
代理 feed_data
### Response:
def feed_data(self, data: bytes) -> None:
"""
代理 feed_data
"""
if self._parser is not None:
self._parser.feed_data(data) |
def make_pose(translation, rotation):
"""
Makes a homogenous pose matrix from a translation vector and a rotation matrix.
Args:
translation: a 3-dim iterable
rotation: a 3x3 matrix
Returns:
pose: a 4x4 homogenous matrix
"""
pose = np.zeros((4, 4))
pose[:3, :3] = rotation
pose[:3, 3] = translation
pose[3, 3] = 1.0
return pose | Makes a homogenous pose matrix from a translation vector and a rotation matrix.
Args:
translation: a 3-dim iterable
rotation: a 3x3 matrix
Returns:
pose: a 4x4 homogenous matrix | Below is the the instruction that describes the task:
### Input:
Makes a homogenous pose matrix from a translation vector and a rotation matrix.
Args:
translation: a 3-dim iterable
rotation: a 3x3 matrix
Returns:
pose: a 4x4 homogenous matrix
### Response:
def make_pose(translation, rotation):
"""
Makes a homogenous pose matrix from a translation vector and a rotation matrix.
Args:
translation: a 3-dim iterable
rotation: a 3x3 matrix
Returns:
pose: a 4x4 homogenous matrix
"""
pose = np.zeros((4, 4))
pose[:3, :3] = rotation
pose[:3, 3] = translation
pose[3, 3] = 1.0
return pose |
def _solve(self, A=None, b=None):
r"""
Sends the A and b matrices to the specified solver, and solves for *x*
given the boundary conditions, and source terms based on the present
value of *x*. This method does NOT iterate to solve for non-linear
source terms or march time steps.
Parameters
----------
A : sparse matrix
The coefficient matrix in sparse format. If not specified, then
it uses the ``A`` matrix attached to the object.
b : ND-array
The RHS matrix in any format. If not specified, then it uses
the ``b`` matrix attached to the object.
Notes
-----
The solver used here is specified in the ``settings`` attribute of the
algorithm.
"""
# Fetch A and b from self if not given, and throw error if they've not
# been calculated
if A is None:
A = self.A
if A is None:
raise Exception('The A matrix has not been built yet')
if b is None:
b = self.b
if b is None:
raise Exception('The b matrix has not been built yet')
A = A.tocsr()
# Default behavior -> use Scipy's default solver (spsolve)
if self.settings['solver'] == 'pyamg':
self.settings['solver_family'] = 'pyamg'
if self.settings['solver'] == 'petsc':
self.settings['solver_family'] = 'petsc'
# Set tolerance for iterative solvers
rtol = self.settings['solver_rtol']
min_A = np.abs(A.data).min()
min_b = np.abs(b).min() or 1e100
atol = min(min_A, min_b) * rtol
# SciPy
if self.settings['solver_family'] == 'scipy':
if importlib.util.find_spec('scikit-umfpack'):
A.indices = A.indices.astype(np.int64)
A.indptr = A.indptr.astype(np.int64)
iterative = ['bicg', 'bicgstab', 'cg', 'cgs', 'gmres', 'lgmres',
'minres', 'gcrotmk', 'qmr']
solver = getattr(sprs.linalg, self.settings['solver_type'])
if self.settings['solver_type'] in iterative:
x, exit_code = solver(A=A, b=b, atol=atol, tol=rtol,
maxiter=self.settings['solver_maxiter'])
if exit_code > 0:
raise Exception('SciPy solver did not converge! ' +
'Exit code: ' + str(exit_code))
else:
x = solver(A=A, b=b)
return x
# PETSc
if self.settings['solver_family'] == 'petsc':
# Check if petsc is available
if importlib.util.find_spec('petsc4py'):
from openpnm.utils.petsc import PETScSparseLinearSolver as SLS
else:
raise Exception('PETSc is not installed.')
# Define the petsc linear system converting the scipy objects
ls = SLS(A=A, b=b)
sets = self.settings
sets = {k: v for k, v in sets.items() if k.startswith('solver_')}
sets = {k.split('solver_')[1]: v for k, v in sets.items()}
ls.settings.update(sets)
x = SLS.solve(ls)
del(ls)
return x
# PyAMG
if self.settings['solver_family'] == 'pyamg':
if importlib.util.find_spec('pyamg'):
import pyamg
else:
raise Exception('pyamg is not installed.')
ml = pyamg.ruge_stuben_solver(A)
x = ml.solve(b=b, tol=1e-6)
return x | r"""
Sends the A and b matrices to the specified solver, and solves for *x*
given the boundary conditions, and source terms based on the present
value of *x*. This method does NOT iterate to solve for non-linear
source terms or march time steps.
Parameters
----------
A : sparse matrix
The coefficient matrix in sparse format. If not specified, then
it uses the ``A`` matrix attached to the object.
b : ND-array
The RHS matrix in any format. If not specified, then it uses
the ``b`` matrix attached to the object.
Notes
-----
The solver used here is specified in the ``settings`` attribute of the
algorithm. | Below is the the instruction that describes the task:
### Input:
r"""
Sends the A and b matrices to the specified solver, and solves for *x*
given the boundary conditions, and source terms based on the present
value of *x*. This method does NOT iterate to solve for non-linear
source terms or march time steps.
Parameters
----------
A : sparse matrix
The coefficient matrix in sparse format. If not specified, then
it uses the ``A`` matrix attached to the object.
b : ND-array
The RHS matrix in any format. If not specified, then it uses
the ``b`` matrix attached to the object.
Notes
-----
The solver used here is specified in the ``settings`` attribute of the
algorithm.
### Response:
def _solve(self, A=None, b=None):
r"""
Sends the A and b matrices to the specified solver, and solves for *x*
given the boundary conditions, and source terms based on the present
value of *x*. This method does NOT iterate to solve for non-linear
source terms or march time steps.
Parameters
----------
A : sparse matrix
The coefficient matrix in sparse format. If not specified, then
it uses the ``A`` matrix attached to the object.
b : ND-array
The RHS matrix in any format. If not specified, then it uses
the ``b`` matrix attached to the object.
Notes
-----
The solver used here is specified in the ``settings`` attribute of the
algorithm.
"""
# Fetch A and b from self if not given, and throw error if they've not
# been calculated
if A is None:
A = self.A
if A is None:
raise Exception('The A matrix has not been built yet')
if b is None:
b = self.b
if b is None:
raise Exception('The b matrix has not been built yet')
A = A.tocsr()
# Default behavior -> use Scipy's default solver (spsolve)
if self.settings['solver'] == 'pyamg':
self.settings['solver_family'] = 'pyamg'
if self.settings['solver'] == 'petsc':
self.settings['solver_family'] = 'petsc'
# Set tolerance for iterative solvers
rtol = self.settings['solver_rtol']
min_A = np.abs(A.data).min()
min_b = np.abs(b).min() or 1e100
atol = min(min_A, min_b) * rtol
# SciPy
if self.settings['solver_family'] == 'scipy':
if importlib.util.find_spec('scikit-umfpack'):
A.indices = A.indices.astype(np.int64)
A.indptr = A.indptr.astype(np.int64)
iterative = ['bicg', 'bicgstab', 'cg', 'cgs', 'gmres', 'lgmres',
'minres', 'gcrotmk', 'qmr']
solver = getattr(sprs.linalg, self.settings['solver_type'])
if self.settings['solver_type'] in iterative:
x, exit_code = solver(A=A, b=b, atol=atol, tol=rtol,
maxiter=self.settings['solver_maxiter'])
if exit_code > 0:
raise Exception('SciPy solver did not converge! ' +
'Exit code: ' + str(exit_code))
else:
x = solver(A=A, b=b)
return x
# PETSc
if self.settings['solver_family'] == 'petsc':
# Check if petsc is available
if importlib.util.find_spec('petsc4py'):
from openpnm.utils.petsc import PETScSparseLinearSolver as SLS
else:
raise Exception('PETSc is not installed.')
# Define the petsc linear system converting the scipy objects
ls = SLS(A=A, b=b)
sets = self.settings
sets = {k: v for k, v in sets.items() if k.startswith('solver_')}
sets = {k.split('solver_')[1]: v for k, v in sets.items()}
ls.settings.update(sets)
x = SLS.solve(ls)
del(ls)
return x
# PyAMG
if self.settings['solver_family'] == 'pyamg':
if importlib.util.find_spec('pyamg'):
import pyamg
else:
raise Exception('pyamg is not installed.')
ml = pyamg.ruge_stuben_solver(A)
x = ml.solve(b=b, tol=1e-6)
return x |
def _get_base_command(self):
"""Returns the base command plus command-line options.
Handles everything up to and including the classpath. The
positional training parameters are added by the
_input_handler_decorator method.
"""
cd_command = ''.join(['cd ', str(self.WorkingDir), ';'])
jvm_command = "java"
jvm_args = self._commandline_join(
[self.Parameters[k] for k in self._jvm_parameters])
cp_args = '-cp "%s" %s' % (self._get_jar_fp(), self.TrainingClass)
command_parts = [cd_command, jvm_command, jvm_args, cp_args]
return self._commandline_join(command_parts).strip() | Returns the base command plus command-line options.
Handles everything up to and including the classpath. The
positional training parameters are added by the
_input_handler_decorator method. | Below is the the instruction that describes the task:
### Input:
Returns the base command plus command-line options.
Handles everything up to and including the classpath. The
positional training parameters are added by the
_input_handler_decorator method.
### Response:
def _get_base_command(self):
"""Returns the base command plus command-line options.
Handles everything up to and including the classpath. The
positional training parameters are added by the
_input_handler_decorator method.
"""
cd_command = ''.join(['cd ', str(self.WorkingDir), ';'])
jvm_command = "java"
jvm_args = self._commandline_join(
[self.Parameters[k] for k in self._jvm_parameters])
cp_args = '-cp "%s" %s' % (self._get_jar_fp(), self.TrainingClass)
command_parts = [cd_command, jvm_command, jvm_args, cp_args]
return self._commandline_join(command_parts).strip() |
def exhandler(function, parser):
"""If -examples was specified in 'args', the specified function
is called and the application exits.
:arg function: the function that prints the examples.
:arg parser: the initialized instance of the parser that has the
additional, script-specific parameters.
"""
args = vars(bparser.parse_known_args()[0])
if args["examples"]:
function()
exit(0)
if args["verbose"]:
from msg import set_verbosity
set_verbosity(args["verbose"])
args.update(vars(parser.parse_known_args()[0]))
return args | If -examples was specified in 'args', the specified function
is called and the application exits.
:arg function: the function that prints the examples.
:arg parser: the initialized instance of the parser that has the
additional, script-specific parameters. | Below is the the instruction that describes the task:
### Input:
If -examples was specified in 'args', the specified function
is called and the application exits.
:arg function: the function that prints the examples.
:arg parser: the initialized instance of the parser that has the
additional, script-specific parameters.
### Response:
def exhandler(function, parser):
"""If -examples was specified in 'args', the specified function
is called and the application exits.
:arg function: the function that prints the examples.
:arg parser: the initialized instance of the parser that has the
additional, script-specific parameters.
"""
args = vars(bparser.parse_known_args()[0])
if args["examples"]:
function()
exit(0)
if args["verbose"]:
from msg import set_verbosity
set_verbosity(args["verbose"])
args.update(vars(parser.parse_known_args()[0]))
return args |
def check(self, return_code=0):
"""Run command with arguments. Wait for command to complete. If the
exit code was as expected and there is no exception then return,
otherwise raise EasyProcessError.
:param return_code: int, expected return code
:rtype: self
"""
ret = self.call().return_code
ok = ret == return_code
if not ok:
raise EasyProcessError(
self, 'check error, return code is not {0}!'.format(return_code))
return self | Run command with arguments. Wait for command to complete. If the
exit code was as expected and there is no exception then return,
otherwise raise EasyProcessError.
:param return_code: int, expected return code
:rtype: self | Below is the the instruction that describes the task:
### Input:
Run command with arguments. Wait for command to complete. If the
exit code was as expected and there is no exception then return,
otherwise raise EasyProcessError.
:param return_code: int, expected return code
:rtype: self
### Response:
def check(self, return_code=0):
"""Run command with arguments. Wait for command to complete. If the
exit code was as expected and there is no exception then return,
otherwise raise EasyProcessError.
:param return_code: int, expected return code
:rtype: self
"""
ret = self.call().return_code
ok = ret == return_code
if not ok:
raise EasyProcessError(
self, 'check error, return code is not {0}!'.format(return_code))
return self |
def weld_str_lower(array):
"""Convert values to lowercase.
Parameters
----------
array : numpy.ndarray or WeldObject
Input data.
Returns
-------
WeldObject
Representation of this computation.
"""
obj_id, weld_obj = create_weld_object(array)
weld_template = """map(
{array},
|e: vec[i8]|
result(
for(e,
appender[i8],
|c: appender[i8], j: i64, f: i8|
if(f > 64c && f < 91c,
merge(c, f + 32c),
merge(c, f))
)
)
)"""
weld_obj.weld_code = weld_template.format(array=obj_id)
return weld_obj | Convert values to lowercase.
Parameters
----------
array : numpy.ndarray or WeldObject
Input data.
Returns
-------
WeldObject
Representation of this computation. | Below is the the instruction that describes the task:
### Input:
Convert values to lowercase.
Parameters
----------
array : numpy.ndarray or WeldObject
Input data.
Returns
-------
WeldObject
Representation of this computation.
### Response:
def weld_str_lower(array):
"""Convert values to lowercase.
Parameters
----------
array : numpy.ndarray or WeldObject
Input data.
Returns
-------
WeldObject
Representation of this computation.
"""
obj_id, weld_obj = create_weld_object(array)
weld_template = """map(
{array},
|e: vec[i8]|
result(
for(e,
appender[i8],
|c: appender[i8], j: i64, f: i8|
if(f > 64c && f < 91c,
merge(c, f + 32c),
merge(c, f))
)
)
)"""
weld_obj.weld_code = weld_template.format(array=obj_id)
return weld_obj |
def groupby(xs, key_fn):
"""
Group elements of the list `xs` by keys generated from calling `key_fn`.
Returns a dictionary which maps keys to sub-lists of `xs`.
"""
result = defaultdict(list)
for x in xs:
key = key_fn(x)
result[key].append(x)
return result | Group elements of the list `xs` by keys generated from calling `key_fn`.
Returns a dictionary which maps keys to sub-lists of `xs`. | Below is the the instruction that describes the task:
### Input:
Group elements of the list `xs` by keys generated from calling `key_fn`.
Returns a dictionary which maps keys to sub-lists of `xs`.
### Response:
def groupby(xs, key_fn):
"""
Group elements of the list `xs` by keys generated from calling `key_fn`.
Returns a dictionary which maps keys to sub-lists of `xs`.
"""
result = defaultdict(list)
for x in xs:
key = key_fn(x)
result[key].append(x)
return result |
def get_artist_by_mbid(self, mbid):
"""Looks up an artist by its MusicBrainz ID"""
params = {"mbid": mbid}
doc = _Request(self, "artist.getInfo", params).execute(True)
return Artist(_extract(doc, "name"), self) | Looks up an artist by its MusicBrainz ID | Below is the the instruction that describes the task:
### Input:
Looks up an artist by its MusicBrainz ID
### Response:
def get_artist_by_mbid(self, mbid):
"""Looks up an artist by its MusicBrainz ID"""
params = {"mbid": mbid}
doc = _Request(self, "artist.getInfo", params).execute(True)
return Artist(_extract(doc, "name"), self) |
def _handle_upsert(self, parts, unwritten_lobs=()):
"""Handle reply messages from INSERT or UPDATE statements"""
self.description = None
self._received_last_resultset_part = True # set to 'True' so that cursor.fetch*() returns just empty list
for part in parts:
if part.kind == part_kinds.ROWSAFFECTED:
self.rowcount = part.values[0]
elif part.kind in (part_kinds.TRANSACTIONFLAGS, part_kinds.STATEMENTCONTEXT, part_kinds.PARAMETERMETADATA):
pass
elif part.kind == part_kinds.WRITELOBREPLY:
# This part occurrs after lobs have been submitted not at all or only partially during an insert.
# In this case the parameter part of the Request message contains a list called 'unwritten_lobs'
# with LobBuffer instances.
# Those instances are in the same order as 'locator_ids' received in the reply message. These IDs
# are then used to deliver the missing LOB data to the server via WRITE_LOB_REQUESTs.
for lob_buffer, lob_locator_id in izip(unwritten_lobs, part.locator_ids):
# store locator_id in every lob buffer instance for later reference:
lob_buffer.locator_id = lob_locator_id
self._perform_lob_write_requests(unwritten_lobs)
else:
raise InterfaceError("Prepared insert statement response, unexpected part kind %d." % part.kind)
self._executed = True | Handle reply messages from INSERT or UPDATE statements | Below is the the instruction that describes the task:
### Input:
Handle reply messages from INSERT or UPDATE statements
### Response:
def _handle_upsert(self, parts, unwritten_lobs=()):
"""Handle reply messages from INSERT or UPDATE statements"""
self.description = None
self._received_last_resultset_part = True # set to 'True' so that cursor.fetch*() returns just empty list
for part in parts:
if part.kind == part_kinds.ROWSAFFECTED:
self.rowcount = part.values[0]
elif part.kind in (part_kinds.TRANSACTIONFLAGS, part_kinds.STATEMENTCONTEXT, part_kinds.PARAMETERMETADATA):
pass
elif part.kind == part_kinds.WRITELOBREPLY:
# This part occurrs after lobs have been submitted not at all or only partially during an insert.
# In this case the parameter part of the Request message contains a list called 'unwritten_lobs'
# with LobBuffer instances.
# Those instances are in the same order as 'locator_ids' received in the reply message. These IDs
# are then used to deliver the missing LOB data to the server via WRITE_LOB_REQUESTs.
for lob_buffer, lob_locator_id in izip(unwritten_lobs, part.locator_ids):
# store locator_id in every lob buffer instance for later reference:
lob_buffer.locator_id = lob_locator_id
self._perform_lob_write_requests(unwritten_lobs)
else:
raise InterfaceError("Prepared insert statement response, unexpected part kind %d." % part.kind)
self._executed = True |
def validate_metadata(self, handler):
""" validate that kind=category does not change the categories """
if self.meta == 'category':
new_metadata = self.metadata
cur_metadata = handler.read_metadata(self.cname)
if (new_metadata is not None and cur_metadata is not None and
not array_equivalent(new_metadata, cur_metadata)):
raise ValueError("cannot append a categorical with "
"different categories to the existing") | validate that kind=category does not change the categories | Below is the the instruction that describes the task:
### Input:
validate that kind=category does not change the categories
### Response:
def validate_metadata(self, handler):
""" validate that kind=category does not change the categories """
if self.meta == 'category':
new_metadata = self.metadata
cur_metadata = handler.read_metadata(self.cname)
if (new_metadata is not None and cur_metadata is not None and
not array_equivalent(new_metadata, cur_metadata)):
raise ValueError("cannot append a categorical with "
"different categories to the existing") |
def placeholder(type_):
"""Returns the EmptyVal instance for the given type"""
typetuple = type_ if isinstance(type_, tuple) else (type_,)
if any in typetuple:
typetuple = any
if typetuple not in EMPTY_VALS:
EMPTY_VALS[typetuple] = EmptyVal(typetuple)
return EMPTY_VALS[typetuple] | Returns the EmptyVal instance for the given type | Below is the the instruction that describes the task:
### Input:
Returns the EmptyVal instance for the given type
### Response:
def placeholder(type_):
"""Returns the EmptyVal instance for the given type"""
typetuple = type_ if isinstance(type_, tuple) else (type_,)
if any in typetuple:
typetuple = any
if typetuple not in EMPTY_VALS:
EMPTY_VALS[typetuple] = EmptyVal(typetuple)
return EMPTY_VALS[typetuple] |
def join(self, joiner, formatter=lambda s, t: t.format(s),
template="{}"):
"""Join values and convert to string
Example:
>>> from ww import l
>>> lst = l('012')
>>> lst.join(',')
u'0,1,2'
>>> lst.join(',', template="{}#")
u'0#,1#,2#'
>>> string = lst.join(',',\
formatter = lambda x, y: str(int(x) ** 2))
>>> string
u'0,1,4'
"""
return ww.s(joiner).join(self, formatter, template) | Join values and convert to string
Example:
>>> from ww import l
>>> lst = l('012')
>>> lst.join(',')
u'0,1,2'
>>> lst.join(',', template="{}#")
u'0#,1#,2#'
>>> string = lst.join(',',\
formatter = lambda x, y: str(int(x) ** 2))
>>> string
u'0,1,4' | Below is the the instruction that describes the task:
### Input:
Join values and convert to string
Example:
>>> from ww import l
>>> lst = l('012')
>>> lst.join(',')
u'0,1,2'
>>> lst.join(',', template="{}#")
u'0#,1#,2#'
>>> string = lst.join(',',\
formatter = lambda x, y: str(int(x) ** 2))
>>> string
u'0,1,4'
### Response:
def join(self, joiner, formatter=lambda s, t: t.format(s),
template="{}"):
"""Join values and convert to string
Example:
>>> from ww import l
>>> lst = l('012')
>>> lst.join(',')
u'0,1,2'
>>> lst.join(',', template="{}#")
u'0#,1#,2#'
>>> string = lst.join(',',\
formatter = lambda x, y: str(int(x) ** 2))
>>> string
u'0,1,4'
"""
return ww.s(joiner).join(self, formatter, template) |
def filter(self, model=None, context=None):
"""
Perform filtering on the model. Will change model in place.
:param model: object or dict
:param context: object, dict or None
:return: None
"""
if model is None:
return
# properties
self.filter_properties(model, context=context)
# entities
self.filter_entities(model, context=context)
# collections
self.filter_collections(model, context=context) | Perform filtering on the model. Will change model in place.
:param model: object or dict
:param context: object, dict or None
:return: None | Below is the the instruction that describes the task:
### Input:
Perform filtering on the model. Will change model in place.
:param model: object or dict
:param context: object, dict or None
:return: None
### Response:
def filter(self, model=None, context=None):
"""
Perform filtering on the model. Will change model in place.
:param model: object or dict
:param context: object, dict or None
:return: None
"""
if model is None:
return
# properties
self.filter_properties(model, context=context)
# entities
self.filter_entities(model, context=context)
# collections
self.filter_collections(model, context=context) |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.