Unnamed: 0
int64 0
389k
| code
stringlengths 26
79.6k
| docstring
stringlengths 1
46.9k
|
---|---|---|
15,900 | def threshold_otsu(image, multiplier=1.0):
otsu_value = skimage.filters.threshold_otsu(image)
return image > otsu_value * multiplier | Return image thresholded using Otsu's method. |
15,901 | def has_changed_since_last_deploy(file_path, bucket):
msg = "Checking if {0} has changed since last deploy.".format(file_path)
logger.debug(msg)
with open(file_path) as f:
data = f.read()
file_md5 = hashlib.md5(data.encode()).hexdigest()
logger.debug("file_md5 is {0}".format(file_md5))
key = bucket.get_key(file_path)
logger.debug("key_md5 is {0}".format(key_md5))
else:
logger.debug("File does not exist in bucket")
return True
if file_md5 == key_md5:
logger.debug("File has not changed.")
return False
logger.debug("File has changed.")
return True | Checks if a file has changed since the last time it was deployed.
:param file_path: Path to file which should be checked. Should be relative
from root of bucket.
:param bucket_name: Name of S3 bucket to check against.
:returns: True if the file has changed, else False. |
15,902 | def mmGetMetricSequencesPredictedActiveCellsShared(self):
self._mmComputeTransitionTraces()
numSequencesForCell = defaultdict(lambda: 0)
for predictedActiveCells in (
self._mmData["predictedActiveCellsForSequence"].values()):
for cell in predictedActiveCells:
numSequencesForCell[cell] += 1
return Metric(self,
"
numSequencesForCell.values()) | Metric for number of sequences each predicted => active cell appears in
Note: This metric is flawed when it comes to high-order sequences.
@return (Metric) metric |
15,903 | def latex(self):
s = (
)
if len(self.authors) > 1:
authors = .join([str(a.given_name) +
+ str(a.surname)
for a in self.authors[0:-1]])
authors += ( +
str(self.authors[-1].given_name) +
+ str(self.authors[-1].surname))
else:
a = self.authors[0]
authors = str(a.given_name) + + str(a.surname)
title = self.title
journal = self.publicationName
volume = self.volume
issue = self.issueIdentifier
if volume and issue:
volissue = .format(volume, issue)
elif volume:
volissue = .format(volume)
else:
volissue =
date = self.coverDate
if self.pageRange:
pages = .format(self.pageRange)
elif self.startingPage:
pages = .format(self)
elif self.article_number:
pages = .format(self)
else:
pages =
doi = .format(self.doi)
scopus_url = .format(self.scopus_url,
self.eid)
return s.format(**locals()) | Return LaTeX representation of the abstract. |
15,904 | def get_default_config(self):
config = super(LibratoHandler, self).get_default_config()
config.update({
: ,
: ,
: False,
: 300,
: 60,
: [],
})
return config | Return the default config for the handler |
15,905 | def QCapsulate(self, widget, name, blocking = False, nude = False):
class QuickWindow(QtWidgets.QMainWindow):
class Signals(QtCore.QObject):
close = QtCore.Signal()
show = QtCore.Signal()
def __init__(self, blocking = False, parent = None, nude = False):
super().__init__(parent)
self.propagate = True
self.setStyleSheet(style.main_gui)
if (blocking):
self.setWindowModality(QtCore.Qt.ApplicationModal)
if (nude):
self.setWindowFlags(QtCore.Qt.Dialog)
self.signals = self.Signals()
def closeEvent(self, e):
if (self.propagate):
self.signals.close.emit()
e.accept()
def showEvent(self, e):
if (self.propagate):
self.signals.show.emit()
e.accept()
def setPropagate(self):
self.propagate = True
def unSetPropagate(self):
self.propagate = False
win = QuickWindow(blocking = blocking, nude = nude)
win.setCentralWidget(widget)
win.setLayout(QtWidgets.QHBoxLayout())
win.setWindowTitle(name)
return win | Helper function that encapsulates QWidget into a QMainWindow |
15,906 | def rand_article(num_p=(4, 10), num_s=(2, 15), num_w=(5, 40)):
article = list()
for _ in range(random.randint(*num_p)):
p = list()
for _ in range(random.randint(*num_s)):
s = list()
for _ in range(random.randint(*num_w)):
s.append(
rand_str(random.randint(1, 15), string.ascii_lowercase))
p.append(" ".join(s))
article.append(". ".join(p))
return "\n\n".join(article) | Random article text.
Example::
>>> rand_article()
... |
15,907 | def main():
if in sys.argv:
print(main.__doc__)
sys.exit()
if len(sys.argv) <= 1:
print(main.__doc__)
print()
sys.exit()
FIG = {}
FIG[] = 1
pmagplotlib.plot_init(FIG[], 6, 6)
norm = 1
in_file = pmag.get_named_arg("-f", "measurements.txt")
dir_path = pmag.get_named_arg("-WD", ".")
in_file = pmag.resolve_file_name(in_file, dir_path)
data_model = pmag.get_named_arg("-DM", 3)
data_model = int(float(data_model))
fmt = pmag.get_named_arg("-fmt", "svg")
if in sys.argv:
norm = 0
DIMs, Temps = [], []
for dat in specdata:
DIMs.append([float(dat[dec_col]), float(
dat[inc_col]), float(dat[moment_col])])
Temps.append(float(dat[temp_col])-273.)
carts = pmag.dir2cart(DIMs).transpose()
if norm == 1:
nrm = (DIMs[0][2])
ylab = "M/M_o"
else:
nrm = 1. | NAME
lowrie_magic.py
DESCRIPTION
plots intensity decay curves for Lowrie experiments
SYNTAX
lowrie_magic.py -h [command line options]
INPUT
takes measurements formatted input files
OPTIONS
-h prints help message and quits
-f FILE: specify input file, default is magic_measurements.txt
-N do not normalize by maximum magnetization
-fmt [svg, pdf, eps, png] specify fmt, default is svg
-sav saves plots and quits
-DM [2, 3] MagIC data model number |
15,908 | def path_join(*args):
args = (paramiko.py3compat.u(arg) for arg in args)
return os.path.join(*args) | Wrapper around `os.path.join`.
Makes sure to join paths of the same type (bytes). |
15,909 | def snr_from_loglr(loglr):
singleval = isinstance(loglr, float)
if singleval:
loglr = numpy.array([loglr])
numpysettings = numpy.seterr(invalid=)
snrs = numpy.sqrt(2*loglr)
numpy.seterr(**numpysettings)
snrs[numpy.isnan(snrs)] = 0.
if singleval:
snrs = snrs[0]
return snrs | Returns SNR computed from the given log likelihood ratio(s). This is
defined as `sqrt(2*loglr)`.If the log likelihood ratio is < 0, returns 0.
Parameters
----------
loglr : array or float
The log likelihood ratio(s) to evaluate.
Returns
-------
array or float
The SNRs computed from the log likelihood ratios. |
15,910 | def _infer_sig_len(file_name, fmt, n_sig, dir_name, pb_dir=None):
if pb_dir is None:
file_size = os.path.getsize(os.path.join(dir_name, file_name))
else:
file_size = download._remote_file_size(file_name=file_name,
pb_dir=pb_dir)
sig_len = int(file_size / (BYTES_PER_SAMPLE[fmt] * n_sig))
return sig_len | Infer the length of a signal from a dat file.
Parameters
----------
file_name : str
Name of the dat file
fmt : str
WFDB fmt of the dat file
n_sig : int
Number of signals contained in the dat file
Notes
-----
sig_len * n_sig * bytes_per_sample == file_size |
15,911 | def expect_bounded(__funcname=_qualified_name, **named):
def _make_bounded_check(bounds):
(lower, upper) = bounds
if lower is None:
def should_fail(value):
return value > upper
predicate_descr = "less than or equal to " + str(upper)
elif upper is None:
def should_fail(value):
return value < lower
predicate_descr = "greater than or equal to " + str(lower)
else:
def should_fail(value):
return not (lower <= value <= upper)
predicate_descr = "inclusively between %s and %s" % bounds
template = (
"%(funcname)s() expected a value {predicate}"
" for argument , but got %(actual)s instead."
).format(predicate=predicate_descr)
return make_check(
exc_type=ValueError,
template=template,
pred=should_fail,
actual=repr,
funcname=__funcname,
)
return _expect_bounded(_make_bounded_check, __funcname=__funcname, **named) | Preprocessing decorator verifying that inputs fall INCLUSIVELY between
bounds.
Bounds should be passed as a pair of ``(min_value, max_value)``.
``None`` may be passed as ``min_value`` or ``max_value`` to signify that
the input is only bounded above or below.
Examples
--------
>>> @expect_bounded(x=(1, 5))
... def foo(x):
... return x + 1
...
>>> foo(1)
2
>>> foo(5)
6
>>> foo(6) # doctest: +NORMALIZE_WHITESPACE +ELLIPSIS
Traceback (most recent call last):
...
ValueError: ...foo() expected a value inclusively between 1 and 5 for
argument 'x', but got 6 instead.
>>> @expect_bounded(x=(2, None))
... def foo(x):
... return x
...
>>> foo(100000)
100000
>>> foo(1) # doctest: +NORMALIZE_WHITESPACE +ELLIPSIS
Traceback (most recent call last):
...
ValueError: ...foo() expected a value greater than or equal to 2 for
argument 'x', but got 1 instead.
>>> @expect_bounded(x=(None, 5))
... def foo(x):
... return x
...
>>> foo(6) # doctest: +NORMALIZE_WHITESPACE +ELLIPSIS
Traceback (most recent call last):
...
ValueError: ...foo() expected a value less than or equal to 5 for
argument 'x', but got 6 instead. |
15,912 | def _parse_area(self, area_xml):
area = Area(self._lutron,
name=area_xml.get(),
integration_id=int(area_xml.get()),
occupancy_group_id=area_xml.get())
for output_xml in area_xml.find():
output = self._parse_output(output_xml)
area.add_output(output)
for device_group in area_xml.find():
if device_group.tag == :
devs = device_group.find()
elif device_group.tag == :
devs = [device_group]
else:
_LOGGER.info("Unknown tag in DeviceGroups child %s" % devs)
devs = []
for device_xml in devs:
if device_xml.tag != :
continue
if device_xml.get() in (
,
,
,
,
):
keypad = self._parse_keypad(device_xml)
area.add_keypad(keypad)
elif device_xml.get() == :
motion_sensor = self._parse_motion_sensor(device_xml)
area.add_sensor(motion_sensor)
return area | Parses an Area tag, which is effectively a room, depending on how the
Lutron controller programming was done. |
15,913 | def update_firmware(self, filename, component_type):
fw_img_processor = firmware_controller.FirmwareImageUploader(filename)
LOG.debug(self._(), filename)
cookie = fw_img_processor.upload_file_to((self.host, self.port),
self.timeout)
LOG.debug(self._(), filename)
root = self._get_firmware_update_xml_for_file_and_component(
filename, component_type)
element = root.find()
etree.SubElement(element, , VALUE=)
extra_headers = {: cookie}
LOG.debug(self._(), filename)
d = self._request_ilo(root, extra_headers=extra_headers)
common.wait_for_ribcl_firmware_update_to_complete(self)
self._parse_output(d)
LOG.info(self._(), filename) | Updates the given firmware on the server for the given component.
:param filename: location of the raw firmware file. Extraction of the
firmware file (if in compact format) is expected to
happen prior to this invocation.
:param component_type: Type of component to be applied to.
:raises: InvalidInputError, if the validation of the input fails
:raises: IloError, on an error from iLO
:raises: IloConnectionError, if not able to reach iLO.
:raises: IloCommandNotSupportedError, if the command is
not supported on the server |
15,914 | def read_file_snippets(file, snippet_store):
start_reg = re.compile("(.*%%SNIPPET_START%% )([a-zA-Z0-9]+)")
end_reg = re.compile("(.*%%SNIPPET_END%% )([a-zA-Z0-9]+)")
open_snippets = {}
with open(file, encoding="utf-8") as w:
lines = w.readlines()
for line in lines:
printd("Got Line: {}".format(line))
for snippet in open_snippets.values():
printd("Adding Line to snippet")
snippet.append(line)
for opened in open_snippets:
record_error("Snippet {} left open - ignoring".format(opened)) | Parse a file and add all snippets to the snippet_store dictionary |
15,915 | def write_timestamp(self, t, pack=Struct().pack):
self._output_buffer.extend(pack(long(timegm(t.timetuple()))))
return self | Write out a Python datetime.datetime object as a 64-bit integer
representing seconds since the Unix UTC epoch. |
15,916 | def read_hypergraph(string):
hgr = hypergraph()
dom = parseString(string)
for each_node in dom.getElementsByTagName("node"):
hgr.add_node(each_node.getAttribute())
for each_node in dom.getElementsByTagName("hyperedge"):
hgr.add_hyperedge(each_node.getAttribute())
dom = parseString(string)
for each_node in dom.getElementsByTagName("node"):
for each_edge in each_node.getElementsByTagName("link"):
hgr.link(str(each_node.getAttribute()), str(each_edge.getAttribute()))
return hgr | Read a graph from a XML document. Nodes and hyperedges specified in the input will be added
to the current graph.
@type string: string
@param string: Input string in XML format specifying a graph.
@rtype: hypergraph
@return: Hypergraph |
15,917 | def _to_list(obj):
ret = {}
for attr in __attrs:
if hasattr(obj, attr):
ret[attr] = getattr(obj, attr)
return ret | Convert snetinfo object to list |
15,918 | def determine_inside_container(self):
tokenum, value = self.current.tokenum, self.current.value
ending_container = False
starting_container = False
if tokenum == OP:
self.containers.pop()
ending_container = True
self.just_ended_container = not len(self.containers) and ending_container
self.just_started_container = len(self.containers) == 1 and starting_container
self.in_container = len(self.containers) or self.just_ended_container or self.just_started_container | Set self.in_container if we're inside a container
* Inside container
* Current token starts a new container
* Current token ends all containers |
15,919 | def show_bare_metal_state_output_bare_metal_state(self, **kwargs):
config = ET.Element("config")
show_bare_metal_state = ET.Element("show_bare_metal_state")
config = show_bare_metal_state
output = ET.SubElement(show_bare_metal_state, "output")
bare_metal_state = ET.SubElement(output, "bare-metal-state")
bare_metal_state.text = kwargs.pop()
callback = kwargs.pop(, self._callback)
return callback(config) | Auto Generated Code |
15,920 | def get_all_responses(self, service_name, receive_timeout_in_seconds=None):
handler = self._get_handler(service_name)
return handler.get_all_responses(receive_timeout_in_seconds) | Receive all available responses from the service as a generator.
:param service_name: The name of the service from which to receive responses
:type service_name: union[str, unicode]
:param receive_timeout_in_seconds: How long to block without receiving a message before raising
`MessageReceiveTimeout` (defaults to five seconds unless the settings are
otherwise).
:type receive_timeout_in_seconds: int
:return: A generator that yields (request ID, job response)
:rtype: generator
:raise: ConnectionError, MessageReceiveError, MessageReceiveTimeout, InvalidMessage, StopIteration |
15,921 | async def create_new_sticker_set(self, user_id: base.Integer, name: base.String, title: base.String,
png_sticker: typing.Union[base.InputFile, base.String], emojis: base.String,
contains_masks: typing.Union[base.Boolean, None] = None,
mask_position: typing.Union[types.MaskPosition, None] = None) -> base.Boolean:
mask_position = prepare_arg(mask_position)
payload = generate_payload(**locals(), exclude=[])
files = {}
prepare_file(payload, files, , png_sticker)
result = await self.request(api.Methods.CREATE_NEW_STICKER_SET, payload, files)
return result | Use this method to create new sticker set owned by a user. The bot will be able to edit the created sticker set.
Source: https://core.telegram.org/bots/api#createnewstickerset
:param user_id: User identifier of created sticker set owner
:type user_id: :obj:`base.Integer`
:param name: Short name of sticker set, to be used in t.me/addstickers/ URLs (e.g., animals)
:type name: :obj:`base.String`
:param title: Sticker set title, 1-64 characters
:type title: :obj:`base.String`
:param png_sticker: Png image with the sticker, must be up to 512 kilobytes in size,
dimensions must not exceed 512px, and either width or height must be exactly 512px.
:type png_sticker: :obj:`typing.Union[base.InputFile, base.String]`
:param emojis: One or more emoji corresponding to the sticker
:type emojis: :obj:`base.String`
:param contains_masks: Pass True, if a set of mask stickers should be created
:type contains_masks: :obj:`typing.Union[base.Boolean, None]`
:param mask_position: A JSON-serialized object for position where the mask should be placed on faces
:type mask_position: :obj:`typing.Union[types.MaskPosition, None]`
:return: Returns True on success
:rtype: :obj:`base.Boolean` |
15,922 | def visit_repr(self, node, parent):
newnode = nodes.Repr(node.lineno, node.col_offset, parent)
newnode.postinit(self.visit(node.value, newnode))
return newnode | visit a Backquote node by returning a fresh instance of it |
15,923 | def orderrun_detail(dk_api, kitchen, pd):
if DKCloudCommandRunner.SUMMARY in pd:
display_summary = True
else:
display_summary = False
pd[DKCloudCommandRunner.SUMMARY] = True
rc = dk_api.orderrun_detail(kitchen, pd)
s =
if not rc.ok() or not isinstance(rc.get_payload(), list):
s = % rc.get_message()
rc.set_message(s)
return rc
serving_list = rc.get_payload()
serving = None
if DKCloudCommandRunner.ORDER_RUN_ID in pd:
order_run_id = pd[DKCloudCommandRunner.ORDER_RUN_ID]
for serv in serving_list:
if serv[DKCloudCommandRunner.ORDER_RUN_ID] == order_run_id:
serving = serv
break
elif DKCloudCommandRunner.ORDER_ID in pd:
order_id = pd[DKCloudCommandRunner.ORDER_ID]
for serv in serving_list:
if serv[DKCloudCommandRunner.ORDER_ID] == order_id:
serving = serv
break
else:
dex = -1
latest = None
for i, serving in enumerate(serving_list):
if DKCloudCommandRunner.ORDER_ID in serving and serving[DKCloudCommandRunner.ORDER_ID] > latest:
latest = serving[DKCloudCommandRunner.ORDER_ID]
dex = i
if dex != -1:
serving = serving_list[dex]
if serving is None:
rc.set(rc.DK_FAIL,
"No OrderRun information. Try using to see what is available." % kitchen)
return rc
if serving and display_summary:
s +=
summary = None
if DKCloudCommandRunner.SUMMARY in serving:
summary = serving[DKCloudCommandRunner.SUMMARY]
pass
s += % serving[DKCloudCommandRunner.ORDER_ID]
orid_from_serving = serving[DKCloudCommandRunner.ORDER_RUN_ID]
s += % orid_from_serving
s += % serving[]
s += % kitchen
if summary and in summary:
s += % summary[]
else:
s += %
s += % orid_from_serving.split()[3]
if summary and in summary:
start_time = summary[]
if isinstance(start_time, basestring):
s += % summary[].split()[0]
else:
s += %
else:
s += %
run_time = None
if summary and in summary:
run_time = summary[]
if isinstance(run_time, basestring):
s += serving[DKCloudCommandRunner.ORDER_RUN_ID]
rc.set_message(s)
return rc | returns a string.
:param dk_api: -- api object
:param kitchen: string
:param pd: dict
:rtype: DKReturnCode |
15,924 | def get_txn_outputs(raw_tx_hex, output_addr_list, coin_symbol):
s expected of it.
Must supply a list of output addresses so that the library can try to
convert from script to address using both pubkey and script.
Returns a list of the following form:
[{: 12345, : }, ...]
Uses @vbuterin
err_msg = % coin_symbol
assert lib_can_deserialize_cs(coin_symbol), err_msg
assert isinstance(output_addr_list, (list, tuple))
for output_addr in output_addr_list:
assert is_valid_address(output_addr), output_addr
output_addr_set = set(output_addr_list)
outputs = []
deserialized_tx = deserialize(str(raw_tx_hex))
for out in deserialized_tx.get(, []):
output = {: out[]}
pubkey_addr = script_to_address(out[],
vbyte=COIN_SYMBOL_MAPPINGS[coin_symbol][])
script_addr = script_to_address(out[],
vbyte=COIN_SYMBOL_MAPPINGS[coin_symbol][])
nulldata = out[] if out[][0:2] == else None
if pubkey_addr in output_addr_set:
address = pubkey_addr
output[] = address
elif script_addr in output_addr_set:
address = script_addr
output[] = address
elif nulldata:
output[] = nulldata
output[] =
else:
raise Exception( % (
out[],
output_addr_set,
))
outputs.append(output)
return outputs | Used to verify a transaction hex does what's expected of it.
Must supply a list of output addresses so that the library can try to
convert from script to address using both pubkey and script.
Returns a list of the following form:
[{'value': 12345, 'address': '1abc...'}, ...]
Uses @vbuterin's decoding methods. |
15,925 | def bootstrapSampleFromData(data,weights=None,seed=0):
RNG = np.random.RandomState(seed)
N = data.shape[0]
if weights is not None:
cutoffs = np.cumsum(weights)
else:
cutoffs = np.linspace(0,1,N)
indices = np.searchsorted(cutoffs,RNG.uniform(size=N))
new_data = deepcopy(data[indices,])
return new_data | Samples rows from the input array of data, generating a new data array with
an equal number of rows (records). Rows are drawn with equal probability
by default, but probabilities can be specified with weights (must sum to 1).
Parameters
----------
data : np.array
An array of data, with each row representing a record.
weights : np.array
A weighting array with length equal to data.shape[0].
seed : int
A seed for the random number generator.
Returns
-------
new_data : np.array
A resampled version of input data. |
15,926 | def __error_middleware(self, res, res_json):
if(res.status_code in [400, 401, 402, 403, 404, 405, 406, 409]):
err_dict = res_json.get(, {})
raise UpCloudAPIError(error_code=err_dict.get(),
error_message=err_dict.get())
return res_json | Middleware that raises an exception when HTTP statuscode is an error code. |
15,927 | def mean(self, axis=None, keepdims=False):
return self._stat(axis, name=, keepdims=keepdims) | Return the mean of the array over the given axis.
Parameters
----------
axis : tuple or int, optional, default=None
Axis to compute statistic over, if None
will compute over all axes
keepdims : boolean, optional, default=False
Keep axis remaining after operation with size 1. |
15,928 | def parse_vote_data(self, vote_data):
if not in vote_data.keys():
logger.debug(,
vote_data[])
return
dossier_pk = self.get_dossier(vote_data[])
if not dossier_pk:
logger.debug(,
vote_data[])
return
return self.parse_proposal_data(
proposal_data=vote_data,
dossier_pk=dossier_pk
) | Parse data from parltrack votes db dumps (1 proposal) |
15,929 | def parse_buffer(buffer, mode="exec", flags=[], version=None, engine=None):
if version is None:
version = sys.version_info[0:2]
if engine is None:
engine = pythonparser_diagnostic.Engine()
lexer = pythonparser_lexer.Lexer(buffer, version, engine)
if mode in ("single", "eval"):
lexer.interactive = True
parser = pythonparser_parser.Parser(lexer, version, engine)
parser.add_flags(flags)
if mode == "exec":
return parser.file_input(), lexer.comments
elif mode == "single":
return parser.single_input(), lexer.comments
elif mode == "eval":
return parser.eval_input(), lexer.comments | Like :meth:`parse`, but accepts a :class:`source.Buffer` instead of
source and filename, and returns comments as well.
:see: :meth:`parse`
:return: (:class:`ast.AST`, list of :class:`source.Comment`)
Abstract syntax tree and comments |
15,930 | def restore(file_name, jail=None, chroot=None, root=None):
***
return __salt__[](
_pkg(jail, chroot, root) + [, , file_name],
output_loglevel=,
python_shell=False
) | Reads archive created by pkg backup -d and recreates the database.
CLI Example:
.. code-block:: bash
salt '*' pkg.restore /tmp/pkg
jail
Restore database to the specified jail. Note that this will run the
command within the jail, and so the path to the file from which the pkg
database will be restored is relative to the root of the jail.
CLI Example:
.. code-block:: bash
salt '*' pkg.restore /tmp/pkg jail=<jail name or id>
chroot
Restore database to the specified chroot (ignored if ``jail`` is
specified). Note that this will run the command within the chroot, and
so the path to the file from which the pkg database will be restored is
relative to the root of the chroot.
root
Restore database to the specified root (ignored if ``jail`` is
specified). Note that this will run the command within the root, and
so the path to the file from which the pkg database will be restored is
relative to the root of the root.
CLI Example:
.. code-block:: bash
salt '*' pkg.restore /tmp/pkg chroot=/path/to/chroot |
15,931 | def contour(self, win, ngr=20, layers=0, levels=20, layout=True, labels=True,
decimals=0, color=None, newfig=True, figsize=None, legend=True):
x1, x2, y1, y2 = win
if np.isscalar(ngr):
nx = ny = ngr
else:
nx, ny = ngr
layers = np.atleast_1d(layers)
xg = np.linspace(x1, x2, nx)
yg = np.linspace(y1, y2, ny)
h = self.headgrid(xg, yg, layers)
if newfig:
plt.figure(figsize=figsize)
if color is None:
c = plt.rcParams[].by_key()[]
elif type(color) is str:
c = len(layers) * [color]
elif type(color) is list:
c = color
if len(c) < len(layers):
n = np.ceil(self.aq.naq / len(c))
c = n * c
cscollectionlist = []
for i in range(len(layers)):
cs = plt.contour(xg, yg, h[i], levels, colors=c[i])
cscollectionlist.append(cs.collections[0])
if labels:
fmt = + str(decimals) +
plt.clabel(cs, fmt=fmt)
if type(legend) is list:
plt.legend(cscollectionlist, legend)
elif legend:
legendlist = [ + str(i) for i in layers]
plt.legend(cscollectionlist, legendlist)
plt.axis()
if layout:
self.plot(win=[x1, x2, y1, y2], newfig=False) | Contour plot
Parameters
----------
win : list or tuple
[x1, x2, y1, y2]
ngr : scalar, tuple or list
if scalar: number of grid points in x and y direction
if tuple or list: nx, ny, number of grid points in x and y direction
layers : integer, list or array
layers for which grid is returned
levels : integer or array (default 20)
levels that are contoured
layout : boolean (default True)
plot layout of elements
labels : boolean (default True)
print labels along contours
decimals : integer (default 0)
number of decimals of labels along contours
color : str or list of strings
color of contour lines
newfig : boolean (default True)
create new figure
figsize : tuple of 2 values (default is mpl default)
size of figure
legend : list or boolean (default True)
add legend to figure
if list of strings: use strings as names in legend |
15,932 | def get_value(file, element):
*
try:
root = ET.parse(file)
element = root.find(element)
return element.text
except AttributeError:
log.error("Unable to find element matching %s", element)
return False | Returns the value of the matched xpath element
CLI Example:
.. code-block:: bash
salt '*' xml.get_value /tmp/test.xml ".//element" |
15,933 | def prepare_attrib_mapping(self, primitive):
buffer_info = []
for name, accessor in primitive.attributes.items():
info = VBOInfo(*accessor.info())
info.attributes.append((name, info.components))
if buffer_info and buffer_info[-1].buffer_view == info.buffer_view:
if buffer_info[-1].interleaves(info):
buffer_info[-1].merge(info)
continue
buffer_info.append(info)
return buffer_info | Pre-parse buffer mappings for each VBO to detect interleaved data for a primitive |
15,934 | def optimize(self, optimizer=None, start=None, messages=False, max_iters=1000, ipython_notebook=True, clear_after_finish=False, **kwargs):
if self.is_fixed or self.size == 0:
print()
return
if not self.update_model():
print("updates were off, setting updates on again")
self.update_model(True)
if start is None:
start = self.optimizer_array
if optimizer is None:
optimizer = self.preferred_optimizer
if isinstance(optimizer, optimization.Optimizer):
opt = optimizer
opt.model = self
else:
optimizer = optimization.get_optimizer(optimizer)
opt = optimizer(max_iters=max_iters, **kwargs)
with VerboseOptimization(self, opt, maxiters=max_iters, verbose=messages, ipython_notebook=ipython_notebook, clear_after_finish=clear_after_finish) as vo:
opt.run(start, f_fp=self._objective_grads, f=self._objective, fp=self._grads)
self.optimizer_array = opt.x_opt
self.optimization_runs.append(opt)
return opt | Optimize the model using self.log_likelihood and self.log_likelihood_gradient, as well as self.priors.
kwargs are passed to the optimizer. They can be:
:param max_iters: maximum number of function evaluations
:type max_iters: int
:messages: True: Display messages during optimisation, "ipython_notebook":
:type messages: bool"string
:param optimizer: which optimizer to use (defaults to self.preferred optimizer)
:type optimizer: string
Valid optimizers are:
- 'scg': scaled conjugate gradient method, recommended for stability.
See also GPy.inference.optimization.scg
- 'fmin_tnc': truncated Newton method (see scipy.optimize.fmin_tnc)
- 'simplex': the Nelder-Mead simplex method (see scipy.optimize.fmin),
- 'lbfgsb': the l-bfgs-b method (see scipy.optimize.fmin_l_bfgs_b),
- 'lbfgs': the bfgs method (see scipy.optimize.fmin_bfgs),
- 'sgd': stochastic gradient decsent (see scipy.optimize.sgd). For experts only! |
15,935 | def _varian(self, varian):
if varian == self.bentuk_tidak_baku:
nama = "Bentuk tidak baku"
elif varian == self.varian:
nama = "Varian"
else:
return
return nama + + .join(varian) | Mengembalikan representasi string untuk varian entri ini.
Dapat digunakan untuk "Varian" maupun "Bentuk tidak baku".
:param varian: List bentuk tidak baku atau varian
:type varian: list
:returns: String representasi varian atau bentuk tidak baku
:rtype: str |
15,936 | def as_encodable(self, index_name):
if self.facets:
encoded_facets = {}
for name, facet in self.facets.items():
encoded_facets[name] = facet.encodable
self._json_[] = encoded_facets
if self._ms:
sv_val = {
: ,
: {
index_name: self._ms._to_fts_encodable()
}
}
self._json_.setdefault(, {})[] = sv_val
if self.sort:
if isinstance(self.sort, Sort):
self._json_[] = self.sort.as_encodable()
else:
self._json_[] = self.sort
return self._json_ | :param index_name: The name of the index for the query
:return: A dict suitable for passing to `json.dumps()` |
15,937 | def draw_rect(grid, attr, dc, rect):
dc.SetBrush(wx.Brush(wx.Colour(15, 255, 127), wx.SOLID))
dc.SetPen(wx.Pen(wx.BLUE, 1, wx.SOLID))
dc.DrawRectangleRect(rect) | Draws a rect |
15,938 | def tica(data=None, lag=10, dim=-1, var_cutoff=0.95, kinetic_map=True, commute_map=False, weights=,
stride=1, remove_mean=True, skip=0, reversible=True, ncov_max=float(), chunksize=None, **kwargs):
r
from pyemma.coordinates.transform.tica import TICA
from pyemma.coordinates.estimation.koopman import _KoopmanEstimator
import types
from pyemma.util.reflection import get_default_args
cs = _check_old_chunksize_arg(chunksize, get_default_args(tica)[], **kwargs)
if isinstance(weights, _string_types):
if weights == "koopman":
if data is None:
raise ValueError("Data must be supplied for reweighting=")
if not reversible:
raise ValueError("Koopman re-weighting is designed for reversible processes, set reversible=True")
koop = _KoopmanEstimator(lag=lag, stride=stride, skip=skip, ncov_max=ncov_max)
koop.estimate(data, chunksize=cs)
weights = koop.weights
elif weights == "empirical":
weights = None
else:
raise ValueError("reweighting must be either , "
"or an object with a weights(data) method.")
elif hasattr(weights, ) and type(getattr(weights, )) == types.MethodType:
weights = weights
elif isinstance(weights, (list, tuple)) and all(isinstance(w, _np.ndarray) for w in weights):
if data is not None and len(data) != len(weights):
raise ValueError("len of weights({}) must match len of data({}).".format(len(weights), len(data)))
else:
raise ValueError("reweighting must be either , or an object with a weights(data) method.")
if not remove_mean:
import warnings
user_msg = \
\
\
warnings.warn(
user_msg,
category=_PyEMMA_DeprecationWarning)
res = TICA(lag, dim=dim, var_cutoff=var_cutoff, kinetic_map=kinetic_map, commute_map=commute_map, skip=skip, stride=stride,
weights=weights, reversible=reversible, ncov_max=ncov_max)
if data is not None:
res.estimate(data, chunksize=cs)
else:
res.chunksize = cs
return res | r""" Time-lagged independent component analysis (TICA).
TICA is a linear transformation method. In contrast to PCA, which finds
coordinates of maximal variance, TICA finds coordinates of maximal
autocorrelation at the given lag time. Therefore, TICA is useful in order
to find the *slow* components in a dataset and thus an excellent choice to
transform molecular dynamics data before clustering data for the
construction of a Markov model. When the input data is the result of a
Markov process (such as thermostatted molecular dynamics), TICA finds in
fact an approximation to the eigenfunctions and eigenvalues of the
underlying Markov operator [1]_.
It estimates a TICA transformation from *data*. When input data is given as
an argument, the estimation will be carried out straight away, and the
resulting object can be used to obtain eigenvalues, eigenvectors or project
input data onto the slowest TICA components. If no data is given, this
object is an empty estimator and can be put into a :func:`pipeline` in
order to use TICA in the streaming mode.
Parameters
----------
data : ndarray (T, d) or list of ndarray (T_i, d) or a reader created by
source function array with the data, if available. When given, the TICA
transformation is immediately computed and can be used to transform data.
lag : int, optional, default = 10
the lag time, in multiples of the input time step
dim : int, optional, default -1
the number of dimensions (independent components) to project onto. A
call to the :func:`map <pyemma.coordinates.transform.TICA.map>` function
reduces the d-dimensional input to only dim dimensions such that the
data preserves the maximum possible autocorrelation amongst
dim-dimensional linear projections. -1 means all numerically available
dimensions will be used unless reduced by var_cutoff.
Setting dim to a positive value is exclusive with var_cutoff.
var_cutoff : float in the range [0,1], optional, default 0.95
Determines the number of output dimensions by including dimensions
until their cumulative kinetic variance exceeds the fraction
subspace_variance. var_cutoff=1.0 means all numerically available
dimensions (see epsilon) will be used, unless set by dim. Setting
var_cutoff smaller than 1.0 is exclusive with dim
kinetic_map : bool, optional, default True
Eigenvectors will be scaled by eigenvalues. As a result, Euclidean
distances in the transformed data approximate kinetic distances [4]_.
This is a good choice when the data is further processed by clustering.
commute_map : bool, optional, default False
Eigenvector_i will be scaled by sqrt(timescale_i / 2). As a result, Euclidean distances in the transformed
data will approximate commute distances [5]_.
stride : int, optional, default = 1
If set to 1, all input data will be used for estimation. Note that this
could cause this calculation to be very slow for large data sets. Since
molecular dynamics data is usually correlated at short timescales, it is
often sufficient to estimate transformations at a longer stride. Note
that the stride option in the get_output() function of the returned
object is independent, so you can parametrize at a long stride, and
still map all frames through the transformer.
weights : optional, default="empirical"
Re-weighting strategy to be used in order to compute equilibrium covariances from non-equilibrium data.
* "empirical": no re-weighting
* "koopman": use re-weighting procedure from [6]_
* weights: An object that allows to compute re-weighting factors. It must possess a method
weights(X) that accepts a trajectory X (np.ndarray(T, n)) and returns a vector of
re-weighting factors (np.ndarray(T,)).
remove_mean: bool, optional, default True
remove mean during covariance estimation. Should not be turned off.
skip : int, default=0
skip the first initial n frames per trajectory.
reversible: bool, default=True
symmetrize correlation matrices C_0, C_{\tau}.
ncov_max : int, default=infinity
limit the memory usage of the algorithm from [7]_ to an amount that corresponds
to ncov_max additional copies of each correlation matrix
chunksize: int, default=None
Number of data frames to process at once. Choose a higher value here,
to optimize thread usage and gain processing speed. If None is passed,
use the default value of the underlying reader/data source. Choose zero to
disable chunking at all.
Returns
-------
tica : a :class:`TICA <pyemma.coordinates.transform.TICA>` transformation object
Object for time-lagged independent component (TICA) analysis.
it contains TICA eigenvalues and eigenvectors, and the projection of
input data to the dominant TICA
Notes
-----
Given a sequence of multivariate data :math:`X_t`, it computes the
mean-free covariance and time-lagged covariance matrix:
.. math::
C_0 &= (X_t - \mu)^T \mathrm{diag}(w) (X_t - \mu) \\
C_{\tau} &= (X_t - \mu)^T \mathrm{diag}(w) (X_t + \tau - \mu)
where w is a vector of weights for each time step. By default, these weights
are all equal to one, but different weights are possible, like the re-weighting
to equilibrium described in [6]_. Subsequently, the eigenvalue problem
.. math:: C_{\tau} r_i = C_0 \lambda_i r_i,
is solved,where :math:`r_i` are the independent components and :math:`\lambda_i` are
their respective normalized time-autocorrelations. The eigenvalues are
related to the relaxation timescale by
.. math::
t_i = -\frac{\tau}{\ln |\lambda_i|}.
When used as a dimension reduction method, the input data is projected
onto the dominant independent components.
TICA was originally introduced for signal processing in [2]_. It was
introduced to molecular dynamics and as a method for the construction
of Markov models in [1]_ and [3]_. It was shown in [1]_ that when applied
to molecular dynamics data, TICA is an approximation to the eigenvalues
and eigenvectors of the true underlying dynamics.
Examples
--------
Invoke TICA transformation with a given lag time and output dimension:
>>> import numpy as np
>>> from pyemma.coordinates import tica
>>> data = np.random.random((100,3))
>>> projected_data = tica(data, lag=2, dim=1).get_output()[0]
For a brief explaination why TICA outperforms PCA to extract a good reaction
coordinate have a look `here
<http://docs.markovmodel.org/lecture_tica.html#Example:-TICA-versus-PCA-in-a-stretched-double-well-potential>`_.
See also
--------
:class:`TICA <pyemma.coordinates.transform.TICA>` : tica object
:func:`pca <pyemma.coordinates.pca>` : for principal component analysis
.. autoclass:: pyemma.coordinates.transform.tica.TICA
:members:
:undoc-members:
.. rubric:: Methods
.. autoautosummary:: pyemma.coordinates.transform.tica.TICA
:methods:
.. rubric:: Attributes
.. autoautosummary:: pyemma.coordinates.transform.tica.TICA
:attributes:
References
----------
.. [1] Perez-Hernandez G, F Paul, T Giorgino, G De Fabritiis and F Noe. 2013.
Identification of slow molecular order parameters for Markov model construction
J. Chem. Phys. 139, 015102. doi:10.1063/1.4811489
.. [2] L. Molgedey and H. G. Schuster. 1994.
Separation of a mixture of independent signals using time delayed correlations
Phys. Rev. Lett. 72, 3634.
.. [3] Schwantes C, V S Pande. 2013.
Improvements in Markov State Model Construction Reveal Many Non-Native Interactions in the Folding of NTL9
J. Chem. Theory. Comput. 9, 2000-2009. doi:10.1021/ct300878a
.. [4] Noe, F. and Clementi, C. 2015. Kinetic distance and kinetic maps from molecular dynamics simulation.
J. Chem. Theory. Comput. doi:10.1021/acs.jctc.5b00553
.. [5] Noe, F., Banisch, R., Clementi, C. 2016. Commute maps: separating slowly-mixing molecular configurations
for kinetic modeling. J. Chem. Theory. Comput. doi:10.1021/acs.jctc.6b00762
.. [6] Wu, H., Nueske, F., Paul, F., Klus, S., Koltai, P., and Noe, F. 2016. Bias reduced variational
approximation of molecular kinetics from short off-equilibrium simulations. J. Chem. Phys. (submitted),
https://arxiv.org/abs/1610.06773.
.. [7] Chan, T. F., Golub G. H., LeVeque R. J. 1979. Updating formulae and pairwiese algorithms for
computing sample variances. Technical Report STAN-CS-79-773, Department of Computer Science, Stanford University. |
15,939 | def getOverlayTransformAbsolute(self, ulOverlayHandle):
fn = self.function_table.getOverlayTransformAbsolute
peTrackingOrigin = ETrackingUniverseOrigin()
pmatTrackingOriginToOverlayTransform = HmdMatrix34_t()
result = fn(ulOverlayHandle, byref(peTrackingOrigin), byref(pmatTrackingOriginToOverlayTransform))
return result, peTrackingOrigin, pmatTrackingOriginToOverlayTransform | Gets the transform if it is absolute. Returns an error if the transform is some other type. |
15,940 | def series_resistors(target,
pore_area=,
throat_area=,
pore_conductivity=,
throat_conductivity=,
conduit_lengths=,
conduit_shape_factors=):
r
return generic_conductance(target=target, transport_type=,
pore_area=pore_area,
throat_area=throat_area,
pore_diffusivity=pore_conductivity,
throat_diffusivity=throat_conductivity,
conduit_lengths=conduit_lengths,
conduit_shape_factors=conduit_shape_factors) | r"""
Calculate the electrical conductance of conduits in network, where a
conduit is ( 1/2 pore - full throat - 1/2 pore ). See the notes section.
Parameters
----------
target : OpenPNM Object
The object which this model is associated with. This controls the
length of the calculated array, and also provides access to other
necessary properties.
pore_thermal_conductivity : string
Dictionary key of the pore thermal conductivity values
throat_thermal_conductivity : string
Dictionary key of the throat thermal conductivity values
pore_area : string
Dictionary key of the pore area values
throat_area : string
Dictionary key of the throat area values
conduit_shape_factors : string
Dictionary key of the conduit DIFFUSION shape factor values
Returns
-------
g : ndarray
Array containing electrical conductance values for conduits in the
geometry attached to the given physics object.
Notes
-----
(1) This function requires that all the necessary phase properties already
be calculated.
(2) This function calculates the specified property for the *entire*
network then extracts the values for the appropriate throats at the end.
(3) This function assumes cylindrical throats with constant cross-section
area. Corrections for different shapes and variable cross-section area can
be imposed by passing the proper flow_shape_factor argument. |
15,941 | def convert_row(self, keyed_row, schema, fallbacks):
for key, value in list(keyed_row.items()):
field = schema.get_field(key)
if not field:
del keyed_row[key]
if key in fallbacks:
value = _uncast_value(value, field=field)
else:
value = field.cast_value(value)
keyed_row[key] = value
return keyed_row | Convert row to SQL |
15,942 | def create_class(self):
if self.target_language in [, ]:
n_indents = 1 if self.target_language == else 0
class_head_temp = self.temp(.format(
self.prefix), n_indents=n_indents, skipping=True)
self.class_head = class_head_temp.format(**self.__dict__)
return self.temp().format(**self.__dict__) | Build the estimator class.
Returns
-------
:return : string
The built class as string. |
15,943 | def part(self, target, reason=None):
if reason:
target += + reason
self.send_line( % target) | quit a channel |
15,944 | def capture(self, pattern=None, negate=False, workers=None, negate_workers=False,
params=None, success=False, error=True, stats=False):
request = clearly_pb2.CaptureRequest(
tasks_capture=clearly_pb2.PatternFilter(pattern=pattern or ,
negate=negate),
workers_capture=clearly_pb2.PatternFilter(pattern=workers or ,
negate=negate_workers),
)
try:
for realtime in self._stub.capture_realtime(request):
if realtime.HasField():
ClearlyClient._display_task(realtime.task, params, success, error)
elif realtime.HasField():
ClearlyClient._display_worker(realtime.worker, stats)
else:
print(, realtime)
break
except KeyboardInterrupt:
pass | Starts capturing selected events in real-time. You can filter exactly what
you want to see, as the Clearly Server handles all tasks and workers updates
being sent to celery. Several clients can see different sets of events at the
same time.
This runs in the foreground, so you can see in real-time exactly what your
clients and celery workers are doing.
Press CTRL+C at any time to stop it.
Args:
Filter args:
pattern (Optional[str]): a pattern to filter tasks to capture.
ex.: '^dispatch|^email' to filter names starting with that
or 'dispatch.*123456' to filter that exact name and number
or even '123456' to filter that exact number anywhere.
negate (bool): if True, finds tasks that do not match criteria.
workers (Optional[str]): a pattern to filter workers to capture.
ex.: 'service|priority' to filter names containing that
negate_workers (bool): if True, finds workers that do not match criteria.
Display args:
params (Optional[bool]): if True shows args and kwargs in the first and
last seen states, if False never shows, and if None follows the
success and error arguments.
default is None
success (bool): if True shows successful tasks' results.
default is False
error (bool): if True shows failed and retried tasks' tracebacks.
default is True, as you're monitoring to find errors, right?
stats (bool): if True shows complete workers' stats.
default is False |
15,945 | def gcmt_to_simple_array(self, centroid_location=True):
catalogue = np.zeros([self.get_number_tensors(), 29], dtype=float)
for iloc, tensor in enumerate(self.gcmts):
catalogue[iloc, 0] = iloc
if centroid_location:
catalogue[iloc, 1] = float(tensor.centroid.date.year)
catalogue[iloc, 2] = float(tensor.centroid.date.month)
catalogue[iloc, 3] = float(tensor.centroid.date.day)
catalogue[iloc, 4] = float(tensor.centroid.time.hour)
catalogue[iloc, 5] = float(tensor.centroid.time.minute)
catalogue[iloc, 6] = np.round(
np.float(tensor.centroid.time.second) +
np.float(tensor.centroid.time.microsecond) / 1000000., 2)
catalogue[iloc, 7] = tensor.centroid.longitude
catalogue[iloc, 8] = tensor.centroid.latitude
catalogue[iloc, 9] = tensor.centroid.depth
else:
catalogue[iloc, 1] = float(tensor.hypocentre.date.year)
catalogue[iloc, 2] = float(tensor.hypocentre.date.month)
catalogue[iloc, 3] = float(tensor.hypocentre.date.day)
catalogue[iloc, 4] = float(tensor.hypocentre.time.hour)
catalogue[iloc, 5] = float(tensor.hypocentre.time.minute)
catalogue[iloc, 6] = np.round(
np.float(tensor.centroid.time.second) +
np.float(tensor.centroid.time.microsecond) / 1000000., 2)
catalogue[iloc, 7] = tensor.hypocentre.longitude
catalogue[iloc, 8] = tensor.hypocentre.latitude
catalogue[iloc, 9] = tensor.hypocentre.depth
catalogue[iloc, 10] = tensor.magnitude
catalogue[iloc, 11] = tensor.moment
catalogue[iloc, 12] = tensor.f_clvd
catalogue[iloc, 13] = tensor.e_rel
catalogue[iloc, 14] = tensor.nodal_planes.nodal_plane_1[]
catalogue[iloc, 15] = tensor.nodal_planes.nodal_plane_1[]
catalogue[iloc, 16] = tensor.nodal_planes.nodal_plane_1[]
catalogue[iloc, 17] = tensor.nodal_planes.nodal_plane_2[]
catalogue[iloc, 18] = tensor.nodal_planes.nodal_plane_2[]
catalogue[iloc, 19] = tensor.nodal_planes.nodal_plane_2[]
catalogue[iloc, 20] = tensor.principal_axes.b_axis[]
catalogue[iloc, 21] = tensor.principal_axes.b_axis[]
catalogue[iloc, 22] = tensor.principal_axes.b_axis[]
catalogue[iloc, 23] = tensor.principal_axes.p_axis[]
catalogue[iloc, 24] = tensor.principal_axes.p_axis[]
catalogue[iloc, 25] = tensor.principal_axes.p_axis[]
catalogue[iloc, 26] = tensor.principal_axes.t_axis[]
catalogue[iloc, 27] = tensor.principal_axes.t_axis[]
catalogue[iloc, 28] = tensor.principal_axes.t_axis[]
return catalogue | Converts the GCMT catalogue to a simple array of
[ID, year, month, day, hour, minute, second, long., lat., depth, Mw,
strike1, dip1, rake1, strike2, dip2, rake2, b-plunge, b-azimuth,
b-eigenvalue, p-plunge, p-azimuth, p-eigenvalue, t-plunge, t-azimuth,
t-eigenvalue, moment, f_clvd, erel] |
15,946 | def get_one_file_in(dirname):
files = os.listdir(dirname)
if len(files) > 1:
raise Failure( %
(dirname, .join(sorted(files))))
elif not files:
raise Failure( % dirname)
return os.path.join(dirname, files[0]) | Return the pathname of the one file in a directory.
Raises if the directory has no files or more than one file. |
15,947 | def generate_covalent_bond_graph(covalent_bonds):
bond_graph=networkx.Graph()
for inter in covalent_bonds:
bond_graph.add_edge(inter.a, inter.b)
return bond_graph | Generates a graph of the covalent bond network described by the interactions.
Parameters
----------
covalent_bonds: [CovalentBond]
List of `CovalentBond`.
Returns
-------
bond_graph: networkx.Graph
A graph of the covalent bond network. |
15,948 | def describe(self, *cols):
if len(cols) == 1 and isinstance(cols[0], list):
cols = cols[0]
jdf = self._jdf.describe(self._jseq(cols))
return DataFrame(jdf, self.sql_ctx) | Computes basic statistics for numeric and string columns.
This include count, mean, stddev, min, and max. If no columns are
given, this function computes statistics for all numerical or string columns.
.. note:: This function is meant for exploratory data analysis, as we make no
guarantee about the backward compatibility of the schema of the resulting DataFrame.
>>> df.describe(['age']).show()
+-------+------------------+
|summary| age|
+-------+------------------+
| count| 2|
| mean| 3.5|
| stddev|2.1213203435596424|
| min| 2|
| max| 5|
+-------+------------------+
>>> df.describe().show()
+-------+------------------+-----+
|summary| age| name|
+-------+------------------+-----+
| count| 2| 2|
| mean| 3.5| null|
| stddev|2.1213203435596424| null|
| min| 2|Alice|
| max| 5| Bob|
+-------+------------------+-----+
Use summary for expanded statistics and control over which statistics to compute. |
15,949 | def get_reconciler(config, metrics, rrset_channel, changes_channel, **kw):
builder = reconciler.GDNSReconcilerBuilder(
config, metrics, rrset_channel, changes_channel, **kw)
return builder.build_reconciler() | Get a GDNSReconciler client.
A factory function that validates configuration, creates an auth
and :class:`GDNSClient` instance, and returns a GDNSReconciler
provider.
Args:
config (dict): Google Cloud Pub/Sub-related configuration.
metrics (obj): :interface:`IMetricRelay` implementation.
rrset_channel (asyncio.Queue): Queue from which to consume
record set messages to validate.
changes_channel (asyncio.Queue): Queue to publish message to
make corrections to Cloud DNS.
kw (dict): Additional keyword arguments to pass to the
Reconciler.
Returns:
A :class:`GDNSReconciler` instance. |
15,950 | def tensor_info_proto_maps_match(map_a, map_b):
iter_a = sorted(parse_tensor_info_map(map_a).items())
iter_b = sorted(parse_tensor_info_map(map_b).items())
if len(iter_a) != len(iter_b):
return False
for info_a, info_b in zip(iter_a, iter_b):
if info_a[0] != info_b[0]:
return False
if _is_sparse(info_a[1]) != _is_sparse(info_b[1]):
return False
if info_a[1].dtype != info_b[1].dtype:
return False
if not _shape_match(info_a[1].get_shape(), info_b[1].get_shape()):
return False
return True | Whether two signature inputs/outputs match in dtype, shape and sparsity.
Args:
map_a: A proto map<string,TensorInfo>.
map_b: A proto map<string,TensorInfo>.
Returns:
A boolean whether `map_a` and `map_b` tensors have the same dtype, shape and
sparsity. |
15,951 | def _get_headers(environ):
for key, value in environ.items():
key = str(key)
if key.startswith("HTTP_") and key not in (
"HTTP_CONTENT_TYPE",
"HTTP_CONTENT_LENGTH",
):
yield key[5:].replace("_", "-").title(), value
elif key in ("CONTENT_TYPE", "CONTENT_LENGTH"):
yield key.replace("_", "-").title(), value | Returns only proper HTTP headers. |
15,952 | def get_cameras_properties(self):
resource = "cameras"
resource_event = self.publish_and_get_event(resource)
if resource_event:
self._last_refresh = int(time.time())
self._camera_properties = resource_event.get() | Return camera properties. |
15,953 | def datalog(self, parameter, run, maxrun=None, det_id=):
"Retrieve datalogs for given parameter, run(s) and detector"
parameter = parameter.lower()
if maxrun is None:
maxrun = run
with Timer():
return self._datalog(parameter, run, maxrun, det_id) | Retrieve datalogs for given parameter, run(s) and detector |
15,954 | def gain(abf):
Ys=np.nan_to_num(swhlab.ap.getAvgBySweep(abf,))
Xs=abf.clampValues(abf.dataX[int(abf.protoSeqX[1]+.01)])
swhlab.plot.new(abf,title="gain function",xlabel="command current (pA)",
ylabel="average inst. freq. (Hz)")
pylab.plot(Xs,Ys,,ms=20,alpha=.5,color=)
pylab.axhline(0,alpha=.5,lw=2,color=,ls="--")
pylab.margins(.1,.1) | easy way to plot a gain function. |
15,955 | def host_inventory_get(hostids, **kwargs):
s docstring)
:param _connection_password: Optional - zabbix password (can also be set in opts or pillar, see modules docstring)
:return: Array with host interfaces details, False if no convenient host interfaces found or on failure.
CLI Example:
.. code-block:: bash
salt zabbix.host_inventory_get 101054
host.gethostidsurlauthresultinventoryresultinventory'] else False
else:
raise KeyError
except KeyError:
return ret | Retrieve host inventory according to the given parameters.
See: https://www.zabbix.com/documentation/2.4/manual/api/reference/host/object#host_inventory
.. versionadded:: 2019.2.0
:param hostids: Return only host interfaces used by the given hosts.
:param _connection_user: Optional - zabbix user (can also be set in opts or pillar, see module's docstring)
:param _connection_password: Optional - zabbix password (can also be set in opts or pillar, see module's docstring)
:param _connection_url: Optional - url of zabbix frontend (can also be set in opts, pillar, see module's docstring)
:return: Array with host interfaces details, False if no convenient host interfaces found or on failure.
CLI Example:
.. code-block:: bash
salt '*' zabbix.host_inventory_get 101054 |
15,956 | async def delete(self, _id=None):
if not _id:
return {"error":400,
"reason":"Missed required fields"}
document = await self.collection.find_one({"id": _id})
if not document:
return {"error":404,
"reason":"Not found"}
deleted_count = await self.collection.delete_one(
{"id": _id}).deleted_count
return deleted_count | Delete entry from database table.
Accepts id.
delete(id) => 1 (if exists)
delete(id) => {"error":404, "reason":"Not found"} (if does not exist)
delete() => {"error":400, "reason":"Missed required fields"} |
15,957 | def get_raw_mempool(self, id=None, endpoint=None):
return self._call_endpoint(GET_RAW_MEMPOOL, id=id, endpoint=endpoint) | Returns the tx that are in the memorypool of the endpoint
Args:
id: (int, optional) id to use for response tracking
endpoint: (RPCEndpoint, optional) endpoint to specify to use
Returns:
json object of the result or the error encountered in the RPC call |
15,958 | def mount(device, mountpoint, options=None, persist=False, filesystem="ext3"):
cmd_args = []
if options is not None:
cmd_args.extend([, options])
cmd_args.extend([device, mountpoint])
try:
subprocess.check_output(cmd_args)
except subprocess.CalledProcessError as e:
log(.format(device, mountpoint, e.output))
return False
if persist:
return fstab_add(device, mountpoint, filesystem, options=options)
return True | Mount a filesystem at a particular mountpoint |
15,959 | def _watch_file(self, filepath, trigger_event=True):
is_new = filepath not in self._watched_files
if trigger_event:
if is_new:
self.trigger_created(filepath)
else:
self.trigger_modified(filepath)
try:
self._watched_files[filepath] = self._get_modified_time(filepath)
except OSError:
return | Adds the file's modified time into its internal watchlist. |
15,960 | def get_or_none(cls, **filter_kwargs):
try:
video = cls.objects.get(**filter_kwargs)
except cls.DoesNotExist:
video = None
return video | Returns a video or None. |
15,961 | def PrintIndented(self, file, ident, code):
for entry in code:
print >>file, % (ident, entry) | Takes an array, add indentation to each entry and prints it. |
15,962 | def move(self, direction, absolute=False, pad_name=None, refresh=True):
cursor_line = [ ]
scroll_only = [ ]
if not pad_name:
pad_name = self.current_pad
pad = self.pads[pad_name]
if pad_name == and self.no_streams:
return
(row, col) = pad.getyx()
new_row = row
offset = self.offsets[pad_name]
new_offset = offset
if pad_name in scroll_only:
if absolute:
if direction > 0:
new_offset = pad.getmaxyx()[0] - self.pad_h + 1
else:
new_offset = 0
else:
if direction > 0:
new_offset = min(pad.getmaxyx()[0] - self.pad_h + 1, offset + self.pad_h)
elif offset > 0:
new_offset = max(0, offset - self.pad_h)
else:
if absolute and direction >= 0 and direction < pad.getmaxyx()[0]:
if direction < offset:
new_offset = direction
elif direction > offset + self.pad_h - 2:
new_offset = direction - self.pad_h + 2
new_row = direction
else:
if direction == -1 and row > 0:
if row == offset:
new_offset -= 1
new_row = row-1
elif direction == 1 and row < len(self.filtered_streams)-1:
if row == offset + self.pad_h - 2:
new_offset += 1
new_row = row+1
if pad_name in cursor_line:
pad.move(row, 0)
pad.chgat(curses.A_NORMAL)
self.offsets[pad_name] = new_offset
pad.move(new_row, 0)
if pad_name in cursor_line:
pad.chgat(curses.A_REVERSE)
if pad_name == :
self.redraw_stream_footer()
if refresh:
self.refresh_current_pad() | Scroll the current pad
direction : (int) move by one in the given direction
-1 is up, 1 is down. If absolute is True,
go to position direction.
Behaviour is affected by cursor_line and scroll_only below
absolute : (bool) |
15,963 | def token_info(token, refresh=True, refresh_cb=None, session=None):
session = session or HTTP_SESSION
params = dict(access_token=token.access_token)
resp = session.get(TOKEN_INFO_URL, params=params)
if resp.status_code != 200:
if refresh:
token = refresh_token(token, session=session)
if refresh_cb is not None:
try:
refresh_cb(token)
except Exception:
LOGGER.exception()
info = token_info(token, refresh=False, session=session)
info.update(refreshed=True)
return info
raise OAuthTokenRefreshRequiredError()
info = __coerce_token_info(resp.json())
info.update(token=token, refreshed=False)
return nameddict(info) | :param OAuthToken token
:param bool refresh:
whether to attempt to refresh the OAuth token if it expired.
default is `True`.
:param refresh_cb:
If specified, a callable object which is given the new token
in parameter if it has been refreshed.
:param requests.Session session:
Optional `requests` session to use.
:return:
token information. see
https://developers.google.com/identity/protocols/OAuth2UserAgent#tokeninfo-validation
- `scope`: this field is not a space-delimited set of scopes
but a real Python `set`.
- `token`: additional field that provides the `OAuthToken`
- `refreshed`: boolean that will tell if the token has been refreshed
:rtype: nameddict |
15,964 | def p_unrelate_statement_2(self, p):
p[0] = UnrelateNode(from_variable_name=p[2],
to_variable_name=p[4],
rel_id=p[6],
phrase=p[8]) | statement : UNRELATE instance_name FROM instance_name ACROSS rel_id DOT phrase |
15,965 | def get_config( config_path=CONFIG_PATH ):
parser = SafeConfigParser()
parser.read( config_path )
config_dir = os.path.dirname(config_path)
immutable_key = False
key_id = None
blockchain_id = None
hostname = socket.gethostname()
wallet = None
if parser.has_section():
if parser.has_option(, ):
immutable_key = parser.get(, )
if immutable_key.lower() in [, , ]:
immutable_key = True
else:
immutable_key = False
if parser.has_option(, ):
key_id = parser.get(, )
if parser.has_option(, ):
blockchain_id = parser.get(, )
if parser.has_option(, ):
hostname = parser.get(, )
if parser.has_option(, ):
wallet = parser.get(, )
config = {
: immutable_key,
: key_id,
: blockchain_id,
: hostname,
: wallet
}
return config | Get the config |
15,966 | def draw(self, **kwargs):
x = self.n_feature_subsets_
means = self.cv_scores_.mean(axis=1)
sigmas = self.cv_scores_.std(axis=1)
self.ax.fill_between(x, means - sigmas, means+sigmas, alpha=0.25)
self.ax.plot(x, means, )
self.ax.axvline(
self.n_features_, c=, ls=,
label="n_features = {}\nscore = {:0.3f}".format(
self.n_features_, self.cv_scores_.mean(axis=1).max()
)
)
return self.ax | Renders the rfecv curve. |
15,967 | def reset(cwd,
opts=,
git_opts=,
user=None,
password=None,
identity=None,
ignore_retcode=False,
output_encoding=None):
s own argument parsing.
git_opts
Any additional options to add to git command itself (not the ``reset``
subcommand), in a single string. This is useful for passing ``-c`` to
run git with temporary changes to the git configuration.
.. versionadded:: 2017.7.0
.. note::
This is only supported in git 1.7.2 and newer.
user
User under which to run the git command. By default, the command is run
by the user under which the minion is running.
password
Windows only. Required when specifying ``user``. This parameter will be
ignored on non-Windows platforms.
.. versionadded:: 2016.3.4
identity
Path to a private key to use for ssh URLs. Salt will not attempt to use
passphrase-protected keys unless invoked from the minion using
``salt-call``, to prevent blocking waiting for user input. Key can also
be specified as a SaltStack file server URL, eg.
``salt://location/identity_file``.
.. note::
For greater security with passphraseless private keys, see the
`sshd(8)`_ manpage for information on securing the keypair from the
remote side in the ``authorized_keys`` file.
.. _`sshd(8)`: http://www.man7.org/linux/man-pages/man8/sshd.8.html
.. versionadded:: 2018.3.5,2019.2.1,Neon
ignore_retcode : False
If ``True``, do not log an error to the minion log if the git command
returns a nonzero exit status.
.. versionadded:: 2015.8.0
output_encoding
Use this option to specify which encoding to use to decode the output
from any git commands which are run. This should not be needed in most
cases.
.. note::
This should only be needed if the files in the repository were
created with filenames using an encoding other than UTF-8 to handle
Unicode characters.
.. versionadded:: 2018.3.1
.. _`git-reset(1)`: http://git-scm.com/docs/git-reset
CLI Examples:
.. code-block:: bash
salt myminion git.reset /path/to/repo ac3ee5c
salt myminion git.reset /path/to/repo opts=
gitresetstdout'] | Interface to `git-reset(1)`_, returns the stdout from the git command
cwd
The path to the git checkout
opts
Any additional options to add to the command line, in a single string
.. note::
On the Salt CLI, if the opts are preceded with a dash, it is
necessary to precede them with ``opts=`` (as in the CLI examples
below) to avoid causing errors with Salt's own argument parsing.
git_opts
Any additional options to add to git command itself (not the ``reset``
subcommand), in a single string. This is useful for passing ``-c`` to
run git with temporary changes to the git configuration.
.. versionadded:: 2017.7.0
.. note::
This is only supported in git 1.7.2 and newer.
user
User under which to run the git command. By default, the command is run
by the user under which the minion is running.
password
Windows only. Required when specifying ``user``. This parameter will be
ignored on non-Windows platforms.
.. versionadded:: 2016.3.4
identity
Path to a private key to use for ssh URLs. Salt will not attempt to use
passphrase-protected keys unless invoked from the minion using
``salt-call``, to prevent blocking waiting for user input. Key can also
be specified as a SaltStack file server URL, eg.
``salt://location/identity_file``.
.. note::
For greater security with passphraseless private keys, see the
`sshd(8)`_ manpage for information on securing the keypair from the
remote side in the ``authorized_keys`` file.
.. _`sshd(8)`: http://www.man7.org/linux/man-pages/man8/sshd.8.html#AUTHORIZED_KEYS_FILE_FORMAT
.. versionadded:: 2018.3.5,2019.2.1,Neon
ignore_retcode : False
If ``True``, do not log an error to the minion log if the git command
returns a nonzero exit status.
.. versionadded:: 2015.8.0
output_encoding
Use this option to specify which encoding to use to decode the output
from any git commands which are run. This should not be needed in most
cases.
.. note::
This should only be needed if the files in the repository were
created with filenames using an encoding other than UTF-8 to handle
Unicode characters.
.. versionadded:: 2018.3.1
.. _`git-reset(1)`: http://git-scm.com/docs/git-reset
CLI Examples:
.. code-block:: bash
# Soft reset to a specific commit ID
salt myminion git.reset /path/to/repo ac3ee5c
# Hard reset
salt myminion git.reset /path/to/repo opts='--hard origin/master' |
15,968 | def _take_forced_measurement(self):
self._bus.write_byte_data(self._i2c_add, 0xF4, self.ctrl_meas_reg)
while self._bus.read_byte_data(self._i2c_add, 0xF3) & 0x08:
sleep(0.005) | Take a forced measurement.
In forced mode, the BME sensor goes back to sleep after each
measurement and we need to set it to forced mode once at this point,
so it will take the next measurement and then return to sleep again.
In normal mode simply does new measurements periodically. |
15,969 | def _nan_minmax_object(func, fill_value, value, axis=None, **kwargs):
valid_count = count(value, axis=axis)
filled_value = fillna(value, fill_value)
data = getattr(np, func)(filled_value, axis=axis, **kwargs)
if not hasattr(data, ):
data = dtypes.fill_value(value.dtype) if valid_count == 0 else data
return np.array(data, dtype=value.dtype)
return where_method(data, valid_count != 0) | In house nanmin and nanmax for object array |
15,970 | def BuildChecks(self, request):
result = []
if request.HasField("start_time") or request.HasField("end_time"):
def FilterTimestamp(file_stat, request=request):
return file_stat.HasField("st_mtime") and (
file_stat.st_mtime < request.start_time or
file_stat.st_mtime > request.end_time)
result.append(FilterTimestamp)
if request.HasField("min_file_size") or request.HasField("max_file_size"):
def FilterSize(file_stat, request=request):
return file_stat.HasField("st_size") and (
file_stat.st_size < request.min_file_size or
file_stat.st_size > request.max_file_size)
result.append(FilterSize)
if request.HasField("perm_mode"):
def FilterPerms(file_stat, request=request):
return (file_stat.st_mode & request.perm_mask) != request.perm_mode
result.append(FilterPerms)
if request.HasField("uid"):
def FilterUID(file_stat, request=request):
return file_stat.st_uid != request.uid
result.append(FilterUID)
if request.HasField("gid"):
def FilterGID(file_stat, request=request):
return file_stat.st_gid != request.gid
result.append(FilterGID)
if request.HasField("path_regex"):
regex = request.path_regex
def FilterPath(file_stat, regex=regex):
return not regex.Search(file_stat.pathspec.Basename())
result.append(FilterPath)
if request.HasField("data_regex"):
def FilterData(file_stat, **_):
return not self.TestFileContent(file_stat)
result.append(FilterData)
return result | Parses request and returns a list of filter callables.
Each callable will be called with the StatEntry and returns True if the
entry should be suppressed.
Args:
request: A FindSpec that describes the search.
Returns:
a list of callables which return True if the file is to be suppressed. |
15,971 | def show_script_error(self, parent):
if self.service.scriptRunner.error != :
dlg = Gtk.MessageDialog(type=Gtk.MessageType.INFO, buttons=Gtk.ButtonsType.OK,
message_format=self.service.scriptRunner.error)
self.service.scriptRunner.error =
self.notifier.set_icon(cm.ConfigManager.SETTINGS[cm.NOTIFICATION_ICON])
self.notifier.errorItem.hide()
self.notifier.update_visible_status()
else:
dlg = Gtk.MessageDialog(type=Gtk.MessageType.INFO, buttons=Gtk.ButtonsType.OK,
message_format=_("No error information available"))
dlg.set_title(_("View script error"))
dlg.set_transient_for(parent)
dlg.run()
dlg.destroy() | Show the last script error (if any) |
15,972 | def print_tree(self) -> str:
if self.ast:
return self.ast.print_tree(ast_obj=self.ast)
else:
return "" | Convert AST object to tree view of BEL AST
Returns:
printed tree of BEL AST |
15,973 | def __arguments(self, ttype, tvalue):
if ttype == "identifier":
test = get_command_instance(tvalue.decode("ascii"), self.__curcommand)
self.__curcommand.check_next_arg("test", test)
self.__expected = test.get_expected_first()
self.__curcommand = test
return self.__check_command_completion(testsemicolon=False)
if ttype == "left_parenthesis":
self.__set_expected("identifier")
return True
if ttype == "comma":
self.__set_expected("identifier")
return True
if ttype == "right_parenthesis":
self.__up()
return True
if self.__argument(ttype, tvalue):
return self.__check_command_completion(testsemicolon=False)
return False | Arguments parsing method
Entry point for command arguments parsing. The parser must
call this method for each parsed command (either a control,
action or test).
Syntax:
*argument [ test / test-list ]
:param ttype: current token type
:param tvalue: current token value
:return: False if an error is encountered, True otherwise |
15,974 | def exec_event_handler(self, event, transactional=False):
callbacks = self._options.get(, {})
handler = callbacks.get(event)
if not handler:
raise Exception()
handler.start(transactional=transactional) | Execute the Async set to be run on event. |
15,975 | def _http_resp_rate_limited(response):
parsed = parse.urlparse(response.request.url)
duration = int(response.headers.get(, 3))
LOGGER.warning(,
parsed.netloc, duration)
return asyncio.sleep(duration) | Extract the ``Retry-After`` header value if the request was rate
limited and return a future to sleep for the specified duration.
:param tornado.httpclient.HTTPResponse response: The response
:rtype: tornado.concurrent.Future |
15,976 | def exit(self, status=0, message=None):
self.exited = True
if message is not None:
self.mesgs.extend(message.split())
raise s_exc.BadSyntax(mesg=message, prog=self.prog, status=status) | Argparse expects exit() to be a terminal function and not return.
As such, this function must raise an exception which will be caught
by Cmd.hasValidOpts. |
15,977 | def env_float(name, required=False, default=empty):
value = get_env_value(name, required=required, default=default)
if value is empty:
raise ValueError(
"`env_float` requires either a default value to be specified, or for "
"the variable to be present in the environment"
)
return float(value) | Pulls an environment variable out of the environment and casts it to an
float. If the name is not present in the environment and no default is
specified then a ``ValueError`` will be raised. Similarly, if the
environment value is not castable to an float, a ``ValueError`` will be
raised.
:param name: The name of the environment variable be pulled
:type name: str
:param required: Whether the environment variable is required. If ``True``
and the variable is not present, a ``KeyError`` is raised.
:type required: bool
:param default: The value to return if the environment variable is not
present. (Providing a default alongside setting ``required=True`` will raise
a ``ValueError``)
:type default: bool |
15,978 | def flatten(self) -> bk.BKTensor:
N = self.qubit_nb
R = self.rank
return bk.reshape(self.tensor, [2**N]*R) | Return tensor with with qubit indices flattened |
15,979 | def cli(env, is_open):
ticket_mgr = SoftLayer.TicketManager(env.client)
table = formatting.Table([
, , , , , ,
])
tickets = ticket_mgr.list_tickets(open_status=is_open, closed_status=not is_open)
for ticket in tickets:
user = formatting.blank()
if ticket.get():
user = "%s %s" % (ticket[][], ticket[][])
table.add_row([
ticket[],
user,
click.wrap_text(ticket[]),
ticket[],
ticket[][],
ticket.get(, 0),
ticket.get(, 0)
])
env.fout(table) | List tickets. |
15,980 | def decode(self):
fmt, len_low, len_high, device_id, report_id, sent_timestamp, signature_flags, \
origin_streamer, streamer_selector = unpack("<BBHLLLBBH", self.raw_report[:20])
assert fmt == 1
length = (len_high << 8) | len_low
self.origin = device_id
self.report_id = report_id
self.sent_timestamp = sent_timestamp
self.origin_streamer = origin_streamer
self.streamer_selector = streamer_selector
self.signature_flags = signature_flags
assert len(self.raw_report) == length
remaining = self.raw_report[20:]
assert len(remaining) >= 24
readings = remaining[:-24]
footer = remaining[-24:]
lowest_id, highest_id, signature = unpack("<LL16s", footer)
signature = bytearray(signature)
self.lowest_id = lowest_id
self.highest_id = highest_id
self.signature = signature
signed_data = self.raw_report[:-16]
signer = ChainedAuthProvider()
if signature_flags == AuthProvider.NoKey:
self.encrypted = False
else:
self.encrypted = True
try:
verification = signer.verify_report(device_id, signature_flags, signed_data, signature,
report_id=report_id, sent_timestamp=sent_timestamp)
self.verified = verification[]
except NotFoundError:
self.verified = False
except NotFoundError:
return [], []
assert (len(readings) % 16) == 0
time_base = self.received_time - datetime.timedelta(seconds=sent_timestamp)
parsed_readings = []
for i in range(0, len(readings), 16):
reading = readings[i:i+16]
stream, _, reading_id, timestamp, value = unpack("<HHLLL", reading)
parsed = IOTileReading(timestamp, stream, value, time_base=time_base, reading_id=reading_id)
parsed_readings.append(parsed)
return parsed_readings, [] | Decode this report into a list of readings |
15,981 | def max(self):
return int(self._max) if not np.isinf(self._max) else self._max | Returns the maximum value of the domain.
:rtype: `float` or `np.inf` |
15,982 | def set_widgets(self):
clear_layout(self.gridLayoutThreshold)
layer_purpose = self.parent.step_kw_purpose.selected_purpose()
layer_subcategory = self.parent.step_kw_subcategory.\
selected_subcategory()
classification = self.parent.step_kw_classification. \
selected_classification()
if is_raster_layer(self.parent.layer):
statistics = self.parent.layer.dataProvider().bandStatistics(
1, QgsRasterBandStats.All, self.parent.layer.extent(), 0)
text = continuous_raster_question % (
layer_purpose[],
layer_subcategory[],
classification[],
statistics.minimumValue,
statistics.maximumValue)
else:
field_name = self.parent.step_kw_field.selected_fields()
field_index = self.parent.layer.fields().lookupField(field_name)
min_value_layer = self.parent.layer.minimumValue(field_index)
max_value_layer = self.parent.layer.maximumValue(field_index)
text = continuous_vector_question % (
layer_purpose[],
layer_subcategory[],
field_name,
classification[],
min_value_layer,
max_value_layer)
self.lblThreshold.setText(text)
thresholds = self.parent.get_existing_keyword()
selected_unit = self.parent.step_kw_unit.selected_unit()[]
self.classes = OrderedDict()
classes = classification.get()
classes = sorted(classes, key=lambda k: k[])
for i, the_class in enumerate(classes):
class_layout = QHBoxLayout()
class_label = QLabel(the_class[])
min_label = QLabel(tr())
min_value_input = QDoubleSpinBox()
min_value_input.setMinimum(0)
min_value_input.setMaximum(999999)
if thresholds.get(the_class[]):
min_value_input.setValue(thresholds[the_class[]][0])
else:
default_min = the_class[]
if isinstance(default_min, dict):
default_min = the_class[
][selected_unit]
min_value_input.setValue(default_min)
min_value_input.setSingleStep(0.1)
max_label = QLabel(tr())
max_value_input = QDoubleSpinBox()
max_value_input.setMinimum(0)
max_value_input.setMaximum(999999)
if thresholds.get(the_class[]):
max_value_input.setValue(thresholds[the_class[]][1])
else:
default_max = the_class[]
if isinstance(default_max, dict):
default_max = the_class[
][selected_unit]
max_value_input.setValue(default_max)
max_value_input.setSingleStep(0.1)
class_layout.addWidget(min_label)
class_layout.addWidget(min_value_input)
class_layout.addWidget(max_label)
class_layout.addWidget(max_value_input)
self.gridLayoutThreshold.addWidget(class_label, i, 0)
self.gridLayoutThreshold.addLayout(class_layout, i, 1)
self.classes[the_class[]] = [min_value_input, max_value_input]
self.gridLayoutThreshold.setSpacing(0)
def min_max_changed(index, the_string):
if the_string == :
current_max_value = list(self.classes.values())[index][1]
target_min_value = list(self.classes.values())[index + 1][0]
if current_max_value.value() != target_min_value.value():
target_min_value.setValue(current_max_value.value())
elif the_string == :
current_min_value = list(self.classes.values())[index][0]
target_max_value = list(self.classes.values())[index - 1][1]
if current_min_value.value() != target_max_value.value():
target_max_value.setValue(current_min_value.value())
for k, v in list(self.classes.items()):
index = list(self.classes.keys()).index(k)
if index < len(self.classes) - 1:
v[1].valueChanged.connect(partial(
min_max_changed, index=index, the_string=))
if index > 0:
v[0].valueChanged.connect(partial(
min_max_changed, index=index, the_string=)) | Set widgets on the Threshold tab. |
15,983 | def get_rows(self, sort=False):
ret = []
for _, rows in sorted(self._rows.items()) if sort else self._rows.items():
self._rows_int2date(rows)
ret.extend(rows)
return ret | Returns the rows of this Type2Helper.
:param bool sort: If True the rows are sorted by the pseudo key. |
15,984 | def get_cluster_graph(self, engine="fdp", graph_attr=None, node_attr=None, edge_attr=None):
from graphviz import Digraph
g = Digraph("directory",
engine=engine)
g.attr(label=self.top)
g.node_attr.update(color=, style=)
if graph_attr is not None:
fg.graph_attr.update(**graph_attr)
if node_attr is not None:
fg.node_attr.update(**node_attr)
if edge_attr is not None:
fg.edge_attr.update(**edge_attr)
def node_kwargs(path):
return dict(
shape="record",
fontsize="8.0",
label=os.path.basename(path),
)
edge_kwargs = dict(arrowType="vee", style="solid", minlen="1")
cluster_kwargs = dict(rankdir="LR", pagedir="BL", style="rounded", bgcolor="azure2")
exclude_top_node = False
for root, dirs, files in os.walk(self.top):
if exclude_top_node and root == self.top: continue
cluster_name = "cluster_%s" % root
with g.subgraph(name=cluster_name) as d:
d.attr(**cluster_kwargs)
d.attr(rank="source" if (files or dirs) else "sink")
d.attr(label=os.path.basename(root))
for f in files:
filepath = os.path.join(root, f)
d.node(filepath, **node_kwargs(filepath))
if os.path.islink(filepath):
realp = os.path.realpath(filepath)
realp = os.path.relpath(realp, filepath)
g.edge(filepath, realp, **edge_kwargs)
for dirname in dirs:
dirpath = os.path.join(root, dirname)
new_cluster_name = "cluster_%s" % dirpath
d.edge(cluster_name, new_cluster_name, **edge_kwargs)
return g | Generate directory graph in the DOT language. Directories are shown as clusters
.. warning::
This function scans the entire directory tree starting from top so the resulting
graph can be really big.
Args:
engine: Layout command used. ['dot', 'neato', 'twopi', 'circo', 'fdp', 'sfdp', 'patchwork', 'osage']
graph_attr: Mapping of (attribute, value) pairs for the graph.
node_attr: Mapping of (attribute, value) pairs set for all nodes.
edge_attr: Mapping of (attribute, value) pairs set for all edges.
Returns: graphviz.Digraph <https://graphviz.readthedocs.io/en/stable/api.html#digraph> |
15,985 | def _define_absl_flag(self, flag_instance, suppress):
flag_name = flag_instance.name
short_name = flag_instance.short_name
argument_names = [ + flag_name]
if short_name:
argument_names.insert(0, + short_name)
if suppress:
helptext = argparse.SUPPRESS
else:
self.add_argument(
*argument_names, action=_BooleanFlagAction, help=helptext,
metavar=flag_instance.name.upper(),
flag_instance=flag_instance)
else:
self.add_argument(
*argument_names, action=_FlagAction, help=helptext,
metavar=flag_instance.name.upper(),
flag_instance=flag_instance) | Defines a flag from the flag_instance. |
15,986 | def filesys_decode(path):
if isinstance(path, six.text_type):
return path
fs_enc = sys.getfilesystemencoding() or
candidates = fs_enc,
for enc in candidates:
try:
return path.decode(enc)
except UnicodeDecodeError:
continue | Ensure that the given path is decoded,
NONE when no expected encoding works |
15,987 | def default_output_format(content_type=, apply_globally=False, api=None, cli=False, http=True):
def decorator(formatter):
formatter = hug.output_format.content_type(content_type)(formatter)
if apply_globally:
if http:
hug.defaults.output_format = formatter
if cli:
hug.defaults.cli_output_format = formatter
else:
apply_to_api = hug.API(api) if api else hug.api.from_object(formatter)
if http:
apply_to_api.http.output_format = formatter
if cli:
apply_to_api.cli.output_format = formatter
return formatter
return decorator | A decorator that allows you to override the default output format for an API |
15,988 | def get_namespace(self, uri):
key = (self, uri)
if key in self.context.namespaces:
return self.context.namespaces[key]
else:
ns = TemplateNamespace(uri, self.context._copy(),
templateuri=uri,
calling_uri=self._templateuri)
self.context.namespaces[key] = ns
return ns | Return a :class:`.Namespace` corresponding to the given ``uri``.
If the given ``uri`` is a relative URI (i.e. it does not
contain a leading slash ``/``), the ``uri`` is adjusted to
be relative to the ``uri`` of the namespace itself. This
method is therefore mostly useful off of the built-in
``local`` namespace, described in :ref:`namespace_local`.
In
most cases, a template wouldn't need this function, and
should instead use the ``<%namespace>`` tag to load
namespaces. However, since all ``<%namespace>`` tags are
evaluated before the body of a template ever runs,
this method can be used to locate namespaces using
expressions that were generated within the body code of
the template, or to conditionally use a particular
namespace. |
15,989 | def fetch_artifact(self, trial_id, prefix):
local = os.path.join(self.log_dir, trial_id, prefix)
if self.upload_dir:
remote = .join([self.upload_dir, trial_id, prefix])
_remote_to_local_sync(remote, local)
return local | Verifies that all children of the artifact prefix path are
available locally. Fetches them if not.
Returns the local path to the given trial's artifacts at the
specified prefix, which is always just
{log_dir}/{trial_id}/{prefix} |
15,990 | def _input_as_list(self, data):
query, database, output = data
if (not isabs(database)) \
or (not isabs(query)) \
or (not isabs(output)):
raise ApplicationError("Only absolute paths allowed.\n%s" %
.join(data))
self._database = FilePath(database)
self._query = FilePath(query)
self._output = ResultPath(output, IsWritten=True)
if self.Parameters[].isOn() and self.Parameters[].isOn() and \
(self.Parameters[].Value, self.Parameters[].Value) not in \
self._valid_combinations:
error_message = "Invalid combination of database and query " + \
"types (, ).\n" % \
(self.Paramters[].Value,
self.Parameters[].Value)
error_message += "Must be one of: %s\n" % \
repr(self._valid_combinations)
raise ApplicationError(error_message)
if self.Parameters[].isOn() and \
self.Parameters[].Value not in self._database_types:
error_message = "Invalid database type %s\n" % \
self.Parameters[].Value
error_message += "Allowed values: %s\n" % \
.join(self._database_types)
raise ApplicationError(error_message)
if self.Parameters[].isOn() and \
self.Parameters[].Value not in self._query_types:
error_message = "Invalid query type %s\n" % \
self.Parameters[].Value
error_message += "Allowed values: %s\n" % \
.join(self._query_types)
raise ApplicationError(error_message)
if self.Parameters[].isOn() and \
self.Parameters[].Value not in self._mask_types:
error_message = "Invalid mask type %s\n" % \
self.Parameters[]
error_message += "Allowed Values: %s\n" % \
.join(self._mask_types)
raise ApplicationError(error_message)
if self.Parameters[].isOn() and \
self.Parameters[].Value not in self._mask_types:
error_message = "Invalid qMask type %s\n" % \
self.Parameters[].Value
error_message += "Allowed values: %s\n" % \
.join(self._mask_types)
raise ApplicationError(error_message)
if self.Parameters[].isOn() and \
self.Parameters[].Value not in self._mask_types:
error_message = "Invalid repeat type %s\n" % \
self.Parameters[].Value
error_message += "Allowed values: %s\n" % \
.join(self._mask_types)
raise ApplicationError(error_message)
if self.Parameters[].isOn() and \
self.Parameters[].Value not in self._out_types:
error_message = "Invalid output type %s\n" % \
self.Parameters[]
error_message += "Allowed values: %s\n" % \
.join(self._out_types)
raise ApplicationError(error_message)
return | Takes the positional arguments as input in a list.
The list input here should be [query_file_path, database_file_path,
output_file_path] |
15,991 | def _set_zone(self, v, load=False):
if hasattr(v, "_utype"):
v = v._utype(v)
try:
t = YANGDynClass(v,base=YANGListType("zone_name",zone.zone, yang_name="zone", rest_name="zone", parent=self, is_container=, user_ordered=False, path_helper=self._path_helper, yang_keys=, extensions={u: {u: u, u: None, u: None, u: None, u: None, u: u}}), is_container=, yang_name="zone", rest_name="zone", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u: {u: u, u: None, u: None, u: None, u: None, u: u}}, namespace=, defining_module=, yang_type=, is_config=True)
except (TypeError, ValueError):
raise ValueError({
: ,
: "list",
: ,
})
self.__zone = t
if hasattr(self, ):
self._set() | Setter method for zone, mapped from YANG variable /zoning/defined_configuration/zone (list)
If this variable is read-only (config: false) in the
source YANG file, then _set_zone is considered as a private
method. Backends looking to populate this variable should
do so via calling thisObj._set_zone() directly. |
15,992 | def affine_shift_matrix(wrg=(-0.1, 0.1), hrg=(-0.1, 0.1), w=200, h=200):
if isinstance(wrg, tuple):
tx = np.random.uniform(wrg[0], wrg[1]) * w
else:
tx = wrg * w
if isinstance(hrg, tuple):
ty = np.random.uniform(hrg[0], hrg[1]) * h
else:
ty = hrg * h
shift_matrix = np.array([[1, 0, tx], \
[0, 1, ty], \
[0, 0, 1]])
return shift_matrix | Create an affine transform matrix for image shifting.
NOTE: In OpenCV, x is width and y is height.
Parameters
-----------
wrg : float or tuple of floats
Range to shift on width axis, -1 ~ 1.
- float, a fixed distance.
- tuple of 2 floats, randomly sample a value as the distance between these 2 values.
hrg : float or tuple of floats
Range to shift on height axis, -1 ~ 1.
- float, a fixed distance.
- tuple of 2 floats, randomly sample a value as the distance between these 2 values.
w, h : int
The width and height of the image.
Returns
-------
numpy.array
An affine transform matrix. |
15,993 | def add_node(self, node_id, name, labels):
node = self.graph_db.get_or_create_indexed_node(, , node_id, {: node_id, : name})
try:
node.add_labels(*labels)
except NotImplementedError:
pass | Add the node with name and labels.
Args:
node_id: Id for the node.
name: Name for the node.
labels: Label for the node.
Raises:
NotImplementedError: When adding labels is not supported. |
15,994 | def create_function_f_i(self):
return ca.Function(
,
[self.t, self.x, self.y, self.m, self.p, self.c, self.pre_c, self.ng, self.nu],
[self.f_i],
[, , , , , , , , ], [], self.func_opt) | state reinitialization (reset) function |
15,995 | def UV_B(Bg,gw):
UV = []
p = Bwidth(gw)
pp = 2**p
while p:
pp = pp>>1
p = p-1
if Bg&pp:
uv = B012(p,gw-1)
UV.append(uv)
return UV | returns the implications UV based on B
Bg = B(g), g∈2^M
gw = |M|, M is the set of all attributes |
15,996 | def currentEvent(self):
t ended yet, or if there are no
future events, the last one to end.
startTime-endTime').first()
return currentEvent | Return the first event that hasn't ended yet, or if there are no
future events, the last one to end. |
15,997 | def get_matching_service_template_file(service_name, template_files):
if service_name in template_files:
return template_files[service_name]
return None | Return the template file that goes with the given service name, or return
None if there's no match. Subservices return the parent service's file. |
15,998 | def flags(rule_or_module, variable_name, condition, values = []):
assert isinstance(rule_or_module, basestring)
assert isinstance(variable_name, basestring)
assert is_iterable_typed(condition, basestring)
assert is_iterable(values) and all(isinstance(v, (basestring, type(None))) for v in values)
caller = bjam.caller()
if not in rule_or_module and caller and caller[:-1].startswith("Jamfile"):
rule_or_module = qualify_jam_action(rule_or_module, caller)
else:
values = [ condition ]
condition = None
if condition:
transformed = []
for c in condition:
pl = [property.create_from_string(s,False,True) for s in c.split()]
pl = feature.expand_subfeatures(pl);
transformed.append(property_set.create(pl))
condition = transformed
property.validate_property_sets(condition)
__add_flag (rule_or_module, variable_name, condition, values) | Specifies the flags (variables) that must be set on targets under certain
conditions, described by arguments.
rule_or_module: If contains dot, should be a rule name.
The flags will be applied when that rule is
used to set up build actions.
If does not contain dot, should be a module name.
The flags will be applied for all rules in that
module.
If module for rule is different from the calling
module, an error is issued.
variable_name: Variable that should be set on target
condition A condition when this flag should be applied.
Should be set of property sets. If one of
those property sets is contained in build
properties, the flag will be used.
Implied values are not allowed:
"<toolset>gcc" should be used, not just
"gcc". Subfeatures, like in "<toolset>gcc-3.2"
are allowed. If left empty, the flag will
always used.
Propery sets may use value-less properties
('<a>' vs. '<a>value') to match absent
properties. This allows to separately match
<architecture>/<address-model>64
<architecture>ia64/<address-model>
Where both features are optional. Without this
syntax we'd be forced to define "default" value.
values: The value to add to variable. If <feature>
is specified, then the value of 'feature'
will be added. |
15,999 | def NDLimitExceeded_NDLimit(self, **kwargs):
config = ET.Element("config")
NDLimitExceeded = ET.SubElement(config, "NDLimitExceeded", xmlns="http://brocade.com/ns/brocade-notification-stream")
NDLimit = ET.SubElement(NDLimitExceeded, "NDLimit")
NDLimit.text = kwargs.pop()
callback = kwargs.pop(, self._callback)
return callback(config) | Auto Generated Code |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.