Unnamed: 0
int64 0
389k
| code
stringlengths 26
79.6k
| docstring
stringlengths 1
46.9k
|
---|---|---|
13,600 | def stop(self):
self.my_server.stop()
self.http_thread.join()
logging.info("HTTP server: Stopped") | Stop the HTTP server thread. |
13,601 | def do_perf_counter_check(self, instance):
custom_tags = instance.get(, [])
if custom_tags is None:
custom_tags = []
instance_key = self._conn_key(instance, self.DEFAULT_DB_KEY)
instance_by_key = self.instances_per_type_metrics[instance_key]
with self.open_managed_db_connections(instance, self.DEFAULT_DB_KEY):
if instance_key not in self.instances_metrics:
self._make_metric_list_to_collect(instance, self.custom_metrics)
metrics_to_collect = self.instances_metrics[instance_key]
with self.get_managed_cursor(instance, self.DEFAULT_DB_KEY) as cursor:
simple_rows = SqlSimpleMetric.fetch_all_values(cursor, instance_by_key["SqlSimpleMetric"], self.log)
fraction_results = SqlFractionMetric.fetch_all_values(
cursor, instance_by_key["SqlFractionMetric"], self.log
)
waitstat_rows, waitstat_cols = SqlOsWaitStat.fetch_all_values(
cursor, instance_by_key["SqlOsWaitStat"], self.log
)
vfs_rows, vfs_cols = SqlIoVirtualFileStat.fetch_all_values(
cursor, instance_by_key["SqlIoVirtualFileStat"], self.log
)
clerk_rows, clerk_cols = SqlOsMemoryClerksStat.fetch_all_values(
cursor, instance_by_key["SqlOsMemoryClerksStat"], self.log
)
for metric in metrics_to_collect:
try:
if type(metric) is SqlSimpleMetric:
metric.fetch_metric(cursor, simple_rows, custom_tags)
elif type(metric) is SqlFractionMetric or type(metric) is SqlIncrFractionMetric:
metric.fetch_metric(cursor, fraction_results, custom_tags)
elif type(metric) is SqlOsWaitStat:
metric.fetch_metric(cursor, waitstat_rows, waitstat_cols, custom_tags)
elif type(metric) is SqlIoVirtualFileStat:
metric.fetch_metric(cursor, vfs_rows, vfs_cols, custom_tags)
elif type(metric) is SqlOsMemoryClerksStat:
metric.fetch_metric(cursor, clerk_rows, clerk_cols, custom_tags)
except Exception as e:
self.log.warning("Could not fetch metric {} : {}".format(metric.datadog_name, e)) | Fetch the metrics from the sys.dm_os_performance_counters table |
13,602 | def register_extensions(self, exts, force=False):
for ext_in, ext_out in exts.items():
self.register_extension(ext_in, ext_out, force) | Add/register extensions.
Args:
exts (dict):
force (bool): If ``force`` is set to ``True``, simply overwrite existing extensions, otherwise do nothing.
If the ``logger`` is set, log a warning about the duplicate extension if ``force == False``. |
13,603 | def tangelo_import(*args, **kwargs):
try:
return builtin_import(*args, **kwargs)
except ImportError:
if not hasattr(cherrypy.thread_data, "modulepath"):
raise
path = os.path.abspath(cherrypy.thread_data.modulepath)
root = os.path.abspath(cherrypy.config.get("webroot"))
result = None
imp.acquire_lock()
oldpath = sys.path
try:
if path not in sys.path and (path == root or path.startswith(root + os.path.sep)):
sys.path = [path] + sys.path
result = builtin_import(*args, **kwargs)
finally:
sys.path = oldpath
imp.release_lock()
if result is not None:
return result
raise | When we are asked to import a module, if we get an import error and the
calling script is one we are serving (not one in the python libraries), try
again in the same directory as the script that is calling import.
It seems like we should use sys.meta_path and combine our path with the
path sent to imp.find_module. This requires duplicating a bunch of logic
from the imp module and is actually heavier than this technique.
:params: see __builtin__.__import__ |
13,604 | def update_server_cert(self, cert_name, new_cert_name=None,
new_path=None):
params = { : cert_name}
if new_cert_name:
params[] = new_cert_name
if new_path:
params[] = new_path
return self.get_response(, params) | Updates the name and/or the path of the specified server certificate.
:type cert_name: string
:param cert_name: The name of the server certificate that you want
to update.
:type new_cert_name: string
:param new_cert_name: The new name for the server certificate.
Include this only if you are updating the
server certificate's name.
:type new_path: string
:param new_path: If provided, the path of the certificate will be
changed to this path. |
13,605 | def process_result_value(self, value, dialect):
masks = list()
if value:
for e in enums.CryptographicUsageMask:
if e.value & value:
masks.append(e)
return masks | Returns a new list of enums.CryptographicUsageMask Enums. This converts
the integer value into the list of enums.
Args:
value(int): The integer value stored in the database that is used
to create the list of enums.CryptographicUsageMask Enums.
dialect(string): SQL dialect |
13,606 | def add_error_marker(text, position, start_line=1):
indent = " "
lines = []
caret_line = start_line
for line in text.split("\n"):
lines.append(indent + line)
if 0 <= position <= len(line):
lines.append(indent + (" " * position) + "^")
caret_line = start_line
position -= len(line)
position -= 1
start_line += 1
return "\n".join(lines), caret_line | Add a caret marking a given position in a string of input.
Returns (new_text, caret_line). |
13,607 | def add_path(self, nodes, **attr):
if nx.__version__[0] == "1":
return super().add_path(nodes, **attr)
else:
return nx.add_path(self, nodes, **attr) | In replacement for Deprecated add_path method |
13,608 | def varYSizeGaussianFilter(arr, stdyrange, stdx=0,
modex=, modey=):
assert arr.ndim == 2,
s0 = arr.shape[0]
if isinstance(stdyrange, np.ndarray):
assert len(stdyrange)==s0,
stdys = stdyrange
else:
if type(stdyrange) not in (list, tuple):
stdyrange = (0,stdyrange)
mn,mx = stdyrange
stdys = np.linspace(mn,mx,s0)
kx = int(stdx*2.5)
kx += 1-kx%2
ky = int(mx*2.5)
ky += 1-ky%2
arr2 = extendArrayForConvolution(arr, (kx, ky), modex, modey)
inp = np.zeros((ky,kx))
inp[ky//2, kx//2] = 1
kernels = np.empty((s0,ky,kx))
for i in range(s0):
stdy = stdys[i]
kernels[i] = gaussian_filter(inp, (stdy,stdx))
out = np.empty_like(arr)
_2dConvolutionYdependentKernel(arr2, out, kernels)
return out | applies gaussian_filter on input array
but allowing variable ksize in y
stdyrange(int) -> maximum ksize - ksizes will increase from 0 to given value
stdyrange(tuple,list) -> minimum and maximum size as (mn,mx)
stdyrange(np.array) -> all different ksizes in y |
13,609 | def subsets(self):
source, target = self.builder_config.language_pair
filtered_subsets = {}
for split, ss_names in self._subsets.items():
filtered_subsets[split] = []
for ss_name in ss_names:
ds = DATASET_MAP[ss_name]
if ds.target != target or source not in ds.sources:
logging.info(
"Skipping sub-dataset that does not include language pair: %s",
ss_name)
else:
filtered_subsets[split].append(ss_name)
logging.info("Using sub-datasets: %s", filtered_subsets)
return filtered_subsets | Subsets that make up each split of the dataset for the language pair. |
13,610 | def write(self, sync_map_format, output_file_path, parameters=None):
def select_levels(syncmap, levels):
self.log([u"Levels: ", levels])
if levels is None:
return
try:
levels = [int(l) for l in levels if int(l) > 0]
syncmap.fragments_tree.keep_levels(levels)
self.log([u"Selected levels: %s", levels])
except ValueError:
self.log_warn(u"Cannot convert levels to list of int, returning unchanged")
def set_head_tail_format(syncmap, head_tail_format=None):
self.log([u"Head/tail format: ", str(head_tail_format)])
tree = syncmap.fragments_tree
head = tree.get_child(0)
first = tree.get_child(1)
last = tree.get_child(-2)
tail = tree.get_child(-1)
if head_tail_format == SyncMapHeadTailFormat.ADD:
head.value.fragment_type = SyncMapFragment.REGULAR
self.log(u"Marked HEAD as REGULAR")
if head_tail_format == SyncMapHeadTailFormat.STRETCH:
self.log([u"Stretched first.begin: %.3f => %.3f (head)", first.value.begin, head.value.begin])
self.log([u"Stretched last.end: %.3f => %.3f (tail)", last.value.end, tail.value.end])
first.value.begin = head.value.begin
last.value.end = tail.value.end
if head_tail_format == SyncMapHeadTailFormat.ADD:
tail.value.fragment_type = SyncMapFragment.REGULAR
self.log(u"Marked TAIL as REGULAR")
for node in list(tree.dfs):
if (node.value is not None) and (node.value.fragment_type != SyncMapFragment.REGULAR):
node.remove()
if sync_map_format is None:
self.log_exc(u"Sync map format is None", None, True, ValueError)
if sync_map_format not in SyncMapFormat.CODE_TO_CLASS:
self.log_exc(u"Sync map format is not allowed" % (sync_map_format), None, True, ValueError)
if not gf.file_can_be_written(output_file_path):
self.log_exc(u"Cannot write sync map file . Wrong permissions?" % (output_file_path), None, True, OSError)
self.log([u"Output format: ", sync_map_format])
self.log([u"Output path: ", output_file_path])
self.log([u"Output parameters: ", parameters])
pruned_syncmap = self.clone()
try:
select_levels(pruned_syncmap, parameters[gc.PPN_TASK_OS_FILE_LEVELS])
except:
self.log_warn([u"No %s parameter specified", gc.PPN_TASK_OS_FILE_LEVELS])
try:
set_head_tail_format(pruned_syncmap, parameters[gc.PPN_TASK_OS_FILE_HEAD_TAIL_FORMAT])
except:
self.log_warn([u"No %s parameter specified", gc.PPN_TASK_OS_FILE_HEAD_TAIL_FORMAT])
writer = (SyncMapFormat.CODE_TO_CLASS[sync_map_format])(
variant=sync_map_format,
parameters=parameters,
rconf=self.rconf,
logger=self.logger
)
gf.ensure_parent_directory(output_file_path)
self.log(u"Writing output file...")
with io.open(output_file_path, "w", encoding="utf-8") as output_file:
output_file.write(writer.format(syncmap=pruned_syncmap))
self.log(u"Writing output file... done") | Write the current sync map to file in the requested format.
Return ``True`` if the call succeeded,
``False`` if an error occurred.
:param sync_map_format: the format of the sync map
:type sync_map_format: :class:`~aeneas.syncmap.SyncMapFormat`
:param string output_file_path: the path to the output file to write
:param dict parameters: additional parameters (e.g., for ``SMIL`` output)
:raises: ValueError: if ``sync_map_format`` is ``None`` or it is not an allowed value
:raises: TypeError: if a required parameter is missing
:raises: OSError: if ``output_file_path`` cannot be written |
13,611 | def expand_no_defaults (property_sets):
assert is_iterable_typed(property_sets, property_set.PropertySet)
expanded_property_sets = [ps.expand_subfeatures() for ps in property_sets]
product = __x_product (expanded_property_sets)
return [property_set.create(p) for p in product] | Expand the given build request by combining all property_sets which don't
specify conflicting non-free features. |
13,612 | def nack(self, id, subscription, transaction=None, receipt=None):
assert id is not None, " is required"
assert subscription is not None, " is required"
headers = {HDR_MESSAGE_ID: id, HDR_SUBSCRIPTION: subscription}
if transaction:
headers[HDR_TRANSACTION] = transaction
if receipt:
headers[HDR_RECEIPT] = receipt
self.send_frame(CMD_NACK, headers) | Let the server know that a message was not consumed.
:param str id: the unique id of the message to nack
:param str subscription: the subscription this message is associated with
:param str transaction: include this nack in a named transaction |
13,613 | def select(dataspec, testsuite, mode=, cast=True):
if isinstance(testsuite, itsdb.ItsdbProfile):
testsuite = itsdb.TestSuite(testsuite.root)
elif not isinstance(testsuite, itsdb.TestSuite):
testsuite = itsdb.TestSuite(testsuite)
return tsql.select(dataspec, testsuite, mode=mode, cast=cast) | Select data from [incr tsdb()] profiles.
Args:
query (str): TSQL select query (e.g., `'i-id i-input mrs'` or
`'* from item where readings > 0'`)
testsuite (str, TestSuite): testsuite or path to testsuite
containing data to select
mode (str): see :func:`delphin.itsdb.select_rows` for a
description of the *mode* parameter (default: `list`)
cast (bool): if `True`, cast column values to their datatype
according to the relations file (default: `True`)
Returns:
a generator that yields selected data |
13,614 | def _update_service_current_state(service: ServiceState):
LOG.debug("Setting current state from target state for %s", service.id)
service.update_current_state(service.target_state) | Update the current state of a service.
Updates the current state of services after their target state has changed.
Args:
service (ServiceState): Service state object to update |
13,615 | def forkandlog(function, filter=, debug=False):
import sys, os
readfd, writefd = os.pipe()
pid = os.fork()
if pid == 0:
os.close(readfd)
if not debug:
f = open(os.devnull, )
os.dup2(f.fileno(), 1)
os.dup2(f.fileno(), 2)
sink = logger(filter=filter)
sink.setlogfile(b % writefd)
function(sink)
sys.exit(0)
os.close(writefd)
with os.fdopen(readfd) as readhandle:
for line in readhandle:
yield line
info = os.waitpid(pid, 0)
if info[1]:
e.pid, e.exitcode = info
raise e | Fork a child process and read its CASA log output.
function
A function to run in the child process
filter
The CASA log level filter to apply in the child process: less urgent
messages will not be shown. Valid values are strings: "DEBUG1", "INFO5",
... "INFO1", "INFO", "WARN", "SEVERE".
debug
If true, the standard output and error of the child process are *not*
redirected to /dev/null.
Some CASA tools produce important results that are *only* provided via log
messages. This is a problem for automation, since there’s no way for
Python code to intercept those log messages and extract the results of
interest. This function provides a framework for working around this
limitation: by forking a child process and sending its log output to a
pipe, the parent process can capture the log messages.
This function is a generator. It yields lines from the child process’ CASA
log output.
Because the child process is a fork of the parent, it inherits a complete
clone of the parent’s state at the time of forking. That means that the
*function* argument you pass it can do just about anything you’d do in a
regular program.
The child process’ standard output and error streams are redirected to
``/dev/null`` unless the *debug* argument is true. Note that the CASA log
output is redirected to a pipe that is neither of these streams. So, if
the function raises an unhandled Python exception, the Python traceback
will not pollute the CASA log output. But, by the same token, the calling
program will not be able to detect that the exception occurred except by
its impact on the expected log output. |
13,616 | def _fit_RSA_marginalized_null(self, Y, X_base,
scan_onsets):
n_subj = len(Y)
t_start = time.time()
logger.info(
.format(self.n_iter))
rho_grids, rho_weights = self._set_rho_grids()
logger.info(
.format(rho_grids))
n_grid = self.rho_bins
log_weights = np.log(rho_weights)
rho_post = [None] * n_subj
sigma_post = [None] * n_subj
beta0_post = [None] * n_subj
X0 = [None] * n_subj
LL_null = np.zeros(n_subj)
for subj in range(n_subj):
logger.debug(.format(subj))
[n_T, n_V] = np.shape(Y[subj])
D, F, run_TRs, n_run = self._prepare_DF(
n_T, scan_onsets=scan_onsets[subj])
YTY_diag = np.sum(Y[subj] * Y[subj], axis=0)
YTDY_diag = np.sum(Y[subj] * np.dot(D, Y[subj]), axis=0)
YTFY_diag = np.sum(Y[subj] * np.dot(F, Y[subj]), axis=0)
X_DC = self._gen_X_DC(run_TRs)
X_DC, X_base[subj], idx_DC = self._merge_DC_to_base(
X_DC, X_base[subj], no_DC=False)
X_res = np.empty((n_T, 0))
for it in range(0, self.n_iter):
X0[subj] = np.concatenate(
(X_base[subj], X_res), axis=1)
n_X0 = X0[subj].shape[1]
X0TX0, X0TDX0, X0TFX0 = self._make_templates(
D, F, X0[subj], X0[subj])
X0TY, X0TDY, X0TFY = self._make_templates(
D, F, X0[subj], Y[subj])
YTAY_diag = YTY_diag - rho_grids[:, None] * YTDY_diag \
+ rho_grids[:, None]**2 * YTFY_diag
return beta0_post, sigma_post, rho_post, X0, LL_null | The marginalized version of the null model for Bayesian RSA.
The null model assumes no task-related response to the
design matrix.
Note that there is a naming change of variable. X in fit()
is changed to Y here.
This is because we follow the tradition that Y corresponds
to data.
However, in wrapper function fit(), we follow the naming
routine of scikit-learn. |
13,617 | def crosscorrfunc(freq, cross):
tbin = 1. / (2. * np.max(freq)) * 1e3
time = np.arange(-len(freq) / 2. + 1, len(freq) / 2. + 1) * tbin
multidata = False
if len(np.shape(cross)) > 1:
multidata = True
if multidata:
N = len(cross)
crossf = np.zeros((N, N, len(freq)))
for i in range(N):
for j in range(N):
raw_crossf = np.real(np.fft.ifft(cross[i, j]))
mid = int(len(raw_crossf) / 2.)
crossf[i, j] = np.hstack(
[raw_crossf[mid + 1:], raw_crossf[:mid + 1]])
assert(len(time) == len(crossf[0, 0]))
else:
raw_crossf = np.real(np.fft.ifft(cross))
mid = int(len(raw_crossf) / 2.)
crossf = np.hstack([raw_crossf[mid + 1:], raw_crossf[:mid + 1]])
assert(len(time) == len(crossf))
return time, crossf | Calculate crosscorrelation function(s) for given cross spectra.
Parameters
----------
freq : numpy.ndarray
1 dimensional array of frequencies.
cross : numpy.ndarray
2 dimensional array of cross spectra, 1st axis units, 2nd axis units,
3rd axis frequencies.
Returns
-------
time : tuple
1 dim numpy.ndarray of times.
crossf : tuple
3 dim numpy.ndarray, crosscorrelation functions,
1st axis first unit, 2nd axis second unit, 3rd axis times. |
13,618 | def stop(self, timeout=5):
self.inner().stop(timeout=timeout)
self.inner().reload() | Stop the container. The container must have been created.
:param timeout:
Timeout in seconds to wait for the container to stop before sending
a ``SIGKILL``. Default: 5 (half the Docker default) |
13,619 | def degToHms(ra):
assert (ra >= 0.0), WCSError("RA (%f) is negative" % (ra))
assert ra < 360.0, WCSError("RA (%f) > 360.0" % (ra))
rah = ra / degPerHMSHour
ramin = (ra % degPerHMSHour) * HMSMinPerDeg
rasec = (ra % degPerHMSMin) * HMSSecPerDeg
return (int(rah), int(ramin), rasec) | Converts the ra (in degrees) to HMS three tuple.
H and M are in integer and the S part is in float. |
13,620 | def t_text_end(self, t):
r
t.type =
t.value = t.lexer.lexdata[
t.lexer.text_start:t.lexer.lexpos]
t.lexer.lineno += t.value.count()
t.value = t.value.strip()
t.lexer.begin()
return t | r'</text>\s* |
13,621 | def DECLARE_key_flag(
flag_name, flag_values=FLAGS):
if flag_name in _helpers.SPECIAL_FLAGS:
_internal_declare_key_flags([flag_name],
flag_values=_helpers.SPECIAL_FLAGS,
key_flag_values=flag_values)
return
_internal_declare_key_flags([flag_name], flag_values=flag_values) | Declares one flag as key to the current module.
Key flags are flags that are deemed really important for a module.
They are important when listing help messages; e.g., if the
--helpshort command-line flag is used, then only the key flags of the
main module are listed (instead of all flags, as in the case of
--helpfull).
Sample usage:
gflags.DECLARE_key_flag('flag_1')
Args:
flag_name: A string, the name of an already declared flag.
(Redeclaring flags as key, including flags implicitly key
because they were declared in this module, is a no-op.)
flag_values: A FlagValues object. This should almost never
need to be overridden. |
13,622 | def GetPackages(classification,visibility):
r = clc.v1.API.Call(,,
{: Blueprint.classification_stoi[classification],: Blueprint.visibility_stoi[visibility]})
if int(r[]) == 0: return(r[]) | Gets a list of Blueprint Packages filtered by classification and visibility.
https://t3n.zendesk.com/entries/20411357-Get-Packages
:param classification: package type filter (System, Script, Software)
:param visibility: package visibility filter (Public, Private, Shared) |
13,623 | def _disconnect(self, error):
"done"
if self._on_disconnect:
self._on_disconnect(str(error))
if self._sender:
self._sender.connectionLost(Failure(error))
self._when_done.fire(Failure(error)) | done |
13,624 | def add_scalar_data(self, token, community_id, producer_display_name,
metric_name, producer_revision, submit_time, value,
**kwargs):
parameters = dict()
parameters[] = token
parameters[] = community_id
parameters[] = producer_display_name
parameters[] = metric_name
parameters[] = producer_revision
parameters[] = submit_time
parameters[] = value
optional_keys = [
, , , ,
, , , ,
, , , ,
]
for key in optional_keys:
if key in kwargs:
if key == :
parameters[] = kwargs[key]
elif key == :
parameters[] = kwargs[key]
elif key == :
parameters[] = kwargs[key]
elif key == :
parameters[] = kwargs[key]
elif key == :
parameters[] = json.dumps(kwargs[key])
elif key == :
parameters[key] = json.dumps(kwargs[key])
elif key == :
if kwargs[key]:
parameters[key] = kwargs[key]
elif key == :
if kwargs[key]:
parameters[key] = kwargs[key]
elif key == :
parameters[] = kwargs[key]
elif key == :
parameters[] = kwargs[key]
elif key == :
parameters[] = kwargs[key]
elif key == :
parameters[] = kwargs[key]
else:
parameters[key] = kwargs[key]
response = self.request(, parameters)
return response | Create a new scalar data point.
:param token: A valid token for the user in question.
:type token: string
:param community_id: The id of the community that owns the producer.
:type community_id: int | long
:param producer_display_name: The display name of the producer.
:type producer_display_name: string
:param metric_name: The metric name that identifies which trend this
point belongs to.
:type metric_name: string
:param producer_revision: The repository revision of the producer that
produced this value.
:type producer_revision: int | long | string
:param submit_time: The submit timestamp. Must be parsable with PHP
strtotime().
:type submit_time: string
:param value: The value of the scalar.
:type value: float
:param config_item_id: (optional) If this value pertains to a specific
configuration item, pass its id here.
:type config_item_id: int | long
:param test_dataset_id: (optional) If this value pertains to a
specific test dataset, pass its id here.
:type test_dataset_id: int | long
:param truth_dataset_id: (optional) If this value pertains to a
specific ground truth dataset, pass its id here.
:type truth_dataset_id: int | long
:param silent: (optional) If true, do not perform threshold-based email
notifications for this scalar.
:type silent: bool
:param unofficial: (optional) If true, creates an unofficial scalar
visible only to the user performing the submission.
:type unofficial: bool
:param build_results_url: (optional) A URL for linking to build results
for this submission.
:type build_results_url: string
:param branch: (optional) The branch name in the source repository for
this submission.
:type branch: string
:param submission_id: (optional) The id of the submission.
:type submission_id: int | long
:param submission_uuid: (optional) The uuid of the submission. If one
does not exist, it will be created.
:type submission_uuid: string
:type branch: string
:param params: (optional) Any key/value pairs that should be displayed
with this scalar result.
:type params: dict
:param extra_urls: (optional) Other URL's that should be displayed with
with this scalar result. Each element of the list should be a dict
with the following keys: label, text, href
:type extra_urls: list[dict]
:param unit: (optional) The unit of the scalar value.
:type unit: string
:param reproduction_command: (optional) The command to reproduce this
scalar.
:type reproduction_command: string
:returns: The scalar object that was created.
:rtype: dict |
13,625 | def updateResultsView(self, index):
flags = (QItemSelectionModel.Clear | QItemSelectionModel.Rows |
QItemSelectionModel.Select)
self.resultsView.selectionModel().select(index, flags)
self.resultsView.resizeColumnsToContents()
self.resultsView.setFocus() | Update the selection to contain only the result specified by
the index. This should be the last index of the model. Finally updade
the context menu.
The selectionChanged signal is used to trigger the update of
the Quanty dock widget and result details dialog.
:param index: Index of the last item of the model.
:type index: QModelIndex |
13,626 | def returns(ts, **kwargs):
returns_type = kwargs.get(, )
cumulative = kwargs.get(, False)
if returns_type == :
relative = 0
else:
relative = 1
start = kwargs.get(, None)
end = kwargs.get(, dt.datetime.today())
period = kwargs.get(, 1)
if isinstance(start, dt.datetime):
log.debug(.format(ts[end], ts[start]))
return ts[end] / ts[start] - 1 + relative
rets_df = ts / ts.shift(period) - 1 + relative
if cumulative:
return rets_df.cumprod()
return rets_df[1:] | Compute returns on the given period
@param ts : time serie to process
@param kwargs.type: gross or simple returns
@param delta : period betweend two computed returns
@param start : with end, will return the return betweend this elapsed time
@param period : delta is the number of lines/periods provided
@param end : so said
@param cumulative: compute cumulative returns |
13,627 | def perlin2(size, units=None, repeat=(10.,)*2, scale=None, shift=(0, 0)):
if scale:
if np.isscalar(scale):
scale = (scale,)*2
repeat = scale
units = (1.,)*2
wx, wy = repeat
dx, dy = units
offset_x, offset_y = shift
prog = OCLProgram(abspath("kernels/perlin.cl"))
d = OCLArray.empty(size[::-1], np.float32)
prog.run_kernel("perlin2d", d.shape[::-1], None,
d.data,
np.float32(dx), np.float32(dy),
np.float32(wx), np.float32(wy),
np.float32(offset_x), np.float32(offset_y),
)
return d.get() | 2d perlin noise
either scale =(10.,10.) or units (5.,5.) have to be given....
scale is the characteristic length in pixels
Parameters
----------
size:
units
repeat
scale
shift
Returns
------- |
13,628 | def format_string(self, fmat_string):
try:
return fmat_string.format(**vars(self))
except KeyError as e:
raise ValueError(
.format(repr(fmat_string),
repr(e))) | Takes a string containing 0 or more {variables} and formats it
according to this instance's attributes.
:param fmat_string: A string, e.g. '{name}-foo.txt'
:type fmat_string: ``str``
:return: The string formatted according to this instance. E.g.
'production-runtime-foo.txt'
:rtype: ``str`` |
13,629 | def remove_available_work_units(self, work_spec_name, work_unit_names):
return self._remove_some_work_units(
work_spec_name, work_unit_names, priority_max=time.time()) | Remove some work units in the available queue.
If `work_unit_names` is :const:`None` (which must be passed
explicitly), all available work units in `work_spec_name` are
removed; otherwise only the specific named work units will be.
:param str work_spec_name: name of the work spec
:param list work_unit_names: names of the work units, or
:const:`None` for all in `work_spec_name`
:return: number of work units removed |
13,630 | def resolve(self, _):
if self.default_value == DUMMY_VALUE:
if self.name in os.environ:
return os.environ[self.name]
else:
raise VelException(f"Undefined environment variable: {self.name}")
else:
return os.environ.get(self.name, self.default_value) | Resolve given variable |
13,631 | def transform_paragraph(self, paragraph, epochs=50, ignore_missing=False):
if self.word_vectors is None:
raise Exception()
if self.dictionary is None:
raise Exception(
)
cooccurrence = collections.defaultdict(lambda: 0.0)
for token in paragraph:
try:
cooccurrence[self.dictionary[token]] += self.max_count / 10.0
except KeyError:
if not ignore_missing:
raise
random_state = check_random_state(self.random_state)
word_ids = np.array(cooccurrence.keys(), dtype=np.int32)
values = np.array(cooccurrence.values(), dtype=np.float64)
shuffle_indices = np.arange(len(word_ids), dtype=np.int32)
paragraph_vector = np.mean(self.word_vectors[word_ids], axis=0)
sum_gradients = np.ones_like(paragraph_vector)
random_state.shuffle(shuffle_indices)
transform_paragraph(self.word_vectors,
self.word_biases,
paragraph_vector,
sum_gradients,
word_ids,
values,
shuffle_indices,
self.learning_rate,
self.max_count,
self.alpha,
epochs)
return paragraph_vector | Transform an iterable of tokens into its vector representation
(a paragraph vector).
Experimental. This will return something close to a tf-idf
weighted average of constituent token vectors by fitting
rare words (with low word bias values) more closely. |
13,632 | def get_contract_from_name(self, contract_name):
return next((c for c in self.contracts if c.name == contract_name), None) | Return a contract from a name
Args:
contract_name (str): name of the contract
Returns:
Contract |
13,633 | def resolve_dynamic_values(env):
if env.needs_workflow[]:
return
needs = env.needs_all_needs
for key, need in needs.items():
for need_option in need:
if need_option in [, , , ]:
continue
if not isinstance(need[need_option], (list, set)):
func_call = True
while func_call:
try:
func_call, func_return = _detect_and_execute(need[need_option], need, env)
except FunctionParsingException:
raise SphinxError("Function definition of {option} in file {file}:{line} has "
"unsupported parameters. "
"supported are str, int/float, list".format(option=need_option,
file=need[],
line=need[]))
if func_call is None:
continue
if func_return is None:
need[need_option] = need[need_option].replace(.format(func_call), )
else:
need[need_option] = need[need_option].replace(.format(func_call), str(func_return))
if need[need_option] == :
need[need_option] = None
else:
new_values = []
for element in need[need_option]:
try:
func_call, func_return = _detect_and_execute(element, need, env)
except FunctionParsingException:
raise SphinxError("Function definition of {option} in file {file}:{line} has "
"unsupported parameters. "
"supported are str, int/float, list".format(option=need_option,
file=need[],
line=need[]))
if func_call is None:
new_values.append(element)
else:
if isinstance(need[need_option], (str, int, float)):
new_values.append(element.replace(.format(func_call), str(func_return)))
else:
if isinstance(need[need_option], (list, set)):
new_values += func_return
need[need_option] = new_values
env.needs_workflow[] = True | Resolve dynamic values inside need data.
Rough workflow:
#. Parse all needs and their data for a string like [[ my_func(a,b,c) ]]
#. Extract function name and call parameters
#. Execute registered function name with extracted call parameters
#. Replace original string with return value
:param env: Sphinx environment
:return: return value of given function |
13,634 | def grid(children=[], sizing_mode=None, nrows=None, ncols=None):
row = namedtuple("row", ["children"])
col = namedtuple("col", ["children"])
def flatten(layout):
Item = namedtuple("Item", ["layout", "r0", "c0", "r1", "c1"])
Grid = namedtuple("Grid", ["nrows", "ncols", "items"])
def gcd(a, b):
a, b = abs(a), abs(b)
while b != 0:
a, b = b, a % b
return a
def lcm(a, *rest):
for b in rest:
a = (a*b) // gcd(a, b)
return a
nonempty = lambda child: child.nrows != 0 and child.ncols != 0
def _flatten(layout):
if isinstance(layout, row):
children = list(filter(nonempty, map(_flatten, layout.children)))
if not children:
return Grid(0, 0, [])
nrows = lcm(*[ child.nrows for child in children ])
ncols = sum([ child.ncols for child in children ])
items = []
offset = 0
for child in children:
factor = nrows//child.nrows
for (layout, r0, c0, r1, c1) in child.items:
items.append((layout, factor*r0, c0 + offset, factor*r1, c1 + offset))
offset += child.ncols
return Grid(nrows, ncols, items)
elif isinstance(layout, col):
children = list(filter(nonempty, map(_flatten, layout.children)))
if not children:
return Grid(0, 0, [])
nrows = sum([ child.nrows for child in children ])
ncols = lcm(*[ child.ncols for child in children ])
items = []
offset = 0
for child in children:
factor = ncols//child.ncols
for (layout, r0, c0, r1, c1) in child.items:
items.append((layout, r0 + offset, factor*c0, r1 + offset, factor*c1))
offset += child.nrows
return Grid(nrows, ncols, items)
else:
return Grid(1, 1, [Item(layout, 0, 0, 1, 1)])
grid = _flatten(layout)
children = []
for (layout, r0, c0, r1, c1) in grid.items:
if layout is not None:
children.append((layout, r0, c0, r1 - r0, c1 - c0))
return GridBox(children=children)
if isinstance(children, list):
if nrows is not None or ncols is not None:
N = len(children)
if ncols is None:
ncols = math.ceil(N/nrows)
layout = col([ row(children[i:i+ncols]) for i in range(0, N, ncols) ])
else:
def traverse(children, level=0):
if isinstance(children, list):
container = col if level % 2 == 0 else row
return container([ traverse(child, level+1) for child in children ])
else:
return children
layout = traverse(children)
elif isinstance(children, LayoutDOM):
def is_usable(child):
return _has_auto_sizing(child) and child.spacing == 0
def traverse(item, top_level=False):
if isinstance(item, Box) and (top_level or is_usable(item)):
container = col if isinstance(item, Column) else row
return container(list(map(traverse, item.children)))
else:
return item
layout = traverse(children, top_level=True)
elif isinstance(children, string_types):
raise NotImplementedError
else:
raise ValueError("expected a list, string or model")
grid = flatten(layout)
if sizing_mode is not None:
grid.sizing_mode = sizing_mode
for child in grid.children:
layout = child[0]
if _has_auto_sizing(layout):
layout.sizing_mode = sizing_mode
return grid | Conveniently create a grid of layoutable objects.
Grids are created by using ``GridBox`` model. This gives the most control over
the layout of a grid, but is also tedious and may result in unreadable code in
practical applications. ``grid()`` function remedies this by reducing the level
of control, but in turn providing a more convenient API.
Supported patterns:
1. Nested lists of layoutable objects. Assumes the top-level list represents
a column and alternates between rows and columns in subsequent nesting
levels. One can use ``None`` for padding purpose.
>>> grid([p1, [[p2, p3], p4]])
GridBox(children=[
(p1, 0, 0, 1, 2),
(p2, 1, 0, 1, 1),
(p3, 2, 0, 1, 1),
(p4, 1, 1, 2, 1),
])
2. Nested ``Row`` and ``Column`` instances. Similar to the first pattern, just
instead of using nested lists, it uses nested ``Row`` and ``Column`` models.
This can be much more readable that the former. Note, however, that only
models that don't have ``sizing_mode`` set are used.
>>> grid(column(p1, row(column(p2, p3), p4)))
GridBox(children=[
(p1, 0, 0, 1, 2),
(p2, 1, 0, 1, 1),
(p3, 2, 0, 1, 1),
(p4, 1, 1, 2, 1),
])
3. Flat list of layoutable objects. This requires ``nrows`` and/or ``ncols`` to
be set. The input list will be rearranged into a 2D array accordingly. One
can use ``None`` for padding purpose.
>>> grid([p1, p2, p3, p4], ncols=2)
GridBox(children=[
(p1, 0, 0, 1, 1),
(p2, 0, 1, 1, 1),
(p3, 1, 0, 1, 1),
(p4, 1, 1, 1, 1),
]) |
13,635 | def status(self, event):
self.log()
response = {
: ,
: ,
: self.config.allow_registration
}
self.fire(send(event.client.uuid, response)) | An anonymous client wants to know if we're open for enrollment |
13,636 | def _broker_exit(self):
for _, (side, _) in self.poller.readers + self.poller.writers:
LOG.debug(, side)
side.stream.on_disconnect(self)
self.poller.close() | Forcefully call :meth:`Stream.on_disconnect` on any streams that failed
to shut down gracefully, then discard the :class:`Poller`. |
13,637 | def _etree_py26_write(f, tree):
f.write("<?xml version= encoding=?>\n".encode())
if etree.VERSION[:3] == :
def fixtag(tag, namespaces):
if tag == XML_NS + :
return , ""
if in tag:
j = tag.index() + 1
tag = tag[j:]
xmlns =
if tag == :
xmlns = (, str())
namespaces[] =
return tag, xmlns
else:
fixtag = etree.fixtag
old_fixtag = etree.fixtag
etree.fixtag = fixtag
try:
tree.write(f, encoding=str())
finally:
etree.fixtag = old_fixtag | Compatibility workaround for ElementTree shipped with py2.6 |
13,638 | def normalized(self):
total = self.total()
result = Histogram()
for value, count in iteritems(self):
try:
result[value] = count / float(total)
except UnorderableElements as e:
result = Histogram.from_dict(dict(result), key=hash)
result[value] = count / float(total)
return result | Return a normalized version of the histogram where the values sum
to one. |
13,639 | def count_nulls(self, field):
try:
n = self.df[field].isnull().sum()
except KeyError:
self.warning("Can not find column", field)
return
except Exception as e:
self.err(e, "Can not count nulls")
return
self.ok("Found", n, "nulls in column", field) | Count the number of null values in a column |
13,640 | def logged_exec(cmd):
logger = logging.getLogger()
logger.debug("Executing external command: %r", cmd)
p = subprocess.Popen(
cmd, stdout=subprocess.PIPE, stderr=subprocess.STDOUT, universal_newlines=True)
stdout = []
for line in p.stdout:
line = line[:-1]
stdout.append(line)
logger.debug(STDOUT_LOG_PREFIX + line)
retcode = p.wait()
if retcode:
raise ExecutionError(retcode, cmd, stdout)
return stdout | Execute a command, redirecting the output to the log. |
13,641 | def definitions_help():
message = m.Message()
message.add(m.Brand())
message.add(heading())
message.add(content())
return message | Help message for Definitions.
.. versionadded:: 4.0.0
:returns: A message object containing helpful information.
:rtype: messaging.message.Message |
13,642 | def get_redis_connection(config, use_strict_redis=False):
redis_cls = redis.StrictRedis if use_strict_redis else redis.Redis
if in config:
return redis_cls.from_url(config[], db=config.get())
if in config.keys():
try:
try:
return cache._client
except AttributeError:
return cache.get_master_client()
if in config:
return redis_cls(unix_socket_path=config[], db=config[])
if in config:
sentinel_kwargs = {
: config.get(),
: config.get(),
: config.get(),
}
sentinel_kwargs.update(config.get(, {}))
sentinel = Sentinel(config[], **sentinel_kwargs)
return sentinel.master_for(
service_name=config[], redis_class=redis_cls,
)
return redis_cls(host=config[], port=config[], db=config[], password=config.get(), ssl=config.get(, False)) | Returns a redis connection from a connection config |
13,643 | def collect(self, cert_id, format_type):
result = self.client.service.collect(authData=self.auth, id=cert_id,
formatType=ComodoCA.format_type[format_type])
if result.statusCode == 2:
return jsend.success({: result.SSL.certificate, : ,
: cert_id})
elif result.statusCode == 0:
return jsend.fail({: cert_id, : , : })
else:
return self._create_error(result.statusCode) | Poll for certificate availability after submission.
:param int cert_id: The certificate ID
:param str format_type: The format type to use (example: 'X509 PEM Certificate only')
:return: The certificate_id or the certificate depending on whether the certificate is ready (check status code)
:rtype: dict |
13,644 | def debug(self, *debugReqs):
return self._client.send(debug=sc2api_pb2.RequestDebug(debug=debugReqs)) | send a debug command to control the game state's setup |
13,645 | def port_profile_qos_profile_qos_cos(self, **kwargs):
config = ET.Element("config")
port_profile = ET.SubElement(config, "port-profile", xmlns="urn:brocade.com:mgmt:brocade-port-profile")
name_key = ET.SubElement(port_profile, "name")
name_key.text = kwargs.pop()
qos_profile = ET.SubElement(port_profile, "qos-profile")
qos = ET.SubElement(qos_profile, "qos")
cos = ET.SubElement(qos, "cos")
cos.text = kwargs.pop()
callback = kwargs.pop(, self._callback)
return callback(config) | Auto Generated Code |
13,646 | def generate_keypair(curve=, randfunc=None):
if randfunc is None:
randfunc = Crypto.Random.new().read
curve = Curve.by_name(curve)
raw_privkey = randfunc(curve.order_len_bin)
privkey = serialize_number(deserialize_number(raw_privkey), SER_COMPACT)
pubkey = str(passphrase_to_pubkey(privkey))
return (privkey, pubkey) | Convenience function to generate a random
new keypair (passphrase, pubkey). |
13,647 | def _tarboton_slopes_directions(self, data, dX, dY):
return _tarboton_slopes_directions(data, dX, dY,
self.facets, self.ang_adj) | Calculate the slopes and directions based on the 8 sections from
Tarboton http://www.neng.usu.edu/cee/faculty/dtarb/96wr03137.pdf |
13,648 | def get_colmin(data):
data=data.T
colmins=[]
for col in data:
colmins.append(data[col].idxmin())
return colmins | Get rowwise column names with minimum values
:param data: pandas dataframe |
13,649 | def clean_column_values(df, inplace=True):
r
dollars_percents = re.compile(r)
if not inplace:
df = df.copy()
for c in df.columns:
values = None
if df[c].dtype.char in .split():
try:
values = df[c].copy()
values = values.fillna()
values = values.astype(str).str.replace(dollars_percents, )
if values.str.len().sum() > .2 * df[c].astype(str).str.len().sum():
values[values.isnull()] = np.nan
values[values == ] = np.nan
values = values.astype(float)
except ValueError:
values = None
except:
logger.error(.format(c, df[c].dtype))
raise
if values is not None:
if values.isnull().sum() < .6 * len(values) and values.any():
df[c] = values
return df | r""" Convert dollar value strings, numbers with commas, and percents into floating point values
>>> df = get_data('us_gov_deficits_raw')
>>> df2 = clean_column_values(df, inplace=False)
>>> df2.iloc[0]
Fiscal year 10/2017-3/2018
President's party R
Senate majority party R
House majority party R
Top-bracket marginal income tax rate 38.3
National debt millions 2.10896e+07
National debt millions of 1983 dollars 8.47004e+06
Deficit\n(millions of 1983 dollars) 431443
Surplus string in 1983 dollars NaN
Deficit string in 1983 dollars ($ = $10B) $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
Net surplus in 1983 dollars ($B) -430
Name: 0, dtype: object |
13,650 | def do_login(self, line):
"login aws-acces-key aws-secret"
if line:
args = self.getargs(line)
self.connect(args[0], args[1])
else:
self.connect()
self.do_tables() | login aws-acces-key aws-secret |
13,651 | def _prepare_connection(**kwargs):
init_args = {}
fun_kwargs = {}
netmiko_kwargs = __salt__[](, {})
netmiko_kwargs.update(kwargs)
netmiko_init_args, _, _, netmiko_defaults = inspect.getargspec(BaseConnection.__init__)
check_self = netmiko_init_args.pop(0)
for karg, warg in six.iteritems(netmiko_kwargs):
if karg not in netmiko_init_args:
if warg is not None:
fun_kwargs[karg] = warg
continue
if warg is not None:
init_args[karg] = warg
conn = ConnectHandler(**init_args)
return conn, fun_kwargs | Prepare the connection with the remote network device, and clean up the key
value pairs, removing the args used for the connection init. |
13,652 | def GET_query(self, req_hook, req_args):
headers = {: ,
: self.__session__}
try:
if req_args is None:
response = requests.get(self.__url__ + req_hook,
headers=headers,
verify=True)
else:
response = requests.get(self.__url__ + req_hook + str(req_args),
headers=headers,
verify=True)
except requests.exceptions.RequestException as err:
self.logger.error(err)
return ,
return response.status_code, response.text | Generic GET query method |
13,653 | def fcoe_get_interface_output_fcoe_intf_list_fcoe_intf_port_type(self, **kwargs):
config = ET.Element("config")
fcoe_get_interface = ET.Element("fcoe_get_interface")
config = fcoe_get_interface
output = ET.SubElement(fcoe_get_interface, "output")
fcoe_intf_list = ET.SubElement(output, "fcoe-intf-list")
fcoe_intf_fcoe_port_id_key = ET.SubElement(fcoe_intf_list, "fcoe-intf-fcoe-port-id")
fcoe_intf_fcoe_port_id_key.text = kwargs.pop()
fcoe_intf_port_type = ET.SubElement(fcoe_intf_list, "fcoe-intf-port-type")
fcoe_intf_port_type.text = kwargs.pop()
callback = kwargs.pop(, self._callback)
return callback(config) | Auto Generated Code |
13,654 | def insert(self, fields, values):
if fields:
_fields = % .join(fields)
else:
_fields =
_values = .join( * len(values))
query = % (self._name, _fields, _values)
self._cursor.execute(query, tuple(values))
self._connection.commit()
return self._cursor.lastrowid | insert new db entry
:param fields: list of fields to insert
:param values: list of values to insert
:return: row id of the new row |
13,655 | def read(cls, five9, external_id):
results = cls.search(five9, {cls.__uid_field__: external_id})
if not results:
return None
return results[0] | Return a record singleton for the ID.
Args:
five9 (five9.Five9): The authenticated Five9 remote.
external_id (mixed): The identified on Five9. This should be the
value that is in the ``__uid_field__`` field on the record.
Returns:
BaseModel: The record, if found. Otherwise ``None`` |
13,656 | def get_by_id(self, id_networkv4):
uri = % id_networkv4
return super(ApiNetworkIPv4, self).get(uri) | Get IPv4 network
:param id_networkv4: ID for NetworkIPv4
:return: IPv4 Network |
13,657 | def resolve_admin_type(admin):
if admin is current_user or isinstance(admin, UserMixin):
return
else:
return admin.__class__.__name__ | Determine admin type. |
13,658 | def convert_general(value):
if isinstance(value, bool):
return "true" if value else "false"
elif isinstance(value, list):
value = [convert_general(item) for item in value]
value = convert_to_imgur_list(value)
elif isinstance(value, Integral):
return str(value)
elif in str(type(value)):
return str(getattr(value, , value))
return value | Take a python object and convert it to the format Imgur expects. |
13,659 | def rpc_get_name_DID(self, name, **con_info):
did_info = None
if check_name(name):
did_info = self.get_name_DID_info(name)
elif check_subdomain(name):
did_info = self.get_subdomain_DID_info(name)
else:
return {: , : 400}
if did_info is None:
return {: , : 404}
did = make_DID(did_info[], did_info[], did_info[])
return self.success_response({: did}) | Given a name or subdomain, return its DID. |
13,660 | def set_loader(self, loader, destructor, state):
return lib.zcertstore_set_loader(self._as_parameter_, loader, destructor, state) | Override the default disk loader with a custom loader fn. |
13,661 | def syllabify(self, unsyllabified_tokens):
syllables = self.make_syllables(unsyllabified_tokens)
qu_fixed_syllables = self._qu_fix(syllables)
elision_fixed_syllables = self._elision_fixer(qu_fixed_syllables)
return elision_fixed_syllables | Helper class for calling syllabification-related methods.
:param unsyllabified_tokens:
:return: List of syllables.
:rtype : list |
13,662 | def within_rupture_distance(self, surface, distance, **kwargs):
upper_depth, lower_depth = _check_depth_limits(kwargs)
rrupt = surface.get_min_distance(self.catalogue.hypocentres_as_mesh())
is_valid = np.logical_and(
rrupt <= distance,
np.logical_and(self.catalogue.data[] >= upper_depth,
self.catalogue.data[] < lower_depth))
return self.select_catalogue(is_valid) | Select events within a rupture distance from a fault surface
:param surface:
Fault surface as instance of nhlib.geo.surface.base.BaseSurface
:param float distance:
Rupture distance (km)
:returns:
Instance of :class:`openquake.hmtk.seismicity.catalogue.Catalogue`
containing only selected events |
13,663 | def _get_param_names(cls):
init = getattr(cls.__init__, , cls.__init__)
if init is object.__init__:
return []
args, varargs, kw, default = inspect.getargspec(init)
if varargs is not None:
raise RuntimeError("scikit-learn estimators should always "
"specify their parameters in the signature"
" of their __init__ (no varargs)."
" %s doesnself'
args.pop(0)
args.sort()
return args | Get parameter names for the estimator |
13,664 | def _handle_relation(self, tokens: ParseResults) -> str:
subject_node_dsl = self.ensure_node(tokens[SUBJECT])
object_node_dsl = self.ensure_node(tokens[OBJECT])
subject_modifier = modifier_po_to_dict(tokens[SUBJECT])
object_modifier = modifier_po_to_dict(tokens[OBJECT])
annotations = {
annotation_name: (
{
ae: True
for ae in annotation_entry
}
if isinstance(annotation_entry, set) else
{
annotation_entry: True
}
)
for annotation_name, annotation_entry in self.control_parser.annotations.items()
}
return self._add_qualified_edge(
subject_node_dsl,
object_node_dsl,
relation=tokens[RELATION],
annotations=annotations,
subject_modifier=subject_modifier,
object_modifier=object_modifier,
) | Handle a relation. |
13,665 | def extract_env(self):
environ = self._get_config()
if environ is not None:
if not isinstance(environ, list):
environ = [environ]
lines = []
for line in environ:
line = re.findall("(?P<var_name>.+?)=(?P<var_value>.+)", line)
line = [ % (x[0], x[1]) for x in line]
lines = lines + line
environ = "\n".join(lines)
bot.verbose3("Found Docker container environment!")
return environ | extract the environment from the manifest, or return None.
Used by functions env_extract_image, and env_extract_tar |
13,666 | def _get_resource_id_from_stack(cfn_client, stack_name, logical_id):
LOG.debug("Getting resource's PhysicalId from AWS CloudFormation stack. StackName=%s, LogicalId=%s",
stack_name, logical_id)
try:
response = cfn_client.describe_stack_resource(StackName=stack_name, LogicalResourceId=logical_id)
LOG.debug("Response from AWS CloudFormation %s", response)
return response["StackResourceDetail"]["PhysicalResourceId"]
except botocore.exceptions.ClientError as ex:
LOG.debug("Unable to fetch resource name from CloudFormation Stack: "
"StackName=%s, ResourceLogicalId=%s, Response=%s", stack_name, logical_id, ex.response)
raise UserException(str(ex)) | Given the LogicalID of a resource, call AWS CloudFormation to get physical ID of the resource within
the specified stack.
Parameters
----------
cfn_client
CloudFormation client provided by AWS SDK
stack_name : str
Name of the stack to query
logical_id : str
LogicalId of the resource
Returns
-------
str
Physical ID of the resource
Raises
------
samcli.commands.exceptions.UserException
If the stack or resource does not exist |
13,667 | def owner(self, owner):
if owner is None:
raise ValueError("Invalid value for `owner`, must not be `None`")
if owner is not None and len(owner) > 31:
raise ValueError("Invalid value for `owner`, length must be less than or equal to `31`")
if owner is not None and len(owner) < 3:
raise ValueError("Invalid value for `owner`, length must be greater than or equal to `3`")
if owner is not None and not re.search(, owner):
raise ValueError("Invalid value for `owner`, must be a follow pattern or equal to `/[a-z0-9](?:-(?!-)|[a-z0-9])+[a-z0-9]/`")
self._owner = owner | Sets the owner of this OauthTokenReference.
User name of the owner of the OAuth token within data.world.
:param owner: The owner of this OauthTokenReference.
:type: str |
13,668 | def jinja_env(template_path):
fs_loader = FileSystemLoader(os.path.dirname(template_path))
env = Environment(loader=fs_loader,
autoescape=True,
trim_blocks=True,
lstrip_blocks=True)
env.filters[] = portable_b64encode
env.filters[] = f_b64decode
return env | Sets up our Jinja environment, loading the few filters we have |
13,669 | def check_local() -> None:
to_check = [, , ]
for i in to_check:
if not os.path.exists(i):
os.makedirs(i) | Verify required directories exist.
This functions checks the current working directory to ensure that
the required directories exist. If they do not exist, it will create them. |
13,670 | def get_desktop_size(self):
_ptr = ffi.new()
check_int_err(lib.SDL_GetDesktopDisplayMode(self._index, _ptr))
return (_ptr.w, _ptr.h) | Get the size of the desktop display |
13,671 | def export_trials_data(args):
nni_config = Config(get_config_filename(args))
rest_port = nni_config.get_config()
rest_pid = nni_config.get_config()
if not detect_process(rest_pid):
print_error()
return
running, response = check_rest_server_quick(rest_port)
if running:
response = rest_get(trial_jobs_url(rest_port), 20)
if response is not None and check_response(response):
content = json.loads(response.text)
records = parse_trial_data(content)
if args.type == :
json_records = []
for trial in records:
value = trial.pop(, None)
trial_id = trial.pop(, None)
json_records.append({: trial, : value, : trial_id})
with open(args.path, ) as file:
if args.type == :
writer = csv.DictWriter(file, set.union(*[set(r.keys()) for r in records]))
writer.writeheader()
writer.writerows(records)
else:
json.dump(json_records, file)
else:
print_error()
else:
print_error() | export experiment metadata to csv |
13,672 | def reopen(self, file_obj):
file_obj.open()
if sys.version_info[0] <= 2:
return file_obj
else:
return codecs.getreader()(file_obj) | Reopen the file-like object in a safe manner. |
13,673 | def p2x(self, p):
if hasattr(p, ):
dp = BufferDict(p, keys=self.g.keys())._buf[:self.meanflat.size] - self.meanflat
else:
dp = numpy.asarray(p).reshape(-1) - self.meanflat
return self.vec_isig.dot(dp) | Map parameters ``p`` to vector in x-space.
x-space is a vector space of dimension ``p.size``. Its axes are
in the directions specified by the eigenvectors of ``p``'s covariance
matrix, and distance along an axis is in units of the standard
deviation in that direction. |
13,674 | def checkfilesexist(self, on_missing="warn"):
if on_missing not in ("warn", "error", "ignore"):
raise ValueError("on_missing must be \"warn\", \"error\", or \"ignore\".")
c_found = []
c_missed = []
for entry in self:
if os.path.isfile(entry.path):
c_found.append(entry)
else:
c_missed.append(entry)
if len(c_missed) > 0:
msg = "%d of %d files in the cache were not found "\
"on disk" % (len(c_missed), len(self))
if on_missing == "warn":
print >>sys.stderr, "warning: " + msg
elif on_missing == "error":
raise ValueError(msg)
elif on_missing == "ignore":
pass
else:
raise ValueError("Why am I here? "\
"Please file a bug report!")
return self.__class__(c_found), self.__class__(c_missed) | Runs through the entries of the Cache() object and checks each entry
if the file which it points to exists or not. If the file does exist then
it adds the entry to the Cache() object containing found files, otherwise it
adds the entry to the Cache() object containing all entries that are missing.
It returns both in the follwing order: Cache_Found, Cache_Missed.
Pass on_missing to control how missing files are handled:
"warn": print a warning message saying how many files
are missing out of the total checked.
"error": raise an exception if any are missing
"ignore": do nothing |
13,675 | def _match_vcs_scheme(url):
from pipenv.patched.notpip._internal.vcs import VcsSupport
for scheme in VcsSupport.schemes:
if url.lower().startswith(scheme) and url[len(scheme)] in :
return scheme
return None | Look for VCS schemes in the URL.
Returns the matched VCS scheme, or None if there's no match. |
13,676 | def query(self, query_samples):
self.sampled_topics = np.zeros((self.samples, self.N),
dtype=np.int)
for s in range(self.samples):
self.sampled_topics[s, :] = \
samplers_lda.sampler_query(self.docid, self.tokens,
self.topic_seed,
np.ascontiguousarray(
self.tt[:, :, s],
dtype=np.float),
self.N, self.K, self.D,
self.alpha, query_samples)
print("Sample %d queried" % s)
self.dt = np.zeros((self.D, self.K, self.samples))
for s in range(self.samples):
self.dt[:, :, s] = \
samplers_lda.dt_comp(self.docid, self.sampled_topics[s, :],
self.N, self.K, self.D, self.alpha) | Query docs with query_samples number of Gibbs
sampling iterations. |
13,677 | def layout_(self, chart_objs, cols=3):
try:
return hv.Layout(chart_objs).cols(cols)
except Exception as e:
self.err(e, self.layout_, "Can not build layout") | Returns a Holoview Layout from chart objects |
13,678 | def is_suitable(self, request):
if self.key_type:
validation = KEY_TYPE_VALIDATIONS.get( self.get_type() )
return validation( request ) if validation else None
return True | Checks if key is suitable for given request according to key type and request's user agent. |
13,679 | def get_diff(self, commit, other_commit):
print(other_commit, "VS", commit)
diff = self.repo.git.diff(commit, other_commit)
return Diff(diff).get_totals() | Calculates total additions and deletions
:param commit: First commit
:param other_commit: Second commit
:return: dictionary: Dictionary with total additions and deletions |
13,680 | def generate_semantic_data_key(used_semantic_keys):
semantic_data_id_counter = -1
while True:
semantic_data_id_counter += 1
if "semantic data key " + str(semantic_data_id_counter) not in used_semantic_keys:
break
return "semantic data key " + str(semantic_data_id_counter) | Create a new and unique semantic data key
:param list used_semantic_keys: Handed list of keys already in use
:rtype: str
:return: semantic_data_id |
13,681 | def _parse_prop(self, dd, row):
key = row[]
if key.startswith():
deprecated = True
else:
deprecated = False
v = dd.get(key)
_value = self._get_value(row)
if not v:
v = dd.setdefault(key, {})
v[_value] = deprecated
else:
if not _value in v:
v[_value] = deprecated | :param dd: datadict
:param _row: (tablename, row)
:return: |
13,682 | def get_sdc_by_name(self, name):
for sdc in self.sdc:
if sdc.name == name:
return sdc
raise KeyError("SDC of that name not found") | Get ScaleIO SDC object by its name
:param name: Name of SDC
:return: ScaleIO SDC object
:raise KeyError: No SDC with specified name found
:rtype: SDC object |
13,683 | def unregister_finders():
global __PREVIOUS_FINDER
if not __PREVIOUS_FINDER:
return
pkg_resources.register_finder(zipimport.zipimporter, __PREVIOUS_FINDER)
_remove_finder(pkgutil.ImpImporter, find_wheels_on_path)
if importlib_machinery is not None:
_remove_finder(importlib_machinery.FileFinder, find_wheels_on_path)
__PREVIOUS_FINDER = None | Unregister finders necessary for PEX to function properly. |
13,684 | def update_log(self, *args, **kwargs):
return Log(
self._provider_manager,
self._get_provider_session().update_log(*args, **kwargs),
self._runtime,
self._proxy) | Pass through to provider LogAdminSession.update_log |
13,685 | def QA_fetch_financial_report_adv(code, start, end=None, ltype=):
if end is None:
return QA_DataStruct_Financial(QA_fetch_financial_report(code, start, ltype=ltype))
else:
series = pd.Series(
data=month_data, index=pd.to_datetime(month_data), name=)
timerange = series.loc[start:end].tolist()
return QA_DataStruct_Financial(QA_fetch_financial_report(code, timerange, ltype=ltype)) | 高级财务查询接口
Arguments:
code {[type]} -- [description]
start {[type]} -- [description]
Keyword Arguments:
end {[type]} -- [description] (default: {None}) |
13,686 | def get_metrics(self, reset: bool = False) -> Dict[str, float]:
return {
: self._action_sequence_accuracy.get_metric(reset),
: self._denotation_accuracy.get_metric(reset),
: self._has_logical_form.get_metric(reset),
} | We track three metrics here:
1. dpd_acc, which is the percentage of the time that our best output action sequence is
in the set of action sequences provided by DPD. This is an easy-to-compute lower bound
on denotation accuracy for the set of examples where we actually have DPD output. We
only score dpd_acc on that subset.
2. denotation_acc, which is the percentage of examples where we get the correct
denotation. This is the typical "accuracy" metric, and it is what you should usually
report in an experimental result. You need to be careful, though, that you're
computing this on the full data, and not just the subset that has DPD output (make sure
you pass "keep_if_no_dpd=True" to the dataset reader, which we do for validation data,
but not training data).
3. lf_percent, which is the percentage of time that decoding actually produces a
finished logical form. We might not produce a valid logical form if the decoder gets
into a repetitive loop, or we're trying to produce a super long logical form and run
out of time steps, or something. |
13,687 | def add_to_obj(obj, dictionary, objs=None, exceptions=None, verbose=0):
if exceptions is None:
exceptions = []
for item in dictionary:
if item in exceptions:
continue
if dictionary[item] is not None:
if verbose:
print("process: ", item, dictionary[item])
key, value = get_key_value(dictionary[item], objs, key=item)
if verbose:
print("assign: ", key, value)
try:
setattr(obj, key, value)
except AttributeError:
raise AttributeError("Can't set {0}={1} on object: {2}".format(key, value, obj)) | Cycles through a dictionary and adds the key-value pairs to an object.
:param obj:
:param dictionary:
:param exceptions:
:param verbose:
:return: |
13,688 | def set_field(self, field_name, data):
if self.handle is None:
raise Exception("Cannot set %s before construct dataset" % field_name)
if data is None:
_safe_call(_LIB.LGBM_DatasetSetField(
self.handle,
c_str(field_name),
None,
ctypes.c_int(0),
ctypes.c_int(FIELD_TYPE_MAPPER[field_name])))
return self
dtype = np.float32
if field_name == :
dtype = np.int32
elif field_name == :
dtype = np.float64
data = list_to_1d_numpy(data, dtype, name=field_name)
if data.dtype == np.float32 or data.dtype == np.float64:
ptr_data, type_data, _ = c_float_array(data)
elif data.dtype == np.int32:
ptr_data, type_data, _ = c_int_array(data)
else:
raise TypeError("Excepted np.float32/64 or np.int32, meet type({})".format(data.dtype))
if type_data != FIELD_TYPE_MAPPER[field_name]:
raise TypeError("Input type error for set_field")
_safe_call(_LIB.LGBM_DatasetSetField(
self.handle,
c_str(field_name),
ptr_data,
ctypes.c_int(len(data)),
ctypes.c_int(type_data)))
return self | Set property into the Dataset.
Parameters
----------
field_name : string
The field name of the information.
data : list, numpy 1-D array, pandas Series or None
The array of data to be set.
Returns
-------
self : Dataset
Dataset with set property. |
13,689 | def run(self):
stderr = os.path.abspath(os.path.join(self.outdir, self.name + ))
if self.pipe:
self.args += (, self.pipe, +stderr)
if self.gzip:
self.args += (, , , self.gzip)
else:
self.args.append(+stderr)
self.args.append(+stderr)
log = open(stderr, )
log.write("[gloTK] timestamp={}\n".format(utils.timestamp()))
cmd = .join(map(str, self.args))
print(cmd)
log.write(cmd)
start = time.time()
save_cwd = os.getcwd()
try:
utils.safe_mkdir(self.outdir)
os.chdir(self.outdir)
spawn_pid = os.spawnle(os.P_NOWAIT, self.shell, self.shell, , cmd, self.env)
wait_pid, retcode, rusage = os.wait4(spawn_pid, 0)
if wait_pid != spawn_pid:
utils.die("could not wait for process %d: got %d" % (spawn_pid, wait_pid))
os.chdir(save_cwd)
except OSError as e:
utils.info(e)
utils.die("could not run wrapper for command:\n%s" % cmd)
elapsed = time.time() - start
retcode = os.WEXITSTATUS(retcode)
if (self.return_ok is not None) and (self.return_ok != retcode):
if os.path.isfile(stderr):
subprocess.call([, , stderr])
utils.die("non-zero return (%d) from command:\n%s" % (retcode, cmd))
log.close() | Call this function at the end of your class's `__init__` function. |
13,690 | def hold(model: Model, reducer: Optional[Callable] = None) -> Iterator[list]:
if not isinstance(model, Model):
raise TypeError("Expected a Model, not %r." % model)
events = []
restore = model.__dict__.get("_notify_model_views")
model._notify_model_views = lambda e: events.extend(e)
try:
yield events
finally:
if restore is None:
del model._notify_model_views
else:
model._notify_model_views = restore
events = tuple(events)
if reducer is not None:
events = tuple(map(Data, reducer(model, events)))
model._notify_model_views(events) | Temporarilly withold change events in a modifiable list.
All changes that are captured within a "hold" context are forwarded to a list
which is yielded to the user before being sent to views of the given ``model``.
If desired, the user may modify the list of events before the context is left in
order to change the events that are ultimately sent to the model's views.
Parameters:
model:
The model object whose change events will be temporarilly witheld.
reducer:
A function for modifying the events list at the end of the context.
Its signature is ``(model, events) -> new_events`` where ``model`` is the
given model, ``events`` is the complete list of events produced in the
context, and the returned ``new_events`` is a list of events that will
actuall be distributed to views.
Notes:
All changes witheld from views will be sent as a single notification. For
example if you view a :class:`specate.mvc.models.List` and its ``append()``
method is called three times within a :func:`hold` context,
Examples:
Note how the event from ``l.append(1)`` is omitted from the printed statements.
.. code-block:: python
from spectate import mvc
l = mvc.List()
mvc.view(d, lambda d, e: list(map(print, e)))
with mvc.hold(l) as events:
l.append(1)
l.append(2)
del events[0]
.. code-block:: text
{'index': 1, 'old': Undefined, 'new': 2} |
13,691 | def _parse(self, stream, context, path):
objs = []
while True:
start = stream.tell()
test = stream.read(len(self.find))
stream.seek(start)
if test == self.find:
break
else:
subobj = self.subcon._parse(stream, context, path)
objs.append(subobj)
return objs | Parse until a given byte string is found. |
13,692 | def dwelling_type(self):
try:
if self._data_from_search:
info = self._data_from_search.find(
, {"class": "info"}).text
s = info.split()
return s[0].strip()
else:
return self._ad_page_content.find(
, {: }
).find(, {: }).text
except Exception as e:
if self._debug:
logging.error(
"Error getting dwelling_type. Error message: " + e.args[0])
return | This method returns the dwelling type.
:return: |
13,693 | def _ppf(self, uloc, dist, length, cache):
output = evaluation.evaluate_inverse(
dist, uloc.reshape(1, -1)).reshape(length, -1)
assert uloc.shape == output.shape
return output | Point percentile function.
Example:
>>> print(chaospy.Iid(chaospy.Uniform(0, 2), 2).inv(
... [[0.1, 0.2, 0.3], [0.2, 0.2, 0.3]]))
[[0.2 0.4 0.6]
[0.4 0.4 0.6]] |
13,694 | def unzoom(self, full=False, delay_draw=False):
if full:
self.zoom_lims = self.zoom_lims[:1]
self.zoom_lims = []
elif len(self.zoom_lims) > 0:
self.zoom_lims.pop()
self.set_viewlimits()
if not delay_draw:
self.canvas.draw() | unzoom display 1 level or all the way |
13,695 | async def pin_6_pwm_128(my_board):
await my_board.set_pin_mode(6, Constants.PWM)
await my_board.analog_write(6, 128)
await asyncio.sleep(3)
await my_board.shutdown() | Set digital pin 6 as a PWM output and set its output value to 128
@param my_board: A PymataCore instance
@return: No Return Value |
13,696 | def prep_vectors_for_gradient(nest_coefs,
index_coefs,
design,
choice_vec,
rows_to_obs,
rows_to_nests,
*args,
**kwargs):
long_nest_params = (rows_to_nests.multiply(nest_coefs[None, :])
.sum(axis=1)
.A
.ravel())
scaled_y = choice_vec / long_nest_params
inf_index = np.isinf(scaled_y)
scaled_y[inf_index] = max_comp_value
p_tilde_row_given_nest = (prob_dict["prob_given_nest"] *
long_chosen_nest /
long_nest_params)
inf_index = np.isinf(p_tilde_row_given_nest)
p_tilde_row_given_nest[inf_index] = max_comp_value
desired_arrays = {}
desired_arrays["long_nest_params"] = long_nest_params.ravel()
desired_arrays["scaled_y"] = scaled_y.ravel()
desired_arrays["long_chosen_nest"] = long_chosen_nest
desired_arrays["obs_to_chosen_nests"] = obs_to_chosen_nests
desired_arrays["p_tilde_given_nest"] = p_tilde_row_given_nest
desired_arrays["long_probs"] = prob_dict["long_probs"]
desired_arrays["prob_given_nest"] = prob_dict["prob_given_nest"]
desired_arrays["nest_choice_probs"] = prob_dict["nest_choice_probs"]
desired_arrays["ind_sums_per_nest"] = prob_dict["ind_sums_per_nest"]
return desired_arrays | Parameters
----------
nest_coefs : 1D or 2D ndarray.
All elements should by ints, floats, or longs. If 1D, should have 1
element for each nesting coefficient being estimated. If 2D, should
have 1 column for each set of nesting coefficients being used to
predict the probabilities of each alternative being chosen. There
should be one row per nesting coefficient. Elements denote the inverse
of the scale coefficients for each of the lower level nests. Note, this
is NOT THE LOGIT of the inverse of the scale coefficients.
index_coefs : 1D or 2D ndarray.
All elements should by ints, floats, or longs. If 1D, should have 1
element for each utility coefficient being estimated
(i.e. num_features). If 2D, should have 1 column for each set of
coefficients being used to predict the probabilities of choosing each
alternative. There should be one row per index coefficient.
design : 2D ndarray.
There should be one row per observation per available alternative.
There should be one column per utility coefficient being estimated.
All elements should be ints, floats, or longs.
choice_vec : 1D ndarray.
All elements should by ints, floats, or longs. Each element represents
whether the individual associated with the given row chose the
alternative associated with the given row. Should have the same number
of rows as `design`.
rows_to_obs : 2D scipy sparse array.
There should be one row per observation per available alternative and
one column per observation. This matrix maps the rows of the design
matrix to the unique observations (on the columns).
rows_to_nests : 2D scipy sparse array.
There should be one row per observation per available alternative and
one column per nest. This matrix maps the rows of the design matrix to
the unique nests (on the columns).
Returns
-------
desired_arrays : dict.
Will contain the arrays necessary for calculating the gradient of the
nested logit log-likelihood. The keys will be:
`["long_nest_params", "scaled_y", "long_chosen_nest",
"obs_to_chosen_nests", "p_tilde_given_nest", "long_probs",
"prob_given_nest", "nest_choice_probs", "ind_sums_per_nest"]` |
13,697 | def enter_cli_mode(self):
delay_factor = self.select_delay_factor(delay_factor=0)
count = 0
cur_prompt = ""
while count < 50:
self.write_channel(self.RETURN)
time.sleep(0.1 * delay_factor)
cur_prompt = self.read_channel()
if re.search(r"admin@", cur_prompt) or re.search(
r"^\$$", cur_prompt.strip()
):
self.write_channel("cli" + self.RETURN)
time.sleep(0.3 * delay_factor)
self.clear_buffer()
break
elif ">" in cur_prompt or "%" in cur_prompt:
break
count += 1 | Check if at shell prompt root@ and go into CLI. |
13,698 | def _insert_breathe_configs(c, *, project_name, doxygen_xml_dirname):
if doxygen_xml_dirname is not None:
c[] = {project_name: doxygen_xml_dirname}
c[] = project_name
return c | Add breathe extension configurations to the state. |
13,699 | def make_model(self, grounding_ontology=, grounding_threshold=None):
if grounding_threshold is not None:
self.grounding_threshold = grounding_threshold
self.grounding_ontology = grounding_ontology
statements = [stmt for stmt in self.statements if
isinstance(stmt, Influence)]
self.CAG = nx.MultiDiGraph()
for s in statements:
has_both_polarity = (s.subj.delta[] is not None and
s.obj.delta[] is not None)
for node, delta in zip((s.subj.concept, s.obj.concept),
(s.subj.delta, s.obj.delta)):
self.CAG.add_node(self._node_name(node),
simulable=has_both_polarity,
mods=delta[])
linestyle = if has_both_polarity else
if has_both_polarity:
same_polarity = (s.subj.delta[] ==
s.obj.delta[])
if same_polarity:
target_arrow_shape, linecolor = (, )
else:
target_arrow_shape, linecolor = (, )
else:
target_arrow_shape, linecolor = (, )
provenance = []
if s.evidence:
provenance = s.evidence[0].annotations.get(, [])
if provenance:
provenance[0][] = s.evidence[0].text
self.CAG.add_edge(
self._node_name(s.subj.concept),
self._node_name(s.obj.concept),
subj_polarity=s.subj.delta[],
subj_adjectives=s.subj.delta[],
obj_polarity=s.obj.delta[],
obj_adjectives=s.obj.delta[],
linestyle=linestyle,
linecolor=linecolor,
targetArrowShape=target_arrow_shape,
provenance=provenance,
)
return self.CAG | Return a networkx MultiDiGraph representing a causal analysis graph.
Parameters
----------
grounding_ontology : Optional[str]
The ontology from which the grounding should be taken
(e.g. UN, FAO)
grounding_threshold : Optional[float]
Minimum threshold score for Eidos grounding.
Returns
-------
nx.MultiDiGraph
The assembled CAG. |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.