Unnamed: 0
int64
0
389k
code
stringlengths
26
79.6k
docstring
stringlengths
1
46.9k
13,000
def pwgen(length=None): if length is None: length = random.choice(range(35, 45)) alphanumeric_chars = [ l for l in (string.ascii_letters + string.digits) if l not in ] random_generator = random.SystemRandom() random_chars = [ random_generator.choice(alphanumeric_chars) for _ in range(length)] return(.join(random_chars))
Generate a random pasword.
13,001
def set_urlroute_rules(rules=None): global __url_route_rules__ __url_route_rules__ = [] for k, v in (rules or {}).values(): __url_route_rules__.append((re.compile(k), v))
rules should be (pattern, replace) e.g.: ('/admin', '/demo')
13,002
def fcs(bits): fcs = FCS() for bit in bits: yield bit fcs.update_bit(bit) digest = bitarray(endian="little") digest.frombytes(fcs.digest()) for bit in digest: yield bit
Append running bitwise FCS CRC checksum to end of generator
13,003
def getBoundsColor(self, nNumOutputColors, flCollisionBoundsFadeDistance): fn = self.function_table.getBoundsColor pOutputColorArray = HmdColor_t() pOutputCameraColor = HmdColor_t() fn(byref(pOutputColorArray), nNumOutputColors, flCollisionBoundsFadeDistance, byref(pOutputCameraColor)) return pOutputColorArray, pOutputCameraColor
Get the current chaperone bounds draw color and brightness
13,004
def query_tag_values(self, metric_type=None, **tags): tagql = self._transform_tags(**tags) return self._get(self._get_metrics_tags_url(self._get_url(metric_type)) + .format(tagql))
Query for possible tag values. :param metric_type: A MetricType to be queried. If left to None, matches all the MetricTypes :param tags: A dict of tag key/value pairs. Uses Hawkular-Metrics tag query language for syntax
13,005
def from_exception(cls, exc): result = cls( condition=exc.condition, type_=exc.TYPE, text=exc.text ) result.application_condition = exc.application_defined_condition return result
Construct a new :class:`Error` payload from the attributes of the exception. :param exc: The exception to convert :type exc: :class:`aioxmpp.errors.XMPPError` :result: Newly constructed error payload :rtype: :class:`Error` .. versionchanged:: 0.10 The :attr:`aioxmpp.XMPPError.application_defined_condition` is now taken over into the result.
13,006
def _get_tensor_like_attributes(): attrs = dict() attrs.update((attr, _wrap_method(tf.Tensor, attr)) for attr in tf.Tensor.OVERLOADABLE_OPERATORS.union({})) attrs.update((attr, getattr(tf.Tensor, attr)) for attr in {, , }) return attrs
Returns `Tensor` attributes related to shape and Python builtins.
13,007
def create_conversation(self, body, recipients, attachment_ids=None, context_code=None, filter=None, filter_mode=None, group_conversation=None, media_comment_id=None, media_comment_type=None, mode=None, scope=None, subject=None, user_note=None): path = {} data = {} params = {} data["recipients"] = recipients if subject is not None: data["subject"] = subject data["body"] = body if group_conversation is not None: data["group_conversation"] = group_conversation if attachment_ids is not None: data["attachment_ids"] = attachment_ids if media_comment_id is not None: data["media_comment_id"] = media_comment_id if media_comment_type is not None: self._validate_enum(media_comment_type, ["audio", "video"]) data["media_comment_type"] = media_comment_type if user_note is not None: data["user_note"] = user_note if mode is not None: self._validate_enum(mode, ["sync", "async"]) data["mode"] = mode if scope is not None: self._validate_enum(scope, ["unread", "starred", "archived"]) data["scope"] = scope if filter is not None: data["filter"] = filter if filter_mode is not None: self._validate_enum(filter_mode, ["and", "or", "default or"]) data["filter_mode"] = filter_mode if context_code is not None: data["context_code"] = context_code self.logger.debug("POST /api/v1/conversations with query params: {params} and form data: {data}".format(params=params, data=data, **path)) return self.generic_request("POST", "/api/v1/conversations".format(**path), data=data, params=params, no_data=True)
Create a conversation. Create a new conversation with one or more recipients. If there is already an existing private conversation with the given recipients, it will be reused.
13,008
def open_editor(self, data=): with NamedTemporaryFile(prefix=, suffix=, delete=False) as fp: filepath = fp.name with codecs.open(filepath, , ) as fp: fp.write(data) _logger.info(, filepath) editor = (os.getenv() or os.getenv() or os.getenv() or ) command = shlex.split(editor) + [filepath] try: with self.suspend(): _logger.debug(, command) p = subprocess.Popen(command) try: p.communicate() except KeyboardInterrupt: p.terminate() except OSError as e: _logger.exception(e) self.show_notification( % editor) with codecs.open(filepath, , ) as fp: text = fp.read() text = self.strip_instructions(text) try: yield text except exceptions.TemporaryFileError: _logger.info() self.show_notification( % filepath) else: try: os.remove(filepath) except OSError: _logger.warning(, filepath) else: _logger.info(, filepath)
Open a file for editing using the system's default editor. After the file has been altered, the text will be read back and the HTML comment tag <!--INSRUCTIONS --> will be stripped. If an error occurs inside of the context manager, the file will be preserved so users can recover their data. Otherwise, the file will be deleted when the context manager closes. Params: data (str): If provided, text will be written to the file before opening it with the editor. Returns: text (str): The text that the user entered into the editor.
13,009
def switch_onoff(self, device, status): if status == 1 or status == True or status == : return self.switch_on(device) else: return self.switch_off(device)
Switch a Socket
13,010
def _replace_element_by_own_content(self, element): if element.has_children_elements(): children = element.get_children_elements() for child in children: element.insert_before(child) element.remove_node() elif element.has_children(): element.replace_node(element.get_first_node_child())
Replace the element by own text content. :param element: The element. :type element: hatemile.util.html.htmldomelement.HTMLDOMElement
13,011
def display(self): for line in self.adb_shell().splitlines(): m = _DISPLAY_RE.search(line, 0) if not m: continue w = int(m.group()) h = int(m.group()) return collections.namedtuple(, [, ])(w, h) else: w, h = self.info[], self.info[] return collections.namedtuple(, [, ])(w, h)
Virtual keyborad may get small d.info['displayHeight']
13,012
def agent_intents(self): endpoint = self._intent_uri() intents = self._get(endpoint) if isinstance(intents, dict): raise Exception(intents["status"]) return [Intent(intent_json=i) for i in intents]
Returns a list of intent json objects
13,013
def decrypt(self, ciphertext): if not isinstance(ciphertext, str): raise CiphertextTypeError("Input ciphertext is not of type string") plaintext_length = self.getPlaintextLen(ciphertext) ciphertext_length = self.getCiphertextLen(ciphertext) ciphertext_complete = (len(ciphertext) >= ciphertext_length) if ciphertext_complete is False: raise RecoverableDecryptionError(+str(len(ciphertext))++str(ciphertext_length)+) ciphertext = ciphertext[:ciphertext_length] W1_start = 0 W1_end = AES.block_size W1 = ciphertext[W1_start:W1_end] W2_start = AES.block_size W2_end = AES.block_size + plaintext_length W2 = ciphertext[W2_start:W2_end] T_start = AES.block_size + plaintext_length T_end = AES.block_size + plaintext_length + Encrypter._MAC_LENGTH T_expected = ciphertext[T_start:T_end] mac = HMAC.new(self.K2, W1 + W2, SHA512) T_actual = mac.digest()[:Encrypter._MAC_LENGTH] if T_expected != T_actual: raise UnrecoverableDecryptionError() iv2_bytes = + self._ecb_enc_K1.decrypt(W1)[1:8] counter_val = fte.bit_ops.bytes_to_long(iv2_bytes) counter_length_in_bits = AES.block_size * 8 counter = Counter.new( counter_length_in_bits, initial_value=counter_val) ctr_enc = AES.new(key=self.K1, mode=AES.MODE_CTR, IV= * 8 + iv2_bytes, counter=counter) plaintext = ctr_enc.decrypt(W2) return plaintext
Given ``ciphertext`` returns a ``plaintext`` decrypted using the keys specified in ``__init__``. Raises ``CiphertextTypeError`` if the input ``ciphertext`` is not a string. Raises ``RecoverableDecryptionError`` if the input ``ciphertext`` has a non-negative message length greater than the ciphertext length. Raises ``UnrecoverableDecryptionError`` if invalid padding is detected, or the the MAC is invalid.
13,014
def get_campaign_name_list(self): campaigns = self.find(, {}) campaign_names = [] for campaign in campaigns: if in campaign: campaign_names.append(campaign[]) return campaign_names
Returns a list of all valid campaign names Returns: List of strings containing all valid campaign names
13,015
def _insert_defaults(self): merged = merge_defaults(self.structure, self) self.update(merged)
Inserts default values from :attr:`StructuredDictMixin.structure` to `self` by merging the two structures (see :func:`monk.manipulation.merge_defaults`).
13,016
def download(url, target, headers=None, trackers=()): if headers is None: headers = {} headers.setdefault(, +__version__) r = requests.get(url, headers=headers, stream=True) r.raise_for_status() for t in trackers: t.on_start(r) with open(target, ) as f: for chunk in r.iter_content(chunk_size=8192): if chunk: f.write(chunk) for t in trackers: t.on_chunk(chunk) for t in trackers: t.on_finish()
Download a file using requests. This is like urllib.request.urlretrieve, but: - requests validates SSL certificates by default - you can pass tracker objects to e.g. display a progress bar or calculate a file hash.
13,017
def _write_max_gradient(self)->None: "Writes the maximum of the gradients to Tensorboard." max_gradient = max(x.data.max() for x in self.gradients) self._add_gradient_scalar(, scalar_value=max_gradient)
Writes the maximum of the gradients to Tensorboard.
13,018
def to_json(self, minimal=True): if minimal: return json.dumps(self.json_repr(minimal=True), cls=MarathonMinimalJsonEncoder, sort_keys=True) else: return json.dumps(self.json_repr(), cls=MarathonJsonEncoder, sort_keys=True)
Encode an object as a JSON string. :param bool minimal: Construct a minimal representation of the object (ignore nulls and empty collections) :rtype: str
13,019
def present(email, profile="splunk", **kwargs): Example [email protected] name = kwargs.get() ret = { : name, : {}, : None, : } target = __salt__[](email, profile=profile, user_details=True) if not target: if __opts__[]: ret[] = .format(name) return ret result = __salt__[]( email, profile=profile, **kwargs ) if result: ret[].setdefault(, None) ret[].setdefault(, .format(name)) ret[] = True else: ret[] = False ret[] = .format(name) return ret else: ret[] = .format(name) if __opts__[]: ret[] = None return ret result = __salt__[]( email, profile, **kwargs ) if isinstance(result, bool) and result: ret[] = None ret[] = "No changes" else: diff = {} for field in [, , , , , ]: if field == : diff[] = list(set(target.get(field, [])).symmetric_difference(set(result.get(field, [])))) elif target.get(field) != result.get(field): diff[field] = result.get(field) newvalues = result ret[] = True ret[][] = diff ret[][] = target ret[][] = newvalues return ret
Ensure a user is present .. code-block:: yaml ensure example test user 1: splunk.user_present: - realname: 'Example TestUser1' - name: 'exampleuser' - email: '[email protected]' - roles: ['user'] The following parameters are required: email This is the email of the user in splunk
13,020
def _write_header(f, version, flags, stream_id, opcode, length): pack = v3_header_pack if version >= 3 else header_pack f.write(pack(version, flags, stream_id, opcode)) write_int(f, length)
Write a CQL protocol frame header.
13,021
def pop_data_point(self, n): popped = [] for k in self.ckeys: data = list(self.c(k)) popped.append(data.pop(n)) self.insert_column(_n.array(data), k) return popped
This will remove and return the n'th data point (starting at 0) from all columns. Parameters ---------- n Index of data point to pop.
13,022
def _find_step_node(self, step_text): for func, decorator in self._iter_step_func_decorators(): step = self._step_decorator_args(decorator) arg_node = decorator.call.value[0].value if step == step_text: return arg_node, func elif isinstance(step, list) and step_text in step: step_node = arg_node[step.index(step_text)] return step_node, func return None, None
Find the ast node which contains the text.
13,023
async def get_info(self): params = {} if self.owner_access_key: params[] = self.owner_access_key rqst = Request(self.session, , .format(self.kernel_id), params=params) async with rqst.fetch() as resp: return await resp.json()
Retrieves a brief information about the compute session.
13,024
def create_cmdclass(develop_wrappers=None, distribute_wrappers=None, data_dirs=None): develop_wrappers = develop_wrappers or [] distribute_wrappers = distribute_wrappers or [] data_dirs = data_dirs or [] develop_wrapper = functools.partial(wrap_command, develop_wrappers, data_dirs) distribute_wrapper = functools.partial(wrap_command, distribute_wrappers, data_dirs) cmdclass = dict( develop=develop_wrapper(develop, strict=True), sdist=distribute_wrapper(sdist, strict=True), bdist_egg=bdist_egg if in sys.argv else bdist_egg_disabled ) if bdist_wheel: cmdclass[] = bdist_wheel return cmdclass
Create a command class with the given optional wrappers. Parameters ---------- develop_wrapper: list(str), optional The cmdclass names to run before running other commands distribute_wrappers: list(str), optional The cmdclass names to run before running other commands data_dirs: list(str), optional. The directories containing static data.
13,025
def post_customer_preferences(self, **kwargs): kwargs[] = True if kwargs.get(): return self.post_customer_preferences_with_http_info(**kwargs) else: (data) = self.post_customer_preferences_with_http_info(**kwargs) return data
Update selected fields of customer preferences # noqa: E501 # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.post_customer_preferences(async_req=True) >>> result = thread.get() :param async_req bool :param CustomerPreferencesUpdating body: :return: CustomerPreferences If the method is called asynchronously, returns the request thread.
13,026
def is_rpm_installed(): try: version_result = subprocess.run(["rpm", "--usage"], stdout=subprocess.PIPE, stderr=subprocess.PIPE) rpm_installed = not version_result.returncode except FileNotFoundError: rpm_installed = False return rpm_installed
Tests if the rpm command is present.
13,027
async def create( cls, name: str, architecture: str, content: io.IOBase, *, title: str = "", filetype: BootResourceFileType = BootResourceFileType.TGZ, chunk_size=(1 << 22), progress_callback=None): if not in name: raise ValueError( "name must be in format os/release; missing ") if not in architecture: raise ValueError( "architecture must be in format arch/subarch; missing ") if not content.readable(): raise ValueError("content must be readable") elif not content.seekable(): raise ValueError("content must be seekable") if chunk_size <= 0: raise ValueError( "chunk_size must be greater than 0, not %d" % chunk_size) size, sha256 = calc_size_and_sha265(content, chunk_size) resource = cls._object(await cls._handler.create( name=name, architecture=architecture, title=title, filetype=filetype.value, size=str(size), sha256=sha256)) newest_set = max(resource.sets, default=None) assert newest_set is not None resource_set = resource.sets[newest_set] assert len(resource_set.files) == 1 rfile = list(resource_set.files.values())[0] if rfile.complete: return resource else: await cls._upload_chunks( rfile, content, chunk_size, progress_callback) return cls._object.read(resource.id)
Create a `BootResource`. Creates an uploaded boot resource with `content`. The `content` is uploaded in chunks of `chunk_size`. `content` must be seekable as the first pass through the `content` will calculate the size and sha256 value then the second pass will perform the actual upload. :param name: Name of the boot resource. Must be in format 'os/release'. :type name: `str` :param architecture: Architecture of the boot resource. Must be in format 'arch/subarch'. :type architecture: `str` :param content: Content of the boot resource. :type content: `io.IOBase` :param title: Title of the boot resource. :type title: `str` :param filetype: Type of file in content. :type filetype: `str` :param chunk_size: Size in bytes to upload to MAAS in chunks. (Default is 4 MiB). :type chunk_size: `int` :param progress_callback: Called to inform the current progress of the upload. One argument is passed with the progress as a precentage. If the resource was already complete and no content needed to be uploaded then this callback will never be called. :type progress_callback: Callable :returns: Create boot resource. :rtype: `BootResource`.
13,028
def _format_lat(self, lat): if self.ppd in [4, 16, 64, 128]: return None else: if lat < 0: return map(lambda x: "{0:0>2}" .format(int(np.abs(x))) + , self._map_center(, lat)) else: return map(lambda x: "{0:0>2}" .format(int(x)) + , self._map_center(, lat))
Returned a formated latitude format for the file
13,029
def set_conn(self, **kwargs): log.setLevel(kwargs.get(,self.log_level)) conn_name = kwargs.get("name") if not conn_name: raise NameError("a connection requires a : %s" % kwargs) elif self.conns.get(conn_name): raise KeyError("connection has already been set" % conn_name) if not kwargs.get("active", True): log.warning("Connection is set as inactive" % conn_name) return conn_type = kwargs.get("conn_type") if not conn_type or conn_type not in self.conn_mapping.nested: err_msg = ["a connection requires a valid :\n", "%s"] raise NameError("".join(err_msg) % (list(self.conn_mapping.nested))) log.info("Setting connection", conn_name) if conn_type == "triplestore": conn = make_tstore_conn(kwargs) else: conn = RdfwConnections[conn_type][kwargs[]](**kwargs) self.conns[conn_name] = conn self.__is_initialized__ = True
takes a connection and creates the connection
13,030
def message(msg, *args): clear_progress() text = (msg % args) sys.stdout.write(text + )
Program message output.
13,031
def check_log_files_and_publish_updates(self): anything_published = False for file_info in self.open_file_infos: assert not file_info.file_handle.closed lines_to_publish = [] max_num_lines_to_read = 100 for _ in range(max_num_lines_to_read): next_line = file_info.file_handle.readline() if next_line == "": break if next_line[-1] == "\n": next_line = next_line[:-1] lines_to_publish.append(next_line) filename = file_info.filename.split("/")[-1] is_worker = (filename.startswith("worker") and (filename.endswith("out") or filename.endswith("err"))) if is_worker and file_info.file_position == 0: if (len(lines_to_publish) > 0 and lines_to_publish[0].startswith("Ray worker pid: ")): file_info.worker_pid = int( lines_to_publish[0].split(" ")[-1]) lines_to_publish = lines_to_publish[1:] file_info.file_position = file_info.file_handle.tell() if len(lines_to_publish) > 0 and is_worker: self.redis_client.publish( ray.gcs_utils.LOG_FILE_CHANNEL, json.dumps({ "ip": self.ip, "pid": file_info.worker_pid, "lines": lines_to_publish })) anything_published = True return anything_published
Get any changes to the log files and push updates to Redis. Returns: True if anything was published and false otherwise.
13,032
def segment_to_line(document, coords): "polyline with 2 vertices using <line> tag" return setattribs( document.createElement(), x1 = coords[0], y1 = coords[1], x2 = coords[2], y2 = coords[3], )
polyline with 2 vertices using <line> tag
13,033
def restore_type(self, type): mapping = { : , : , : , : , : , : , : , } if type not in mapping: message = % type raise tableschema.exceptions.StorageError(message) return mapping[type]
Restore type from BigQuery
13,034
def get_common_prefix(z): name_list = z.namelist() if name_list and all(n.startswith(name_list[0]) for n in name_list[1:]): return name_list[0] return None
Get common directory in a zip file if any.
13,035
def get_codes(): cache_filename = os.path.join(os.path.dirname(__file__), , ) data = [] for line in open(cache_filename, ): if not line.startswith(): data.append(line.split()) return data
>> get_codes() ISO ISO3 ISO-Numeric fips Country Capital Area(in sq km) Population Continent tld CurrencyCode CurrencyName Phone Postal Code Format Postal Code Regex Languages geonameid neighbours EquivalentFipsCode
13,036
def _parse_request_arguments(self, request): inference_addresses = request.args.get().split() model_names = request.args.get().split() model_versions = request.args.get().split() model_signatures = request.args.get().split() if len(model_names) != len(inference_addresses): raise common_utils.InvalidUserInputError( + ) return inference_addresses, model_names, model_versions, model_signatures
Parses comma separated request arguments Args: request: A request that should contain 'inference_address', 'model_name', 'model_version', 'model_signature'. Returns: A tuple of lists for model parameters
13,037
def general_attention(key, context, hidden_size, projected_align=False): if hidden_size % 2 != 0: raise ValueError("hidden size must be dividable by two") batch_size = tf.shape(context)[0] max_num_tokens, token_size = context.get_shape().as_list()[-2:] r_context = tf.reshape(context, shape=[-1, max_num_tokens, token_size]) projected_key = \ tf.layers.dense(key, hidden_size, kernel_initializer=xav()) r_projected_key = tf.reshape(projected_key, shape=[-1, hidden_size, 1]) lstm_fw_cell = tf.nn.rnn_cell.LSTMCell(hidden_size//2) lstm_bw_cell = tf.nn.rnn_cell.LSTMCell(hidden_size//2) (output_fw, output_bw), states = \ tf.nn.bidirectional_dynamic_rnn(cell_fw=lstm_fw_cell, cell_bw=lstm_bw_cell, inputs=r_context, dtype=tf.float32) bilstm_output = tf.concat([output_fw, output_bw], -1) attn = tf.nn.softmax(tf.matmul(bilstm_output, r_projected_key), dim=1) if projected_align: log.info("Using projected attention alignment") t_context = tf.transpose(bilstm_output, [0, 2, 1]) output = tf.reshape(tf.matmul(t_context, attn), shape=[batch_size, -1, hidden_size]) else: log.info("Using without projected attention alignment") t_context = tf.transpose(r_context, [0, 2, 1]) output = tf.reshape(tf.matmul(t_context, attn), shape=[batch_size, -1, token_size]) return output
It is a implementation of the Luong et al. attention mechanism with general score. Based on the paper: https://arxiv.org/abs/1508.04025 "Effective Approaches to Attention-based Neural Machine Translation" Args: key: A tensorflow tensor with dimensionality [None, None, key_size] context: A tensorflow tensor with dimensionality [None, None, max_num_tokens, token_size] hidden_size: Number of units in hidden representation projected_align: Using bidirectional lstm for hidden representation of context. If true, beetween input and attention mechanism insert layer of bidirectional lstm with dimensionality [hidden_size]. If false, bidirectional lstm is not used. Returns: output: Tensor at the output with dimensionality [None, None, hidden_size]
13,038
def rollforward(self, date): if self.onOffset(date): return date else: return date + YearEnd(month=self.month)
Roll date forward to nearest end of year
13,039
def get_path_for_core_element(self, core_element_id): def check_function(row_iter, iter_found): row_id = self.tree_store.get_value(row_iter, self.ID_STORAGE_ID) if len(row_id) == len(core_element_id): if row_id == core_element_id: iter_found.append(self.tree_store.get_path(row_iter)) found_paths = [] self.iter_tree_with_handed_function(check_function, found_paths) return found_paths[0] if found_paths else None
Get path to the row representing core element described by handed core_element_id :param list core_element_id: Core element identifier used in the respective list store column :rtype: tuple :return: path
13,040
def _clone(self, **kwargs): params = copy.deepcopy(self._params) if self._iexact: params.update(iexact=self._iexact) params.update(**kwargs) clone = self.__class__(**params) return clone
Create a clone of this collection. The only param in the initial collection is the filter context. Each chainable filter is added to the clone and returned to preserve previous iterators and their returned elements. :return: :class:`.ElementCollection`
13,041
def unscale_dict(C): C_out = {k: _scale_dict[k] * v for k, v in C.items()} for k in C_symm_keys[8]: C_out[] = unscale_8(C_out[]) return C_out
Undo the scaling applied in `scale_dict`.
13,042
def spectral_contrast(y=None, sr=22050, S=None, n_fft=2048, hop_length=512, win_length=None, window=, center=True, pad_mode=, freq=None, fmin=200.0, n_bands=6, quantile=0.02, linear=False): 02. Proceedings. 2002 IEEE International Conference on, vol. 1, pp. 113-116. IEEE, 2002. Parameters ---------- y : np.ndarray [shape=(n,)] or None audio time series sr : number > 0 [scalar] audio sampling rate of `y` S : np.ndarray [shape=(d, t)] or None (optional) spectrogram magnitude n_fft : int > 0 [scalar] FFT window size hop_length : int > 0 [scalar] hop length for STFT. See `librosa.core.stft` for details. win_length : int <= n_fft [scalar] Each frame of audio is windowed by `window()`. The window will be of length `win_length` and then padded with zeros to match `n_fft`. If unspecified, defaults to ``win_length = n_fft``. window : string, tuple, number, function, or np.ndarray [shape=(n_fft,)] - a window specification (string, tuple, or number); see `scipy.signal.get_window` - a window function, such as `scipy.signal.hanning` - a vector or array of length `n_fft` .. see also:: `filters.get_window` center : boolean - If `True`, the signal `y` is padded so that frame `t` is centered at `y[t * hop_length]`. - If `False`, then frame `t` begins at `y[t * hop_length]` pad_mode : string If `center=True`, the padding mode to use at the edges of the signal. By default, STFT uses reflection padding. freq : None or np.ndarray [shape=(d,)] Center frequencies for spectrogram bins. If `None`, then FFT bin center frequencies are used. Otherwise, it can be a single array of `d` center frequencies. fmin : float > 0 Frequency cutoff for the first bin `[0, fmin]` Subsequent bins will cover `[fmin, 2*fmin]`, `[2*fmin, 4*fmin]`, etc. n_bands : int > 1 number of frequency bands quantile : float in (0, 1) quantile for determining peaks and valleys linear : bool If `True`, return the linear difference of magnitudes: `peaks - valleys`. If `False`, return the logarithmic difference: `log(peaks) - log(valleys)`. Returns ------- contrast : np.ndarray [shape=(n_bands + 1, t)] each row of spectral contrast values corresponds to a given octave-based frequency Examples -------- >>> y, sr = librosa.load(librosa.util.example_audio_file()) >>> S = np.abs(librosa.stft(y)) >>> contrast = librosa.feature.spectral_contrast(S=S, sr=sr) >>> import matplotlib.pyplot as plt >>> plt.figure() >>> plt.subplot(2, 1, 1) >>> librosa.display.specshow(librosa.amplitude_to_db(S, ... ref=np.max), ... y_axis=) >>> plt.colorbar(format=) >>> plt.title() >>> plt.subplot(2, 1, 2) >>> librosa.display.specshow(contrast, x_axis=) >>> plt.colorbar() >>> plt.ylabel() >>> plt.title() >>> plt.tight_layout() freq.shape mismatch: expected ({:d},)n_bands must be a positive integerquantile must lie in the range (0, 1)fmin must be a positive numberFrequency band exceeds Nyquist. Reduce either fmin or n_bands.') valley = np.zeros((n_bands + 1, S.shape[1])) peak = np.zeros_like(valley) for k, (f_low, f_high) in enumerate(zip(octa[:-1], octa[1:])): current_band = np.logical_and(freq >= f_low, freq <= f_high) idx = np.flatnonzero(current_band) if k > 0: current_band[idx[0] - 1] = True if k == n_bands: current_band[idx[-1] + 1:] = True sub_band = S[current_band] if k < n_bands: sub_band = sub_band[:-1] idx = np.rint(quantile * np.sum(current_band)) idx = int(np.maximum(idx, 1)) sortedr = np.sort(sub_band, axis=0) valley[k] = np.mean(sortedr[:idx], axis=0) peak[k] = np.mean(sortedr[-idx:], axis=0) if linear: return peak - valley else: return power_to_db(peak) - power_to_db(valley)
Compute spectral contrast [1]_ .. [1] Jiang, Dan-Ning, Lie Lu, Hong-Jiang Zhang, Jian-Hua Tao, and Lian-Hong Cai. "Music type classification by spectral contrast feature." In Multimedia and Expo, 2002. ICME'02. Proceedings. 2002 IEEE International Conference on, vol. 1, pp. 113-116. IEEE, 2002. Parameters ---------- y : np.ndarray [shape=(n,)] or None audio time series sr : number > 0 [scalar] audio sampling rate of `y` S : np.ndarray [shape=(d, t)] or None (optional) spectrogram magnitude n_fft : int > 0 [scalar] FFT window size hop_length : int > 0 [scalar] hop length for STFT. See `librosa.core.stft` for details. win_length : int <= n_fft [scalar] Each frame of audio is windowed by `window()`. The window will be of length `win_length` and then padded with zeros to match `n_fft`. If unspecified, defaults to ``win_length = n_fft``. window : string, tuple, number, function, or np.ndarray [shape=(n_fft,)] - a window specification (string, tuple, or number); see `scipy.signal.get_window` - a window function, such as `scipy.signal.hanning` - a vector or array of length `n_fft` .. see also:: `filters.get_window` center : boolean - If `True`, the signal `y` is padded so that frame `t` is centered at `y[t * hop_length]`. - If `False`, then frame `t` begins at `y[t * hop_length]` pad_mode : string If `center=True`, the padding mode to use at the edges of the signal. By default, STFT uses reflection padding. freq : None or np.ndarray [shape=(d,)] Center frequencies for spectrogram bins. If `None`, then FFT bin center frequencies are used. Otherwise, it can be a single array of `d` center frequencies. fmin : float > 0 Frequency cutoff for the first bin `[0, fmin]` Subsequent bins will cover `[fmin, 2*fmin]`, `[2*fmin, 4*fmin]`, etc. n_bands : int > 1 number of frequency bands quantile : float in (0, 1) quantile for determining peaks and valleys linear : bool If `True`, return the linear difference of magnitudes: `peaks - valleys`. If `False`, return the logarithmic difference: `log(peaks) - log(valleys)`. Returns ------- contrast : np.ndarray [shape=(n_bands + 1, t)] each row of spectral contrast values corresponds to a given octave-based frequency Examples -------- >>> y, sr = librosa.load(librosa.util.example_audio_file()) >>> S = np.abs(librosa.stft(y)) >>> contrast = librosa.feature.spectral_contrast(S=S, sr=sr) >>> import matplotlib.pyplot as plt >>> plt.figure() >>> plt.subplot(2, 1, 1) >>> librosa.display.specshow(librosa.amplitude_to_db(S, ... ref=np.max), ... y_axis='log') >>> plt.colorbar(format='%+2.0f dB') >>> plt.title('Power spectrogram') >>> plt.subplot(2, 1, 2) >>> librosa.display.specshow(contrast, x_axis='time') >>> plt.colorbar() >>> plt.ylabel('Frequency bands') >>> plt.title('Spectral contrast') >>> plt.tight_layout()
13,043
def identifiers(dataset_uri): dataset = dtoolcore.DataSet.from_uri(dataset_uri) for i in dataset.identifiers: click.secho(i)
List the item identifiers in the dataset.
13,044
def _dist_to_trans(self, dist): rae = np.array([self.roll, self.azimuth, self.elevation]) * np.pi / 180 sro, saz, sel = np.sin(rae) cro, caz, cel = np.cos(rae) dx = (+ dist[0] * (cro * caz + sro * sel * saz) + dist[1] * (sro * caz - cro * sel * saz)) dy = (+ dist[0] * (cro * saz - sro * sel * caz) + dist[1] * (sro * saz + cro * sel * caz)) dz = (- dist[0] * sro * cel + dist[1] * cro * cel) return dx, dy, dz
Convert mouse x, y movement into x, y, z translations
13,045
def list_of_lists_to_dict(l): d = {} for key, val in l: d.setdefault(key, []).append(val) return d
Convert list of key,value lists to dict [['id', 1], ['id', 2], ['id', 3], ['foo': 4]] {'id': [1, 2, 3], 'foo': [4]}
13,046
def resolve_weak_types(storage, debug=False): for run in storage[]: prev_strong = prev_type = run[] start, length = run[], run[] chars = storage[][start:start+length] for _ch in chars: bidi_type = _ch[] if bidi_type == : _ch[] = bidi_type = prev_type if bidi_type == and prev_strong == : _ch[] = if bidi_type in (, , ): prev_strong = bidi_type prev_type = _ch[] for _ch in chars: if _ch[] == : _ch[] = for idx in range(1, len(chars) - 1): bidi_type = chars[idx][] prev_type = chars[idx-1][] next_type = chars[idx+1][] if bidi_type == and (prev_type == next_type == ): chars[idx][] = if bidi_type == and prev_type == next_type and \ prev_type in (, ): chars[idx][] = prev_type for idx in range(len(chars)): if chars[idx][] == : for et_idx in range(idx-1, -1, -1): if chars[et_idx][] == : chars[et_idx][] = else: break for et_idx in range(idx+1, len(chars)): if chars[et_idx][] == : chars[et_idx][] = else: break for _ch in chars: if _ch[] in (, , ): _ch[] = prev_strong = run[] for _ch in chars: if _ch[] == and prev_strong == : _ch[] = if _ch[] in (, ): prev_strong = _ch[] if debug: debug_storage(storage, runs=True)
Reslove weak type rules W1 - W3. See: http://unicode.org/reports/tr9/#Resolving_Weak_Types
13,047
def parse_mcast_grps(family, grp_attr): remaining = c_int() if not grp_attr: raise BUG for nla in nla_for_each_nested(grp_attr, remaining): tb = dict() err = nla_parse_nested(tb, CTRL_ATTR_MCAST_GRP_MAX, nla, family_grp_policy) if err < 0: return err if not tb[CTRL_ATTR_MCAST_GRP_ID] or not tb[CTRL_ATTR_MCAST_GRP_NAME]: return -NLE_MISSING_ATTR id_ = nla_get_u32(tb[CTRL_ATTR_MCAST_GRP_ID]) name = nla_get_string(tb[CTRL_ATTR_MCAST_GRP_NAME]) err = genl_family_add_grp(family, id_, name) if err < 0: return err return 0
https://github.com/thom311/libnl/blob/libnl3_2_25/lib/genl/ctrl.c#L64. Positional arguments: family -- genl_family class instance. grp_attr -- nlattr class instance. Returns: 0 on success or a negative error code.
13,048
def play_NoteContainer(self, nc, channel=1, velocity=100): self.notify_listeners(self.MSG_PLAY_NC, {: nc, : channel, : velocity}) if nc is None: return True for note in nc: if not self.play_Note(note, channel, velocity): return False return True
Play the Notes in the NoteContainer nc.
13,049
def _publisher_callback(self, publish_ack): logging.debug("ack received: " + str(publish_ack).replace(, )) self._rx_queue.append(publish_ack)
publisher callback that grpc and web socket can pass messages to address the received message onto the queue :param publish_ack: EventHub_pb2.Ack the ack received from either wss or grpc :return: None
13,050
def ANNASSIGN(self, node): if node.value: self.handleNode(node.target, node) if not isinstance(self.scope, FunctionScope): self.deferHandleNode(node.annotation, node) if node.value: if isinstance(self.scope, ModuleScope): self.deferHandleNode(node.value, node) else: self.handleNode(node.value, node)
Annotated assignments don't have annotations evaluated on function scope, hence the custom implementation. Compared to the pyflakes version, we defer evaluation of the annotations (and values on module level).
13,051
def safe_file(path, suffix=None, cleanup=True): safe_path = .format(path, suffix or uuid.uuid4()) if os.path.exists(path): shutil.copy(path, safe_path) try: yield safe_path if cleanup: shutil.move(safe_path, path) else: shutil.copy(safe_path, path) finally: if cleanup: safe_delete(safe_path)
A with-context that copies a file, and copies the copy back to the original file on success. This is useful for doing work on a file but only changing its state on success. :param str suffix: Use this suffix to create the copy. Otherwise use a random string. :param bool cleanup: Whether or not to clean up the copy.
13,052
def _suppressed(self, filename, line, code): if code in self.suppress_codes: return True lines = self._file_lines(filename) if not lines: return False while line > len(lines): line = line - 1 relevant_line = lines[line - 1] try: suppressions_function = relevant_line.split(" if suppressions_function.startswith("suppress("): return code in _parse_suppressions(suppressions_function) except IndexError: above_line = lines[max(0, line - 2)] suppressions_function = above_line.strip()[1:].strip() if suppressions_function.startswith("suppress("): return code in _parse_suppressions(suppressions_function) finally: pass
Return true if linter error code is suppressed inline. The suppression format is suppress(CODE1,CODE2,CODE3) etc.
13,053
def exec_resize(self, exec_id, height=None, width=None): if isinstance(exec_id, dict): exec_id = exec_id.get() params = {: height, : width} url = self._url("/exec/{0}/resize", exec_id) res = self._post(url, params=params) self._raise_for_status(res)
Resize the tty session used by the specified exec command. Args: exec_id (str): ID of the exec instance height (int): Height of tty session width (int): Width of tty session
13,054
def has_parent_bins(self, bin_id): if self._catalog_session is not None: return self._catalog_session.has_parent_catalogs(catalog_id=bin_id) return self._hierarchy_session.has_parents(id_=bin_id)
Tests if the ``Bin`` has any parents. arg: bin_id (osid.id.Id): the ``Id`` of a bin return: (boolean) - ``true`` if the bin has parents, ``false`` otherwise raise: NotFound - ``bin_id`` is not found raise: NullArgument - ``bin_id`` is ``null`` raise: OperationFailed - unable to complete request raise: PermissionDenied - authorization failure *compliance: mandatory -- This method must be implemented.*
13,055
def get_remote_client(self, target_name, user=None, password=None): if user: base = self.get_user_client(user, password, populate=False) else: base = weakproxy(self) return RemoteXCLIClient(base, target_name, populate=True)
Returns a new client for the remote target. This is a lightweight client that only uses different credentials and shares the transport with the underlying client
13,056
def prefetch_relations(weak_queryset): from django.contrib.contenttypes.models import ContentType from django.contrib.contenttypes.fields import GenericForeignKey gfks = {} for name, gfk in weak_queryset.model.__dict__.items(): if not isinstance(gfk, GenericForeignKey): continue gfks[name] = gfk data = {} for weak_model in weak_queryset: for gfk_name, gfk_field in gfks.items(): related_content_type_id = getattr( weak_model, gfk_field.model._meta.get_field(gfk_field.ct_field).get_attname()) if not related_content_type_id: continue related_content_type = ContentType.objects.get_for_id(related_content_type_id) related_object_id = int(getattr(weak_model, gfk_field.fk_field)) if related_content_type not in data.keys(): data[related_content_type] = [] data[related_content_type].append(related_object_id) for content_type, object_ids in data.items(): model_class = content_type.model_class() models = prefetch_relations(model_class.objects.filter(pk__in=object_ids).select_related()) for model in models: for weak_model in weak_queryset: for gfk_name, gfk_field in gfks.items(): related_content_type_id = getattr( weak_model, gfk_field.model._meta.get_field(gfk_field.ct_field).get_attname()) if not related_content_type_id: continue related_content_type = ContentType.objects.get_for_id(related_content_type_id) related_object_id = int(getattr(weak_model, gfk_field.fk_field)) if related_object_id != model.pk: continue if related_content_type != content_type: continue setattr(weak_model, gfk_name, model) return weak_queryset
FROM: https://djangosnippets.org/snippets/2492/ Consider such a model class:: class Action(models.Model): actor_content_type = models.ForeignKey(ContentType,related_name='actor') actor_object_id = models.PositiveIntegerField() actor = GenericForeignKey('actor_content_type','actor_object_id') And dataset:: Action(actor=user1).save() Action(actor=user2).save() This will hit the user table once for each action:: [a.actor for a in Action.objects.all()] Whereas this will hit the user table once:: [a.actor for a in prefetch_relations(Action.objects.all())] Actually, the example above will hit the database N+1 times, where N is the number of actions. But with prefetch_relations(), the database will be hit N+1 times where N is the number of distinct content types. Note that prefetch_relations() is recursive. Here an example, making a list with prefetch_relations(), and then without prefetch_relations(). See the number of database hits after each test. In [1]: from django import db; from prefetch_relations import prefetch_relations In [2]: db.reset_queries() In [3]: x = [(a.actor, a.action_object, a.target) for a in prefetch_relations(Action.objects.all().order_by('-pk'))] In [4]: print len(db.connection.queries) 34 In [5]: db.reset_queries() In [6]: print len(db.connection.queries) 0 In [7]: x = [(a.actor, a.action_object, a.target) for a in Action.objects.all().order_by('-pk')] In [8]: print len(db.connection.queries) 396
13,057
def create_database_session(engine): try: Session = sessionmaker(bind=engine) return Session() except OperationalError as e: raise DatabaseError(error=e.orig.args[1], code=e.orig.args[0])
Connect to the database
13,058
def _update_property_from_dict(self, section, option, new_properties): try: property_name = "{0}_{1}".format(section, option) self.set(section, option, new_properties[property_name]) except KeyError: pass
Update a config property value with a new property value Property name must be equal to 'Section_option' of config property :param section: config section :param option: config option :param new_properties: dict with new properties values
13,059
def handle(self, *args, **kwargs): listener = ExecutorListener(redis_params=getattr(settings, , {}).get(, {})) def _killer(signum, frame): listener.terminate() signal(SIGINT, _killer) signal(SIGTERM, _killer) async def _runner(): if kwargs[]: await listener.clear_queue() async with listener: pass loop = asyncio.new_event_loop() loop.run_until_complete(_runner()) loop.close()
Run the executor listener. This method never returns.
13,060
def _check_cats(cats, vtypes, df, prep, callers): out = [] for cat in cats: all_vals = [] for vtype in vtypes: vals, labels, maxval = _get_chart_info(df, vtype, cat, prep, callers) all_vals.extend(vals) if sum(all_vals) / float(len(all_vals)) > 2: out.append(cat) if len(out) == 0: return cats else: return out
Only include categories in the final output if they have values.
13,061
def next_population(self, population, fitnesses): return common.make_population(self._population_size, self._generate_solution)
Make a new population after each optimization iteration. Args: population: The population current population of solutions. fitnesses: The fitness associated with each solution in the population Returns: list; a list of solutions.
13,062
def get_path(brain_or_object): if is_brain(brain_or_object): return brain_or_object.getPath() return "/".join(get_object(brain_or_object).getPhysicalPath())
Calculate the physical path of this object :param brain_or_object: A single catalog brain or content object :type brain_or_object: ATContentType/DexterityContentType/CatalogBrain :returns: Physical path of the object :rtype: string
13,063
def plugins_post_process(self, retcode): logger.info("Post-processing test...") self.publish("core", "stage", "post_process") for plugin in self.plugins.values(): logger.debug("Post-process %s", plugin) try: logger.debug("RC before: %s", retcode) retcode = plugin.post_process(retcode) logger.debug("RC after: %s", retcode) except Exception: logger.error("Failed post-processing plugin %s", plugin, exc_info=True) if not retcode: retcode = 1 return retcode
Call post_process() on all plugins
13,064
def _add_snps( self, snps, discrepant_snp_positions_threshold, discrepant_genotypes_threshold, save_output, ): discrepant_positions = pd.DataFrame() discrepant_genotypes = pd.DataFrame() if snps.snps is None: return discrepant_positions, discrepant_genotypes build = snps.build source = [s.strip() for s in snps.source.split(",")] if not snps.build_detected: print("build not detected, assuming build {}".format(snps.build)) if self._build is None: self._build = build elif self._build != build: print( "build / assembly mismatch between current build of SNPs and SNPs being loaded" ) snps = self._double_single_alleles(snps.snps, "X") if self._snps is None: self._source.extend(source) self._snps = snps else: common_snps = self._snps.join(snps, how="inner", rsuffix="_added") discrepant_positions = common_snps.loc[ (common_snps["chrom"] != common_snps["chrom_added"]) | (common_snps["pos"] != common_snps["pos_added"]) ] if 0 < len(discrepant_positions) < discrepant_snp_positions_threshold: print( str(len(discrepant_positions)) + " SNP positions were discrepant; " "keeping original positions" ) if save_output: self._discrepant_positions_file_count += 1 lineage.save_df_as_csv( discrepant_positions, self._output_dir, self.get_var_name() + "_discrepant_positions_" + str(self._discrepant_positions_file_count) + ".csv", ) elif len(discrepant_positions) >= discrepant_snp_positions_threshold: print( "too many SNPs differ in position; ensure same genome build is being used" ) return discrepant_positions, discrepant_genotypes common_snps = common_snps.loc[ ~common_snps["genotype"].isnull() & ~common_snps["genotype_added"].isnull() ] discrepant_genotypes = common_snps.loc[ ( (common_snps["genotype"].str.len() == 1) & (common_snps["genotype_added"].str.len() == 1) & ~( common_snps["genotype"].str[0] == common_snps["genotype_added"].str[0] ) ) | ( (common_snps["genotype"].str.len() == 2) & (common_snps["genotype_added"].str.len() == 2) & ~( ( common_snps["genotype"].str[0] == common_snps["genotype_added"].str[0] ) & ( common_snps["genotype"].str[1] == common_snps["genotype_added"].str[1] ) ) & ~( ( common_snps["genotype"].str[0] == common_snps["genotype_added"].str[1] ) & ( common_snps["genotype"].str[1] == common_snps["genotype_added"].str[0] ) ) ) ] if 0 < len(discrepant_genotypes) < discrepant_genotypes_threshold: print( str(len(discrepant_genotypes)) + " SNP genotypes were discrepant; " "marking those as null" ) if save_output: self._discrepant_genotypes_file_count += 1 lineage.save_df_as_csv( discrepant_genotypes, self._output_dir, self.get_var_name() + "_discrepant_genotypes_" + str(self._discrepant_genotypes_file_count) + ".csv", ) elif len(discrepant_genotypes) >= discrepant_genotypes_threshold: print( "too many SNPs differ in their genotype; ensure file is for same " "individual" ) return discrepant_positions, discrepant_genotypes self._source.extend(source) self._snps = self._snps.combine_first(snps) self._snps.loc[discrepant_genotypes.index, "genotype"] = np.nan self._snps["pos"] = self._snps["pos"].astype(np.int64) self._snps = sort_snps(self._snps) return discrepant_positions, discrepant_genotypes
Add SNPs to this Individual. Parameters ---------- snps : SNPs SNPs to add discrepant_snp_positions_threshold : int see above discrepant_genotypes_threshold : int see above save_output see above Returns ------- discrepant_positions : pandas.DataFrame discrepant_genotypes : pandas.DataFrame
13,065
def t_heredoc(self, t): r t.lexer.is_tabbed = False self._init_heredoc(t) t.lexer.begin()
r'<<\S+\r?\n
13,066
def untlpy2etd_ms(untl_elements, **kwargs): degree_children = {} date_exists = False seen_creation = False etd_ms_root = ETD_MS_CONVERSION_DISPATCH[]() for element in untl_elements.children: etd_ms_element = None if element.tag in ETD_MS_CONVERSION_DISPATCH: if not ark: ark = False if element.qualifier == : ark = element.content if ark is not None: ark_identifier = ETD_MS_CONVERSION_DISPATCH[]( ark=ark, ) etd_ms_root.add_child(ark_identifier) if degree_children: degree_element = ETD_MS_CONVERSION_DISPATCH[]() degree_child_element = None for k, v in degree_children.iteritems(): degree_child_element = ETD_MS_DEGREE_DISPATCH[k]( content=v, ) if degree_child_element: degree_element.add_child(degree_child_element) etd_ms_root.add_child(degree_element) return etd_ms_root
Convert the UNTL elements structure into an ETD_MS structure. kwargs can be passed to the function for certain effects.
13,067
def set_restricted(self, obj, restricted): if restricted: self._restricted.add(obj) elif obj in self._restricted: self._restricted.remove(obj)
Set the restriction on the given object. You can use this to signal that a certain function is restricted. Then you can query the restriction later with :meth:`Reftrack.is_restricted`. :param obj: a hashable object :param restricted: True, if you want to restrict the object. :type restricted: :class:`bool` :returns: None :rtype: None :raises: None
13,068
def update_col(self, column_name, series): logger.debug(.format( column_name, self.name)) self.local[column_name] = series
Add or replace a column in the underlying DataFrame. Parameters ---------- column_name : str Column to add or replace. series : pandas.Series or sequence Column data.
13,069
def setOverlayTransformOverlayRelative(self, ulOverlayHandle, ulOverlayHandleParent): fn = self.function_table.setOverlayTransformOverlayRelative pmatParentOverlayToOverlayTransform = HmdMatrix34_t() result = fn(ulOverlayHandle, ulOverlayHandleParent, byref(pmatParentOverlayToOverlayTransform)) return result, pmatParentOverlayToOverlayTransform
Sets the transform to relative to the transform of the specified overlay. This overlays visibility will also track the parents visibility
13,070
async def teardown_conn(self, context): client_id = context.user_data self._logger.info("Tearing down client connection: %s", client_id) if client_id not in self.clients: self._logger.warning("client_id %s did not exist in teardown_conn", client_id) else: del self.clients[client_id]
Teardown a connection from a client.
13,071
def train_model(best_processed_path, weight_path=, verbose=2): x_train_char, x_train_type, y_train = prepare_feature(best_processed_path, option=) x_test_char, x_test_type, y_test = prepare_feature(best_processed_path, option=) validation_set = False if os.path.isdir(os.path.join(best_processed_path, )): validation_set = True x_val_char, x_val_type, y_val = prepare_feature(best_processed_path, option=) if not os.path.isdir(os.path.dirname(weight_path)): os.makedirs(os.path.dirname(weight_path)) callbacks_list = [ ReduceLROnPlateau(), ModelCheckpoint( weight_path, save_best_only=True, save_weights_only=True, monitor=, mode=, verbose=1 ) ] model = get_convo_nn2() train_params = [(10, 256), (3, 512), (3, 2048), (3, 4096), (3, 8192)] for (epochs, batch_size) in train_params: print("train with {} epochs and {} batch size".format(epochs, batch_size)) if validation_set: model.fit([x_train_char, x_train_type], y_train, epochs=epochs, batch_size=batch_size, verbose=verbose, callbacks=callbacks_list, validation_data=([x_val_char, x_val_type], y_val)) else: model.fit([x_train_char, x_train_type], y_train, epochs=epochs, batch_size=batch_size, verbose=verbose, callbacks=callbacks_list) return model
Given path to processed BEST dataset, train CNN model for words beginning alongside with character label encoder and character type label encoder Input ===== best_processed_path: str, path to processed BEST dataset weight_path: str, path to weight path file verbose: int, verbost option for training Keras model Output ====== model: keras model, keras model for tokenize prediction
13,072
def get_args( self, keep_blank_values: bool = False, strict_parsing: bool = False, encoding: str = "utf-8", errors: str = "replace", ) -> RequestParameters: if not self.parsed_args[ (keep_blank_values, strict_parsing, encoding, errors) ]: if self.query_string: self.parsed_args[ (keep_blank_values, strict_parsing, encoding, errors) ] = RequestParameters( parse_qs( qs=self.query_string, keep_blank_values=keep_blank_values, strict_parsing=strict_parsing, encoding=encoding, errors=errors, ) ) return self.parsed_args[ (keep_blank_values, strict_parsing, encoding, errors) ]
Method to parse `query_string` using `urllib.parse.parse_qs`. This methods is used by `args` property. Can be used directly if you need to change default parameters. :param keep_blank_values: flag indicating whether blank values in percent-encoded queries should be treated as blank strings. A true value indicates that blanks should be retained as blank strings. The default false value indicates that blank values are to be ignored and treated as if they were not included. :type keep_blank_values: bool :param strict_parsing: flag indicating what to do with parsing errors. If false (the default), errors are silently ignored. If true, errors raise a ValueError exception. :type strict_parsing: bool :param encoding: specify how to decode percent-encoded sequences into Unicode characters, as accepted by the bytes.decode() method. :type encoding: str :param errors: specify how to decode percent-encoded sequences into Unicode characters, as accepted by the bytes.decode() method. :type errors: str :return: RequestParameters
13,073
def wrap(self, row: Union[Mapping[str, Any], Sequence[Any]]): return ( self.dataclass( **{ ident: row[column_name] for ident, column_name in self.ids_and_column_names.items() } ) if isinstance(row, Mapping) else self.dataclass( **{ident: val for ident, val in zip(self.ids_and_column_names.keys(), row)} ) )
Return row tuple for row.
13,074
def do_bc(self, arg): token_list = self.split_tokens(arg, 1, 2) pid, tid, address, size = self.input_breakpoint(token_list) debug = self.debug found = False if size is None: if tid is not None: if debug.has_hardware_breakpoint(tid, address): debug.dont_watch_variable(tid, address) found = True if pid is not None: if debug.has_code_breakpoint(pid, address): debug.dont_break_at(pid, address) found = True else: if debug.has_page_breakpoint(pid, address): debug.dont_watch_buffer(pid, address, size) found = True if not found: print("Error: breakpoint not found.")
[~process] bc <address> - clear a code breakpoint [~thread] bc <address> - clear a hardware breakpoint [~process] bc <address-address> - clear a memory breakpoint [~process] bc <address> <size> - clear a memory breakpoint
13,075
def set_authoring_nodes(self, editor): project_node = self.default_project_node file_node = self.register_file(editor.file, project_node) editor_node = self.register_editor(editor, file_node) return True
Sets the Model authoring Nodes using given editor. :param editor: Editor to set. :type editor: Editor :return: Method success. :rtype: bool
13,076
def _boundary(self): boundary = None try: import uuid boundary = uuid.uuid4().hex except ImportError: import random, sha bits = random.getrandbits(160) boundary = sha.new(str(bits)).hexdigest() return boundary
Returns a random string to use as the boundary for a message. Returns: string. Boundary
13,077
def payload(self): payload = {: self.resource_type(), : self.attributes} if self.id: payload[] = self.id return payload
Renders the resource payload. :returns: a dict representing the object to be used as payload for a request
13,078
def _print_napps(cls, napp_list): mgr = NAppsManager() enabled = mgr.get_enabled() installed = mgr.get_installed() napps = [] for napp, desc in sorted(napp_list): status = if napp in installed else status += if napp in enabled else status = .format(status) name = .format(*napp) napps.append((status, name, desc)) cls.print_napps(napps)
Format the NApp list to be printed.
13,079
def get_2d_local_memory_v2(x, query_shape, memory_flange): (_, height, width, depth_x) = common_layers.shape_list(x) paddings = [[0, 0], [memory_flange[0], memory_flange[0]], [memory_flange[1], memory_flange[1]], [0, 0]] padded_x = tf.pad(x, paddings) padded_x.set_shape([None, height+2*memory_flange[0], width+2*memory_flange[1], depth_x]) num_h_memory_blocks = height//query_shape[0] + 1 num_w_memory_blocks = width//query_shape[1] + 1 x_memory_blocks = _extract_blocks(padded_x, query_shape[0], query_shape[1]) x_width_blocks = tf.split(x_memory_blocks, num_w_memory_blocks, 2) x_left_width = tf.concat(x_width_blocks[:num_w_memory_blocks - 1], axis=2) x_right_width = tf.concat(x_width_blocks[1:], axis=2) x_memory_blocks = tf.concat([x_left_width, x_right_width], axis=4) x_height_blocks = tf.split(x_memory_blocks, num_h_memory_blocks, 1) x_top_height = tf.concat(x_height_blocks[:num_h_memory_blocks - 1], axis=1) x_bottom_height = tf.concat(x_height_blocks[1:], axis=1) x = tf.concat([x_top_height, x_bottom_height], axis=3) return x
Gathering memory blocks around query blocks. flange is half of query . Only works if memory flanges are half of query sizes. Args: x: a [batch, height, width, depth tensor] query_shape: 2-d integer list of query shape memory_flange: 2-d integer list of memory flanges Returns: x: A [batch, num_h_blocks, num_w_blocks, query_shape[0]+2*memory_flange[0],query_shape[1]+2*memory_flange[1]] tensor.
13,080
def close(self): if not self.closed: self._ipython.events.unregister(, self._fill) self._box.close() self.closed = True
Close and remove hooks.
13,081
def visit(self, node): method = + node.__class__.__name__ if not hasattr(self, method): raise ValueError( % node.__class__.__name__) visitor = getattr(self, method) if anno.hasanno(node, ): self.active_variables = anno.getanno(node, ) pri, adj = visitor(node) if isinstance(pri, gast.AST): anno.setdefaultanno(pri, , adj) else: for node in pri: anno.setdefaultanno(node, , adj) if isinstance(adj, gast.AST): anno.setdefaultanno(adj, , pri) else: for node in adj: anno.setdefaultanno(node, , pri) return pri, adj
Visit a node. This method is largely modelled after the ast.NodeTransformer class. Args: node: The node to visit. Returns: A tuple of the primal and adjoint, each of which is a node or a list of nodes.
13,082
def get(self, session): request = TOPRequest() self.create(self.execute(request, session)) return self.after_sales
taobao.aftersale.get 查询用户售后服务模板 查询用户设置的售后服务模板,仅返回标题和id
13,083
def subtract(self, years=0, months=0, weeks=0, days=0): return self.add(years=-years, months=-months, weeks=-weeks, days=-days)
Remove duration from the instance. :param years: The number of years :type years: int :param months: The number of months :type months: int :param weeks: The number of weeks :type weeks: int :param days: The number of days :type days: int :rtype: Date
13,084
def rewrite_update(clauseelement, multiparams, params): newmultiparams = [] _multiparams = multiparams[0] if len(_multiparams) == 0: return clauseelement, multiparams, params for _params in _multiparams: newparams = {} for key, val in _params.items(): if ( not isinstance(val, MutableDict) or (not any(val._changed_keys) and not any(val._deleted_keys)) ): newparams[key] = val continue for subkey, subval in val.items(): if subkey in val._changed_keys: newparams["{0}[]".format(key, subkey)] = subval for subkey in val._deleted_keys: newparams["{0}[]".format(key, subkey)] = None newmultiparams.append(newparams) _multiparams = (newmultiparams, ) clause = clauseelement.values(newmultiparams[0]) clause._crate_specific = True return clause, _multiparams, params
change the params to enable partial updates sqlalchemy by default only supports updates of complex types in the form of "col = ?", ({"x": 1, "y": 2} but crate supports "col['x'] = ?, col['y'] = ?", (1, 2) by using the `Craty` (`MutableDict`) type. The update statement is only rewritten if an item of the MutableDict was changed.
13,085
def copy(self): features_copy = [feature.copy() for feature in self.features] copy = type(self)(self.top.seq, circular=self.circular, features=features_copy, name=self.name, bottom=self.bottom.seq, run_checks=False) return copy
Create a copy of the current instance. :returns: A safely-editable copy of the current sequence. :rtype: coral.DNA
13,086
def sort_item(iterable, number, reverse=False): return sorted(iterable, key=itemgetter(number), reverse=reverse)
Sort the itertable according to the given number item.
13,087
def b58decode(val, charset=DEFAULT_CHARSET): def _b58decode_int(val): output = 0 for char in val: output = output * base + charset.index(char) return output if isinstance(val, str): val = val.encode() if isinstance(charset, str): charset = charset.encode() base = len(charset) if not base == 58: raise ValueError( % base) pad_len = len(val) val = val.lstrip(bytes([charset[0]])) pad_len -= len(val) acc = _b58decode_int(val) result = deque() while acc > 0: acc, mod = divmod(acc, 256) result.appendleft(mod) prefix = b * pad_len return prefix + bytes(result)
Decode base58check encoded input to original raw bytes. :param bytes val: The value to base58cheeck decode. :param bytes charset: (optional) The character set to use for decoding. :return: the decoded bytes. :rtype: bytes Usage:: >>> import base58check >>> base58check.b58decode('\x00v\x80\xad\xec\x8e\xab\xca\xba\xc6v\xbe' ... '\x9e\x83\x85J\xde\x0b\xd2,\xdb\x0b\xb9`\xde') b'1BoatSLRHtKNngkdXEeobR76b53LETtpyT'
13,088
def Validate(self, value, **_): if value is None: return return rdfvalue.RDFBool(super(ProtoBoolean, self).Validate(value))
Check that value is a valid enum.
13,089
def autobuild_docproject(): try: family = utilities.get_family() autobuild_release(family) autobuild_documentation(family.tile) except unit_test.IOTileException as e: print(e.format()) Exit(1)
Autobuild a project that only contains documentation
13,090
def merge_rest_api_config(configs): bind = None connect = None timeout = None opentsdb_url = None opentsdb_db = None opentsdb_username = None opentsdb_password = None client_max_size = None for config in reversed(configs): if config.bind is not None: bind = config.bind if config.connect is not None: connect = config.connect if config.timeout is not None: timeout = config.timeout if config.opentsdb_url is not None: opentsdb_url = config.opentsdb_url if config.opentsdb_db is not None: opentsdb_db = config.opentsdb_db if config.opentsdb_username is not None: opentsdb_username = config.opentsdb_username if config.opentsdb_password is not None: opentsdb_password = config.opentsdb_password if config.client_max_size is not None: client_max_size = config.client_max_size return RestApiConfig( bind=bind, connect=connect, timeout=timeout, opentsdb_url=opentsdb_url, opentsdb_db=opentsdb_db, opentsdb_username=opentsdb_username, opentsdb_password=opentsdb_password, client_max_size=client_max_size)
Given a list of PathConfig objects, merges them into a single PathConfig, giving priority in the order of the configs (first has highest priority).
13,091
def sanitize(self): super(MapRegisterMessage, self).sanitize() if not isinstance(self.proxy_map_reply, bool): raise ValueError() if not isinstance(self.xtr_id, numbers.Integral) \ or self.xtr_id < 0 or self.xtr_id >= 2 ** 128: raise ValueError() if not isinstance(self.site_id, numbers.Integral) \ or self.site_id < 0 or self.site_id >= 2 ** 64: raise ValueError() if not isinstance(self.for_rtr, bool): raise ValueError() if not isinstance(self.want_map_notify, bool): raise ValueError() if self.nonce != : pass if self.key_id not in (KEY_ID_NONE, KEY_ID_HMAC_SHA_1_96, KEY_ID_HMAC_SHA_256_128): raise ValueError() if not isinstance(self.authentication_data, bytes): raise ValueError() for record in self.records: if not isinstance(record, MapRegisterRecord): raise ValueError() record.sanitize()
Check if the current settings conform to the LISP specifications and fix them where possible.
13,092
def addAEMOD(rh): rh.printSysLog("Enter changeVM.addAEMOD") invokeScript = "invokeScript.sh" trunkFile = "aemod.doscript" fileClass = "X" tempDir = tempfile.mkdtemp() if os.path.isfile(rh.parms[]): if rh.parms[].startswith("/"): s = rh.parms[] tmpAEScript = s[s.rindex("/") + 1:] else: tmpAEScript = rh.parms[] shutil.copyfile(rh.parms[], tempDir + "/" + tmpAEScript) conf = " baseName = os.path.basename(rh.parms[]) parm = "/bin/bash %s %s \n" % (baseName, rh.parms[]) fh = open(tempDir + "/" + invokeScript, "w") fh.write(conf) fh.write(parm) fh.close() tar = tarfile.open(tempDir + "/" + trunkFile, "w") for file in os.listdir(tempDir): tar.add(tempDir + "/" + file, arcname=file) tar.close() punch2reader(rh, rh.userid, tempDir + "/" + trunkFile, fileClass) shutil.rmtree(tempDir) else: shutil.rmtree(tempDir) msg = msgs.msg[][1] % (modId, rh.parms[]) rh.printLn("ES", msg) rh.updateResults(msgs.msg[][0]) rh.printSysLog("Exit changeVM.addAEMOD, rc: " + str(rh.results[])) return rh.results[]
Send an Activation Modification Script to the virtual machine. Input: Request Handle with the following properties: function - 'CHANGEVM' subfunction - 'AEMOD' userid - userid of the virtual machine parms['aeScript'] - File specification of the AE script parms['invparms'] - invparms operand Output: Request Handle updated with the results. Return code - 0: ok Return code - 4: input error, rs - 11 AE script not found
13,093
def set_axis_labels(self, x_var=None, y_var=None): if x_var is not None: if x_var in self.data.coords: self._x_var = x_var self.set_xlabels(label_from_attrs(self.data[x_var])) else: self.set_xlabels(x_var) if y_var is not None: if y_var in self.data.coords: self._y_var = y_var self.set_ylabels(label_from_attrs(self.data[y_var])) else: self.set_ylabels(y_var) return self
Set axis labels on the left column and bottom row of the grid.
13,094
def tabular(client, records): from renku.models._tabulate import tabulate echo_via_pager( tabulate( records, headers=OrderedDict(( (, None), (, ), (, None), (, ), )), ) )
Format dataset files with a tabular output. :param client: LocalClient instance. :param records: Filtered collection.
13,095
def CreateReply(self, **attributes): return Packet(id=self.id, secret=self.secret, authenticator=self.authenticator, dict=self.dict, **attributes)
Create a new packet as a reply to this one. This method makes sure the authenticator and secret are copied over to the new instance.
13,096
def clone(self, run=True): params = {} if run: params.update({: }) extra = { : self.__class__.__name__, : {: self.id, : run} } logger.info(, extra=extra) task_data = self._api.post( url=self._URL[].format(id=self.id), params=params).json() return Task(api=self._api, **task_data)
Clone task :param run: run task after cloning :return: Task object.
13,097
def pdb_downloader_and_metadata(self, outdir=None, pdb_file_type=None, force_rerun=False): if not outdir: outdir = self.structure_dir if not outdir: raise ValueError() if not pdb_file_type: pdb_file_type = self.pdb_file_type if self.num_structures_experimental == 0: log.debug(.format(self.id)) return downloaded_pdb_ids = [] for s in self.get_experimental_structures(): log.debug(.format(s.id)) s.download_structure_file(outdir=outdir, file_type=pdb_file_type, force_rerun=force_rerun, load_header_metadata=True) downloaded_pdb_ids.append(s.id) return downloaded_pdb_ids
Download ALL mapped experimental structures to the protein structures directory. Args: outdir (str): Path to output directory, if protein structures directory not set or other output directory is desired pdb_file_type (str): Type of PDB file to download, if not already set or other format is desired force_rerun (bool): If files should be re-downloaded if they already exist Returns: list: List of PDB IDs that were downloaded Todo: * Parse mmtf or PDB file for header information, rather than always getting the cif file for header info
13,098
def superclasses(self, inherited=False): data = clips.data.DataObject(self._env) lib.EnvClassSuperclasses( self._env, self._cls, data.byref, int(inherited)) for klass in classes(self._env, data.value): yield klass
Iterate over the superclasses of the class. This function is the Python equivalent of the CLIPS class-superclasses command.
13,099
def pngout(ext_args): args = _PNGOUT_ARGS + [ext_args.old_filename, ext_args.new_filename] extern.run_ext(args) return _PNG_FORMAT
Run the external program pngout on the file.