Unnamed: 0
int64
0
389k
code
stringlengths
26
79.6k
docstring
stringlengths
1
46.9k
14,900
def from_ZNM(cls, Z, N, M, name=): df = pd.DataFrame.from_dict({: Z, : N, : M}).set_index([, ])[] df.name = name return cls(df=df, name=name)
Creates a table from arrays Z, N and M Example: ________ >>> Z = [82, 82, 83] >>> N = [126, 127, 130] >>> M = [-21.34, -18.0, -14.45] >>> Table.from_ZNM(Z, N, M, name='Custom Table') Z N 82 126 -21.34 127 -18.00 83 130 -14.45 Name: Custom Table, dtype: float64
14,901
def run_synthetic_SGLD(): theta1 = 0 theta2 = 1 sigma1 = numpy.sqrt(10) sigma2 = 1 sigmax = numpy.sqrt(2) X = load_synthetic(theta1=theta1, theta2=theta2, sigmax=sigmax, num=100) minibatch_size = 1 total_iter_num = 1000000 lr_scheduler = SGLDScheduler(begin_rate=0.01, end_rate=0.0001, total_iter_num=total_iter_num, factor=0.55) optimizer = mx.optimizer.create(, learning_rate=None, rescale_grad=1.0, lr_scheduler=lr_scheduler, wd=0) updater = mx.optimizer.get_updater(optimizer) theta = mx.random.normal(0, 1, (2,), mx.cpu()) grad = nd.empty((2,), mx.cpu()) samples = numpy.zeros((2, total_iter_num)) start = time.time() for i in range(total_iter_num): if (i + 1) % 100000 == 0: end = time.time() print("Iter:%d, Time spent: %f" % (i + 1, end - start)) start = time.time() ind = numpy.random.randint(0, X.shape[0]) synthetic_grad(X[ind], theta, sigma1, sigma2, sigmax, rescale_grad=X.shape[0] / float(minibatch_size), grad=grad) updater(, grad, theta) samples[:, i] = theta.asnumpy() plt.hist2d(samples[0, :], samples[1, :], (200, 200), cmap=plt.cm.jet) plt.colorbar() plt.show()
Run synthetic SGLD
14,902
def remove_notification_listener(self, notification_id): for v in self.notifications.values(): toRemove = list(filter(lambda tup: tup[0] == notification_id, v)) if len(toRemove) > 0: v.remove(toRemove[0]) return True return False
Remove a previously added notification callback. Args: notification_id: The numeric id passed back from add_notification_listener Returns: The function returns boolean true if found and removed, false otherwise.
14,903
def space(self,bins=None,units=None,conversion_function=convert_time,resolution=None,end_at_end=True,scale=None): if scale in [] or (scale is None and self.scale in []): return self.logspace(bins=bins,units=units,conversion_function=conversion_function,resolution=resolution,end_at_end=end_at_end) return self.linspace(bins=bins,units=units,conversion_function=conversion_function,resolution=resolution,end_at_end=end_at_end)
Computes adequat binning for the dimension (on the values). bins: number of bins or None units: str or None conversion_function: function to convert units to other units resolution: step size or None end_at_end: Boolean only if `unit == 1` whether or not the last point should be the last data point (True) or one after the last valid point (False) scale: 'lin','log' or None a spike container can also use 'unique', but not the LabelDimension itself! if the LabelDimension.scale is 'unique', .bins() will return a linear spacing
14,904
def parse(self, stream, mimetype, content_length, options=None): if ( self.max_content_length is not None and content_length is not None and content_length > self.max_content_length ): raise exceptions.RequestEntityTooLarge() if options is None: options = {} parse_func = self.get_parse_func(mimetype, options) if parse_func is not None: try: return parse_func(self, stream, mimetype, content_length, options) except ValueError: if not self.silent: raise return stream, self.cls(), self.cls()
Parses the information from the given stream, mimetype, content length and mimetype parameters. :param stream: an input stream :param mimetype: the mimetype of the data :param content_length: the content length of the incoming data :param options: optional mimetype parameters (used for the multipart boundary for instance) :return: A tuple in the form ``(stream, form, files)``.
14,905
def grid_expansion_costs(network, without_generator_import=False): def _get_transformer_costs(transformer): if isinstance(transformer.grid, LVGrid): return float(network.config[][]) elif isinstance(transformer.grid, MVGrid): return float(network.config[][]) def _get_line_costs(line, quantity): if isinstance(line.grid, LVGrid): voltage_level = elif isinstance(line.grid, MVGrid): voltage_level = else: raise KeyError("Grid must be LVGrid or MVGrid.") projection = partial( pyproj.transform, pyproj.Proj(init=.format( int(network.config[][]))), pyproj.Proj(init=)) sqm2sqkm = 1e6 population_density = (line.grid.grid_district[] / (transform(projection, line.grid.grid_district[]).area / sqm2sqkm)) if population_density <= 500: population_density = else: population_density = costs_cable = float(network.config[][.format( voltage_level)]) costs_cable_earthwork = float(network.config[][ .format( voltage_level, population_density)]) return (costs_cable_earthwork * l.length + costs_cable * l.length * (quantity - 1)) costs = pd.DataFrame() if without_generator_import: equipment_changes = network.results.equipment_changes.loc[ network.results.equipment_changes.iteration_step > 0] else: equipment_changes = network.results.equipment_changes if not equipment_changes.empty: transformers = equipment_changes[equipment_changes[].apply( isinstance, args=(Transformer,))] added_transformers = transformers[transformers[] == ] removed_transformers = transformers[ transformers[] == ] added_removed_transformers = added_transformers.loc[ added_transformers[].isin( removed_transformers[])] added_transformers = added_transformers[ ~added_transformers[].isin( added_removed_transformers.equipment)] for t in added_transformers[]: costs = costs.append(pd.DataFrame( {: t.type.name, : _get_transformer_costs(t), : 1, : , : t.grid.station.mv_feeder if isinstance( t.grid, LVGrid) else None}, index=[t])) lines = equipment_changes.loc[equipment_changes.index[ equipment_changes.reset_index()[].apply( isinstance, args=(Line,))]] for l in list(lines.index.unique()): aggr_lines = [] aggr_lines_generator = l.grid.graph.lines_by_attribute() for aggr_line in aggr_lines_generator: aggr_lines.append(repr(aggr_line[])) if not repr(l) in aggr_lines: number_lines_added = equipment_changes[ (equipment_changes.index == l) & (equipment_changes.equipment == l.type.name)][].sum() costs = costs.append(pd.DataFrame( {: l.type.name, : _get_line_costs(l, number_lines_added), : l.length * number_lines_added, : number_lines_added, : ( if isinstance(l.grid, LVGrid) else ), : get_mv_feeder_from_line(l)}, index=[l])) if costs.empty: costs = costs.append(pd.DataFrame( {: [], : [0], : [0], : [0], : , : }, index=[])) return costs
Calculates grid expansion costs for each reinforced transformer and line in kEUR. Attributes ---------- network : :class:`~.grid.network.Network` without_generator_import : Boolean If True excludes lines that were added in the generator import to connect new generators to the grid from calculation of grid expansion costs. Default: False. Returns ------- `pandas.DataFrame<dataframe>` DataFrame containing type and costs plus in the case of lines the line length and number of parallel lines of each reinforced transformer and line. Index of the DataFrame is the respective object that can either be a :class:`~.grid.components.Line` or a :class:`~.grid.components.Transformer`. Columns are the following: type: String Transformer size or cable name total_costs: float Costs of equipment in kEUR. For lines the line length and number of parallel lines is already included in the total costs. quantity: int For transformers quantity is always one, for lines it specifies the number of parallel lines. line_length: float Length of line or in case of parallel lines all lines in km. voltage_level : :obj:`str` {'lv' | 'mv' | 'mv/lv'} Specifies voltage level the equipment is in. mv_feeder : :class:`~.grid.components.Line` First line segment of half-ring used to identify in which feeder the grid expansion was conducted in. Notes ------- Total grid expansion costs can be obtained through self.grid_expansion_costs.total_costs.sum().
14,906
def mangle_signature(sig, max_chars=30): s = re.sub(r"^\((.*)\)$", r"\1", sig).strip() s = re.sub(r"\\\\", "", s) s = re.sub(r"\\[^", "", s) args = [] opts = [] opt_re = re.compile(r"^(.*, |)([a-zA-Z0-9_*]+)=") while s: m = opt_re.search(s) if not m: args = s.split() break opts.insert(0, m.group(2)) s = m.group(1)[:-2] sig = limited_join(", ", args, max_chars=max_chars-2) if opts: if not sig: sig = "[%s]" % limited_join(", ", opts, max_chars=max_chars-4) elif len(sig) < max_chars - 4 - 2 - 3: sig += "[, %s]" % limited_join(", ", opts, max_chars=max_chars-len(sig)-4-2) return u"(%s)" % sig
Reformat a function signature to a more compact form.
14,907
def register_type(cls, name): x = TypeDefinition(name, (cls,), ()) Validator.types_mapping[name] = x
Register `name` as a type to validate as an instance of class `cls`.
14,908
def VxLANTunnelState_originator_switch_info_switchIdentifier(self, **kwargs): config = ET.Element("config") VxLANTunnelState = ET.SubElement(config, "VxLANTunnelState", xmlns="http://brocade.com/ns/brocade-notification-stream") originator_switch_info = ET.SubElement(VxLANTunnelState, "originator-switch-info") switchIdentifier = ET.SubElement(originator_switch_info, "switchIdentifier") switchIdentifier.text = kwargs.pop() callback = kwargs.pop(, self._callback) return callback(config)
Auto Generated Code
14,909
def create_optimizer(name, **kwargs): if name.lower() in Optimizer.opt_registry: return Optimizer.opt_registry[name.lower()](**kwargs) else: raise ValueError( % name)
Instantiates an optimizer with a given name and kwargs. .. note:: We can use the alias `create` for ``Optimizer.create_optimizer``. Parameters ---------- name: str Name of the optimizer. Should be the name of a subclass of Optimizer. Case insensitive. kwargs: dict Parameters for the optimizer. Returns ------- Optimizer An instantiated optimizer. Examples -------- >>> sgd = mx.optimizer.Optimizer.create_optimizer('sgd') >>> type(sgd) <class 'mxnet.optimizer.SGD'> >>> adam = mx.optimizer.create('adam', learning_rate=.1) >>> type(adam) <class 'mxnet.optimizer.Adam'>
14,910
def isConnected(self, fromName, toName): for c in self.connections: if (c.fromLayer.name == fromName and c.toLayer.name == toName): return 1 return 0
Are these two layers connected this way?
14,911
def _submit(self, pool, args, callback): if self.config.args.single_threaded: callback(self.call_runner(*args)) else: pool.apply_async(self.call_runner, args=args, callback=callback)
If the caller has passed the magic 'single-threaded' flag, call the function directly instead of pool.apply_async. The single-threaded flag is intended for gathering more useful performance information about what appens beneath `call_runner`, since python's default profiling tools ignore child threads. This does still go through the callback path for result collection.
14,912
def comments(self): record_numbers = range(2, self.fward) if not record_numbers: return data = b.join(self.read_record(n)[0:1000] for n in record_numbers) try: return data[:data.find(b)].decode().replace(, ) except IndexError: raise ValueError() except UnicodeDecodeError: raise ValueError()
Return the text inside the comment area of the file.
14,913
def _parse_tensor(self, indices=False): if indices: self.line = self._skip_lines(1) tensor = np.zeros((3, 3)) for i in range(3): tokens = self.line.split() if indices: tensor[i][0] = float(tokens[1]) tensor[i][1] = float(tokens[2]) tensor[i][2] = float(tokens[3]) else: tensor[i][0] = float(tokens[0]) tensor[i][1] = float(tokens[1]) tensor[i][2] = float(tokens[2]) self.line = self._skip_lines(1) return tensor
Parse a tensor.
14,914
def downstream(self, f, n=1): if f.strand == -1: return self.left(f, n) return self.right(f, n)
find n downstream features where downstream is determined by the strand of the query Feature f Overlapping features are not considered. f: a Feature object n: the number of features to return
14,915
def from_file(path): with open(path) as f: content = f.readlines() content = [x.strip() for x in content] urls = list(filter(None, content)) return NewsPlease.from_urls(urls)
Crawls articles from the urls and extracts relevant information. :param path: path to file containing urls (each line contains one URL) :return: A dict containing given URLs as keys, and extracted information as corresponding values.
14,916
def get_active_pitch_range(self): if self.pianoroll.shape[1] < 1: raise ValueError("Cannot compute the active pitch range for an " "empty pianoroll") lowest = 0 highest = 127 while lowest < highest: if np.any(self.pianoroll[:, lowest]): break lowest += 1 if lowest == highest: raise ValueError("Cannot compute the active pitch range for an " "empty pianoroll") while not np.any(self.pianoroll[:, highest]): highest -= 1 return lowest, highest
Return the active pitch range as a tuple (lowest, highest). Returns ------- lowest : int The lowest active pitch in the pianoroll. highest : int The highest active pitch in the pianoroll.
14,917
def no_use_pep517_callback(option, opt, value, parser): if value is not None: msg = raise_option_error(parser, option=option, msg=msg) parser.values.use_pep517 = False
Process a value provided for the --no-use-pep517 option. This is an optparse.Option callback for the no_use_pep517 option.
14,918
def find_page_of_state_m(self, state_m): for state_identifier, page_info in list(self.tabs.items()): if page_info[] is state_m: return page_info[], state_identifier return None, None
Return the identifier and page of a given state model :param state_m: The state model to be searched :return: page containing the state and the state_identifier
14,919
def Rizk(mp, dp, rhog, D): rs equation." Proceedings of Pneumotransport 3, paper D4. BHRA Fluid Engineering, Cranfield, England (1973) .. [2] Klinzing, G. E., F. Rizk, R. Marcus, and L. S. Leung. Pneumatic Conveying of Solids: A Theoretical and Practical Approach. Springer, 2013. .. [3] Rhodes, Martin J. Introduction to Particle Technology. Wiley, 2013. ' alpha = 1440*dp + 1.96 beta = 1100*dp + 2.5 term1 = 1./10**alpha Frs_sorta = 1/(g*D)**0.5 expression1 = term1*Frs_sorta**beta expression2 = mp/rhog/(pi/4*D**2) V = (expression2/expression1)**(1./(1 + beta)) return V
r'''Calculates saltation velocity of the gas for pneumatic conveying, according to [1]_ as described in [2]_ and many others. .. math:: \mu=\left(\frac{1}{10^{1440d_p+1.96}}\right)\left(Fr_s\right)^{1100d_p+2.5} Fr_s = \frac{V_{salt}}{\sqrt{gD}} \mu = \frac{m_p}{\frac{\pi}{4}D^2V \rho_f} Parameters ---------- mp : float Solid mass flow rate, [kg/s] dp : float Particle diameter, [m] rhog : float Gas density, [kg/m^3] D : float Diameter of pipe, [m] Returns ------- V : float Saltation velocity of gas, [m/s] Notes ----- Model is rearanged to be explicit in terms of saltation velocity internally. Examples -------- Example is from [3]_. >>> Rizk(mp=0.25, dp=100E-6, rhog=1.2, D=.078) 9.8833092829357 References ---------- .. [1] Rizk, F. "Pneumatic conveying at optimal operation conditions and a solution of Bath's equation." Proceedings of Pneumotransport 3, paper D4. BHRA Fluid Engineering, Cranfield, England (1973) .. [2] Klinzing, G. E., F. Rizk, R. Marcus, and L. S. Leung. Pneumatic Conveying of Solids: A Theoretical and Practical Approach. Springer, 2013. .. [3] Rhodes, Martin J. Introduction to Particle Technology. Wiley, 2013.
14,920
def task_ref_role(name, rawtext, text, lineno, inliner, options=None, content=None): node = pending_task_xref(rawsource=text) return [node], []
Process a role that references the target nodes created by the ``lsst-task`` directive. Parameters ---------- name The role name used in the document. rawtext The entire markup snippet, with role. text The text marked with the role. lineno The line number where ``rawtext`` appears in the input. inliner The inliner instance that called us. options Directive options for customization. content The directive content for customization. Returns ------- nodes : `list` List of nodes to insert into the document. messages : `list` List of system messages.
14,921
def predict_is(self, h): result = pd.DataFrame([self.run(h=h)[2]]).T result.index = self.index[-h:] return result
Outputs predictions for the Aggregate algorithm on the in-sample data Parameters ---------- h : int How many steps to run the aggregating algorithm on Returns ---------- - pd.DataFrame of ensemble predictions
14,922
def save(self, data): if not self.is_connected: raise Exception("No database selected") if not data: return False if isinstance(data, dict): doc = couchdb.Document() doc.update(data) self.db.create(doc) elif isinstance(data, couchdb.Document): self.db.update(data) elif isinstance(data, list): self.db.update(data) return True
Save a document or list of documents
14,923
def _write_color (self, text, color=None): if color is None: self.fp.write(text) else: write_color(self.fp, text, color)
Print text with given color. If color is None, print text as-is.
14,924
def user_field_create(self, data, **kwargs): "https://developer.zendesk.com/rest_api/docs/core/user_fields api_path = "/api/v2/user_fields.json" return self.call(api_path, method="POST", data=data, **kwargs)
https://developer.zendesk.com/rest_api/docs/core/user_fields#create-user-fields
14,925
def tokenize(text, to_lower=False, delimiters=DEFAULT_DELIMITERS): _raise_error_if_not_sarray(text, "text") sf = _turicreate.SFrame({: text}) fe = _feature_engineering.Tokenizer(features=, to_lower=to_lower, delimiters=delimiters, output_column_prefix=None) tokens = fe.fit_transform(sf) return tokens[]
Tokenize the input SArray of text strings and return the list of tokens. Parameters ---------- text : SArray[str] Input data of strings representing English text. This tokenizer is not intended to process XML, HTML, or other structured text formats. to_lower : bool, optional If True, all strings are converted to lower case before tokenization. delimiters : list[str], None, optional Input strings are tokenized using delimiter characters in this list. Each entry in this list must contain a single character. If set to `None`, then a Penn treebank-style tokenization is used, which contains smart handling of punctuations. Returns ------- out : SArray[list] Each text string in the input is mapped to a list of tokens. See Also -------- count_words, count_ngrams, tf_idf References ---------- - `Penn treebank tokenization <https://web.archive.org/web/19970614072242/http://www.cis.upenn.edu:80/~treebank/tokenization.html>`_ Examples -------- .. sourcecode:: python >>> import turicreate >>> docs = turicreate.SArray(['This is the first sentence.', "This one, it's the second sentence."]) # Default tokenization by space characters >>> turicreate.text_analytics.tokenize(docs) dtype: list Rows: 2 [['This', 'is', 'the', 'first', 'sentence.'], ['This', 'one,', "it's", 'the', 'second', 'sentence.']] # Penn treebank-style tokenization >>> turicreate.text_analytics.tokenize(docs, delimiters=None) dtype: list Rows: 2 [['This', 'is', 'the', 'first', 'sentence', '.'], ['This', 'one', ',', 'it', "'s", 'the', 'second', 'sentence', '.']]
14,926
def end_element (self, tag): tag = tag.encode(self.encoding, "ignore") self.fd.write("</%s>" % tag)
Print HTML end element. @param tag: tag name @type tag: string @return: None
14,927
def hash_vector(self, v, querying=False): bucket_keys = [] if querying: for child_hash in self.child_hashes: lshash = child_hash[] if not lshash.hash_name in self.permutation.permutedIndexs: raise AttributeError( % lshash.hash_name) for bucket_key in lshash.hash_vector(v, querying): neighbour_keys = self.permutation.get_neighbour_keys(lshash.hash_name,bucket_key) for n in neighbour_keys: bucket_keys.append(lshash.hash_name++n) else: for child_hash in self.child_hashes: lshash = child_hash[] for bucket_key in lshash.hash_vector(v, querying): child_hash[][bucket_key] = bucket_key bucket_keys.append(lshash.hash_name++bucket_key) return bucket_keys
Hashes the vector and returns the bucket key as string.
14,928
def neighbours(self, word, size = 10): word = word.strip() v = self.word_vec(word) [distances], [points] = self.kdt.query(array([v]), k = size, return_distance = True) assert len(distances) == len(points), "distances and points should be in same shape." words, scores = [], {} for (x,y) in zip(points, distances): w = self.index2word[x] if w == word: s = 1.0 else: s = cosine(v, self.syn0[x]) if s < 0: s = abs(s) words.append(w) scores[w] = min(s, 1.0) for x in sorted(words, key=scores.get, reverse=True): yield x, scores[x]
Get nearest words with KDTree, ranking by cosine distance
14,929
def save_figure(self, event=None, transparent=False, dpi=600): file_choices = "PNG (*.png)|*.png|SVG (*.svg)|*.svg|PDF (*.pdf)|*.pdf" try: ofile = self.conf.title.strip() except: ofile = if len(ofile) > 64: ofile = ofile[:63].strip() if len(ofile) < 1: ofile = for c in : ofile = ofile.replace(c, ) ofile = ofile + orig_dir = os.path.abspath(os.curdir) dlg = wx.FileDialog(self, message=, defaultDir = os.getcwd(), defaultFile=ofile, wildcard=file_choices, style=wx.FD_SAVE|wx.FD_CHANGE_DIR) if dlg.ShowModal() == wx.ID_OK: path = dlg.GetPath() if hasattr(self, ): self.fig.savefig(path, transparent=transparent, dpi=dpi) else: self.canvas.print_figure(path, transparent=transparent, dpi=dpi) if (path.find(self.launch_dir) == 0): path = path[len(self.launch_dir)+1:] self.write_message( % path) os.chdir(orig_dir)
save figure image to file
14,930
def set_num_special_tokens(self, num_special_tokens): self.transformer.set_num_special_tokens(num_special_tokens) self.lm_head.set_embeddings_weights(self.transformer.tokens_embed.weight)
Update input and output embeddings with new embedding matrice Make sure we are sharing the embeddings
14,931
def get_instance(self, payload): return TaskQueueInstance(self._version, payload, workspace_sid=self._solution[], )
Build an instance of TaskQueueInstance :param dict payload: Payload response from the API :returns: twilio.rest.taskrouter.v1.workspace.task_queue.TaskQueueInstance :rtype: twilio.rest.taskrouter.v1.workspace.task_queue.TaskQueueInstance
14,932
def is_symbol(string): return ( is_int(string) or is_float(string) or is_constant(string) or is_unary(string) or is_binary(string) or (string == ) or (string == ) )
Return true if the string is a mathematical symbol.
14,933
def map_trigger(library, session, trigger_source, trigger_destination, mode): return library.viMapTrigger(session, trigger_source, trigger_destination, mode)
Map the specified trigger source line to the specified destination line. Corresponds to viMapTrigger function of the VISA library. :param library: the visa library wrapped by ctypes. :param session: Unique logical identifier to a session. :param trigger_source: Source line from which to map. (Constants.TRIG*) :param trigger_destination: Destination line to which to map. (Constants.TRIG*) :param mode: :return: return value of the library call. :rtype: :class:`pyvisa.constants.StatusCode`
14,934
def getAllSystemVariables(self, remote): variables = {} if self.remotes[remote][] and self.remotes[remote][]: LOG.debug( "ServerThread.getAllSystemVariables: Getting all System variables via JSON-RPC") session = self.jsonRpcLogin(remote) if not session: return try: params = {"_session_id_": session} response = self._rpcfunctions.jsonRpcPost( self.remotes[remote][], self.remotes[remote].get(, DEFAULT_JSONPORT), "SysVar.getAll", params) if response[] is None and response[]: for var in response[]: key, value = self.parseCCUSysVar(var) variables[key] = value self.jsonRpcLogout(remote, session) except Exception as err: self.jsonRpcLogout(remote, session) LOG.warning( "ServerThread.getAllSystemVariables: Exception: %s" % str(err)) else: try: variables = self.proxies[ "%s-%s" % (self._interface_id, remote)].getAllSystemVariables() except Exception as err: LOG.debug( "ServerThread.getAllSystemVariables: Exception: %s" % str(err)) return variables
Get all system variables from CCU / Homegear
14,935
def build_time(start_time): diff_time = round(time.time() - start_time, 2) if diff_time <= 59.99: sum_time = str(diff_time) + " Sec" elif diff_time > 59.99 and diff_time <= 3599.99: sum_time = round(diff_time / 60, 2) sum_time_list = re.findall(r"\d+", str(sum_time)) sum_time = ("{0} Min {1} Sec".format(sum_time_list[0], sum_time_list[1])) elif diff_time > 3599.99: sum_time = round(diff_time / 3600, 2) sum_time_list = re.findall(r"\d+", str(sum_time)) sum_time = ("{0} Hours {1} Min".format(sum_time_list[0], sum_time_list[1])) return sum_time
Calculate build time per package
14,936
def interfaces_info(): def replace(value): if value == netifaces.AF_LINK: return if value == netifaces.AF_INET: return if value == netifaces.AF_INET6: return return value results = {} for iface in netifaces.interfaces(): addrs = netifaces.ifaddresses(iface) results[iface] = {replace(k): v for k, v in addrs.items()} return results
Returns interfaces data.
14,937
def _append_array(self, value, _file): _labs = _file.write(_labs) self._tctr += 1 for _item in value: _cmma = if self._vctr[self._tctr] else _file.write(_cmma) self._vctr[self._tctr] += 1 _item = self.object_hook(_item) _type = type(_item).__name__ _MAGIC_TYPES[_type](self, _item, _file) self._vctr[self._tctr] = 0 self._tctr -= 1 _labs = _file.write(_labs)
Call this function to write array contents. Keyword arguments: * value - dict, content to be dumped * _file - FileIO, output file
14,938
def text(self): if isinstance(self._value, CommentedMap): raise TypeError("{0} is a mapping, has no text value.".format(repr(self))) if isinstance(self._value, CommentedSeq): raise TypeError("{0} is a sequence, has no text value.".format(repr(self))) return self._text
Return string value of scalar, whatever value it was parsed as.
14,939
def kids(tup_tree): k = tup_tree[2] if k is None: return [] return [x for x in k if type(x) == tuple]
Return a list with the child elements of tup_tree. The child elements are represented as tupletree nodes. Child nodes that are not XML elements (e.g. text nodes) in tup_tree are filtered out.
14,940
def _get_offset_day(self, other): mstart = datetime(other.year, other.month, 1) wday = mstart.weekday() shift_days = (self.weekday - wday) % 7 return 1 + shift_days + self.week * 7
Find the day in the same month as other that has the same weekday as self.weekday and is the self.week'th such day in the month. Parameters ---------- other : datetime Returns ------- day : int
14,941
def read_properties(group): if not in group: raise IOError() data = group[][...][0].replace(b, b) return pickle.loads(data)
Returns properties loaded from a group
14,942
def __fork_pty(self): parent_fd, child_fd = os.openpty() if parent_fd < 0 or child_fd < 0: raise ExceptionPexpect, "Error! Could not open pty with os.openpty()." pid = os.fork() if pid < 0: raise ExceptionPexpect, "Error! Failed os.fork()." elif pid == 0: os.close(parent_fd) self.__pty_make_controlling_tty(child_fd) os.dup2(child_fd, 0) os.dup2(child_fd, 1) os.dup2(child_fd, 2) if child_fd > 2: os.close(child_fd) else: os.close(child_fd) return pid, parent_fd
This implements a substitute for the forkpty system call. This should be more portable than the pty.fork() function. Specifically, this should work on Solaris. Modified 10.06.05 by Geoff Marshall: Implemented __fork_pty() method to resolve the issue with Python's pty.fork() not supporting Solaris, particularly ssh. Based on patch to posixmodule.c authored by Noah Spurrier:: http://mail.python.org/pipermail/python-dev/2003-May/035281.html
14,943
def _html(title: str, field_names: List[str]) -> str: inputs = .join(_SINGLE_INPUT_TEMPLATE.substitute(field_name=field_name) for field_name in field_names) quoted_field_names = [f"" for field_name in field_names] quoted_field_list = f"[{.join(quoted_field_names)}]" return _PAGE_TEMPLATE.substitute(title=title, css=_CSS, inputs=inputs, qfl=quoted_field_list)
Returns bare bones HTML for serving up an input form with the specified fields that can render predictions from the configured model.
14,944
def fromstring(text, schema=None): if schema: parser = objectify.makeparser(schema = schema.schema) return objectify.fromstring(text, parser=parser) else: return objectify.fromstring(text)
Parses a KML text string This function parses a KML text string and optionally validates it against a provided schema object
14,945
def is_valid_name_error(name: str, node: Node = None) -> Optional[GraphQLError]: if not isinstance(name, str): raise TypeError("Expected string") if name.startswith("__"): return GraphQLError( f"Name {name!r} must not begin with ," " which is reserved by GraphQL introspection.", node, ) if not re_name.match(name): return GraphQLError( f"Names must match /^[_a-zA-Z][_a-zA-Z0-9]*$/ but {name!r} does not.", node ) return None
Return an Error if a name is invalid.
14,946
def start(self): vms = yield from self.list() for vm in vms: if vm["vmname"] == self.vmname: self._vmx_path = vm["vmx_path"] break if not self._vmx_path: raise GNS3VMError("VMWare VM {} not found".format(self.vmname)) if not os.path.exists(self._vmx_path): raise GNS3VMError("VMware VMX file {} doesn't exist".format(self._vmx_path)) vmware_tools_state = yield from self._execute("checkToolsState", [self._vmx_path]) if vmware_tools_state not in ("installed", "running"): raise GNS3VMError("VMware tools are not installed in {}".format(self.vmname)) try: running = yield from self._is_running() except VMwareError as e: raise GNS3VMError("Could not list VMware VMs: {}".format(str(e))) if not running: log.info("Update GNS3 VM settings") yield from self._set_vcpus_ram(self.vcpus, self.ram) yield from self._set_extra_options() args = [self._vmx_path] if self._headless: args.extend(["nogui"]) yield from self._execute("start", args) log.info("GNS3 VM has been started") trial = 120 guest_ip_address = "" log.info("Waiting for GNS3 VM IP") while True: guest_ip_address = yield from self._execute("readVariable", [self._vmx_path, "guestVar", "gns3.eth0"], timeout=120, log_level=logging.DEBUG) guest_ip_address = guest_ip_address.strip() if len(guest_ip_address) != 0: break trial -= 1 if trial == 0: log.warning("No IP found for the VM via readVariable fallback to getGuestIPAddress") guest_ip_address = yield from self._execute("getGuestIPAddress", [self._vmx_path, "-wait"], timeout=120) break yield from asyncio.sleep(1) self.ip_address = guest_ip_address log.info("GNS3 VM IP address set to {}".format(guest_ip_address)) self.running = True
Starts the GNS3 VM.
14,947
def decode_union_old(self, data_type, obj): val = None if isinstance(obj, six.string_types): tag = obj if data_type.definition._is_tag_present(tag, self.caller_permissions): val_data_type = data_type.definition._get_val_data_type(tag, self.caller_permissions) if not isinstance(val_data_type, (bv.Void, bv.Nullable)): raise bv.ValidationError( "expected object for , got symbol" % tag) else: if not self.strict and data_type.definition._catch_all: tag = data_type.definition._catch_all else: raise bv.ValidationError("unknown tag " % tag) elif isinstance(obj, dict): if len(obj) != 1: raise bv.ValidationError( % len(obj)) tag = list(obj)[0] raw_val = obj[tag] if data_type.definition._is_tag_present(tag, self.caller_permissions): val_data_type = data_type.definition._get_val_data_type(tag, self.caller_permissions) if isinstance(val_data_type, bv.Nullable) and raw_val is None: val = None elif isinstance(val_data_type, bv.Void): if raw_val is None or not self.strict: val = None else: raise bv.ValidationError( % bv.generic_type_name(raw_val)) else: try: val = self.json_compat_obj_decode_helper(val_data_type, raw_val) except bv.ValidationError as e: e.add_parent(tag) raise else: if not self.strict and data_type.definition._catch_all: tag = data_type.definition._catch_all else: raise bv.ValidationError("unknown tag " % tag) else: raise bv.ValidationError("expected string or object, got %s" % bv.generic_type_name(obj)) return data_type.definition(tag, val)
The data_type argument must be a Union. See json_compat_obj_decode() for argument descriptions.
14,948
def __find_sentence_initial_proper_names(self, docs): sentInitialNames = set() for doc in docs: for sentence in doc.divide( layer=WORDS, by=SENTENCES ): sentencePos = 0 for i in range(len(sentence)): word = sentence[i] if all([ a[POSTAG] == for a in word[ANALYSIS] ]) and \ not re.match(, word[TEXT]): sentencePos = 0 continue if not re.match(, word[TEXT] ) and \ not re.match(, word[TEXT] ) and \ re.match("^[1234567890.()]*$", word[TEXT]): sentencePos = 0 continue if sentencePos == 0: h_postags = [ a[POSTAG] == for a in word[ANALYSIS] ] if any( h_postags ) and not all( h_postags ): for analysis in word[ANALYSIS]: if analysis[POSTAG] == : sentInitialNames.add( analysis[ROOT] ) sentencePos += 1 return sentInitialNames
Moodustame lausealguliste pärisnimede loendi: vaatame sõnu, millel nii pärisnimeanalüüs(id) kui ka mittepärisnimeanalüüs(id) ning mis esinevad lause või nummerdatud loendi alguses - jäädvustame selliste sõnade unikaalsed lemmad;
14,949
def subscribe_multi(self, topics): if self.sock == NC.INVALID_SOCKET: return NC.ERR_NO_CONN self.logger.info("SUBSCRIBE: %s", .join([t for (t,q) in topics])) return self.send_subscribe(False, [(utf8encode(topic), qos) for (topic, qos) in topics])
Subscribe to some topics.
14,950
def before_after_send_handling(self): self._init_delivery_statuses_dict() self.before_send() try: yield finally: self.after_send() self._update_dispatches()
Context manager that allows to execute send wrapped in before_send() and after_send().
14,951
def _set_nsx_controller(self, v, load=False): if hasattr(v, "_utype"): v = v._utype(v) try: t = YANGDynClass(v,base=YANGListType("name",nsx_controller.nsx_controller, yang_name="nsx-controller", rest_name="nsx-controller", parent=self, is_container=, user_ordered=False, path_helper=self._path_helper, yang_keys=, extensions={u: {u: u, u: u, u: None, u: None, u: None, u: u}}), is_container=, yang_name="nsx-controller", rest_name="nsx-controller", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u: {u: u, u: u, u: None, u: None, u: None, u: u}}, namespace=, defining_module=, yang_type=, is_config=True) except (TypeError, ValueError): raise ValueError({ : , : "list", : , }) self.__nsx_controller = t if hasattr(self, ): self._set()
Setter method for nsx_controller, mapped from YANG variable /nsx_controller (list) If this variable is read-only (config: false) in the source YANG file, then _set_nsx_controller is considered as a private method. Backends looking to populate this variable should do so via calling thisObj._set_nsx_controller() directly.
14,952
def _validate_geometry(self, geometry): if geometry is not None and geometry not in self.valid_geometries: raise InvalidParameterError("{} is not a valid geometry".format(geometry)) return geometry
Validates geometry, raising error if invalid.
14,953
def convert_conelp(c, G, h, dims, A = None, b = None, **kwargs): offsets = dims[] + sum(dims[]) G_lq = G[:offsets,:] h_lq = h[:offsets,0] G_s = G[offsets:,:] h_s = h[offsets:,0] G_converted = [G_lq]; h_converted = [h_lq] G_coupling = [] dims_list = [] symbs = [] offset = 0 block_to_sparse = [] for k, si in enumerate(dims[]): G_b = G_s[offset:offset+si**2,:] h_b = h_s[offset:offset+si**2,0] offset += si**2 blkk, b2s, F = convert_block(G_b, h_b, si, **kwargs) G1, h1, G2, blkdims = blkk G_converted.append(G1) h_converted.append(h1) dims_list.extend(blkdims) block_to_sparse.append(b2s) symbs.append(F) if G2 is not None: G_coupling.append(G2) G1 = sparse(G_converted) I,J,V = [],[],[] offset = [G_lq.size[0], 0] for Gcpl in G_coupling: I.append(Gcpl.I + offset[0]) J.append(Gcpl.J + offset[1]) V.append(Gcpl.V) offset[0] += Gcpl.size[0] offset[1] += Gcpl.size[1] G2 = spmatrix([v for v in itertools.chain(*V)], [v for v in itertools.chain(*I)], [v for v in itertools.chain(*J)],tuple(offset)) if offset[0] == 0 or offset[1] == 0: G = G1 else: G = sparse([[G1],[G2]]) ct = matrix([c,matrix(0.0,(G2.size[1],1))]) if A is not None: return (ct, G, matrix(h_converted),\ {:dims[],:dims[],:dims_list},\ sparse([[A],[spmatrix([],[],[],(A.size[0],G2.size[1]))]]),\ b), block_to_sparse else: return (ct, G, matrix(h_converted),\ {:dims[],:dims[],:dims_list}), block_to_sparse, symbs
Applies the clique conversion method of Fukuda et al. to the positive semidefinite blocks of a cone LP. :param c: :py:class:`matrix` :param G: :py:class:`spmatrix` :param h: :py:class:`matrix` :param dims: dictionary :param A: :py:class:`spmatrix` or :py:class:`matrix` :param b: :py:class:`matrix` The following example illustrates how to convert a cone LP: .. code-block:: python prob = (c,G,h,dims,A,b) probc, blk2sparse, symbs = convert_conelp(*prob) The return value `blk2sparse` is a list of 4-tuples (`blki,I,J,n`) that each defines a mapping between the sparse matrix representation and the converted block-diagonal representation, and `symbs` is a list of symbolic factorizations corresponding to each of the semidefinite blocks in the original cone LP. .. seealso:: M. Fukuda, M. Kojima, K. Murota, and K. Nakata, `Exploiting Sparsity in Semidefinite Programming via Matrix Completion I: General Framework <http://dx.doi.org/10.1137/S1052623400366218>`_, SIAM Journal on Optimization, 11:3, 2001, pp. 647-674. S. Kim, M. Kojima, M. Mevissen, and M. Yamashita, `Exploiting Sparsity in Linear and Nonlinear Matrix Inequalities via Positive Semidefinite Matrix Completion <http://dx.doi.org/10.1007/s10107-010-0402-6>`_, Mathematical Programming, 129:1, 2011, pp.. 33-68.
14,954
def mode_reader(self): code, message = self.command("MODE READER") if not code in [200, 201]: raise NNTPReplyError(code, message) return code == 200
MODE READER command. Instructs a mode-switching server to switch modes. See <http://tools.ietf.org/html/rfc3977#section-5.3> Returns: Boolean value indicating whether posting is allowed or not.
14,955
def _capture_as_text(capture: Callable[..., Any]) -> str: if not icontract._represent._is_lambda(a_function=capture): signature = inspect.signature(capture) param_names = list(signature.parameters.keys()) return "{}({})".format(capture.__qualname__, ", ".join(param_names)) lines, lineno = inspect.findsource(capture) filename = inspect.getsourcefile(capture) decorator_inspection = icontract._represent.inspect_decorator(lines=lines, lineno=lineno, filename=filename) call_node = decorator_inspection.node capture_node = None if len(call_node.args) > 0: assert isinstance(call_node.args[0], ast.Lambda), \ ("Expected the first argument to the snapshot decorator to be a condition as lambda AST node, " "but got: {}").format(type(call_node.args[0])) capture_node = call_node.args[0] elif len(call_node.keywords) > 0: for keyword in call_node.keywords: if keyword.arg == "capture": assert isinstance(keyword.value, ast.Lambda), \ "Expected lambda node as value of the argument to the decorator." capture_node = keyword.value break assert capture_node is not None, "Expected to find a keyword AST node with arg, but found none" else: raise AssertionError( "Expected a call AST node of a snapshot decorator to have either args or keywords, but got: {}".format( ast.dump(call_node))) capture_text = decorator_inspection.atok.get_text(capture_node.body) return capture_text
Convert the capture function into its text representation by parsing the source code of the decorator.
14,956
def chuid(name, uid): * pre_info = info(name) if not pre_info: raise CommandExecutionError( {0}\.format(name) ) if uid == pre_info[]: return True cmd = [, , , uid, , name] __salt__[](cmd, python_shell=False) return info(name).get() == uid
Change the uid for a named user CLI Example: .. code-block:: bash salt '*' user.chuid foo 4376
14,957
def _pys2row_heights(self, line): split_line = self._split_tidy(line) key = row, tab = self._get_key(*split_line[:2]) height = float(split_line[2]) shape = self.code_array.shape try: if row < shape[0] and tab < shape[2]: self.code_array.row_heights[key] = height except ValueError: pass
Updates row_heights in code_array
14,958
def generate_name(self, name=None): t supply one. -_')
generate a Robot Name for the instance to use, if the user doesn't supply one.
14,959
def batchccn(args): p = OptionParser(batchccn.__doc__) opts, args = p.parse_args(args) if len(args) != 1: sys.exit(not p.print_help()) csvfile, = args mm = MakeManager() pf = op.basename(csvfile).split(".")[0] mkdir(pf) header = next(open(csvfile)) header = None if header.strip().endswith(".bam") else "infer" logging.debug("Header={}".format(header)) df = pd.read_csv(csvfile, header=header) cmd = "perl /mnt/software/ccn_gcn_hg38_script/ccn_gcn_hg38.pl" cmd += " -n {} -b {}" cmd += " -o {} -r hg38".format(pf) for i, (sample_key, bam) in df.iterrows(): cmdi = cmd.format(sample_key, bam) outfile = "{}/{}/{}.ccn".format(pf, sample_key, sample_key) mm.add(csvfile, outfile, cmdi) mm.write()
%prog batchccn test.csv Run CCN script in batch. Write makefile.
14,960
def periodicvar_recovery(fakepfpkl, simbasedir, period_tolerance=1.0e-3): recovered if fakepfpkl.endswith(): infd = gzip.open(fakepfpkl,) else: infd = open(fakepfpkl,) fakepf = pickle.load(infd) infd.close() objectid, lcfbasename = fakepf[], fakepf[] lcfpath = os.path.join(simbasedir,,lcfbasename) pfres[].append(this_lspval) pfres[] = np.array(pfres[]) pfres[] = np.array(pfres[]) pfres[] = np.array(pfres[]) pfres[] = np.array(pfres[]) if (actual_vartype and actual_vartype in PERIODIC_VARTYPES and np.isfinite(actual_varperiod)): if pfres[].size > 0: for ri in range(pfres[].size): pfres[].append(pfres[][ri] - np.asscalar(actual_varperiod)) pfres[].append( check_periodrec_alias(actual_varperiod, pfres[][ri], tolerance=period_tolerance) ) pfres[] = np.array(pfres[]) pfres[] = np.array(pfres[]) rec_absdiff = np.abs(pfres[]) best_recp_ind = rec_absdiff == rec_absdiff.min() pfres[] = ( pfres[][best_recp_ind] ) pfres[] = ( pfres[][best_recp_ind] ) pfres[] = ( pfres[][best_recp_ind] ) pfres[] = ( pfres[][best_recp_ind] ) pfres[] = ( pfres[][best_recp_ind] ) else: LOGWARNING( % fakepfpkl ) pfres[] = np.array([]) pfres[] = np.array([np.nan]) pfres[] = np.array([np.nan]) pfres[] = np.array([],dtype=np.unicode_) pfres[] = np.array([],dtype=np.unicode_) pfres[] = np.array([],dtype=np.unicode_) pfres[] = np.array([np.nan]) else: pfres[] = np.array( []*pfres[].size ) pfres[] = np.zeros(pfres[].size) pfres[] = np.array([np.nan]) pfres[] = np.array([],dtype=np.unicode_) pfres[] = np.array([],dtype=np.unicode_) pfres[] = np.array([]) pfres[] = np.array([np.nan]) return pfres
Recovers the periodic variable status/info for the simulated PF result. - Uses simbasedir and the lcfbasename stored in fakepfpkl to figure out where the LC for this object is. - Gets the actual_varparams, actual_varperiod, actual_vartype, actual_varamplitude elements from the LC. - Figures out if the current objectid is a periodic variable (using actual_vartype). - If it is a periodic variable, gets the canonical period assigned to it. - Checks if the period was recovered in any of the five best periods reported by any of the period-finders, checks if the period recovered was a harmonic of the period. - Returns the objectid, actual period and vartype, recovered period, and recovery status. Parameters ---------- fakepfpkl : str This is a periodfinding-<objectid>.pkl[.gz] file produced in the `simbasedir/periodfinding` subdirectory after `run_periodfinding` above is done. simbasedir : str The base directory where all of the fake LCs and period-finding results are. period_tolerance : float The maximum difference that this function will consider between an actual period (or its aliases) and a recovered period to consider it as as a 'recovered' period. Returns ------- dict Returns a dict of period-recovery results.
14,961
def to_json(self) -> dict: d = self.__dict__ d[] = self.p2th_wif return d
export the Deck object to json-ready format
14,962
def _psed(text, before, after, limit, flags): atext = text if limit: limit = re.compile(limit) comps = text.split(limit) atext = .join(comps[1:]) count = 1 if in flags: count = 0 flags = flags.replace(, ) aflags = 0 for flag in flags: aflags |= RE_FLAG_TABLE[flag] before = re.compile(before, flags=aflags) text = re.sub(before, after, atext, count=count) return text
Does the actual work for file.psed, so that single lines can be passed in
14,963
async def get_soundfield(self) -> List[Setting]: res = await self.services["audio"]["getSoundSettings"]({"target": "soundField"}) return Setting.make(**res[0])
Get the current sound field settings.
14,964
def _numpy_index_by_percentile(self, data, percentile): data_perc_low = np.nanpercentile(data, percentile, axis=0, interpolation=self.interpolation) indices = np.empty(data_perc_low.shape, dtype=np.uint8) indices[:] = np.nan abs_diff = np.where(np.isnan(data_perc_low), np.inf, abs(data - data_perc_low)) indices = np.where(np.isnan(data_perc_low), self.max_index, np.nanargmin(abs_diff, axis=0)) return indices
Calculate percentile of numpy stack and return the index of the chosen pixel. numpy percentile function is used with one of the following interpolations {'linear', 'lower', 'higher', 'midpoint', 'nearest'}
14,965
def _from_dict(cls, _dict): args = {} if in _dict: args[] = [ QueryRelationsRelationship._from_dict(x) for x in (_dict.get()) ] return cls(**args)
Initialize a QueryRelationsResponse object from a json dictionary.
14,966
def getUnitCost(self, CorpNum): result = self._httpget(, CorpNum) return int(result.unitCost)
팩스 전송 단가 확인 args CorpNum : 팝빌회원 사업자번호 return 전송 단가 by float raise PopbillException
14,967
def cli(env, account_id): manager = SoftLayer.CDNManager(env.client) origins = manager.get_origins(account_id) table = formatting.Table([, , , ]) for origin in origins: table.add_row([origin[], origin[], origin.get(, formatting.blank()), origin[]]) env.fout(table)
List origin pull mappings.
14,968
def create_temporaries(self, r=True, f=True): inverse = isinstance(self, FourierTransformInverse) if inverse: rspace = self.range fspace = self.domain else: rspace = self.domain fspace = self.range if r: self._tmp_r = rspace.element().asarray() if f: self._tmp_f = fspace.element().asarray()
Allocate and store reusable temporaries. Existing temporaries are overridden. Parameters ---------- r : bool, optional Create temporary for the real space f : bool, optional Create temporary for the frequency space Notes ----- To save memory, clear the temporaries when the transform is no longer used. See Also -------- clear_temporaries clear_fftw_plan : can also hold references to the temporaries
14,969
def process_header(self, headers): return [c.name for c in self.source.dest_table.columns][1:]
Ignore the incomming header and replace it with the destination header
14,970
def _upload_folder_recursive(local_folder, parent_folder_id, leaf_folders_as_items=False, reuse_existing=False): if leaf_folders_as_items and _has_only_files(local_folder): print(.format(local_folder)) _upload_folder_as_item(local_folder, parent_folder_id, reuse_existing) return else: print(.format(local_folder)) new_folder_id = _create_or_reuse_folder(local_folder, parent_folder_id, reuse_existing) for entry in sorted(os.listdir(local_folder)): full_entry = os.path.join(local_folder, entry) if os.path.islink(full_entry): continue elif os.path.isdir(full_entry): _upload_folder_recursive(full_entry, new_folder_id, leaf_folders_as_items, reuse_existing) else: print(.format(full_entry)) _upload_as_item(entry, new_folder_id, full_entry, reuse_existing)
Function to recursively upload a folder and all of its descendants. :param local_folder: full path to local folder to be uploaded :type local_folder: string :param parent_folder_id: id of parent folder on the Midas Server instance, where the new folder will be added :type parent_folder_id: int | long :param leaf_folders_as_items: (optional) whether leaf folders should have all files uploaded as single items :type leaf_folders_as_items: bool :param reuse_existing: (optional) whether to accept an existing item of the same name in the same location, or create a new one instead :type reuse_existing: bool
14,971
async def i2c_read_request(self, address, register, number_of_bytes, read_type, cb=None, cb_type=None): if address not in self.i2c_map: self.i2c_map[address] = {: None, : cb, : cb_type} data = [address, read_type, register & 0x7f, (register >> 7) & 0x7f, number_of_bytes & 0x7f, (number_of_bytes >> 7) & 0x7f] await self._send_sysex(PrivateConstants.I2C_REQUEST, data)
This method requests the read of an i2c device. Results are retrieved by a call to i2c_get_read_data(). or by callback. If a callback method is provided, when data is received from the device it will be sent to the callback method. Some devices require that transmission be restarted (e.g. MMA8452Q accelerometer). Use Constants.I2C_READ | Constants.I2C_END_TX_MASK for those cases. :param address: i2c device address :param register: register number (can be set to zero) :param number_of_bytes: number of bytes expected to be returned :param read_type: I2C_READ or I2C_READ_CONTINUOUSLY. I2C_END_TX_MASK may be OR'ed when required :param cb: Optional callback function to report i2c data as a result of read command :param cb_type: Constants.CB_TYPE_DIRECT = direct call or Constants.CB_TYPE_ASYNCIO = asyncio coroutine :returns: No return value.
14,972
def write_config_file(self, params, path): cfgp = ConfigParser() cfgp.add_section(params[]) for p in params: if p == : continue cfgp.set(params[], p, params[p]) f = open(os.path.join(path, ), ) cfgp.write(f) f.close()
write a config file for this single exp in the folder path.
14,973
def text_bounding_box(self, size_pt, text): if size_pt == 12: mult = {"h": 9, "w_digit": 5, "w_space": 2} elif size_pt == 18: mult = {"h": 14, "w_digit": 9, "w_space": 2} num_chars = len(text) return (num_chars * mult["w_digit"] + (num_chars - 1) * mult["w_space"] + 1, mult["h"])
Return the bounding box of the given text at the given font size. :param int size_pt: the font size in points :param string text: the text :rtype: tuple (width, height)
14,974
def all(self, axis=0, bool_only=None, skipna=True, level=None, **kwargs): if axis is not None: axis = self._get_axis_number(axis) if bool_only and axis == 0: if hasattr(self, "dtype"): raise NotImplementedError( "{}.{} does not implement numeric_only.".format( self.__name__, "all" ) ) data_for_compute = self[self.columns[self.dtypes == np.bool]] return data_for_compute.all( axis=axis, bool_only=False, skipna=skipna, level=level, **kwargs ) return self._reduce_dimension( self._query_compiler.all( axis=axis, bool_only=bool_only, skipna=skipna, level=level, **kwargs ) ) else: if bool_only: raise ValueError("Axis must be 0 or 1 (got {})".format(axis)) result = self._reduce_dimension( self._query_compiler.all( axis=0, bool_only=bool_only, skipna=skipna, level=level, **kwargs ) ) if isinstance(result, BasePandasDataset): return result.all( axis=axis, bool_only=bool_only, skipna=skipna, level=level, **kwargs ) return result
Return whether all elements are True over requested axis Note: If axis=None or axis=0, this call applies df.all(axis=1) to the transpose of df.
14,975
def get_new_broks(self): for satellites in [self.schedulers, self.pollers, self.reactionners, self.receivers]: for satellite_link in list(satellites.values()): logger.debug("Getting broks from %s", satellite_link) _t0 = time.time() try: tmp_broks = satellite_link.get_broks(self.name) except LinkError: logger.warning("Daemon %s connection failed, I could not get the broks!", satellite_link) else: if tmp_broks: logger.debug("Got %d Broks from %s in %s", len(tmp_broks), satellite_link.name, time.time() - _t0) statsmgr.gauge( % (satellite_link.name), len(tmp_broks)) statsmgr.timer( % (satellite_link.name), time.time() - _t0) for brok in tmp_broks: brok.instance_id = satellite_link.instance_id self.external_broks.extend(tmp_broks)
Get new broks from our satellites :return: None
14,976
def pytwis_clt(): epilog = twis, prompt = get_pytwis(epilog) if twis is None: return -1 auth_secret = [] while True: try: arg_dict = pytwis_command_parser( input( \ .format(prompt))) if arg_dict[pytwis_clt_constants.ARG_COMMAND] == pytwis_clt_constants.CMD_EXIT \ or arg_dict[pytwis_clt_constants.ARG_COMMAND] == pytwis_clt_constants.CMD_QUIT: if auth_secret[0]: pytwis_command_processor(twis, auth_secret, {pytwis_clt_constants.ARG_COMMAND: pytwis_clt_constants.CMD_LOGOUT}) print() return 0 except ValueError as excep: print(.format(str(excep)), file=sys.stderr) continue pytwis_command_processor(twis, auth_secret, arg_dict)
The main routine of this command-line tool.
14,977
def _get_field(self, field_name, default=None): full_field_name = .format(field_name) if full_field_name in self.extras: return self.extras[full_field_name] else: return default
Fetches a field from extras, and returns it. This is some Airflow magic. The grpc hook type adds custom UI elements to the hook page, which allow admins to specify scopes, credential pem files, etc. They get formatted as shown below.
14,978
def connect(self, slot): if not callable(slot): raise ValueError("Connection to non-callable object failed" % slot.__class__.__name__) if (isinstance(slot, partial) or in slot.__name__): slotSelf = slot.__self__ slotDict = weakref.WeakKeyDictionary() slotDict[slotSelf] = slot.__func__ if slotDict not in self._slots: self._slots.append(slotDict) else: newSlotRef = weakref.ref(slot) if newSlotRef not in self._slots: self._slots.append(newSlotRef)
Connects the signal to any callable object
14,979
def get_ip_interface_output_interface_vrf(self, **kwargs): config = ET.Element("config") get_ip_interface = ET.Element("get_ip_interface") config = get_ip_interface output = ET.SubElement(get_ip_interface, "output") interface = ET.SubElement(output, "interface") interface_type_key = ET.SubElement(interface, "interface-type") interface_type_key.text = kwargs.pop() interface_name_key = ET.SubElement(interface, "interface-name") interface_name_key.text = kwargs.pop() vrf = ET.SubElement(interface, "vrf") vrf.text = kwargs.pop() callback = kwargs.pop(, self._callback) return callback(config)
Auto Generated Code
14,980
def entity(self): if not issubclass(self.cls, Base) or issubclass(self.cls, DerivedBase): raise ValueError("Cannot get entity for non-base-class {}".format(self.cls)) return self.cls(self._client, self.id)
Returns the object this grant is for. The objects type depends on the type of object this grant is applied to, and the object returned is not populated (accessing its attributes will trigger an api request). :returns: This grant's entity :rtype: Linode, NodeBalancer, Domain, StackScript, Volume, or Longview
14,981
def list_namespaced_service_account(self, namespace, **kwargs): kwargs[] = True if kwargs.get(): return self.list_namespaced_service_account_with_http_info(namespace, **kwargs) else: (data) = self.list_namespaced_service_account_with_http_info(namespace, **kwargs) return data
list or watch objects of kind ServiceAccount This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.list_namespaced_service_account(namespace, async_req=True) >>> result = thread.get() :param async_req bool :param str namespace: object name and auth scope, such as for teams and projects (required) :param str pretty: If 'true', then the output is pretty printed. :param str _continue: The continue option should be set when retrieving more results from the server. Since this value is server defined, clients may only use the continue value from a previous query result with identical query parameters (except for the value of continue) and the server may reject a continue value it does not recognize. If the specified continue value is no longer valid whether due to expiration (generally five to fifteen minutes) or a configuration change on the server, the server will respond with a 410 ResourceExpired error together with a continue token. If the client needs a consistent list, it must restart their list without the continue field. Otherwise, the client may send another list request with the token received with the 410 error, the server will respond with a list starting from the next key, but from the latest snapshot, which is inconsistent from the previous list results - objects that are created, modified, or deleted after the first list request will be included in the response, as long as their keys are after the \"next key\". This field is not supported when watch is true. Clients may start a watch from the last resourceVersion value returned by the server and not miss any modifications. :param str field_selector: A selector to restrict the list of returned objects by their fields. Defaults to everything. :param str label_selector: A selector to restrict the list of returned objects by their labels. Defaults to everything. :param int limit: limit is a maximum number of responses to return for a list call. If more items exist, the server will set the `continue` field on the list metadata to a value that can be used with the same initial query to retrieve the next set of results. Setting a limit may return fewer than the requested amount of items (up to zero items) in the event all requested objects are filtered out and clients should only use the presence of the continue field to determine whether more results are available. Servers may choose not to support the limit argument and will return all of the available results. If limit is specified and the continue field is empty, clients may assume that no more results are available. This field is not supported if watch is true. The server guarantees that the objects returned when using continue will be identical to issuing a single list call without a limit - that is, no objects created, modified, or deleted after the first request is issued will be included in any subsequent continued requests. This is sometimes referred to as a consistent snapshot, and ensures that a client that is using limit to receive smaller chunks of a very large result can ensure they see all possible objects. If objects are updated during a chunked list the version of the object that was present at the time the first list result was calculated is returned. :param str resource_version: When specified with a watch call, shows changes that occur after that particular version of a resource. Defaults to changes from the beginning of history. When specified for list: - if unset, then the result is returned from remote storage based on quorum-read flag; - if it's 0, then we simply return what we currently have in cache, no guarantee; - if set to non zero, then the result is at least as fresh as given rv. :param int timeout_seconds: Timeout for the list/watch call. This limits the duration of the call, regardless of any activity or inactivity. :param bool watch: Watch for changes to the described resources and return them as a stream of add, update, and remove notifications. Specify resourceVersion. :return: V1ServiceAccountList If the method is called asynchronously, returns the request thread.
14,982
def DeserializeMessage(self, response_type, data): try: message = encoding.JsonToMessage(response_type, data) except (exceptions.InvalidDataFromServerError, messages.ValidationError, ValueError) as e: raise exceptions.InvalidDataFromServerError( % ( data, response_type.__name__, e)) return message
Deserialize the given data as method_config.response_type.
14,983
def _update_prx(self): qx = scipy.ones(N_CODON, dtype=) for j in range(3): for w in range(N_NT): qx[CODON_NT[j][w]] *= self.phi[w] frx = self.pi_codon**self.beta self.prx = frx * qx with scipy.errstate(divide=, under=, over=, invalid=): for r in range(self.nsites): self.prx[r] /= self.prx[r].sum()
Update `prx` from `phi`, `pi_codon`, and `beta`.
14,984
def _read_next_line(self): prev_line = self._line self._line = self.stream.readline() return prev_line
Read next line store in self._line and return old one
14,985
def summary(model, input_size): def register_hook(module): def hook(module, input, output): class_name = str(module.__class__).split()[-1].split("%s-%iinput_shapeinput_shapeoutput_shapeoutput_shapeoutput_shapeweightsizetrainablebiassizenb_params----------------------------------------------------------------{:>20} {:>25} {:>15}Layer (type)Output ShapeParam
Print summary of the model
14,986
def can_group_commands(command, next_command): multi_capable_commands = (, , ) if next_command is None: return False name = command.get_name() if name not in multi_capable_commands: return False if name != next_command.get_name(): return False if grouped_args_for_command(command) != grouped_args_for_command(next_command): return False if command.get_kwargs() != next_command.get_kwargs(): return False return True
Returns a boolean representing whether these commands can be grouped together or not. A few things are taken into account for this decision: For ``set`` commands: - Are all arguments other than the key/value the same? For ``delete`` and ``get`` commands: - Are all arguments other than the key the same?
14,987
def add_handler(self, type, actions, **kwargs): l = self._events.get(type, []) h = Handler(self, type, kwargs, actions) l.append(h) self._events[type] = l return h
Add an event handler to be processed by this session. type - The type of the event (pygame.QUIT, pygame.KEYUP ETC). actions - The methods which should be called when an event matching this specification is received. more than one action can be tied to a single event. This allows for secondary actions to occur along side already existing actions such as the down errow in the List. You can either pass the actions or action as a single parameter or as a list. kwargs - An arbitrary number of parameters which must be satisfied in order for the event to match. The keywords are directly matched with the instance variables found in the current event Each value for kwargs can optionally be a lambda which must evaluate to True in order for the match to work. Example: session.add_handler(pygame.QUIT, session.do_quit) session.add_handler(pygame.KEYDOWN, lambda: ao2.speak("You pressed the enter key."), key = pygame.K_RETURN)
14,988
def literal_struct(cls, elems): tys = [el.type for el in elems] return cls(types.LiteralStructType(tys), elems)
Construct a literal structure constant made of the given members.
14,989
def remove_repeat_coordinates(x, y, z): r coords = [] variable = [] for (x_, y_, t_) in zip(x, y, z): if (x_, y_) not in coords: coords.append((x_, y_)) variable.append(t_) coords = np.array(coords) x_ = coords[:, 0] y_ = coords[:, 1] z_ = np.array(variable) return x_, y_, z_
r"""Remove all x, y, and z where (x,y) is repeated and keep the first occurrence only. Will not destroy original values. Parameters ---------- x: array_like x coordinate y: array_like y coordinate z: array_like observation value Returns ------- x, y, z List of coordinate observation pairs without repeated coordinates.
14,990
def compute_best_path(local_asn, path1, path2): best_path = None best_path_reason = BPR_UNKNOWN if best_path is None: best_path = _cmp_by_reachable_nh(path1, path2) best_path_reason = BPR_REACHABLE_NEXT_HOP if best_path is None: best_path = _cmp_by_highest_wg(path1, path2) best_path_reason = BPR_HIGHEST_WEIGHT if best_path is None: best_path = _cmp_by_local_pref(path1, path2) best_path_reason = BPR_LOCAL_PREF if best_path is None: best_path = _cmp_by_local_origin(path1, path2) best_path_reason = BPR_LOCAL_ORIGIN if best_path is None: best_path = _cmp_by_aspath(path1, path2) best_path_reason = BPR_ASPATH if best_path is None: best_path = _cmp_by_origin(path1, path2) best_path_reason = BPR_ORIGIN if best_path is None: best_path = _cmp_by_med(path1, path2) best_path_reason = BPR_MED if best_path is None: best_path = _cmp_by_asn(local_asn, path1, path2) best_path_reason = BPR_ASN if best_path is None: best_path = _cmp_by_igp_cost(path1, path2) best_path_reason = BPR_IGP_COST if best_path is None: best_path = _cmp_by_router_id(local_asn, path1, path2) best_path_reason = BPR_ROUTER_ID if best_path is None: best_path = _cmp_by_cluster_list(path1, path2) best_path_reason = BPR_CLUSTER_LIST if best_path is None: best_path_reason = BPR_UNKNOWN return best_path, best_path_reason
Compares given paths and returns best path. Parameters: -`local_asn`: asn of local bgpspeaker -`path1`: first path to compare -`path2`: second path to compare Best path processing will involve following steps: 1. Select a path with a reachable next hop. 2. Select the path with the highest weight. 3. If path weights are the same, select the path with the highest local preference value. 4. Prefer locally originated routes (network routes, redistributed routes, or aggregated routes) over received routes. 5. Select the route with the shortest AS-path length. 6. If all paths have the same AS-path length, select the path based on origin: IGP is preferred over EGP; EGP is preferred over Incomplete. 7. If the origins are the same, select the path with lowest MED value. 8. If the paths have the same MED values, select the path learned via EBGP over one learned via IBGP. 9. Select the route with the lowest IGP cost to the next hop. 10. Select the route received from the peer with the lowest BGP router ID. 11. Select the route received from the peer with the shorter CLUSTER_LIST length. Returns None if best-path among given paths cannot be computed else best path. Assumes paths from NC has source equal to None.
14,991
def getFaxStatsSessions(self): if not self.hasFax(): return None info_dict = {} info_dict[] = 0 fax_types = (, ) fax_operations = (, ) fax_states = (, , , , , , ,) info_dict[] = dict([(k,0) for k in fax_types]) info_dict[] = dict([(k,0) for k in fax_operations]) info_dict[] = dict([(k,0) for k in fax_states]) cmdresp = self.executeCommand() sections = cmdresp.strip().split() if len(sections) >= 3: for line in sections[1][1:]: cols = re.split(, line) if len(cols) == 7: info_dict[] += 1 if cols[3].lower() in fax_types: info_dict[][cols[3].lower()] += 1 if cols[4] == : info_dict[][] += 1 elif cols[4] == : info_dict[][] += 1 if cols[5].lower() in fax_states: info_dict[][cols[5].lower()] += 1 return info_dict
Query Asterisk Manager Interface for Fax Stats. CLI Command - fax show sessions @return: Dictionary of fax stats.
14,992
def _worker_process(self): while not self.terminated: try: key, lpath, fpath, remote_md5, pagealign, lpview = \ self._task_queue.get(True, 0.1) except queue.Empty: continue if lpview is None: start = None end = None size = None else: start = lpview.fd_start end = lpview.fd_end size = end - start md5 = blobxfer.operations.md5.compute_md5_for_file_asbase64( fpath, pagealign, start, end) logger.debug(.format( md5, remote_md5, fpath)) self._done_cv.acquire() self._done_queue.put((key, lpath, size, md5 == remote_md5)) self._done_cv.notify() self._done_cv.release()
Compute MD5 for local file :param LocalFileMd5Offload self: this
14,993
def create_project(self, name, **kwargs): data = self._wrap_dict("project", kwargs) data["customer"]["name"] = name return self.post("/projects.json", data=data)
Creates a project with a name. All other parameters are optional. They are: `note`, `customer_id`, `budget`, `budget_type`, `active_hourly_rate`, `hourly_rate`, `hourly_rates_per_service`, and `archived`.
14,994
def _ip_is_usable(self, current_ip): try: ipaddress.ip_address(current_ip) except ValueError: return False if current_ip == self.real_ip: return False if not self._ip_is_safe(current_ip): return False return True
Check if the current Tor's IP is usable. :argument current_ip: current Tor IP :type current_ip: str :returns bool
14,995
def iaf_flow(one_hot_assignments, scale_weights, scale_bias, num_codes, summary=True, name=None): with tf.name_scope(name, default_name="iaf"): padded_assignments = tf.pad( one_hot_assignments, [[0, 0], [0, 0], [1, 0], [0, 0]])[:, :, :-1, :] scale_bijector = tfp.distributions.bijectors.Affine( scale_tril=tfp.distributions.fill_triangular(scale_weights)) scale = scale_bijector.forward( tf.transpose(padded_assignments, [0, 1, 3, 2])) scale = tf.transpose(scale, [0, 1, 3, 2]) scale = tf.nn.softplus(scale) scale = scale + tf.nn.softplus(scale_bias[tf.newaxis, tf.newaxis, ...]) scale = scale[..., :-1] z = one_hot_assignments[..., :-1] unnormalized_probs = tf.concat([z * scale, one_hot_assignments[..., -1, tf.newaxis]], axis=-1) normalizer = tf.reduce_sum(unnormalized_probs, axis=-1) flow_output = unnormalized_probs / (normalizer[..., tf.newaxis]) inverse_log_det_jacobian = (-tf.reduce_sum(tf.log(scale), axis=-1) + num_codes * tf.log(normalizer)) if summary: tf.summary.histogram("iaf/scale", tf.reshape(scale, [-1])) tf.summary.histogram("iaf/inverse_log_det_jacobian", tf.reshape(inverse_log_det_jacobian, [-1])) return flow_output, inverse_log_det_jacobian
Performs a single IAF flow using scale and normalization transformations. Args: one_hot_assignments: Assignments Tensor with shape [num_samples, batch_size, latent_size, num_codes]. scale_weights: Tensor corresponding to lower triangular matrix used to autoregressively generate scale matrix from assignments. To ensure the lower-triangular matrix has length of latent_size, scale_weights should be a rank-one tensor with size latent_size * (latent_size + 1) / 2. scale_bias: Bias tensor to be added to scale tensor, with shape [latent_size, num_codes]. If scale weights are zero, initialize scale_bias to be log(exp(1.) / 2. - 1) so initial transformation is identity. num_codes: Number of codes in codebook. summary: Whether to save summaries. name: String used for name scope. Returns: flow_output: Transformed one-hot assignments. inverse_log_det_jacobian: Inverse log deteriminant of Jacobian corresponding to transformation.
14,996
def prt_gene_aart_details(self, geneids, prt=sys.stdout): _go2nt = self.sortobj.grprobj.go2nt patgene = self.datobj.kws["fmtgene2"] patgo = self.datobj.kws["fmtgo2"] itemid2name = self.datobj.kws.get("itemid2name") chr2i = self.datobj.get_chr2idx() for geneid in geneids: gos_gene = self.gene2gos[geneid] symbol = "" if itemid2name is None else itemid2name.get(geneid, "") prt.write("\n") prt.write(patgene.format(AART=self.gene2aart[geneid], ID=geneid, NAME=symbol)) go2nt = {go:(_go2nt[go], "".join(self.go2chrs[go])) for go in gos_gene} for ntgo, abc in sorted(go2nt.values(), key=lambda t: [chr2i[t[1][:1]], t[0].NS, -1*t[0].dcnt]): prt.write("{ABC} ".format(ABC=abc)) prt.write(patgo.format(**ntgo._asdict()))
For each gene, print ASCII art which represents its associated GO IDs.
14,997
def add_data(self, conf): self.validate_data(conf) self.process_data(conf) self.data.append(conf)
Add data to the graph object. May be called several times to add additional data sets. conf should be a dictionary including 'data' and 'title' keys
14,998
def cleanup(self): for k in self._children: self._children[k].cleanup() if self._cleanup: self.remove(True)
Clean up children and remove the directory. Directory will only be removed if the cleanup flag is set.
14,999
def color_palette(name=None, n_colors=6, desat=None): seaborn_palettes = dict( deep=[" " muted=[" " pastel=[" " bright=[" " dark=[" " colorblind=[" " ) if name is None: palette = mpl.rcParams["axes.color_cycle"] elif not isinstance(name, string_types): palette = name elif name == "hls": palette = hls_palette(n_colors) elif name == "husl": palette = husl_palette(n_colors) elif name in seaborn_palettes: palette = seaborn_palettes[name] elif name in dir(mpl.cm): palette = mpl_palette(name, n_colors) elif name[:-2] in dir(mpl.cm): palette = mpl_palette(name, n_colors) else: raise ValueError("%s is not a valid palette name" % name) if desat is not None: palette = [desaturate(c, desat) for c in palette] pal_cycle = cycle(palette) palette = [next(pal_cycle) for _ in range(n_colors)] try: palette = map(mpl.colors.colorConverter.to_rgb, palette) palette = _ColorPalette(palette) except ValueError: raise ValueError("Could not generate a palette for %s" % str(name)) return palette
Return a list of colors defining a color palette. Availible seaborn palette names: deep, muted, bright, pastel, dark, colorblind Other options: hls, husl, any matplotlib palette Matplotlib paletes can be specified as reversed palettes by appending "_r" to the name or as dark palettes by appending "_d" to the name. This function can also be used in a ``with`` statement to temporarily set the color cycle for a plot or set of plots. Parameters ---------- name: None, string, or sequence Name of palette or None to return current palette. If a sequence, input colors are used but possibly cycled and desaturated. n_colors : int Number of colors in the palette. If larger than the number of colors in the palette, they will cycle. desat : float Value to desaturate each color by. Returns ------- palette : list of RGB tuples. Color palette. Examples -------- >>> p = color_palette("muted") >>> p = color_palette("Blues_d", 10) >>> p = color_palette("Set1", desat=.7) >>> import matplotlib.pyplot as plt >>> with color_palette("husl", 8): ... f, ax = plt.subplots() ... ax.plot(x, y) # doctest: +SKIP See Also -------- set_palette : set the default color cycle for all plots. axes_style : define parameters to set the style of plots plotting_context : define parameters to scale plot elements