Unnamed: 0
int64 0
389k
| code
stringlengths 26
79.6k
| docstring
stringlengths 1
46.9k
|
---|---|---|
10,400 | def parse_grain(grain):
if not grain:
return InstantTime.day
if grain.lower() == :
return InstantTime.week
return InstantTime.day | Parse a string to a granularity, e.g. "Day" to InstantTime.day.
:param grain: a string representing a granularity. |
10,401 | def get_prev_status_from_history(instance, status=None):
target = status or api.get_workflow_status_of(instance)
history = getReviewHistory(instance, reverse=True)
history = map(lambda event: event["review_state"], history)
if target not in history or history.index(target) == len(history)-1:
return None
return history[history.index(target)+1] | Returns the previous status of the object. If status is set, returns the
previous status before the object reached the status passed in.
If instance has reached the status passed in more than once, only the last
one is considered. |
10,402 | def _X_selected(X, selected):
n_features = X.shape[1]
ind = np.arange(n_features)
sel = np.zeros(n_features, dtype=bool)
sel[np.asarray(selected)] = True
non_sel = np.logical_not(sel)
n_selected = np.sum(sel)
X_sel = X[:, ind[sel]]
X_not_sel = X[:, ind[non_sel]]
return X_sel, X_not_sel, n_selected, n_features | Split X into selected features and other features |
10,403 | def debug(ftn, txt):
if debug_p:
sys.stdout.write("{0}.{1}:{2}\n".format(modname, ftn, txt))
sys.stdout.flush() | Used for debugging. |
10,404 | def pull_full_properties(self):
full_properties = self.manager.session.get(self._uri)
self._properties = dict(full_properties)
self._properties_timestamp = int(time.time())
self._full_properties = True | Retrieve the full set of resource properties and cache them in this
object.
Authorization requirements:
* Object-access permission to this resource.
Raises:
:exc:`~zhmcclient.HTTPError`
:exc:`~zhmcclient.ParseError`
:exc:`~zhmcclient.AuthError`
:exc:`~zhmcclient.ConnectionError` |
10,405 | def run_via_binary(self, command=None, foreground=False, volumes=None,
additional_opts=None, default_options=None, name=None, *args, **kwargs):
command = deepcopy(command) or []
volumes = deepcopy(volumes) or []
additional_opts = deepcopy(additional_opts) or []
internalkw = deepcopy(kwargs) or {}
inernalargs = deepcopy(args) or []
if default_options is None:
default_options = ["-b"]
logger.info("run container via binary in background")
machine_name = constants.CONU_ARTIFACT_TAG
if name:
machine_name += name
else:
machine_name += random_str()
if not foreground:
internalkw["stdout"] = subprocess.PIPE
internalkw["stderr"] = subprocess.PIPE
additional_opts += default_options
if volumes:
additional_opts += self.get_volume_options(volumes=volumes)
logger.debug("starting NSPAWN")
systemd_command = [
"systemd-nspawn",
"--machine",
machine_name,
"-i",
self.local_location] + additional_opts + command
logger.debug("Start command: %s" % " ".join(systemd_command))
callback_method = (subprocess.Popen, systemd_command, inernalargs, internalkw)
self.container_process = NspawnContainer.internal_run_container(
name=machine_name,
callback_method=callback_method,
foreground=foreground
)
if foreground:
return self.container_process
else:
return NspawnContainer(self, None, name=machine_name,
start_process=self.container_process, start_action=callback_method) | Create new instance NspawnContianer in case of not running at foreground, in case foreground run, return process
object
:param command: list - command to run
:param foreground: bool - run process at foreground
:param volumes: list - put additional bind mounts
:param additional_opts: list of more boot options for systemd-nspawn command
:param default_options: default boot option (-b)
:param name: str - name of running instance
:param args: pass thru params to subprocess.Popen
:param kwargs: pass thru params to subprocess.Popen
:return: process or NspawnContianer instance |
10,406 | def transformer_image_decoder(targets,
encoder_output,
ed_attention_bias,
hparams,
name=None):
with tf.variable_scope(name, default_name="transformer_dec"):
batch_size = common_layers.shape_list(targets)[0]
targets = tf.reshape(targets, [batch_size,
hparams.img_len,
hparams.img_len,
hparams.num_channels * hparams.hidden_size])
decoder_input, _, _ = cia.prepare_decoder(targets, hparams)
decoder_output = cia.transformer_decoder_layers(
decoder_input,
encoder_output,
hparams.num_decoder_layers or hparams.num_hidden_layers,
hparams,
attention_type=hparams.dec_attention_type,
encoder_decoder_attention_bias=ed_attention_bias,
name="decoder")
decoder_output = tf.reshape(decoder_output,
[batch_size,
hparams.img_len,
hparams.img_len * hparams.num_channels,
hparams.hidden_size])
return decoder_output | Transformer image decoder over targets with local attention.
Args:
targets: Tensor of shape [batch, ...], and whose size is batch * height *
width * hparams.num_channels * hparams.hidden_size.
encoder_output: Tensor of shape [batch, length_kv, hparams.hidden_size].
ed_attention_bias: Tensor which broadcasts with shape [batch,
hparams.num_heads, length_q, length_kv]. Encoder-decoder attention bias.
hparams: HParams.
name: string, variable scope.
Returns:
Tensor of shape [batch, height, width * hparams.num_channels,
hparams.hidden_size]. |
10,407 | def gep(self, ptr, indices, inbounds=False, name=):
instr = instructions.GEPInstr(self.block, ptr, indices,
inbounds=inbounds, name=name)
self._insert(instr)
return instr | Compute effective address (getelementptr):
name = getelementptr ptr, <indices...> |
10,408 | def get(self, *args, **kwargs):
try:
req_func = self.session.get if self.session else requests.get
req = req_func(*args, **kwargs)
req.raise_for_status()
self.failed_last = False
return req
except requests.exceptions.RequestException as e:
self.log_error(e)
for i in range(1, self.num_retries):
sleep_time = self.retry_rate * i
self.log_function("Retrying in %s seconds" % sleep_time)
self._sleep(sleep_time)
try:
req = requests.get(*args, **kwargs)
req.raise_for_status()
self.log_function("New request successful")
return req
except requests.exceptions.RequestException:
self.log_function("New request failed")
if not self.failed_last:
self.failed_last = True
raise ApiError(e)
else:
raise FatalApiError(e) | An interface for get requests that handles errors more gracefully to
prevent data loss |
10,409 | def pipe_util(func):
@wraps(func)
def pipe_util_wrapper(function, *args, **kwargs):
if isinstance(function, XObject):
function = ~function
original_function = function
if args or kwargs:
function = xpartial(function, *args, **kwargs)
name = lambda: % (get_name(func), .join(
filter(None, (get_name(original_function), repr_args(*args, **kwargs)))))
f = func(function)
result = pipe | set_name(name, f)
attrs = getattr(f, , {})
for k, v in dict_items(attrs):
setattr(result, k, v)
return result
return pipe_util_wrapper | Decorator that handles X objects and partial application for pipe-utils. |
10,410 | def advanced_search(pattern):
query_parsed = QUERY.parseString(pattern)
return Entry.published.filter(query_parsed[0]).distinct() | Parse the grammar of a pattern and build a queryset with it. |
10,411 | def fisher_by_pol(data):
FisherByPoles = {}
DIblock, nameblock, locblock = [], [], []
for rec in data:
if in list(rec.keys()) and in list(rec.keys()):
DIblock.append([float(rec["dec"]), float(rec["inc"])])
else:
continue
if in list(rec.keys()):
nameblock.append(rec[])
else:
nameblock.append("")
if in list(rec.keys()):
locblock.append(rec[])
else:
locblock.append("")
ppars = doprinc(np.array(DIblock))
reference_DI = [ppars[], ppars[]]
if reference_DI[0] > 90 and reference_DI[0] < 270:
reference_DI[0] = (reference_DI[0] + 180.) % 360
reference_DI[1] = reference_DI[1] * -1.
nDIs, rDIs, all_DI, npars, rpars = [], [], [], [], []
nlist, rlist, alllist = "", "", ""
nloclist, rloclist, allloclist = "", "", ""
for k in range(len(DIblock)):
if angle([DIblock[k][0], DIblock[k][1]], reference_DI) > 90.:
rDIs.append(DIblock[k])
rlist = rlist + ":" + nameblock[k]
if locblock[k] not in rloclist:
rloclist = rloclist + ":" + locblock[k]
all_DI.append([(DIblock[k][0] + 180.) % 360., -1. * DIblock[k][1]])
alllist = alllist + ":" + nameblock[k]
if locblock[k] not in allloclist:
allloclist = allloclist + ":" + locblock[k]
else:
nDIs.append(DIblock[k])
nlist = nlist + ":" + nameblock[k]
if locblock[k] not in nloclist:
nloclist = nloclist + ":" + locblock[k]
all_DI.append(DIblock[k])
alllist = alllist + ":" + nameblock[k]
if locblock[k] not in allloclist:
allloclist = allloclist + ":" + locblock[k]
for mode in [, , ]:
if mode == and len(nDIs) > 2:
fpars = fisher_mean(nDIs)
fpars[] = nlist.strip()
fpars[] = nloclist.strip()
FisherByPoles[mode] = fpars
elif mode == and len(rDIs) > 2:
fpars = fisher_mean(rDIs)
fpars[] = rlist.strip()
fpars[] = rloclist.strip()
FisherByPoles[mode] = fpars
elif mode == and len(all_DI) > 2:
fpars = fisher_mean(all_DI)
fpars[] = alllist.strip()
fpars[] = allloclist.strip()
FisherByPoles[mode] = fpars
return FisherByPoles | input: as in dolnp (list of dictionaries with 'dec' and 'inc')
description: do fisher mean after splitting data into two polarity domains.
output: three dictionaries:
'A'= polarity 'A'
'B = polarity 'B'
'ALL'= switching polarity of 'B' directions, and calculate fisher mean of all data
code modified from eqarea_ell.py b rshaar 1/23/2014 |
10,412 | def indices_for_body(self, name, step=3):
for j, body in enumerate(self.bodies):
if body.name == name:
return list(range(j * step, (j + 1) * step))
return [] | Get a list of the indices for a specific body.
Parameters
----------
name : str
The name of the body to look up.
step : int, optional
The number of numbers for each body. Defaults to 3, should be set
to 4 for body rotation (since quaternions have 4 values).
Returns
-------
list of int :
A list of the index values for quantities related to the named body. |
10,413 | def mount_disks(self):
result = True
for disk in self.disks:
result = disk.mount() and result
return result | Mounts all disks in the parser, i.e. calling :func:`Disk.mount` on all underlying disks. You probably want to
use :func:`init` instead.
:return: whether all mounts have succeeded
:rtype: bool |
10,414 | def ipv6_acl_ipv6_access_list_standard_name(self, **kwargs):
config = ET.Element("config")
ipv6_acl = ET.SubElement(config, "ipv6-acl", xmlns="urn:brocade.com:mgmt:brocade-ipv6-access-list")
ipv6 = ET.SubElement(ipv6_acl, "ipv6")
access_list = ET.SubElement(ipv6, "access-list")
standard = ET.SubElement(access_list, "standard")
name = ET.SubElement(standard, "name")
name.text = kwargs.pop()
callback = kwargs.pop(, self._callback)
return callback(config) | Auto Generated Code |
10,415 | def get_app(system_version_file: str = None,
config_file_override: str = None,
name_override: str = None,
loop: asyncio.AbstractEventLoop = None) -> web.Application:
if not system_version_file:
system_version_file = BR_BUILTIN_VERSION_FILE
version = get_version(system_version_file)
name = name_override or name_management.get_name()
config_obj = config.load(config_file_override)
LOG.info("Setup: " + .join([
f,
f
f,
f
f,
f
f,
f
f,
f
f,
f
f,
f
]))
if not loop:
loop = asyncio.get_event_loop()
app = web.Application(loop=loop, middlewares=[log_error_middleware])
app[config.CONFIG_VARNAME] = config_obj
app[constants.RESTART_LOCK_NAME] = asyncio.Lock()
app[constants.DEVICE_NAME_VARNAME] = name
app.router.add_routes([
web.get(,
control.build_health_endpoint(version)),
web.post(, update.begin),
web.post(, update.cancel),
web.get(, update.status),
web.post(, update.file_upload),
web.post(, update.commit),
web.post(, control.restart),
web.get(, ssh_key_management.list_keys),
web.post(, ssh_key_management.add),
web.delete(, ssh_key_management.remove),
web.post(, name_management.set_name_endpoint),
web.get(, name_management.get_name_endpoint),
])
return app | Build and return the aiohttp.web.Application that runs the server
The params can be overloaded for testing. |
10,416 | def _encrypt_password(self, password):
if self.encryption_mode.lower() == :
return self._crypt_password(password)
elif self.encryption_mode.lower() == :
return self._md5_password(password)
elif self.encryption_mode.lower() == :
return self._md5_base_password(password)
else:
raise UnknownEncryptionMode(self.encryption_mode) | encrypt the password for given mode |
10,417 | def patch(func=None, obj=None, name=None, avoid_doublewrap=True):
if obj is None:
if isinstance(func, (type, ModuleType)):
obj = func
func = None
elif isinstance(func, (list, tuple)) and all([isinstance(i, (ModuleType, type)) for i in func]):
obj = func
func = None
if func is None:
return functools.partial(patch, obj=obj, name=name, avoid_doublewrap=avoid_doublewrap)
if name is None:
name = func.__name__
if isinstance(obj, (list, tuple)) and all([isinstance(i, (ModuleType, type)) for i in obj]):
return [patch(func=func, obj=o, name=name, avoid_doublewrap=avoid_doublewrap) for o in obj]
if not isinstance(obj, (ModuleType, type)):
raise ValueError(
"Argument passed to @patch decorator must be a "
"class or module, or a list of classes and modules")
try:
call = getattr(obj, name)
except AttributeError:
raise TypeError("%(func_repr)s does not exist" % {
: .join(
filter(None, [
getattr(obj, , None),
obj.__name__,
func.__name__],
)),
})
if avoid_doublewrap and getattr(call, , None) is func:
return
if call.im_self:
wrapper = classmethod(wrapper)
else:
wrapper = staticmethod(wrapper)
setattr(obj, name, wrapper)
return getattr(obj, name) | Decorator for monkeypatching functions on modules and classes.
Example::
# This replaces FooClass.bar with our method
@monkeybiz.patch(FooClass)
def bar(original_bar, *args, **kwargs):
print "Patched!"
return original_bar(*args, **kwargs)
# This replaces FooClass.bar and foomodule.bar with our method
@monkeybiz.patch([FooClass, foomodule])
def bar(original_bar, *args, **kwargs):
#...
The first argument to ``monkeybiz.patch`` can be either a module, a class,
or a list of modules and/or classes. The decorator also takes optional
``name`` and ``avoid_doublewrap`` keyword arguments. If ``name`` is
omitted, the name of the function being patched will be the name of the
function being decorated. If ``avoid_doublewrap`` is True (the default),
then functions and methods can only be patched once using this function.
Use ``monkeybiz.unpatch()`` to revert a monkey-patched function to its
original. |
10,418 | def create_region_from_border_clip(self, onerror = None):
rid = self.display.allocate_resource_id()
CreateRegionFromBorderClip(
display = self.display,
onerror = onerror,
opcode = self.display.get_extension_major(extname),
region = rid,
window = self,
)
return rid | Create a region of the border clip of the window, i.e. the area
that is not clipped by the parent and any sibling windows. |
10,419 | def prepare_io_example_1() -> Tuple[devicetools.Nodes, devicetools.Elements]:
from hydpy import TestIO
TestIO.clear()
from hydpy.core.filetools import SequenceManager
hydpy.pub.sequencemanager = SequenceManager()
with TestIO():
hydpy.pub.sequencemanager.inputdirpath =
hydpy.pub.sequencemanager.fluxdirpath =
hydpy.pub.sequencemanager.statedirpath =
hydpy.pub.sequencemanager.nodedirpath =
hydpy.pub.timegrids = , ,
from hydpy import Node, Nodes, Element, Elements, prepare_model
node1 = Node()
node2 = Node(, variable=)
nodes = Nodes(node1, node2)
element1 = Element(, outlets=node1)
element2 = Element(, outlets=node1)
element3 = Element(, outlets=node1)
elements = Elements(element1, element2, element3)
from hydpy.models import lland_v1, lland_v2
element1.model = prepare_model(lland_v1)
element2.model = prepare_model(lland_v1)
element3.model = prepare_model(lland_v2)
from hydpy.models.lland import ACKER
for idx, element in enumerate(elements):
parameters = element.model.parameters
parameters.control.nhru(idx+1)
parameters.control.lnk(ACKER)
parameters.derived.absfhru(10.0)
with hydpy.pub.options.printprogress(False):
nodes.prepare_simseries()
elements.prepare_inputseries()
elements.prepare_fluxseries()
elements.prepare_stateseries()
def init_values(seq, value1_):
value2_ = value1_ + len(seq.series.flatten())
values_ = numpy.arange(value1_, value2_, dtype=float)
seq.testarray = values_.reshape(seq.seriesshape)
seq.series = seq.testarray.copy()
return value2_
import numpy
value1 = 0
for subname, seqname in zip([, , ],
[, , ]):
for element in elements:
subseqs = getattr(element.model.sequences, subname)
value1 = init_values(getattr(subseqs, seqname), value1)
for node in nodes:
value1 = init_values(node.sequences.sim, value1)
return nodes, elements | Prepare an IO example configuration.
>>> from hydpy.core.examples import prepare_io_example_1
>>> nodes, elements = prepare_io_example_1()
(1) Prepares a short initialisation period of five days:
>>> from hydpy import pub
>>> pub.timegrids
Timegrids(Timegrid('2000-01-01 00:00:00',
'2000-01-05 00:00:00',
'1d'))
(2) Prepares a plain IO testing directory structure:
>>> pub.sequencemanager.inputdirpath
'inputpath'
>>> pub.sequencemanager.fluxdirpath
'outputpath'
>>> pub.sequencemanager.statedirpath
'outputpath'
>>> pub.sequencemanager.nodedirpath
'nodepath'
>>> import os
>>> from hydpy import TestIO
>>> with TestIO():
... print(sorted(filename for filename in os.listdir('.')
... if not filename.startswith('_')))
['inputpath', 'nodepath', 'outputpath']
(3) Returns three |Element| objects handling either application model
|lland_v1| or |lland_v2|, and two |Node| objects handling variables
`Q` and `T`:
>>> for element in elements:
... print(element.name, element.model)
element1 lland_v1
element2 lland_v1
element3 lland_v2
>>> for node in nodes:
... print(node.name, node.variable)
node1 Q
node2 T
(4) Prepares the time series data of the input sequence
|lland_inputs.Nied|, flux sequence |lland_fluxes.NKor|, and state
sequence |lland_states.BoWa| for each model instance, and |Sim| for
each node instance (all values are different), e.g.:
>>> nied1 = elements.element1.model.sequences.inputs.nied
>>> nied1.series
InfoArray([ 0., 1., 2., 3.])
>>> nkor1 = elements.element1.model.sequences.fluxes.nkor
>>> nkor1.series
InfoArray([[ 12.],
[ 13.],
[ 14.],
[ 15.]])
>>> bowa3 = elements.element3.model.sequences.states.bowa
>>> bowa3.series
InfoArray([[ 48., 49., 50.],
[ 51., 52., 53.],
[ 54., 55., 56.],
[ 57., 58., 59.]])
>>> sim2 = nodes.node2.sequences.sim
>>> sim2.series
InfoArray([ 64., 65., 66., 67.])
(5) All sequences carry |numpy.ndarray| objects with (deep) copies
of the time series data for testing:
>>> import numpy
>>> (numpy.all(nied1.series == nied1.testarray) and
... numpy.all(nkor1.series == nkor1.testarray) and
... numpy.all(bowa3.series == bowa3.testarray) and
... numpy.all(sim2.series == sim2.testarray))
InfoArray(True, dtype=bool)
>>> bowa3.series[1, 2] = -999.0
>>> numpy.all(bowa3.series == bowa3.testarray)
InfoArray(False, dtype=bool) |
10,420 | def nb_to_html(nb_path):
exporter = html.HTMLExporter(template_file=)
output, resources = exporter.from_filename(nb_path)
header = output.split(, 1)[1].split(,1)[0]
body = output.split(, 1)[1].split(,1)[0]
header = header.replace(, )
header = header.replace(, )
filter_strings = [
,
,
,
,
,
]
filter_strings.extend([ % (i+1) for i in range(6)])
header_lines = filter(
lambda x: not any([s in x for s in filter_strings]), header.split())
header = .join(header_lines)
lines = []
lines.append(header)
lines.append(body)
lines.append()
return .join(lines) | convert notebook to html |
10,421 | def manage_job_with_blocking_dependencies(self, job_record):
composite_state = self.timetable.dependent_on_composite_state(job_record)
assert isinstance(composite_state, NodesCompositeState)
if composite_state.all_processed:
self.manage_job(job_record)
elif composite_state.skipped_present:
job_record.state = job.STATE_SKIPPED
self.job_dao.update(job_record)
self.mq_transmitter.publish_job_status(job_record)
msg = \
.format(job_record.process_name, job_record.timeperiod)
self._log_message(WARNING, job_record.process_name, job_record.timeperiod, msg)
else:
msg = \
.format(job_record.process_name, job_record.timeperiod)
self._log_message(INFO, job_record.process_name, job_record.timeperiod, msg) | method will trigger job processing only if:
- all dependencies are in [STATE_PROCESSED, STATE_NOOP]
NOTICE: method will transfer current job into STATE_SKIPPED if any dependency is in STATE_SKIPPED |
10,422 | def count(self, query, _or=False):
if isinstance(query, str):
return self.fm.count(query, MapIntInt({}))
else:
search_results = []
for q in query:
dids = MapIntInt({})
self.fm.search(q, dids)
search_results.append(dids.asdict())
merged_dids = self._merge_search_result(search_results, _or)
counts = 0
for did in merged_dids:
if _or:
counts += reduce(add, [int(x.pop(did, 0)) for x in search_results])
else:
counts += min([int(x.pop(did, 0)) for x in search_results])
return counts | Count word from FM-index
Params:
<str> | <Sequential> query
<bool> _or
<list <str> > ignores
Return:
<int> counts |
10,423 | def accept_line(self, logevent):
if ("is now in state" in logevent.line_str and
logevent.split_tokens[-1] in self.states):
return True
if ("replSet" in logevent.line_str and
logevent.thread == "rsMgr" and
logevent.split_tokens[-1] in self.states):
return True
return False | Return True on match.
Only match log lines containing 'is now in state' (reflects other
node's state changes) or of type "[rsMgr] replSet PRIMARY" (reflects
own state changes). |
10,424 | def report_fit(self):
if not self.fitted:
print()
return
print(.format(
self.log_likelihoods[]))
print(.format(
self.log_likelihoods[]))
print(.format(
self.log_likelihoods[]))
tbl = PrettyTable(
[, ])
tbl = PrettyTable()
tbl.add_column(, self.fit_parameters.index.values)
for col in (, , ):
tbl.add_column(col, self.fit_parameters[col].values)
tbl.align[] =
tbl.float_format =
print(tbl) | Print a report of the fit results. |
10,425 | def calc_q0_perc_uz_v1(self):
con = self.parameters.control.fastaccess
der = self.parameters.derived.fastaccess
flu = self.sequences.fluxes.fastaccess
sta = self.sequences.states.fastaccess
flu.perc = 0.
flu.q0 = 0.
for dummy in range(con.recstep):
sta.uz += der.dt*flu.inuz
d_perc = min(der.dt*con.percmax*flu.contriarea, sta.uz)
sta.uz -= d_perc
flu.perc += d_perc
if sta.uz > 0.:
if flu.contriarea > 0.:
d_q0 = (der.dt*con.k *
(sta.uz/flu.contriarea)**(1.+con.alpha))
d_q0 = min(d_q0, sta.uz)
else:
d_q0 = sta.uz
sta.uz -= d_q0
flu.q0 += d_q0
else:
d_q0 = 0. | Perform the upper zone layer routine which determines percolation
to the lower zone layer and the fast response of the hland model.
Note that the system behaviour of this method depends strongly on the
specifications of the options |RespArea| and |RecStep|.
Required control parameters:
|RecStep|
|PercMax|
|K|
|Alpha|
Required derived parameters:
|DT|
Required fluxes sequence:
|InUZ|
Calculated fluxes sequences:
|Perc|
|Q0|
Updated state sequence:
|UZ|
Basic equations:
:math:`\\frac{dUZ}{dt} = InUZ - Perc - Q0` \n
:math:`Perc = PercMax \\cdot ContriArea` \n
:math:`Q0 = K * \\cdot \\left( \\frac{UZ}{ContriArea} \\right)^{1+Alpha}`
Examples:
The upper zone layer routine is an exception compared to
the other routines of the HydPy-H-Land model, regarding its
consideration of numerical accuracy. To increase the accuracy of
the numerical integration of the underlying ordinary differential
equation, each simulation step can be divided into substeps, which
are all solved with first order accuracy. In the first example,
this option is omitted through setting the RecStep parameter to one:
>>> from hydpy.models.hland import *
>>> parameterstep('1d')
>>> simulationstep('12h')
>>> recstep(2)
>>> derived.dt = 1/recstep
>>> percmax(2.0)
>>> alpha(1.0)
>>> k(2.0)
>>> fluxes.contriarea = 1.0
>>> fluxes.inuz = 0.0
>>> states.uz = 1.0
>>> model.calc_q0_perc_uz_v1()
>>> fluxes.perc
perc(1.0)
>>> fluxes.q0
q0(0.0)
>>> states.uz
uz(0.0)
Due to the sequential calculation of the upper zone routine, the
upper zone storage is drained completely through percolation and
no water is left for fast discharge response. By dividing the
simulation step in 100 substeps, the results are quite different:
>>> recstep(200)
>>> derived.dt = 1.0/recstep
>>> states.uz = 1.0
>>> model.calc_q0_perc_uz_v1()
>>> fluxes.perc
perc(0.786934)
>>> fluxes.q0
q0(0.213066)
>>> states.uz
uz(0.0)
Note that the assumed length of the simulation step is only a
half day. Hence the effective values of the maximum percolation
rate and the storage coefficient is not 2 but 1:
>>> percmax
percmax(2.0)
>>> k
k(2.0)
>>> percmax.value
1.0
>>> k.value
1.0
By decreasing the contributing area one decreases percolation but
increases fast discharge response:
>>> fluxes.contriarea = 0.5
>>> states.uz = 1.0
>>> model.calc_q0_perc_uz_v1()
>>> fluxes.perc
perc(0.434108)
>>> fluxes.q0
q0(0.565892)
>>> states.uz
uz(0.0)
Resetting RecStep leads to more transparent results. Note that, due
to the large value of the storage coefficient and the low accuracy
of the numerical approximation, direct discharge drains the rest of
the upper zone storage:
>>> recstep(2)
>>> derived.dt = 1.0/recstep
>>> states.uz = 1.0
>>> model.calc_q0_perc_uz_v1()
>>> fluxes.perc
perc(0.5)
>>> fluxes.q0
q0(0.5)
>>> states.uz
uz(0.0)
Applying a more reasonable storage coefficient results in:
>>> k(0.5)
>>> states.uz = 1.0
>>> model.calc_q0_perc_uz_v1()
>>> fluxes.perc
perc(0.5)
>>> fluxes.q0
q0(0.25)
>>> states.uz
uz(0.25)
Adding an input of 0.3 mm results the same percolation value (which,
in the given example, is determined by the maximum percolation rate
only), but in an increases value of the direct response (which
always depends on the actual upper zone storage directly):
>>> fluxes.inuz = 0.3
>>> states.uz = 1.0
>>> model.calc_q0_perc_uz_v1()
>>> fluxes.perc
perc(0.5)
>>> fluxes.q0
q0(0.64)
>>> states.uz
uz(0.16)
Due to the same reasons, another increase in numerical accuracy has
no impact on percolation but decreases the direct response in the
given example:
>>> recstep(200)
>>> derived.dt = 1.0/recstep
>>> states.uz = 1.0
>>> model.calc_q0_perc_uz_v1()
>>> fluxes.perc
perc(0.5)
>>> fluxes.q0
q0(0.421708)
>>> states.uz
uz(0.378292) |
10,426 | def _extract_input_processes(self):
for proc in self.processes:
ends = proc.split()
pid, name = self._get_tuple(ends)
self.input_processes.append((pid, name)) | Given user input of interested processes, it will extract the info and output a list of tuples.
- input can be multiple values, separated by space;
- either pid or process_name is optional
- e.g., "10001/python 10002/java cpp"
:return: None |
10,427 | def _get_text(node, tag, default=None):
try:
return node.find(tag).text
except AttributeError:
return default | Get the text for the provided tag from the provided node |
10,428 | def _set_valid_props(artist, kwargs):
artist.set(**{k: kwargs[k] for k in kwargs if hasattr(artist, "set_" + k)})
return artist | Set valid properties for the artist, dropping the others. |
10,429 | def getSpecs(self):
content = {}
if len(self.roles) != 0:
content["roles"] = self.roles
if self.password:
content["password"] = self.password
return content | Get specs
Returns:
dict: Representation of the object |
10,430 | def merge_blocks(a_blocks, b_blocks):
assert a_blocks[-1][2] == b_blocks[-1][2] == 0
assert a_blocks[-1] == b_blocks[-1]
combined_blocks = sorted(list(set(a_blocks + b_blocks)))
i = j = 0
for a, b, size in combined_blocks:
assert i <= a
assert j <= b
i = a + size
j = b + size
return combined_blocks | Given two lists of blocks, combine them, in the proper order.
Ensure that there are no overlaps, and that they are for sequences of the
same length. |
10,431 | def _filtered_data_zeroed(self):
filt_data = self._filtered_data[self._slice]
filt_data = np.where(self._total_mask, 0., filt_data)
filt_data[filt_data < 0] = 0.
return filt_data.astype(np.float64) | A 2D `~numpy.nddarray` cutout from the input ``filtered_data``
(or ``data`` if ``filtered_data`` is `None`) where any masked
pixels (_segment_mask, _input_mask, or _data_mask) are set to
zero. Invalid values (e.g. NaNs or infs) are set to zero.
Units are dropped on the input ``filtered_data`` (or ``data``).
Negative data values are also set to zero because negative
pixels (especially at large radii) can result in image moments
that result in negative variances. |
10,432 | def add_integer_proxy_for(self, label: str, shape: Collection[int] = None) -> Vertex:
if shape is None:
return Vertex._from_java_vertex(self.unwrap().addIntegerProxyFor(_VertexLabel(label).unwrap()))
else:
return Vertex._from_java_vertex(self.unwrap().addIntegerProxyFor(_VertexLabel(label).unwrap(), shape)) | Creates a proxy vertex for the given label and adds to the sequence item |
10,433 | def get_comparable_values(self):
return (int(self.major), int(self.minor), str(self.label), str(self.name)) | Return a tupple of values representing the unicity of the object |
10,434 | def encode_events(self, duration, events, values, dtype=np.bool):
frames = time_to_frames(events, sr=self.sr,
hop_length=self.hop_length)
n_total = int(time_to_frames(duration, sr=self.sr,
hop_length=self.hop_length))
n_alloc = n_total
if np.any(frames):
n_alloc = max(n_total, 1 + int(frames.max()))
target = np.empty((n_alloc, values.shape[1]),
dtype=dtype)
target.fill(fill_value(dtype))
values = values.astype(dtype)
for column, event in zip(values, frames):
target[event] += column
return target[:n_total] | Encode labeled events as a time-series matrix.
Parameters
----------
duration : number
The duration of the track
events : ndarray, shape=(n,)
Time index of the events
values : ndarray, shape=(n, m)
Values array. Must have the same first index as `events`.
dtype : numpy data type
Returns
-------
target : ndarray, shape=(n_frames, n_values) |
10,435 | def replace(self, text=None):
if text is None or isinstance(text, bool):
text = self.lineEditReplace.text()
current_occurences = self._current_occurrence()
occurrences = self.get_occurences()
if current_occurences == -1:
self.select_next()
current_occurences = self._current_occurrence()
try:
try:
self.editor.textChanged.disconnect(self.request_search)
except (RuntimeError, TypeError):
pass
occ = occurrences[current_occurences]
cursor = self.editor.textCursor()
cursor.setPosition(occ[0])
cursor.setPosition(occ[1], cursor.KeepAnchor)
len_to_replace = len(cursor.selectedText())
len_replacement = len(text)
offset = len_replacement - len_to_replace
cursor.insertText(text)
self.editor.setTextCursor(cursor)
self._remove_occurrence(current_occurences, offset)
current_occurences -= 1
self._set_current_occurrence(current_occurences)
self.select_next()
self.cpt_occurences = len(self.get_occurences())
self._update_label_matches()
self._update_buttons()
return True
except IndexError:
return False
finally:
self.editor.textChanged.connect(self.request_search) | Replaces the selected occurrence.
:param text: The replacement text. If it is None, the lineEditReplace's
text is used instead.
:return True if the text could be replace properly, False if there is
no more occurrences to replace. |
10,436 | def view_on_site(self, request, content_type_id, object_id):
: content_type_id,
: object_id,
})
try:
get_absolute_url = obj.get_absolute_url
except AttributeError:
raise Http404(_("%(ct_name)s objects donct_name': content_type.name,
})
absurl = get_absolute_url()
return HttpResponseRedirect(absurl) | Redirect to an object's page based on a content-type ID and an object ID. |
10,437 | def fiemap(fd):
count = 72
fiemap_cbuf = ffi.new(
,
ffi.sizeof()
+ count * ffi.sizeof())
fiemap_pybuf = ffi.buffer(fiemap_cbuf)
fiemap_ptr = ffi.cast(, fiemap_cbuf)
assert ffi.sizeof(fiemap_cbuf) <= 4096
while True:
fiemap_ptr.fm_length = lib.FIEMAP_MAX_OFFSET
fiemap_ptr.fm_extent_count = count
fcntl.ioctl(fd, lib.FS_IOC_FIEMAP, fiemap_pybuf)
if fiemap_ptr.fm_mapped_extents == 0:
break
for i in range(fiemap_ptr.fm_mapped_extents):
extent = fiemap_ptr.fm_extents[i]
yield FiemapExtent(
extent.fe_logical, extent.fe_physical,
extent.fe_length, extent.fe_flags)
fiemap_ptr.fm_start = extent.fe_logical + extent.fe_length | Gets a map of file extents. |
10,438 | def tree(path, depth=2, topdown=True, followlinks=False, showhidden=False):
rt = []
for root, dirs, files in os.walk(path, topdown=topdown, followlinks=followlinks):
if not showhidden and File.is_hidden(root):
continue
current_depth = len(os.path.relpath(root, path).split(os.sep))
if current_depth > depth:
continue
if showhidden:
_tuple = (
root,
[File(os.path.join(root, _dir)) for _dir in dirs],
[File(os.path.join(root, _file)) for _file in files]
)
else:
_tuple = (
root,
[File(os.path.join(root, _dir)) for _dir in dirs if _dir[0] != ],
[File(os.path.join(root, _file)) for _file in files if _file[0] != ]
)
rt.append(_tuple)
return rt | A generator return a tuple with three elements (root, dirs, files). |
10,439 | def crypto_sign(msg, sk):
if len(sk) != SECRETKEYBYTES:
raise ValueError("Bad signing key length %d" % len(sk))
vkbytes = sk[PUBLICKEYBYTES:]
skbytes = sk[:PUBLICKEYBYTES]
sig = djbec.signature(msg, skbytes, vkbytes)
return sig + msg | Return signature+message given message and secret key.
The signature is the first SIGNATUREBYTES bytes of the return value.
A copy of msg is in the remainder. |
10,440 | def usages(self):
api_version = self._get_api_version()
if api_version == :
from .v2018_03_01_preview.operations import UsagesOperations as OperationClass
elif api_version == :
from .v2018_07_01.operations import UsagesOperations as OperationClass
else:
raise NotImplementedError("APIVersion {} is not available".format(api_version))
return OperationClass(self._client, self.config, Serializer(self._models_dict(api_version)), Deserializer(self._models_dict(api_version))) | Instance depends on the API version:
* 2018-03-01-preview: :class:`UsagesOperations<azure.mgmt.storage.v2018_03_01_preview.operations.UsagesOperations>`
* 2018-07-01: :class:`UsagesOperations<azure.mgmt.storage.v2018_07_01.operations.UsagesOperations>` |
10,441 | def SetUseSSL(self, use_ssl):
self._use_ssl = use_ssl
logger.debug(.format(use_ssl)) | Sets the use of ssl.
Args:
use_ssl (bool): enforces use of ssl. |
10,442 | def cycle_gan_internal(inputs, targets, _, hparams):
with tf.variable_scope("cycle_gan"):
inputs_orig, targets_orig = tf.to_int32(inputs), tf.to_int32(targets)
inputs = common_layers.embedding(
inputs_orig, hparams.vocab_size, hparams.hidden_size, "embed")
targets = common_layers.embedding(
targets_orig, hparams.vocab_size, hparams.hidden_size,
"embed", reuse=True)
x, _ = split_on_batch(inputs)
_, y = split_on_batch(targets)
y_fake = generator(y, hparams, "Fy", reuse=False)
y_to_x_loss = lossfn(y, y_fake, True, hparams, True, "YtoX")
x_fake = generator(x, hparams, "Gx", reuse=False)
x_to_y_loss = lossfn(y, x_fake, True, hparams, True, "XtoY")
y_fake_ = generator(y_fake, hparams, "Gx", reuse=True)
x_fake_ = generator(x_fake, hparams, "Fy", reuse=True)
x_to_x_loss = hparams.cycle_loss_multiplier1 * tf.reduce_mean(
tf.abs(x_fake_ - x))
y_to_y_loss = hparams.cycle_loss_multiplier2 * tf.reduce_mean(
tf.abs(y_fake_ - y))
cycloss = x_to_x_loss + y_to_y_loss
sample_generated = generator(inputs, hparams, "Gx", reuse=True)
sample_generated = tf.layers.dense(
sample_generated, hparams.vocab_size, name="softmax", reuse=None)
sample_generated = tf.stop_gradient(
tf.expand_dims(sample_generated, axis=2))
losses = {"cycloss": cycloss,
"y_to_x_loss": y_to_x_loss,
"x_to_y_loss": x_to_y_loss}
return sample_generated, losses | Cycle GAN, main step used for training. |
10,443 | def sigma_sq(self, sample):
ret = 0
for i in range(1, self.point_num + 1):
temp = self.trial_history[i - 1] - self.f_comb(i, sample)
ret += temp * temp
return 1.0 * ret / self.point_num | returns the value of sigma square, given the weight's sample
Parameters
----------
sample: list
sample is a (1 * NUM_OF_FUNCTIONS) matrix, representing{w1, w2, ... wk}
Returns
-------
float
the value of sigma square, given the weight's sample |
10,444 | def _extendrange(self, start, end):
range_positions = []
for i in range(start, end):
if i != 0:
range_positions.append(str(i))
if i < end:
range_positions.append(self.separator)
return range_positions | Creates list of values in a range with output delimiters.
Arguments:
start - range start
end - range end |
10,445 | def db_for_read(self, model, **hints):
if model._meta.app_label in self._apps:
return getattr(model, , model._meta.app_label)
return None | If the app has its own database, use it for reads |
10,446 | def parse_bismark_report(self, report, regexes):
parsed_data = {}
for k, r in regexes.items():
r_search = re.search(r, report, re.MULTILINE)
if r_search:
try:
parsed_data[k] = float(r_search.group(1))
except ValueError:
parsed_data[k] = r_search.group(1)
if len(parsed_data) == 0: return None
return parsed_data | Search a bismark report with a set of regexes |
10,447 | def syslog_generate(str_processName, str_pid):
pretoriamessage.py
localtime = time.asctime( time.localtime(time.time()) )
hostname = os.uname()[1]
syslog = % (localtime, hostname, str_processName, str_pid)
return syslog | Returns a string similar to:
Tue Oct 9 10:49:53 2012 pretoria message.py[26873]:
where 'pretoria' is the hostname, 'message.py' is the current process
name and 26873 is the current process id. |
10,448 | def slug_field_data(field, **kwargs):
min_length = kwargs.get(, 1)
max_length = kwargs.get(, field.max_length or 20)
from string import ascii_letters, digits
letters = ascii_letters + digits +
return xunit.any_string(letters = letters, min_length = min_length, max_length = max_length) | Return random value for SlugField
>>> result = any_form_field(forms.SlugField())
>>> type(result)
<type 'str'>
>>> from django.core.validators import slug_re
>>> import re
>>> re.match(slug_re, result) is not None
True |
10,449 | def get_connection(cls):
if cls.__connection_obj is None:
if cls.__connection_fn is None:
_, cls.__connection_fn = cls.from_settings()
cls.__connection_obj = cls.__connection_fn()
return cls.__connection_obj | Return connection object.
:rtype: :class:`cloud_browser.cloud.base.CloudConnection` |
10,450 | def make_sh_output(value, output_script, witness=False):
return _make_output(
value=utils.i2le_padded(value, 8),
output_script=make_sh_output_script(output_script, witness)) | int, str -> TxOut |
10,451 | def create_kubernetes_role(self, name, bound_service_account_names, bound_service_account_namespaces, ttl="",
max_ttl="", period="", policies=None, mount_point=):
if bound_service_account_names == and bound_service_account_namespaces == :
error_message =
raise exceptions.ParamValidationError(error_message)
params = {
: bound_service_account_names,
: bound_service_account_namespaces,
: ttl,
: max_ttl,
: period,
: policies,
}
url = .format(mount_point, name)
return self._adapter.post(url, json=params) | POST /auth/<mount_point>/role/:name
:param name: Name of the role.
:type name: str.
:param bound_service_account_names: List of service account names able to access this role. If set to "*" all
names are allowed, both this and bound_service_account_namespaces can not be "*".
:type bound_service_account_names: list.
:param bound_service_account_namespaces: List of namespaces allowed to access this role. If set to "*" all
namespaces are allowed, both this and bound_service_account_names can not be set to "*".
:type bound_service_account_namespaces: list.
:param ttl: The TTL period of tokens issued using this role in seconds.
:type ttl: str.
:param max_ttl: The maximum allowed lifetime of tokens issued in seconds using this role.
:type max_ttl: str.
:param period: If set, indicates that the token generated using this role should never expire.
The token should be renewed within the duration specified by this value. At each renewal, the token's TTL will
be set to the value of this parameter.
:type period: str.
:param policies: Policies to be set on tokens issued using this role
:type policies: list.
:param mount_point: The "path" the k8s auth backend was mounted on. Vault currently defaults to "kubernetes".
:type mount_point: str.
:return: Will be an empty body with a 204 status code upon success
:rtype: requests.Response. |
10,452 | def loop_template_list(loop_positions, instance, instance_type,
default_template, registry):
templates = []
local_loop_position = loop_positions[1]
global_loop_position = loop_positions[0]
instance_string = slugify(str(instance))
for key in [ % (instance_type, instance_string),
instance_string,
instance_type,
]:
try:
templates.append(registry[key][global_loop_position])
except KeyError:
pass
templates.append(
append_position(default_template, global_loop_position, ))
templates.append(
append_position(default_template, local_loop_position, ))
templates.append(default_template)
return templates | Build a list of templates from a position within a loop
and a registry of templates. |
10,453 | def needs_quotes( s ):
if s in dot_keywords:
return False
chars = [ord(c) for c in s if ord(c)>0x7f or ord(c)==0]
if chars and not id_re_dbl_quoted.match(s) and not id_re_html.match(s):
return True
for test_re in [id_re_alpha_nums, id_re_num, id_re_dbl_quoted, id_re_html, id_re_alpha_nums_with_ports]:
if test_re.match(s):
return False
m = id_re_with_port.match(s)
if m:
return needs_quotes(m.group(1)) or needs_quotes(m.group(2))
return True | Checks whether a string is a dot language ID.
It will check whether the string is solely composed
by the characters allowed in an ID or not.
If the string is one of the reserved keywords it will
need quotes too but the user will need to add them
manually. |
10,454 | def astimezone(self, tz):
if self.tzinfo is tz:
return self
if self.tzinfo:
utc = self - self.utcoffset()
else:
utc = self
return tz.fromutc(utc.replace(tzinfo=tz)) | Return a :py:class:`khayyam.JalaliDatetime` object with new :py:meth:`khayyam.JalaliDatetime.tzinfo` attribute
tz, adjusting the date and time data so the result is the same UTC time as self, but in *tz*‘s local time.
*tz* must be an instance of a :py:class:`datetime.tzinfo` subclass, and
its :py:meth:`datetime.tzinfo.utcoffset()` and :py:meth:`datetime.tzinfo.dst()` methods must not
return :py:obj:`None`. *self* must be aware (`self.tzinfo` must not be `None`, and `self.utcoffset()` must
not return `None`).
If `self.tzinfo` is `tz`, `self.astimezone(tz)` is equal to `self`: no adjustment of date or time data is
performed. Else the result is local time in time zone `tz`, representing the same UTC time as `self`:
after `astz = dt.astimezone(tz), astz - astz.utcoffset()` will usually have the same date and time data as
`dt - dt.utcoffset()`. The discussion of class :py:class:`datetime.tzinfo` explains the cases at Daylight
Saving Time transition boundaries where this cannot be achieved (an issue only if `tz` models both
standard and daylight time).
If you merely want to attach a time zone object `tz` to a datetime dt without adjustment of date and time data,
use `dt.replace(tzinfo=tz)`. If you merely want to remove the time zone object from an aware datetime dt
without conversion of date and time data, use `dt.replace(tzinfo=None)`.
Note that the default :py:meth:`datetime.tzinfo.fromutc()` method can be overridden in a
:py:class:`datetime.tzinfo` subclass to affect the result returned
by :py:meth:`khayyam.JalaliDatetime.astimezone()`. Ignoring error
cases, :py:meth:`khayyam.JalaliDatetime.astimezone()` acts like:
.. code-block:: python
:emphasize-lines: 3,5
def astimezone(self, tz): # doctest: +SKIP
if self.tzinfo is tz:
return self
if self.tzinfo:
utc = self - self.utcoffset()
else:
utc = self
return tz.fromutc(utc.replace(tzinfo=tz))
:param tz: :py:class:`datetime.tzinfo`
:rtype: :py:class:`khayyam.JalaliDatetime` |
10,455 | def p_duration_number_duration_unit(self, p):
logger.debug(, p[1], p[2])
p[0] = Duration.from_quantity_unit(p[1], p[2]) | duration : NUMBER DURATION_UNIT |
10,456 | def entitlement(self, token):
headers = {"Authorization": "Bearer %s" % token}
url = self._realm.client.get_full_url(
PATH_ENTITLEMENT.format(self._realm.realm_name, self._client_id)
)
return self._realm.client.get(url, headers=headers) | Client applications can use a specific endpoint to obtain a special
security token called a requesting party token (RPT). This token
consists of all the entitlements (or permissions) for a user as a
result of the evaluation of the permissions and authorization policies
associated with the resources being requested. With an RPT, client
applications can gain access to protected resources at the resource
server.
http://www.keycloak.org/docs/latest/authorization_services/index
.html#_service_entitlement_api
:rtype: dict |
10,457 | def ensure_unique_obs_ids_in_wide_data(obs_id_col, wide_data):
if len(wide_data[obs_id_col].unique()) != wide_data.shape[0]:
msg = "The values in wide_data[obs_id_col] are not unique, "
msg_2 = "but they need to be."
raise ValueError(msg + msg_2)
return None | Ensures that there is one observation per row in wide_data. Raises a
helpful ValueError if otherwise.
Parameters
----------
obs_id_col : str.
Denotes the column in `wide_data` that contains the observation ID
values for each row.
wide_data : pandas dataframe.
Contains one row for each observation. Should contain the specified
`obs_id_col` column.
Returns
-------
None. |
10,458 | def hacking_has_license(physical_line, filename, lines, line_number):
license_found = False
license_found = True
if not license_found:
return (0, "H102: Apache 2.0 license header not found") | Check for Apache 2.0 license.
H102 license header not found |
10,459 | def protein_sequences_generator_to_dataframe(variant_and_protein_sequences_generator):
return dataframe_from_generator(
element_class=ProteinSequence,
variant_and_elements_generator=variant_and_protein_sequences_generator,
converters=dict(
gene=lambda x: ";".join(x))) | Given a generator which yields (Variant, [ProteinSequence]) elements,
returns a pandas.DataFrame |
10,460 | def _read_http_window_update(self, size, kind, flag):
if size != 4:
raise ProtocolError(f, quiet=True)
if any((int(bit, base=2) for bit in flag)):
raise ProtocolError(f, quiet=True)
_size = self._read_binary(4)
if int(_size[0], base=2):
raise ProtocolError(f, quiet=True)
data = dict(
flags=None,
window=int(_size[1:], base=2),
)
return data | Read HTTP/2 WINDOW_UPDATE frames.
Structure of HTTP/2 WINDOW_UPDATE frame [RFC 7540]:
+-----------------------------------------------+
| Length (24) |
+---------------+---------------+---------------+
| Type (8) | Flags (8) |
+-+-------------+---------------+-------------------------------+
|R| Stream Identifier (31) |
+-+-------------+---------------+-------------------------------+
|R| Window Size Increment (31) |
+-+-------------------------------------------------------------+
Octets Bits Name Description
0 0 http.length Length
3 24 http.type Type (2)
4 32 http.flags Flags
5 40 - Reserved
5 41 http.sid Stream Identifier
9 72 - Reserved
9 73 http.window Window Size Increment |
10,461 | def open(self):
sess_id = self._get_sess_id()
if sess_id:
self.application.pc.websockets[self._get_sess_id()] = self
self.write_message(json.dumps({"cmd": "status", "status": "open"}))
else:
self.write_message(json.dumps({"cmd": "error", "error": "Please login", "code": 401})) | Called on new websocket connection. |
10,462 | def _classify_section(cls, section):
name = section.lower()
if name in frozenset([, , "params", "parameters"]):
return cls.ARGS_SECTION
if name in frozenset([, ]):
return cls.RETURN_SECTION
if name in frozenset([]):
return cls.MAIN_SECTION
return None | Attempt to find the canonical name of this section. |
10,463 | def show(self):
for rule in self.rules_list:
result = ", ".join([str(check) for check, deny in rule])
print(result) | Show the structure of self.rules_list, only for debug. |
10,464 | def json(self):
if six.PY3:
return json.loads(self.body.decode(self.charset))
else:
return json.loads(self.body) | Return response body deserialized into JSON object. |
10,465 | def fetch_from_sdr(folder=data_folder, data=):
url = "https://stacks.stanford.edu/file/druid:fn662rv4961/"
if data == :
md5_dict = {: ,
: ,
: ,
: }
elif data == :
md5_dict = {:
,
:
}
if not os.path.exists(folder):
print( % folder)
os.makedirs(folder)
for k, v in md5_dict.items():
fname = pjoin(folder, k)
if not os.path.exists(fname):
print(%k)
_get_file_data(fname, url + k)
check_md5(fname, v)
else:
print( % (fname, folder))
print()
print( % folder) | Download MRS data from SDR
Parameters
----------
folder : str
Full path to a location in which to place the data. Per default this
will be a directory under the user's home `.mrs_data`.
data : str
Which data to download. Either 'test', which is data required for
testing, or 'example', which is data needed for the example notebooks. |
10,466 | def _fetchone(self, query, vars):
cursor = self.get_db().cursor()
self._log(cursor, query, vars)
cursor.execute(query, vars)
return cursor.fetchone() | Return none or one row. |
10,467 | def load_translations(directory: str, encoding: str = None) -> None:
global _translations
global _supported_locales
_translations = {}
for path in os.listdir(directory):
if not path.endswith(".csv"):
continue
locale, extension = path.split(".")
if not re.match("[a-z]+(_[A-Z]+)?$", locale):
gen_log.error(
"Unrecognized locale %r (path: %s)",
locale,
os.path.join(directory, path),
)
continue
full_path = os.path.join(directory, path)
if encoding is None:
with open(full_path, "rb") as bf:
data = bf.read(len(codecs.BOM_UTF16_LE))
if data in (codecs.BOM_UTF16_LE, codecs.BOM_UTF16_BE):
encoding = "utf-16"
else:
encoding = "utf-8-sig"
with open(full_path, encoding=encoding) as f:
_translations[locale] = {}
for i, row in enumerate(csv.reader(f)):
if not row or len(row) < 2:
continue
row = [escape.to_unicode(c).strip() for c in row]
english, translation = row[:2]
if len(row) > 2:
plural = row[2] or "unknown"
else:
plural = "unknown"
if plural not in ("plural", "singular", "unknown"):
gen_log.error(
"Unrecognized plural indicator %r in %s line %d",
plural,
path,
i + 1,
)
continue
_translations[locale].setdefault(plural, {})[english] = translation
_supported_locales = frozenset(list(_translations.keys()) + [_default_locale])
gen_log.debug("Supported locales: %s", sorted(_supported_locales)) | Loads translations from CSV files in a directory.
Translations are strings with optional Python-style named placeholders
(e.g., ``My name is %(name)s``) and their associated translations.
The directory should have translation files of the form ``LOCALE.csv``,
e.g. ``es_GT.csv``. The CSV files should have two or three columns: string,
translation, and an optional plural indicator. Plural indicators should
be one of "plural" or "singular". A given string can have both singular
and plural forms. For example ``%(name)s liked this`` may have a
different verb conjugation depending on whether %(name)s is one
name or a list of names. There should be two rows in the CSV file for
that string, one with plural indicator "singular", and one "plural".
For strings with no verbs that would change on translation, simply
use "unknown" or the empty string (or don't include the column at all).
The file is read using the `csv` module in the default "excel" dialect.
In this format there should not be spaces after the commas.
If no ``encoding`` parameter is given, the encoding will be
detected automatically (among UTF-8 and UTF-16) if the file
contains a byte-order marker (BOM), defaulting to UTF-8 if no BOM
is present.
Example translation ``es_LA.csv``::
"I love you","Te amo"
"%(name)s liked this","A %(name)s les gustó esto","plural"
"%(name)s liked this","A %(name)s le gustó esto","singular"
.. versionchanged:: 4.3
Added ``encoding`` parameter. Added support for BOM-based encoding
detection, UTF-16, and UTF-8-with-BOM. |
10,468 | def EventsNotificationsPost(self, parameters):
if self.__SenseApiCall__(, , parameters = parameters):
return True
else:
self.__error__ = "api call unsuccessful"
return False | Create an event-notification in CommonSense.
If EvensNotificationsPost was successful the result, including the event_notification_id can be obtained from getResponse(), and should be a json string.
@param parameters (dictionary) - Parameters according to which to create the event notification.
@note -
@return (bool) - Boolean indicating whether EventsNotificationsPost was successful. |
10,469 | def asscalar(a):
try:
return np.asscalar(a)
except AttributeError as e:
return np.asscalar(np.asarray(a)) | https://github.com/numpy/numpy/issues/4701 |
10,470 | def _level_coords(self):
level_coords = OrderedDict()
for cname, var in self._coords.items():
if var.ndim == 1 and isinstance(var, IndexVariable):
level_names = var.level_names
if level_names is not None:
dim, = var.dims
level_coords.update({lname: dim for lname in level_names})
return level_coords | Return a mapping of all MultiIndex levels and their corresponding
coordinate name. |
10,471 | def emitRemoved( self ):
if ( self.signalsBlocked() ):
return False
self.dispatch.removed.emit()
return True | Emits the removed signal, provided the dispatcher's signals \
are not currently blocked.
:return <bool> emitted |
10,472 | def getResetsIndices(networkDataFile):
try:
with open(networkDataFile) as f:
reader = csv.reader(f)
next(reader, None)
next(reader, None)
resetIdx = next(reader).index("R")
resets = []
for i, line in enumerate(reader):
if int(line[resetIdx]) == 1:
resets.append(i)
return resets
except IOError as e:
print "Could not open the file {}.".format(networkDataFile)
raise e | Returns the indices at which the data sequences reset. |
10,473 | def _set_set_overload_bit(self, v, load=False):
if hasattr(v, "_utype"):
v = v._utype(v)
try:
t = YANGDynClass(v,base=set_overload_bit.set_overload_bit, is_container=, presence=True, yang_name="set-overload-bit", rest_name="set-overload-bit", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u: {u: u}}, namespace=, defining_module=, yang_type=, is_config=True)
except (TypeError, ValueError):
raise ValueError({
: ,
: "container",
: ,
})
self.__set_overload_bit = t
if hasattr(self, ):
self._set() | Setter method for set_overload_bit, mapped from YANG variable /routing_system/router/isis/router_isis_cmds_holder/router_isis_attributes/set_overload_bit (container)
If this variable is read-only (config: false) in the
source YANG file, then _set_set_overload_bit is considered as a private
method. Backends looking to populate this variable should
do so via calling thisObj._set_set_overload_bit() directly. |
10,474 | def post_registration_redirect(self, request, user):
next_url = "/registration/register/complete/"
if "next" in request.GET or "next" in request.POST:
next_url = request.GET.get("next", None) or request.POST.get("next", None) or "/"
return (next_url, (), {}) | After registration, redirect to the home page or supplied "next"
query string or hidden field value. |
10,475 | def background(self):
if self._background is None:
self._background = GSBackgroundLayer()
self._background._foreground = self
return self._background | Only a getter on purpose. See the tests. |
10,476 | def _get_hashing_context(self, app: FlaskUnchained) -> CryptContext:
return CryptContext(schemes=app.config.SECURITY_HASHING_SCHEMES,
deprecated=app.config.SECURITY_DEPRECATED_HASHING_SCHEMES) | Get the token hashing (and verifying) context. |
10,477 | def evalMetric(self, x, method=None):
return super(DensityMatching, self).evalMetric(x, method) | Evaluates the density matching metric at a given design point.
:param iterable x: values of the design variables, this is passed as
the first argument to the function fqoi
:return: metric_value - value of the metric evaluated at the design
point given by x
:rtype: float
*Example Usage*::
>>> def myFunc(x, u): return x[0]*x[1] + u
>>> u1 = UniformParameter()
>>> theDM = DensityMatching(myFunc, u)
>>> x0 = [1, 2]
>>> theDM.evalMetric(x0) |
10,478 | def Bernoulli(p, tag=None):
assert (
0 < p < 1
),
return uv(ss.bernoulli(p), tag=tag) | A Bernoulli random variate
Parameters
----------
p : scalar
The probability of success |
10,479 | def convert_to_codec_key(value):
if not value:
value =
converted = value.replace(, ).lower()
all_aliases = {
: [
,
,
,
,
,
,
,
,
],
: [
,
,
,
,
,
],
: [
,
,
,
,
],
: [
,
,
,
],
: []
}
for key, aliases in all_aliases.items():
if converted in aliases:
return key
return converted | Normalize code key value (encoding codecs must be lower case and must
not contain any dashes).
:param value: value to convert. |
10,480 | def log_prob(self, response, predicted_linear_response, name=None):
with self._name_scope(
name, , [response, predicted_linear_response]):
dtype = dtype_util.common_dtype([response, predicted_linear_response])
response = tf.convert_to_tensor(
value=response, dtype=dtype, name=)
predicted_linear_response = tf.convert_to_tensor(
value=predicted_linear_response, name=)
return self._log_prob(response, predicted_linear_response) | Computes `D(param=mean(r)).log_prob(response)` for linear response, `r`.
Args:
response: `float`-like `Tensor` representing observed ("actual")
responses.
predicted_linear_response: `float`-like `Tensor` corresponding to
`tf.matmul(model_matrix, weights)`.
name: Python `str` used as TF namescope for ops created by member
functions. Default value: `None` (i.e., 'log_prob').
Returns:
log_prob: `Tensor` with shape and dtype of `predicted_linear_response`
representing the distribution prescribed log-probability of the observed
`response`s. |
10,481 | def getDescendant(Ancestor, RouteParts):
r
if not RouteParts:
return Ancestor
Resolved = Ancestor.Members.get(RouteParts.pop(0))
if isinstance(Resolved, Group):
return getDescendant(Resolved, RouteParts)
else:
return Resolved | r"""Resolves a descendant, of the given Ancestor, as pointed by the RouteParts. |
10,482 | def gen_compliance_xdr(self):
sequence = self.sequence
self.sequence = -1
tx_xdr = self.gen_tx().xdr()
self.sequence = sequence
return tx_xdr | Create an XDR object representing this builder's transaction to be
sent over via the Compliance protocol (notably, with a sequence number
of 0).
Intentionally, the XDR object is returned without any signatures on the
transaction.
See `Stellar's documentation on its Compliance Protocol
<https://www.stellar.org/developers/guides/compliance-protocol.html>`_
for more information. |
10,483 | def slurp(path, encoding=):
with io.open(path, , encoding=encoding) as f:
return f.read() | Reads file `path` and returns the entire contents as a unicode string
By default assumes the file is encoded as UTF-8
Parameters
----------
path : str
File path to file on disk
encoding : str, default `UTF-8`, optional
Encoding of the file
Returns
-------
The txt read from the file as a unicode string |
10,484 | def indices(self, names, axis=None):
return Matrix.find_rowcol_indices(names,self.row_names,self.col_names,axis=axis) | get the row and col indices of names. If axis is None, two ndarrays
are returned, corresponding the indices of names for each axis
Parameters
----------
names : iterable
column and/or row names
axis : (int) (optional)
the axis to search.
Returns
-------
numpy.ndarray : numpy.ndarray
indices of names. |
10,485 | def generate_rrab_lightcurve(
times,
mags=None,
errs=None,
paramdists={
:sps.uniform(loc=0.45,scale=0.35),
:[8,11],
:sps.uniform(loc=0.4,scale=0.5),
:np.pi,
},
magsarefluxes=False
):
periodfourierorderamplitudefrozenvartypeRRabparamsperiodepochamplitudefourierorderfourierampsfourierphasestimesmagserrsvarperiodperiodvaramplitudeamplitude
modeldict = generate_sinusoidal_lightcurve(times,
mags=mags,
errs=errs,
paramdists=paramdists,
magsarefluxes=magsarefluxes)
modeldict[] =
return modeldict | This generates fake RRab light curves.
Parameters
----------
times : np.array
This is an array of time values that will be used as the time base.
mags,errs : np.array
These arrays will have the model added to them. If either is
None, `np.full_like(times, 0.0)` will used as a substitute and the model
light curve will be centered around 0.0.
paramdists : dict
This is a dict containing parameter distributions to use for the
model params, containing the following keys ::
{'period', 'fourierorder', 'amplitude'}
The values of these keys should all be 'frozen' scipy.stats distribution
objects, e.g.:
https://docs.scipy.org/doc/scipy/reference/stats.html#continuous-distributions
The variability epoch will be automatically chosen from a uniform
distribution between `times.min()` and `times.max()`.
The `amplitude` will be flipped automatically as appropriate if
`magsarefluxes=True`.
magsarefluxes : bool
If the generated time series is meant to be a flux time-series, set this
to True to get the correct sign of variability amplitude.
Returns
-------
dict
A dict of the form below is returned::
{'vartype': 'RRab',
'params': {'period': generated value of period,
'epoch': generated value of epoch,
'amplitude': generated value of amplitude,
'fourierorder': generated value of fourier order,
'fourieramps': generated values of fourier amplitudes,
'fourierphases': generated values of fourier phases},
'times': the model times,
'mags': the model mags,
'errs': the model errs,
'varperiod': the generated period of variability == 'period'
'varamplitude': the generated amplitude of
variability == 'amplitude'} |
10,486 | def GetService(self, service_name, version=sorted(_SERVICE_MAP.keys())[-1],
server=None):
if not server:
server = DEFAULT_ENDPOINT
server = server[:-1] if server[-1] == else server
try:
service = googleads.common.GetServiceClassForLibrary(self.soap_impl)(
self._SOAP_SERVICE_FORMAT % (server, version, service_name),
self._header_handler,
_AdManagerPacker,
self.proxy_config,
self.timeout,
version,
cache=self.cache)
return service
except googleads.errors.GoogleAdsSoapTransportError:
if version in _SERVICE_MAP:
if service_name in _SERVICE_MAP[version]:
raise
else:
raise googleads.errors.GoogleAdsValueError(
% (service_name, _SERVICE_MAP[version]))
else:
raise googleads.errors.GoogleAdsValueError(
% (version, _SERVICE_MAP.keys())) | Creates a service client for the given service.
Args:
service_name: A string identifying which Ad Manager service to create a
service client for.
[optional]
version: A string identifying the Ad Manager version to connect to. This
defaults to what is currently the latest version. This will be
updated in future releases to point to what is then the
latest version.
server: A string identifying the webserver hosting the Ad Manager API.
Returns:
A googleads.common.GoogleSoapService instance which has the headers
and proxy configured for use.
Raises:
A GoogleAdsValueError if the service or version provided do not exist. |
10,487 | def _events_process(event_types=None, eager=False):
event_types = event_types or list(current_stats.enabled_events)
if eager:
process_events.apply((event_types,), throw=True)
click.secho(, fg=)
else:
process_events.delay(event_types)
click.secho(, fg=) | Process stats events. |
10,488 | def url_signature(url: str) -> Optional[Tuple]:
request = urllib.request.Request(url)
request.get_method = lambda:
response = None
try:
response = urllib.request.urlopen(request)
except urllib.error.HTTPError:
return None
return response.info()[], response.info()[], response.info().get() | Return an identify signature for url
:param url: item to get signature for
:return: tuple containing last modified, length and, if present, etag |
10,489 | def list_motors(name_pattern=Motor.SYSTEM_DEVICE_NAME_CONVENTION, **kwargs):
class_path = abspath(Device.DEVICE_ROOT_PATH + + Motor.SYSTEM_CLASS_NAME)
return (Motor(name_pattern=name, name_exact=True)
for name in list_device_names(class_path, name_pattern, **kwargs)) | This is a generator function that enumerates all tacho motors that match
the provided arguments.
Parameters:
name_pattern: pattern that device name should match.
For example, 'motor*'. Default value: '*'.
keyword arguments: used for matching the corresponding device
attributes. For example, driver_name='lego-ev3-l-motor', or
address=['outB', 'outC']. When argument value
is a list, then a match against any entry of the list is
enough. |
10,490 | def _flatten_projection(cls, projection):
if not projection:
return {f: True for f in cls._fields}, {}, {}
flat_projection = {}
references = {}
subs = {}
inclusive = True
for key, value in deepcopy(projection).items():
if isinstance(value, dict):
project_value = {
k: v for k, v in value.items()
if k.startswith() and k not in [, , ]
}
if len(project_value) == 0:
project_value = True
else:
inclusive = False
if in value:
references[key] = value
elif in value or in value:
subs[key] = value
if in value:
sub_frame = value[]
if in value:
sub_frame = value[]
project_value = sub_frame._projection_to_paths(key, value)
if isinstance(project_value, dict):
flat_projection.update(project_value)
else:
flat_projection[key] = project_value
elif key == :
continue
elif key == or key == :
continue
else:
flat_projection[key] = value
inclusive = False
if inclusive:
flat_projection = {f: True for f in cls._fields}
return flat_projection, references, subs | Flatten a structured projection (structure projections support for
projections of (to be) dereferenced fields. |
10,491 | def ExtractEvents(self, parser_mediator, registry_key, **kwargs):
mru_values_dict = {}
for subkey in registry_key.GetSubkeys():
username_value = subkey.GetValueByName()
if (username_value and username_value.data and
username_value.DataIsString()):
username = username_value.GetDataAsObject()
else:
username =
mru_values_dict[subkey.name] = username
event_data = windows_events.WindowsRegistryEventData()
event_data.key_path = subkey.path
event_data.offset = subkey.offset
event_data.regvalue = {: username}
event_data.source_append = self._SOURCE_APPEND
event = time_events.DateTimeValuesEvent(
subkey.last_written_time, definitions.TIME_DESCRIPTION_WRITTEN)
parser_mediator.ProduceEventWithEventData(event, event_data)
event_data = windows_events.WindowsRegistryEventData()
event_data.key_path = registry_key.path
event_data.offset = registry_key.offset
event_data.regvalue = mru_values_dict
event_data.source_append = self._SOURCE_APPEND
event = time_events.DateTimeValuesEvent(
registry_key.last_written_time, definitions.TIME_DESCRIPTION_WRITTEN)
parser_mediator.ProduceEventWithEventData(event, event_data) | Extracts events from a Terminal Server Client Windows Registry key.
Args:
parser_mediator (ParserMediator): mediates interactions between parsers
and other components, such as storage and dfvfs.
registry_key (dfwinreg.WinRegistryKey): Windows Registry key. |
10,492 | def signature(self, node, frame, extra_kwargs=None):
kwarg_workaround = False
for kwarg in chain((x.key for x in node.kwargs), extra_kwargs or ()):
if is_python_keyword(kwarg):
kwarg_workaround = True
break
for arg in node.args:
self.write()
self.visit(arg, frame)
if not kwarg_workaround:
for kwarg in node.kwargs:
self.write()
self.visit(kwarg, frame)
if extra_kwargs is not None:
for key, value in iteritems(extra_kwargs):
self.write( % (key, value))
if node.dyn_args:
self.write()
self.visit(node.dyn_args, frame)
if kwarg_workaround:
if node.dyn_kwargs is not None:
self.write()
else:
self.write()
for kwarg in node.kwargs:
self.write( % kwarg.key)
self.visit(kwarg.value, frame)
self.write()
if extra_kwargs is not None:
for key, value in iteritems(extra_kwargs):
self.write( % (key, value))
if node.dyn_kwargs is not None:
self.write()
self.visit(node.dyn_kwargs, frame)
self.write()
else:
self.write()
elif node.dyn_kwargs is not None:
self.write()
self.visit(node.dyn_kwargs, frame) | Writes a function call to the stream for the current node.
A leading comma is added automatically. The extra keyword
arguments may not include python keywords otherwise a syntax
error could occour. The extra keyword arguments should be given
as python dict. |
10,493 | def cleanupContainers(self):
for i in range(self.count() - 1, self.currentIndex(), -1):
widget = self.widget(i)
widget.close()
widget.setParent(None)
widget.deleteLater() | Cleans up all containers to the right of the current one. |
10,494 | def make_multi_entry(plist, pkg_pyvers, ver_dict):
for pyver in pkg_pyvers:
pver = pyver[2] + "." + pyver[3:]
plist.append("Python {0}: {1}".format(pver, ops_to_words(ver_dict[pyver]))) | Generate Python interpreter version entries. |
10,495 | def tag(self, version=, message=):
self.clone_from_github()
self.github_repo.tag(version, message=message) | tag and commit |
10,496 | def _update_with_like_args(ctx, _, value):
if value is None:
return
env = ctx.ensure_object(environment.Environment)
vsi = SoftLayer.VSManager(env.client)
vs_id = helpers.resolve_id(vsi.resolve_ids, value, )
like_details = vsi.get_instance(vs_id)
like_args = {
: like_details[],
: like_details[],
: like_details[],
: like_details[][],
: like_details[][0][],
: like_details[] or None,
: like_details.get(),
: like_details[],
: like_details[],
: like_details.get(, None),
}
like_args[] = utils.lookup(like_details,
,
,
,
)
if not like_args[]:
like_args[] = like_details[]
like_args[] = % like_details[]
tag_refs = like_details.get(, None)
if tag_refs is not None and len(tag_refs) > 0:
like_args[] = [t[][] for t in tag_refs]
like_image = utils.lookup(like_details,
,
)
like_os = utils.lookup(like_details,
,
,
,
)
if like_image:
like_args[] = like_image
elif like_os:
like_args[] = like_os
if ctx.default_map is None:
ctx.default_map = {}
ctx.default_map.update(like_args) | Update arguments with options taken from a currently running VS. |
10,497 | def transpose(self, *axes):
if self.ndim <= 1:
return self
ar = np.asarray(self).transpose(*axes)
if axes[0] != 0:
newlabels = [self.labels[ax] for ax in axes]
return Timeseries(ar, self.tspan, newlabels)
else:
return ar | Permute the dimensions of a Timeseries. |
10,498 | def findNestedEnums(self, lst):
if self.kind == "enum":
lst.append(self)
for c in self.children:
c.findNestedEnums(lst) | Recursive helper function for finding nested enums. If this node is a class or
struct it may have had an enum added to its child list. When this occurred, the
enum was removed from ``self.enums`` in the :class:`~exhale.graph.ExhaleRoot`
class and needs to be rediscovered by calling this method on all of its
children. If this node is an enum, it is because a parent class or struct
called this method, in which case it is added to ``lst``.
**Note**: this is used slightly differently than nested directories, namespaces,
and classes will be. Refer to
:func:`~exhale.graph.ExhaleRoot.generateNodeDocuments`.
:Parameters:
``lst`` (list)
The list each enum is to be appended to. |
10,499 | def _line_parse(line):
if line[-2:] in [, b]:
return line[:-2], True
elif line[-1:] in [, , b, b]:
return line[:-1], True
return line, False | Removes line ending characters and returns a tuple (`stripped_line`,
`is_terminated`). |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.