Unnamed: 0
int64 0
389k
| code
stringlengths 26
79.6k
| docstring
stringlengths 1
46.9k
|
---|---|---|
16,700 | def get_tagged(self, event):
self.log("Tagged objects request for", event.data, "from",
event.user, lvl=debug)
if event.data in self.tags:
tagged = self._get_tagged(event.data)
response = {
: ,
: ,
: tagged
}
self.fireEvent(send(event.client.uuid, response))
else:
self.log("Unavailable schema requested!", lvl=warn) | Return a list of tagged objects for a schema |
16,701 | def set_isotopic_ratio(self, compound=, element=, list_ratio=[]):
_stack = self.stack
list_compounds = _stack.keys()
if compound not in _stack.keys():
list_compounds_joined = .join(list_compounds)
raise ValueError("Compound could not be find in {}".format(compound, list_compounds_joined))
if element == :
element = compound
list_element = _stack[compound].keys()
if element not in list_element:
list_element_joined = .join(list_element)
raise ValueError("Element should be any of those elements: {}".format(element, list_element_joined))
old_list_ratio = _stack[compound][element][][]
if not (len(old_list_ratio) == len(list_ratio)):
raise ValueError("New list of ratio ({} elements) does not match old list size ({} elements!".format(len(
list_ratio), len(old_list_ratio)))
self.stack[compound][element][][] = list_ratio
self.__update_molar_mass(compound=compound, element=element)
self.__update_density(compound=compound, element=element)
self.__math_on_stack() | defines the new set of ratio of the compound/element and trigger the calculation to update the density
Parameters:
===========
compound: string (default is ''). Name of compound
element: string (default is ''). Name of element
list_ratio: list (default is []). list of new stoichiometric_ratio
Raises:
=======
ValueError if compound does not exist
ValueError if element does not exist
ValueError if list_ratio does not have the right format |
16,702 | def calc_fwhm_gaussian(self, arr1d, medv=None, gauss_fn=None):
if gauss_fn is None:
gauss_fn = self.gaussian
N = len(arr1d)
X = np.array(list(range(N)))
Y = arr1d
if medv is None:
medv = get_median(Y)
Y = Y - medv
maxv = Y.max()
Y = Y.clip(0, maxv)
p0 = [0, N - 1, maxv]
errfunc = lambda p, x, y: gauss_fn(x, p) - y
with self.lock:
p1, success = optimize.leastsq(errfunc, p0[:], args=(X, Y))
if not success:
raise IQCalcError("FWHM gaussian fitting failed")
mu, sdev, maxv = p1
self.logger.debug("mu=%f sdev=%f maxv=%f" % (mu, sdev, maxv))
fwhm = 2.0 * np.sqrt(2.0 * np.log(2.0)) * sdev
fwhm = float(fwhm)
mu = float(mu)
sdev = float(sdev)
maxv = float(maxv)
res = Bunch.Bunch(fwhm=fwhm, mu=mu, sdev=sdev, maxv=maxv,
fit_fn=gauss_fn, fit_args=[mu, sdev, maxv])
return res | FWHM calculation on a 1D array by using least square fitting of
a gaussian function on the data. arr1d is a 1D array cut in either
X or Y direction on the object. |
16,703 | def convert_data_to_ndarray(self):
if self._data_structure != "DataFrame":
raise Exception(f"Data is not a DataFrame but {self._data_structure}.")
self._data = self._convert_to_ndarray(self._data)
self._update_data_structure()
return self | Converts the data from dataframe to ndarray format. Assumption: df-columns are ndarray-layers (3rd dim.) |
16,704 | def duplicate(self, host):
duplicates = []
safe_key_value = re.sub(r + "`~!$%^&*\"|]+_$$check_commandaggregationevent_handler$$service_dependencies$$', key_value[key]
)
duplicates.append(new_s)
return duplicates | For a given host, look for all copy we must create for for_each property
:param host: alignak host object
:type host: alignak.objects.host.Host
:return: list
:rtype: list |
16,705 | def getLeader(self, vehID, dist=0.):
self._connection._beginMessage(
tc.CMD_GET_VEHICLE_VARIABLE, tc.VAR_LEADER, vehID, 1 + 8)
self._connection._string += struct.pack("!Bd", tc.TYPE_DOUBLE, dist)
return _readLeader(self._connection._checkResult(tc.CMD_GET_VEHICLE_VARIABLE, tc.VAR_LEADER, vehID)) | getLeader(string, double) -> (string, double)
Return the leading vehicle id together with the distance. The distance
is measured from the front + minGap to the back of the leader, so it does not include the
minGap of the vehicle.
The dist parameter defines the maximum lookahead, 0 calculates a lookahead from the brake gap.
Note that the returned leader may be farther away than the given dist. |
16,706 | def allow(self, ctx, acls):
for acl in acls:
if self._identity == acl:
return True
return False | Allow access to any ACL members that was equal to the user name.
That is, some user u is considered a member of group u and no other. |
16,707 | def _check_tcpdump():
with open(os.devnull, ) as devnull:
try:
proc = subprocess.Popen([conf.prog.tcpdump, "--version"],
stdout=devnull, stderr=subprocess.STDOUT)
except OSError:
return False
if OPENBSD:
return proc.wait() == 1
else:
return proc.wait() == 0 | Return True if the tcpdump command can be started |
16,708 | def _do_synchronise_jobs(walltime, machines):
offset = SYNCHRONISATION_OFFSET
start = time.time() + offset
_t = time.strptime(walltime, "%H:%M:%S")
_walltime = _t.tm_hour * 3600 + _t.tm_min * 60 + _t.tm_sec
demands = defaultdict(int)
for machine in machines:
cluster = machine["cluster"]
demands[cluster] += machine["nodes"]
if len(list(demands.keys())) <= 1:
logger.debug("Only one cluster detected: no synchronisation needed")
return None
clusters = clusters_sites_obj(list(demands.keys()))
sites = set(list(clusters.values()))
if len(sites) <= 1:
logger.debug("Only one site detected: no synchronisation needed")
return None
ok = True
for cluster, nodes in demands.items():
cluster_status = clusters[cluster].status.list()
ok = ok and can_start_on_cluster(cluster_status.nodes,
nodes,
start,
_walltime)
if not ok:
break
if ok:
logger.info("Reservation_date=%s (%s)" % (_date2h(start), sites))
return start
if start is None:
raise EnosG5kSynchronisationError(sites) | This returns a common reservation date for all the jobs.
This reservation date is really only a hint and will be supplied to each
oar server. Without this *common* reservation_date, one oar server can
decide to postpone the start of the job while the other are already
running. But this doens't prevent the start of a job on one site to drift
(e.g because the machines need to be restarted.) But this shouldn't exceed
few minutes. |
16,709 | def _validate_message(self, message):
if message.tag != :
status = -1
raise exception.IloClientInternalError(message, status)
for child in message:
if child.tag != :
return message
status = int(child.get(), 16)
msg = child.get()
if status == 0 and msg != :
return msg
if status != 0:
if in msg or in msg:
for cmd in BOOT_MODE_CMDS:
if cmd in msg:
platform = self.get_product_name()
msg = ("%(cmd)s is not supported on %(platform)s" %
{: cmd, : platform})
LOG.debug(self._("Got invalid response with "
"message: "),
{: msg})
raise (exception.IloCommandNotSupportedError
(msg, status))
else:
LOG.debug(self._("Got invalid response with "
"message: "),
{: msg})
raise exception.IloClientInternalError(msg, status)
if (status in exception.IloLoginFailError.statuses or
msg in exception.IloLoginFailError.messages):
LOG.debug(self._("Got invalid response with "
"message: "),
{: msg})
raise exception.IloLoginFailError(msg, status)
LOG.debug(self._("Got invalid response with "
"message: "),
{: msg})
raise exception.IloError(msg, status) | Validate XML response from iLO.
This function validates the XML response to see
if the exit status is 0 or not in the response.
If the status is non-zero it raises exception. |
16,710 | def clip_or_fit_solutions(self, pop, idx):
for k in idx:
self.repair_genotype(pop[k]) | make sure that solutions fit to sample distribution, this interface will probably change.
In particular the frequency of long vectors appearing in pop[idx] - self.mean is limited. |
16,711 | async def deserialize(data: dict):
return await Proof._deserialize("vcx_proof_deserialize",
json.dumps(data),
data.get().get()) | Builds a Proof object with defined attributes.
Attributes are provided by a previous call to the serialize function.
:param data:
Example:
name = "proof name"
requested_attrs = [{"name": "age", "restrictions": [{"schema_id": "6XFh8yBzrpJQmNyZzgoTqB:2:schema_name:0.0.11", "schema_name":"Faber Student Info", "schema_version":"1.0", "schema_issuer_did":"6XFh8yBzrpJQmNyZzgoTqB", "issuer_did":"8XFh8yBzrpJQmNyZzgoTqB", "cred_def_id": "8XFh8yBzrpJQmNyZzgoTqB:3:CL:1766" }, { "schema_id": "5XFh8yBzrpJQmNyZzgoTqB:2:schema_name:0.0.11", "schema_name":"BYU Student Info", "schema_version":"1.0", "schema_issuer_did":"5XFh8yBzrpJQmNyZzgoTqB", "issuer_did":"66Fh8yBzrpJQmNyZzgoTqB", "cred_def_id": "66Fh8yBzrpJQmNyZzgoTqB:3:CL:1766" } ] }, { "name":"name", "restrictions": [ { "schema_id": "6XFh8yBzrpJQmNyZzgoTqB:2:schema_name:0.0.11", "schema_name":"Faber Student Info", "schema_version":"1.0", "schema_issuer_did":"6XFh8yBzrpJQmNyZzgoTqB", "issuer_did":"8XFh8yBzrpJQmNyZzgoTqB", "cred_def_id": "8XFh8yBzrpJQmNyZzgoTqB:3:CL:1766" }, { "schema_id": "5XFh8yBzrpJQmNyZzgoTqB:2:schema_name:0.0.11", "schema_name":"BYU Student Info", "schema_version":"1.0", "schema_issuer_did":"5XFh8yBzrpJQmNyZzgoTqB", "issuer_did":"66Fh8yBzrpJQmNyZzgoTqB", "cred_def_id": "66Fh8yBzrpJQmNyZzgoTqB:3:CL:1766"}]}]
proof = await Proof.create(source_id, name, requested_attrs)
data = proof.serialize()
proof2 = await Proof.deserialize(data)
:return: Proof Object |
16,712 | def start_heron_tools(masters, cl_args):
single_master = list(masters)[0]
wait_for_master_to_start(single_master)
cmd = "%s run %s >> /tmp/heron_tools_start.log 2>&1 &" \
% (get_nomad_path(cl_args), get_heron_tools_job_file(cl_args))
Log.info("Starting Heron Tools on %s" % single_master)
if not is_self(single_master):
cmd = ssh_remote_execute(cmd, single_master, cl_args)
Log.debug(cmd)
pid = subprocess.Popen(cmd,
shell=True,
stdout=subprocess.PIPE,
stderr=subprocess.PIPE)
return_code = pid.wait()
output = pid.communicate()
Log.debug("return code: %s output: %s" % (return_code, output))
if return_code != 0:
Log.error("Failed to start Heron Tools on %s with error:\n%s" % (single_master, output[1]))
sys.exit(-1)
wait_for_job_to_start(single_master, "heron-tools")
Log.info("Done starting Heron Tools") | Start Heron tracker and UI |
16,713 | def _request(self, method, uri_relative, request_bytes, params,
custom_headers):
uri_relative_with_params = self._append_params_to_uri(uri_relative,
params)
if uri_relative not in self._URIS_NOT_REQUIRING_ACTIVE_SESSION:
if self._api_context.ensure_session_active():
from bunq.sdk.context import BunqContext
BunqContext.update_api_context(self._api_context)
all_headers = self._get_all_headers(
method,
uri_relative_with_params,
request_bytes,
custom_headers
)
response = requests.request(
method,
self._get_uri_full(uri_relative_with_params),
data=request_bytes,
headers=all_headers,
proxies={self._FIELD_PROXY_HTTPS: self._api_context.proxy_url},
)
self._assert_response_success(response)
if self._api_context.installation_context is not None:
security.validate_response(
self._api_context.installation_context.public_key_server,
response.status_code,
response.content,
response.headers
)
return self._create_bunq_response_raw(response) | :type method: str
:type uri_relative: str
:type request_bytes: bytes
:type params: dict[str, str]
:type custom_headers: dict[str, str]
:return: BunqResponseRaw |
16,714 | def learnObject(self,
objectDescription,
randomLocation=False,
useNoise=False,
noisyTrainingTime=1):
self.reset()
self.column.activateRandomLocation()
locationsAreUnique = True
if randomLocation or useNoise:
numIters = noisyTrainingTime
else:
numIters = 1
for i in xrange(numIters):
for iFeature, feature in enumerate(objectDescription["features"]):
self._move(feature, randomLocation=randomLocation, useNoise=useNoise)
featureSDR = self.features[feature["name"]]
self._sense(featureSDR, learn=True, waitForSettle=False)
locationRepresentation = self.column.getSensoryAssociatedLocationRepresentation()
self.locationRepresentations[(objectDescription["name"],
iFeature)].append(locationRepresentation)
self.inputRepresentations[(objectDescription["name"],
iFeature, feature["name"])] = (
self.column.L4.getWinnerCells())
locationTuple = tuple(locationRepresentation)
locationsAreUnique = (locationsAreUnique and
locationTuple not in self.representationSet)
self.representationSet.add(tuple(locationRepresentation))
self.learnedObjects.append(objectDescription)
return locationsAreUnique | Train the network to recognize the specified object. Move the sensor to one of
its features and activate a random location representation in the location
layer. Move the sensor over the object, updating the location representation
through path integration. At each point on the object, form reciprocal
connections between the represention of the location and the representation
of the sensory input.
@param objectDescription (dict)
For example:
{"name": "Object 1",
"features": [{"top": 0, "left": 0, "width": 10, "height": 10, "name": "A"},
{"top": 0, "left": 10, "width": 10, "height": 10, "name": "B"}]}
@return locationsAreUnique (bool)
True if this object was assigned a unique set of locations. False if a
location on this object has the same location representation as another
location somewhere else. |
16,715 | def get_instance(self):
try:
return self._instance
except AttributeError:
self._instance = self._decorated()
return self._instance | Returns the singleton instance. Upon its first call, it creates a
new instance of the decorated class and calls its `__init__` method.
On all subsequent calls, the already created instance is returned. |
16,716 | def _dK_dR(self, R):
return -self._ns * self._N / R**2 / self._sin_alpha | Return numpy array of dK/dR from K1 up to and including Kn. |
16,717 | def run(self, file_list):
data = {: 0,
: 0,
: []}
for filename in file_list:
path, fname = os.path.split(filename)
if os.path.splitext(filename)[1] != :
return data | Runs pylint on the list of files and return a dictionary:
{<filename>: [list of pylint errors],
'total': <int> - Total number of pylint messages,
'errors': <int> - Number of pylint errors,
'scores': (<filename>, score) - Individual score for each file.}
:param file_list:
:return: |
16,718 | def _interpolationFunctionFactory(self, spline_order=None, cval=None):
import scipy.ndimage
if spline_order is None:
spline_order = self.interpolation_spline_order
if cval is None:
cval = self.interpolation_cval
data = self.grid
if cval is None:
cval = data.min()
try:
_data = data.filled(cval)
except AttributeError:
_data = data
coeffs = scipy.ndimage.spline_filter(_data, order=spline_order)
x0 = self.origin
dx = self.delta
def _transform(cnew, c0, dc):
return (numpy.atleast_1d(cnew) - c0) / dc
def interpolatedF(*coordinates):
_coordinates = numpy.array(
[_transform(coordinates[i], x0[i], dx[i]) for i in range(len(
coordinates))])
return scipy.ndimage.map_coordinates(coeffs,
_coordinates,
prefilter=False,
mode=,
cval=cval)
return interpolatedF | Returns a function F(x,y,z) that interpolates any values on the grid.
_interpolationFunctionFactory(self,spline_order=3,cval=None) --> F
*cval* is set to :meth:`Grid.grid.min`. *cval* cannot be chosen too
large or too small or NaN because otherwise the spline interpolation
breaks down near that region and produces wild oscillations.
.. Note:: Only correct for equally spaced values (i.e. regular edges with
constant delta).
.. SeeAlso:: http://www.scipy.org/Cookbook/Interpolation |
16,719 | def _group_and_publish_tasks_statistics(self, result):
for i in result:
executor_id = i[]
i[] = executor_id[:executor_id.rfind()]
i[][] = 1
r = {}
for i in result:
executor_id = i[]
r[executor_id] = r.get(executor_id, {})
r[executor_id][] = i[]
r[executor_id][] = r[executor_id].get(, {})
r[executor_id][] = self._sum_statistics(
i[], r[executor_id][])
self._add_cpu_usage(r)
self._add_cpu_percent(r)
self._add_mem_percent(r)
self._publish(r) | This function group statistics of same tasks by adding them.
It also add 'instances_count' statistic to get information about
how many instances is running on the server
Args:
result: result of mesos query. List of dictionaries with
'executor_id', 'framework_id' as a strings and 'statistics'
as dictionary of labeled numbers |
16,720 | def restore_geometry_on_layout_change(self, value):
if value is not None:
assert type(value) is bool, " attribute: type is not !".format(
"restore_geometry_on_layout_change", value)
self.__restore_geometry_on_layout_change = value | Setter for **self.__restore_geometry_on_layout_change** attribute.
:param value: Attribute value.
:type value: bool |
16,721 | def wet_bulb_from_db_rh(db_temp, rh, b_press=101325):
es = 6.112 * math.e**((17.67 * db_temp) / (db_temp + 243.5))
e = (es * rh) / 100
t_w = 0
increse = 10.0
previoussign = 1
e_d = 1
while math.fabs(e_d) > 0.005:
e_wg = 6.112 * (math.e**((17.67 * t_w) / (t_w + 243.5)))
eg = e_wg - (b_press/100) * (db_temp - t_w) * 0.00066 * (1 + (0.00155 * t_w))
e_d = e - eg
if e_d == 0:
break
else:
if e_d < 0:
cursign = -1
if cursign != previoussign:
previoussign = cursign
increse = increse / 10
else:
increse = increse
else:
cursign = 1
if cursign != previoussign:
previoussign = cursign
increse = increse/10
else:
increse = increse
t_w = t_w + increse * previoussign
return t_w | Wet Bulb Temperature (C) at db_temp (C),
Relative Humidity rh (%), and Pressure b_press (Pa).
Note:
[1] J. Sullivan and L. D. Sanders. "Method for obtaining wet-bulb temperatures by
modifying the psychrometric formula." Center for Experiment Design and Data
Analysis. NOAA - National Oceanic and Atmospheric Administration.
http://www.srh.noaa.gov/epz/?n=wxcalc_rh |
16,722 | def leaf_sections(h):
leaves = []
for section in h.allsec():
sref = h.SectionRef(sec=section)
if sref.nchild() < 0.9:
leaves.append(section)
return leaves | Returns a list of all sections that have no children. |
16,723 | def activate_user(self, user):
if not user.active:
user.active = True
return True
return False | Activates a specified user. Returns `True` if a change was made.
:param user: The user to activate |
16,724 | def apply_palette(img, palette, options):
if not options.quiet:
print()
bg_color = palette[0]
fg_mask = get_fg_mask(bg_color, img, options)
orig_shape = img.shape
pixels = img.reshape((-1, 3))
fg_mask = fg_mask.flatten()
num_pixels = pixels.shape[0]
labels = np.zeros(num_pixels, dtype=np.uint8)
labels[fg_mask], _ = vq(pixels[fg_mask], palette)
return labels.reshape(orig_shape[:-1]) | Apply the pallete to the given image. The first step is to set all
background pixels to the background color; then, nearest-neighbor
matching is used to map each foreground color to the closest one in
the palette. |
16,725 | def download_interim_for_gssha(main_directory,
start_datetime,
end_datetime,
leftlon=-180,
rightlon=180,
toplat=90,
bottomlat=-90,
precip_only=False):
from ecmwfapi import ECMWFDataServer
server = ECMWFDataServer()
try:
mkdir(main_directory)
except OSError:
pass
download_area = "{toplat}/{leftlon}/{bottomlat}/{rightlon}".format(toplat=toplat,
leftlon=leftlon,
bottomlat=bottomlat,
rightlon=rightlon)
download_datetime = start_datetime
interim_request = {
: "interim",
: "oper",
: "sfc",
: "0.5/0.5",
: download_area,
: ,
}
while download_datetime <= end_datetime:
interim_request[] = download_datetime.strftime("%Y-%m-%d")
if not precip_only:
download_file = path.join(main_directory, "erai_gssha_{0}_an.nc".format(download_datetime.strftime("%Y%m%d")))
if not path.exists(download_file):
interim_request[] = "an"
interim_request[] = "2t/2d/sp/10u/10v/tcc"
interim_request[] = "0"
interim_request[] = "00/06/12/18"
interim_request[] = download_file
server.retrieve(interim_request)
download_file = path.join(main_directory, "erai_gssha_{0}_1_fc.nc".format(download_datetime.strftime("%Y%m%d")))
if not path.exists(download_file):
interim_request[] = "fc"
interim_request[] = "2t/2d/sp/10u/10v/tcc"
interim_request[] = "3"
interim_request[] = "00/06/12/18"
interim_request[] = download_file
server.retrieve(interim_request)
download_file = path.join(main_directory, "erai_gssha_{0}_fc.nc".format(download_datetime.strftime("%Y%m%d")))
if not path.exists(download_file):
interim_request[] = "fc"
interim_request[] = "tp/ssrd"
interim_request[] = "3/6/9/12"
interim_request[] = "00/12"
interim_request[] = download_file
server.retrieve(interim_request)
tmp_download_file = download_file +
with xr.open_dataset(download_file) as xd:
diff_xd = xd.diff()
xd.tp[1:4] = diff_xd.tp[:3]
xd.tp[5:] = diff_xd.tp[4:]
xd.ssrd[1:4] = diff_xd.ssrd[:3]
xd.ssrd[5:] = diff_xd.ssrd[4:]
xd.to_netcdf(tmp_download_file)
remove(download_file)
rename(tmp_download_file, download_file)
download_file = path.join(main_directory, "erai_gssha_{0}_0_fc.nc".format(download_datetime.strftime("%Y%m%d")))
if download_datetime <= start_datetime and not path.exists(download_file):
loc_download_date = (download_datetime-timedelta(1)).strftime("%Y-%m-%d")
interim_request[] = "fc"
interim_request[] = "tp/ssrd"
interim_request[] = "9/12"
interim_request[] = "12"
interim_request[] = download_file
interim_request[] = loc_download_date
server.retrieve(interim_request)
tmp_download_file = download_file +
with xr.open_dataset(download_file) as xd:
inc_xd = xd.diff()
inc_xd.to_netcdf(tmp_download_file)
remove(download_file)
rename(tmp_download_file, download_file)
download_datetime += timedelta(1) | Function to download ERA5 data for GSSHA
.. note:: https://software.ecmwf.int/wiki/display/WEBAPI/Access+ECMWF+Public+Datasets
Args:
main_directory(:obj:`str`): Location of the output for the forecast data.
start_datetime(:obj:`str`): Datetime for download start.
end_datetime(:obj:`str`): Datetime for download end.
leftlon(Optional[:obj:`float`]): Left bound for longitude. Default is -180.
rightlon(Optional[:obj:`float`]): Right bound for longitude. Default is 180.
toplat(Optional[:obj:`float`]): Top bound for latitude. Default is 90.
bottomlat(Optional[:obj:`float`]): Bottom bound for latitude. Default is -90.
precip_only(Optional[bool]): If True, will only download precipitation.
Example::
from gsshapy.grid.era_to_gssha import download_era_interim_for_gssha
era_interim_folder = '/era_interim'
leftlon = -95
rightlon = -75
toplat = 35
bottomlat = 30
download_era_interim_for_gssha(era5_folder, leftlon, rightlon, toplat, bottomlat) |
16,726 | def reporter(self):
make_path(self.reportpath)
logging.info(.format(self.analysistype))
header =
data =
with open(self.sixteens_report, ) as report:
with open(os.path.join(self.reportpath, self.analysistype + ), ) as sequences:
for sample in self.runmetadata.samples:
sample[self.analysistype].sixteens_match =
sample[self.analysistype].species =
try:
sample[self.analysistype].besthit = sorted(sample[self.analysistype].resultssnp.items(),
key=operator.itemgetter(1))[0][0]
for record in SeqIO.parse(sample[self.analysistype].baitfile, ):
if sample[self.analysistype].besthit in record.id:
sample[self.analysistype].sixteens_match = record.description.split()[0]
sample[self.analysistype].species = \
sample[self.analysistype].sixteens_match.split()[-1].split()[1]
data += sample.name +
for name, identity in sample[self.analysistype].results.items():
if name == sample[self.analysistype].besthit:
data += .format(name, identity, sample[self.analysistype].genus,
sample[self.analysistype].avgdepth[name])
record = SeqRecord(Seq(sample[self.analysistype].sequences[name],
IUPAC.unambiguous_dna),
id=.format(sample.name, ),
description=)
SeqIO.write(record, sequences, )
except (AttributeError, IndexError):
data += .format(sample.name)
report.write(header)
report.write(data) | Creates a report of the results |
16,727 | def getClassAllSubs(self, aURI):
aURI = aURI
try:
qres = self.rdfgraph.query(
% (aURI))
except:
printDebug("... warning: the query failed (maybe missing SPARQL 1.1 support?)")
qres = []
return list(qres) | note: requires SPARQL 1.1
2015-06-04: currenlty not used, inferred from above |
16,728 | async def async_input(prompt):
print(prompt, end=, flush=True)
return (await loop.run_in_executor(None, sys.stdin.readline)).rstrip() | Python's ``input()`` is blocking, which means the event loop we set
above can't be running while we're blocking there. This method will
let the loop run while we wait for input. |
16,729 | def loads(string):
d = _loads(string)
for k, v in d.items():
FILTERS[dr.get_component(k) or k] = set(v) | Loads the filters dictionary given a string. |
16,730 | def get_location(conn, vm_):
locations = conn.list_locations()
vm_location = config.get_cloud_config_value(, vm_, __opts__)
if not six.PY3:
vm_location = vm_location.encode(
,
)
for img in locations:
if isinstance(img.id, six.string_types) and not six.PY3:
img_id = img.id.encode(, )
else:
img_id = str(img.id)
if isinstance(img.name, six.string_types) and not six.PY3:
img_name = img.name.encode(, )
else:
img_name = str(img.name)
if vm_location and vm_location in (img_id, img_name):
return img
raise SaltCloudNotFound(
{0}\.format(
vm_location
)
) | Return the location object to use |
16,731 | def find_one(self, id_, raw=True, recovery_name=True):
url = "https://api.knackhq.com/v1/objects/%s/records/%s" % (
self.key, id_)
res = self.get(url)
if raw:
try:
res = self.get_raw_values(res, recovery_name=recovery_name)
except:
pass
else:
try:
res = self.get_html_values(res, recovery_name=recovery_name)
except:
pass
return res | Find one record.
Ref: http://helpdesk.knackhq.com/support/solutions/articles/5000446111-api-reference-root-access#retrieve
:param id_: record id_
:param using_name: if you are using field name in filter and sort_field,
please set using_name = True (it's the default), otherwise, False
:param raw: Default True, set True if you want the data in raw format.
Otherwise, html format
:param recovery_name: Default True, set True if you want field name
instead of field key
**中文文档**
返回一条记录 |
16,732 | def to_message(self, keywords=None, show_header=True):
if keywords is None and self.layer is not None:
keywords = self.read_keywords(self.layer)
preferred_order = [
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
]
report = m.Message()
if show_header:
logo_element = m.Brand()
report.add(logo_element)
report.add(m.Heading(tr(
), **styles.BLUE_LEVEL_4_STYLE))
report.add(m.Text(tr(
)))
table = m.Table(style_class=)
for keyword in preferred_order:
if keyword in keywords:
value = keywords[keyword]
row = self._keyword_to_row(keyword, value)
keywords.pop(keyword)
table.add(row)
for keyword in keywords:
value = keywords[keyword]
row = self._keyword_to_row(keyword, value)
table.add(row)
if self.layer:
keyword = tr()
value = self.layer.crs().authid()
row = self._keyword_to_row(keyword, value)
table.add(row)
keyword = tr()
value = self.layer.publicSource()
row = self._keyword_to_row(keyword, value, wrap_slash=True)
table.add(row)
report.add(table)
return report | Format keywords as a message object.
.. versionadded:: 3.2
.. versionchanged:: 3.3 - default keywords to None
The message object can then be rendered to html, plain text etc.
:param keywords: Keywords to be converted to a message. Optional. If
not passed then we will attempt to get keywords from self.layer
if it is not None.
:type keywords: dict
:param show_header: Flag indicating if InaSAFE logo etc. should be
added above the keywords table. Default is True.
:type show_header: bool
:returns: A safe message object containing a table.
:rtype: safe.messaging.Message |
16,733 | def _to_dict(self):
_dict = {}
if hasattr(self, ) and self.classifier_id is not None:
_dict[] = self.classifier_id
if hasattr(self, ) and self.url is not None:
_dict[] = self.url
if hasattr(self, ) and self.collection is not None:
_dict[] = [x._to_dict() for x in self.collection]
return _dict | Return a json dictionary representing this model. |
16,734 | def load_wmt_en_fr_dataset(path=):
path = os.path.join(path, )
_WMT_ENFR_TRAIN_URL = "http://www.statmt.org/wmt10/"
_WMT_ENFR_DEV_URL = "http://www.statmt.org/wmt15/"
def gunzip_file(gz_path, new_path):
logging.info("Unpacking %s to %s" % (gz_path, new_path))
with gzip.open(gz_path, "rb") as gz_file:
with open(new_path, "wb") as new_file:
for line in gz_file:
new_file.write(line)
def get_wmt_enfr_train_set(path):
filename = "training-giga-fren.tar"
maybe_download_and_extract(filename, path, _WMT_ENFR_TRAIN_URL, extract=True)
train_path = os.path.join(path, "giga-fren.release2.fixed")
gunzip_file(train_path + ".fr.gz", train_path + ".fr")
gunzip_file(train_path + ".en.gz", train_path + ".en")
return train_path
def get_wmt_enfr_dev_set(path):
filename = "dev-v2.tgz"
dev_file = maybe_download_and_extract(filename, path, _WMT_ENFR_DEV_URL, extract=False)
dev_name = "newstest2013"
dev_path = os.path.join(path, "newstest2013")
if not (gfile.Exists(dev_path + ".fr") and gfile.Exists(dev_path + ".en")):
logging.info("Extracting tgz file %s" % dev_file)
with tarfile.open(dev_file, "r:gz") as dev_tar:
fr_dev_file = dev_tar.getmember("dev/" + dev_name + ".fr")
en_dev_file = dev_tar.getmember("dev/" + dev_name + ".en")
fr_dev_file.name = dev_name + ".fr"
en_dev_file.name = dev_name + ".en"
dev_tar.extract(fr_dev_file, path)
dev_tar.extract(en_dev_file, path)
return dev_path
logging.info("Load or Download WMT English-to-French translation > {}".format(path))
train_path = get_wmt_enfr_train_set(path)
dev_path = get_wmt_enfr_dev_set(path)
return train_path, dev_path | Load WMT'15 English-to-French translation dataset.
It will download the data from the WMT'15 Website (10^9-French-English corpus), and the 2013 news test from the same site as development set.
Returns the directories of training data and test data.
Parameters
----------
path : str
The path that the data is downloaded to, defaults is ``data/wmt_en_fr/``.
References
----------
- Code modified from /tensorflow/models/rnn/translation/data_utils.py
Notes
-----
Usually, it will take a long time to download this dataset. |
16,735 | def envelope(self, header, body):
env = Element("Envelope", ns=envns)
env.addPrefix(Namespace.xsins[0], Namespace.xsins[1])
env.append(header)
env.append(body)
return env | Build the B{<Envelope/>} for a SOAP outbound message.
@param header: The SOAP message B{header}.
@type header: L{Element}
@param body: The SOAP message B{body}.
@type body: L{Element}
@return: The SOAP envelope containing the body and header.
@rtype: L{Element} |
16,736 | def read_config(self, filename):
if not os.path.exists(filename):
raise Exception("Configuration file cannot be found: %s" % filename)
with io.open(filename, encoding=) as stream:
return yaml.safe_load(stream) | Returns data found in config file (as dict), or raises exception if file not found |
16,737 | def save_uca(self, rootpath, raw=False, as_int=False):
self.save_array(self.uca, None, , rootpath, raw, as_int=as_int) | Saves the upstream contributing area to a file |
16,738 | def add(self, *args):
i = 1
row = []
for button in args:
row.append(button.to_dic())
if i % self.row_width == 0:
self.keyboard.append(row)
row = []
i += 1
if len(row) > 0:
self.keyboard.append(row) | This function adds strings to the keyboard, while not exceeding row_width.
E.g. ReplyKeyboardMarkup#add("A", "B", "C") yields the json result {keyboard: [["A"], ["B"], ["C"]]}
when row_width is set to 1.
When row_width is set to 2, the following is the result of this function: {keyboard: [["A", "B"], ["C"]]}
See https://core.telegram.org/bots/api#replykeyboardmarkup
:param args: KeyboardButton to append to the keyboard |
16,739 | def addfield(self, pkt, s, i):
if i is None:
if self.length_of is not None:
fld, fval = pkt.getfield_and_val(self.length_of)
tmp = pkt.tls_session.frozen
pkt.tls_session.frozen = True
f = fld.i2len(pkt, fval)
pkt.tls_session.frozen = tmp
i = self.adjust(pkt, f)
if i == 0:
return s
return s + struct.pack(self.fmt, i) | There is a hack with the _ExtensionsField.i2len. It works only because
we expect _ExtensionsField.i2m to return a string of the same size (if
not of the same value) upon successive calls (e.g. through i2len here,
then i2m when directly building the _ExtensionsField).
XXX A proper way to do this would be to keep the extensions built from
the i2len call here, instead of rebuilding them later on. |
16,740 | async def track_event(event, state, service_name):
redis = await aioredis.create_redis(
(EVENT_TRACKING_HOST, 6379), loop=loop)
now = datetime.utcnow()
event_id = event.event_id
tracking_data = json.dumps({
"event_id": event_id,
"timestamp": str(now),
"state": state
})
await redis.rpush(service_name, tracking_data)
redis.close()
await redis.wait_closed() | Store state of events in memory
:param event: Event object
:param state: EventState object
:param service_name: Name of service name |
16,741 | def quantile(y, k=4):
w = 100. / k
p = np.arange(w, 100 + w, w)
if p[-1] > 100.0:
p[-1] = 100.0
q = np.array([stats.scoreatpercentile(y, pct) for pct in p])
q = np.unique(q)
k_q = len(q)
if k_q < k:
Warn(,
UserWarning)
Warn( % k_q, UserWarning)
return q | Calculates the quantiles for an array
Parameters
----------
y : array
(n,1), values to classify
k : int
number of quantiles
Returns
-------
q : array
(n,1), quantile values
Examples
--------
>>> import numpy as np
>>> import mapclassify as mc
>>> x = np.arange(1000)
>>> mc.classifiers.quantile(x)
array([249.75, 499.5 , 749.25, 999. ])
>>> mc.classifiers.quantile(x, k = 3)
array([333., 666., 999.])
Note that if there are enough ties that the quantile values repeat, we
collapse to pseudo quantiles in which case the number of classes will be
less than k
>>> x = [1.0] * 100
>>> x.extend([3.0] * 40)
>>> len(x)
140
>>> y = np.array(x)
>>> mc.classifiers.quantile(y)
array([1., 3.]) |
16,742 | def set_ccc(ctx, management_key, pin):
controller = ctx.obj[]
_ensure_authenticated(ctx, controller, pin, management_key)
controller.update_ccc() | Generate and set a CCC on the YubiKey. |
16,743 | def working_yesterday(self, date_from=None, date_format=None):
return self.delta(days=-1, date_from=date_from, date_format=date_format, days_range=[1, 2, 3, 4, 5, 6]) | Retourne la date d'hier depuis maintenant ou depuis une date fournie
seulement sur les jours ouvrableq.
Ainsi lundi devient samedi et samedi devient vendredi
:param: :date_from date de référence
:return datetime |
16,744 | def __RetrieveContent(host, port, adapter, version, path, keyFile, certFile,
thumbprint, sslContext, connectionPoolTimeout=CONNECTION_POOL_IDLE_TIMEOUT_SEC):
if adapter != "SOAP":
raise ValueError(adapter)
stub = SoapStubAdapter(host, port, version=version, path=path,
certKeyFile=keyFile, certFile=certFile,
thumbprint=thumbprint, sslContext=sslContext,
connectionPoolTimeout=connectionPoolTimeout)
si = vim.ServiceInstance("ServiceInstance", stub)
content = None
try:
content = si.RetrieveContent()
except vmodl.MethodFault:
raise
except Exception as e:
(type, value, traceback) = sys.exc_info()
if traceback:
fault = vim.fault.HostConnectFault(msg=str(e))
reraise(vim.fault.HostConnectFault, fault, traceback)
else:
raise vim.fault.HostConnectFault(msg=str(e))
return content, si, stub | Retrieve service instance for connection.
@param host: Which host to connect to.
@type host: string
@param port: Port
@type port: int
@param adapter: Adapter
@type adapter: string
@param version: Version
@type version: string
@param path: Path
@type path: string
@param keyFile: ssl key file path
@type keyFile: string
@param certFile: ssl cert file path
@type certFile: string
@param connectionPoolTimeout: Timeout in secs for idle connections to close, specify negative numbers for never
closing the connections
@type connectionPoolTimeout: int |
16,745 | def run(self, root):
math_tag_class = self.pelican_mathjax_extension.getConfig()
for parent in root:
div_math = []
children = list(parent)
for div in parent.findall():
if div.get() == math_tag_class:
div_math.append(children.index(div))
if not div_math:
continue
insert_idx = list(root).index(parent)
self.correct_html(root, children, div_math, insert_idx, parent.text)
root.remove(parent)
return root | Searches for <div class="math"> that are children in <p> tags and corrects
the invalid HTML that results |
16,746 | async def invoke(self, *args, **kwargs):
r
try:
command = args[0]
except IndexError:
raise TypeError() from None
arguments = []
if command.cog is not None:
arguments.append(command.cog)
arguments.append(self)
arguments.extend(args[1:])
ret = await command.callback(*arguments, **kwargs)
return ret | r"""|coro|
Calls a command with the arguments given.
This is useful if you want to just call the callback that a
:class:`.Command` holds internally.
Note
------
You do not pass in the context as it is done for you.
Warning
---------
The first parameter passed **must** be the command being invoked.
Parameters
-----------
command: :class:`.Command`
A command or subclass of a command that is going to be called.
\*args
The arguments to to use.
\*\*kwargs
The keyword arguments to use. |
16,747 | def show_data(self, item):
child, cookie = self.mainview_tree.GetFirstChild(item)
child_list = []
while child.IsOk():
child_list.append(child)
child, cookie = self.mainview_tree.GetNextChild(item, cookie)
lc = self.nodeview_lc
lc.DeleteAllItems()
for i, child in enumerate(child_list):
text = self.mainview_tree.GetItemText(child)
try:
k, v = [s.strip() for s in text.split()]
except ValueError:
k, v = text,
idx = lc.InsertItem(MAXNROW, v)
lc.SetItem(idx, 1, k) | show data key-value in ListCtrl for tree item |
16,748 | def fit_model(ts, sc=None):
assert sc != None, "Missing SparkContext"
jvm = sc._jvm
jmodel = jvm.com.cloudera.sparkts.models.GARCH.fitModel(_py2java(sc, Vectors.dense(ts)))
return GARCHModel(jmodel=jmodel, sc=sc) | Fits a GARCH(1, 1) model to the given time series.
Parameters
----------
ts:
the time series to which we want to fit a GARCH model as a Numpy array
Returns a GARCH model |
16,749 | def update_vlan(self, name, vid, vni):
cmd = % (vid, vni)
return self.configure_interface(name, cmd) | Adds a new vlan to vni mapping for the interface
EosVersion:
4.13.7M
Args:
vlan (str, int): The vlan id to map to the vni
vni (str, int): The vni value to use
Returns:
True if the command completes successfully |
16,750 | def plot(cg):
from androguard.core.analysis.analysis import ExternalMethod
import matplotlib.pyplot as plt
import networkx as nx
pos = nx.spring_layout(cg)
internal = []
external = []
for n in cg.node:
if isinstance(n, ExternalMethod):
external.append(n)
else:
internal.append(n)
nx.draw_networkx_nodes(cg, pos=pos, node_color=, nodelist=internal)
nx.draw_networkx_nodes(cg, pos=pos, node_color=, nodelist=external)
nx.draw_networkx_edges(cg, pos, arrow=True)
nx.draw_networkx_labels(cg, pos=pos,
labels={x: "{} {}".format(x.get_class_name(),
x.get_name())
for x in cg.edge})
plt.draw()
plt.show() | Plot the call graph using matplotlib
For larger graphs, this should not be used, as it is very slow
and probably you can not see anything on it.
:param cg: A networkx call graph to plot |
16,751 | def _on_timeout(self, _attempts=0):
if self._connection is None and _attempts < 3:
self._timer = self.session.cluster.connection_class.create_timer(
0.01,
partial(self._on_timeout, _attempts=_attempts + 1)
)
return
if self._connection is not None:
try:
self._connection._requests.pop(self._req_id)
except KeyError:
return
pool = self.session._pools.get(self._current_host)
if pool and not pool.is_shutdown:
with self._connection.lock:
self._connection.request_ids.append(self._req_id)
pool.return_connection(self._connection)
errors = self._errors
if not errors:
if self.is_schema_agreed:
key = str(self._current_host.endpoint) if self._current_host else
errors = {key: "Client request timeout. See Session.execute[_async](timeout)"}
else:
connection = self.session.cluster.control_connection._connection
host = str(connection.endpoint) if connection else
errors = {host: "Request timed out while waiting for schema agreement. See Session.execute[_async](timeout) and Cluster.max_schema_agreement_wait."}
self._set_final_exception(OperationTimedOut(errors, self._current_host)) | Called when the request associated with this ResponseFuture times out.
This function may reschedule itself. The ``_attempts`` parameter tracks
the number of times this has happened. This parameter should only be
set in those cases, where ``_on_timeout`` reschedules itself. |
16,752 | def _get_paths():
import os
base_path = os.path.dirname(os.path.abspath(__file__))
test_data_dir = os.path.join(base_path, , , )
test_data_file = os.path.join(test_data_dir, )
return test_data_dir, test_data_file | Generate paths to test data. Done in a function to protect namespace a bit. |
16,753 | def disqus_sso_script(context):
settings = context["settings"]
public_key = getattr(settings, "COMMENTS_DISQUS_API_PUBLIC_KEY", "")
secret_key = getattr(settings, "COMMENTS_DISQUS_API_SECRET_KEY", "")
user = context["request"].user
if public_key and secret_key and user.is_authenticated():
context["public_key"] = public_key
context["sso_data"] = _get_disqus_sso(user, public_key, secret_key)
return context | Provides a generic context variable which adds single-sign-on
support to DISQUS if ``COMMENTS_DISQUS_API_PUBLIC_KEY`` and
``COMMENTS_DISQUS_API_SECRET_KEY`` are specified. |
16,754 | def resetPassword(self, email=True):
url = self.root + "/reset"
params = {
"f" : "json",
"email" : email
}
return self._post(url=url,
param_dict=params,
securityHandler=self._securityHandler,
proxy_url=self._proxy_url,
proxy_port=self._proxy_port) | resets a users password for an account. The password will be randomly
generated and emailed by the system.
Input:
email - boolean that an email password will be sent to the
user's profile email address. The default is True. |
16,755 | def file_needs_update(target_file, source_file):
if not os.path.isfile(target_file) or get_md5_file_hash(target_file) != get_md5_file_hash(source_file):
return True
return False | Checks if target_file is not existing or differing from source_file
:param target_file: File target for a copy action
:param source_file: File to be copied
:return: True, if target_file not existing or differing from source_file, else False
:rtype: False |
16,756 | def build(self, pre=None, shortest=False):
global REF_LEVEL
REF_LEVEL += 1
try:
if pre is None:
pre = []
definition = self.fuzzer.get_ref(self.cat, self.refname)
res = utils.val(
definition,
pre,
shortest=(shortest or REF_LEVEL >= self.max_recursion)
)
return res
finally:
REF_LEVEL -= 1 | Build the ``Ref`` instance by fetching the rule from
the GramFuzzer instance and building it
:param list pre: The prerequisites list
:param bool shortest: Whether or not the shortest reference-chain (most minimal) version of the field should be generated. |
16,757 | def to_dict(self, fields=_all_fields, labels=None):
fields = set(fields)
diff = fields.difference(_all_fields)
if isinstance(labels, Sequence):
labels = _map_labels(self, labels)
elif labels is None:
labels = {}
if diff:
raise ValueError(
.format(.join(diff))
)
return _to_dict(self, fields, labels) | Encode the node as a dictionary suitable for JSON serialization.
Args:
fields: if given, this is a whitelist of fields to include
on nodes (`daughters` and `form` are always shown)
labels: optional label annotations to embed in the
derivation dict; the value is a list of lists matching
the structure of the derivation (e.g.,
`["S" ["NP" ["NNS" ["Dogs"]]] ["VP" ["VBZ" ["bark"]]]]`)
Returns:
dict: the dictionary representation of the structure |
16,758 | def split_unquoted_newlines(stmt):
text = text_type(stmt)
lines = SPLIT_REGEX.split(text)
outputlines = []
for line in lines:
if not line:
continue
elif LINE_MATCH.match(line):
outputlines.append()
else:
outputlines[-1] += line
return outputlines | Split a string on all unquoted newlines.
Unlike str.splitlines(), this will ignore CR/LF/CR+LF if the requisite
character is inside of a string. |
16,759 | def load_backends(self):
for name, backend_settings in settings.storage.iteritems():
backend_path = backend_settings[]
backend_module, backend_cls = backend_path.rsplit(, 1)
backend_module = import_module(backend_module)
backend_constructor = getattr(backend_module, backend_cls)
self.backends[name] = backend_constructor(name,
self.namespaces,
**backend_settings) | Loads all the backends setup in settings.py. |
16,760 | def pattern_to_regex(cls, pattern):
if isinstance(pattern, unicode):
return_type = unicode
elif isinstance(pattern, bytes):
return_type = bytes
pattern = pattern.decode(_BYTES_ENCODING)
else:
raise TypeError("pattern:{!r} is not a unicode or byte string.".format(pattern))
pattern = pattern.strip()
if pattern.startswith():
regex = None
include = None
elif pattern == :
regex = None
include = None
elif pattern:
if pattern.startswith():
include = False
pattern = pattern[1:]
else:
include = True
if pattern.startswith():
pattern = pattern[1:]
pattern_segs = pattern.split()
if not pattern_segs[0]:
del pattern_segs[0]
elif len(pattern_segs) == 1 or (len(pattern_segs) == 2 and not pattern_segs[1]):
if pattern_segs[0] != :
pattern_segs.insert(0, )
else:
pass
if not pattern_segs[-1] and len(pattern_segs) > 1:
pattern_segs[-1] =
output = []
need_slash = False
end = len(pattern_segs) - 1
for i, seg in enumerate(pattern_segs):
if seg == :
if i == 0 and i == end:
output.append()
elif i == 0:
output.append()
need_slash = False
elif i == end:
output.append()
else:
output.append()
need_slash = True
elif seg == :
if need_slash:
output.append()
output.append()
need_slash = True
else:
if need_slash:
output.append()
output.append(cls._translate_segment_glob(seg))
if i == end and include is True:
output.append()
need_slash = True
output.append()
regex = .join(output)
else:
regex = None
include = None
if regex is not None and return_type is bytes:
regex = regex.encode(_BYTES_ENCODING)
return regex, include | Convert the pattern into a regular expression.
*pattern* (:class:`unicode` or :class:`bytes`) is the pattern to
convert into a regular expression.
Returns the uncompiled regular expression (:class:`unicode`, :class:`bytes`,
or :data:`None`), and whether matched files should be included
(:data:`True`), excluded (:data:`False`), or if it is a
null-operation (:data:`None`). |
16,761 | def get_list(self, id, name=None):
return self.create_list(dict(id=id, name=name)) | Get a list
Returns:
List: The list with the given `id` |
16,762 | def preprocessing_declaration(job, config):
if config.preprocessing:
job.fileStore.logToMaster( + config.uuid)
disk = if config.ci_test else
mem = if config.ci_test else
processed_normal = job.wrapJobFn(run_gatk_preprocessing, config.normal_bam, config.normal_bai,
config.reference, config.dict, config.fai, config.phase, config.mills,
config.dbsnp, mem, cores=1, memory=mem, disk=disk)
processed_tumor = job.wrapJobFn(run_gatk_preprocessing, config.tumor_bam, config.tumor_bai,
config.reference, config.dict, config.fai, config.phase, config.mills,
config.dbsnp, mem, cores=1, memory=mem, disk=disk)
static_workflow = job.wrapJobFn(static_workflow_declaration, config, processed_normal.rv(0),
processed_normal.rv(1), processed_tumor.rv(0), processed_tumor.rv(1))
job.addChild(processed_normal)
job.addChild(processed_tumor)
job.addFollowOn(static_workflow)
else:
job.addFollowOnJobFn(static_workflow_declaration, config, config.normal_bam, config.normal_bai,
config.tumor_bam, config.tumor_bai) | Declare jobs related to preprocessing
:param JobFunctionWrappingJob job: passed automatically by Toil
:param Namespace config: Argparse Namespace object containing argument inputs |
16,763 | def add_transformers(line):
assert FROM_EXPERIMENTAL.match(line)
line = FROM_EXPERIMENTAL.sub(, line)
line = line.split("
for trans in line.replace(, ).split():
import_transformer(trans) | Extract the transformers names from a line of code of the form
from __experimental__ import transformer1 [,...]
and adds them to the globally known dict |
16,764 | async def send(self, message: Union[str, bytes],
binary: bool=False,
compress: Optional[int]=None) -> None:
if isinstance(message, str):
message = message.encode()
if binary:
await self._send_frame(message, WSMsgType.BINARY, compress)
else:
await self._send_frame(message, WSMsgType.TEXT, compress) | Send a frame over the websocket with message as its payload. |
16,765 | def initialize(self, training_info, model, environment, device):
if self.trust_region:
self.average_model = self.model_factory.instantiate(action_space=environment.action_space).to(device)
self.average_model.load_state_dict(model.state_dict()) | Initialize policy gradient from reinforcer settings |
16,766 | def _prepare_sample(data, run_folder):
want = set(["description", "files", "genome_build", "name", "analysis", "upload", "algorithm"])
out = {}
for k, v in data.items():
if k in want:
out[k] = _relative_paths(v, run_folder)
if "algorithm" not in out:
analysis, algorithm = _select_default_algorithm(out.get("analysis"))
out["algorithm"] = algorithm
out["analysis"] = analysis
description = "%s-%s" % (out["name"], clean_name(out["description"]))
out["name"] = [out["name"], description]
out["description"] = description
return out | Extract passed keywords from input LIMS information. |
16,767 | def check_privatenet(self):
rpc_settings.setup(self.RPC_LIST)
client = RPCClient()
try:
version = client.get_version()
except NEORPCException:
raise PrivnetConnectionError("Error: private network container doesn%srm -rf %s*'." % self.chain_leveldb_path
)
else:
if not os.path.isdir(self.chain_leveldb_path):
os.mkdir(self.chain_leveldb_path)
with open(neopy_chain_meta_filename, "w") as f:
f.write(nonce_container) | Check if privatenet is running, and if container is same as the current Chains/privnet database.
Raises:
PrivnetConnectionError: if the private net couldn't be reached or the nonce does not match |
16,768 | def pilot_PLL(xr,fq,fs,loop_type,Bn,zeta):
T = 1/float(fs)
Kv = 1.0
Norder = 5
b_lp,a_lp = signal.butter(Norder,2*(fq/2.)/float(fs))
fstate = np.zeros(Norder)
Kv = 2*np.pi*Kv
if loop_type == 1:
fn = Bn
Kt = 2*np.pi*fn
elif loop_type == 2:
fn = 1/(2*np.pi)*2*Bn/(zeta + 1/(4*zeta))
Kt = 4*np.pi*zeta*fn
a = np.pi*fn/zeta
else:
print()
filt_in_last = 0
filt_out_last = 0
vco_in_last = 0
vco_out = 0
vco_out_last = 0
n = np.arange(0,len(xr))
theta = np.zeros(len(xr))
ev = np.zeros(len(xr))
phi_error = np.zeros(len(xr))
for kk in range(len(n)):
phi_error[kk] = 2*xr[kk]*np.sin(vco_out)
phi_error[kk],fstate = signal.lfilter(b_lp,a_lp,np.array([phi_error[kk]]),zi=fstate)
pd_out = phi_error[kk]
gain_out = Kt/Kv*pd_out
if loop_type == 2:
filt_in = a*gain_out
filt_out = filt_out_last + T/2.*(filt_in + filt_in_last)
filt_in_last = filt_in
filt_out_last = filt_out
filt_out = filt_out + gain_out
else:
filt_out = gain_out
vco_in = filt_out + fq/(Kv/(2*np.pi))
vco_out = vco_out_last + T/2.*(vco_in + vco_in_last)
vco_in_last = vco_in
vco_out_last = vco_out
vco_out = Kv*vco_out
ev[kk] = filt_out
theta[kk] = np.mod(vco_out,2*np.pi);
return theta,phi_error | theta, phi_error = pilot_PLL(xr,fq,fs,loop_type,Bn,zeta)
Mark Wickert, April 2014 |
16,769 | def create_context_menu(self, event, shape):
routes = self.df_routes.loc[self.df_routes.electrode_i == shape,
].astype(int).unique().tolist()
def _connect_callback(menu_item, command_signal, group, command, data):
callback_called = threading.Event()
def _callback(signal, widget, *args):
if callback_called.is_set():
return
callback_called.set()
_L().debug(, signal, group, command, data)
gtk.idle_add(self.emit, command_signal, group, command, data)
menu_item.connect(, ft.partial(_callback, ))
menu_item.connect(,
ft.partial(_callback, ))
if group is not None:
menu_item.set_tooltip_text(group)
menu = gtk.Menu()
if self.global_commands:
data = {: event.copy()}
command_signal =
for group, commands in self.global_commands.iteritems():
for command, title in commands.iteritems():
menu_item_j = gtk.MenuItem(title)
menu.append(menu_item_j)
_connect_callback(menu_item_j, command_signal, group,
command, data)
if self.electrode_commands:
separator = gtk.SeparatorMenuItem()
menu.append(separator)
menu_e = gtk.Menu()
menu_head_e = gtk.MenuItem()
menu_head_e.set_submenu(menu_e)
menu_head_e.set_use_underline(True)
menu.append(menu_head_e)
command_signal =
data = {: shape, : event.copy()}
for group, commands in self.electrode_commands.iteritems():
for command, title in commands.iteritems():
menu_item_j = gtk.MenuItem(title)
menu_e.append(menu_item_j)
_connect_callback(menu_item_j, command_signal, group,
command, data)
if routes and self.route_commands:
separator = gtk.SeparatorMenuItem()
menu.append(separator)
menu_r = gtk.Menu()
menu_head_r = gtk.MenuItem()
menu_head_r.set_submenu(menu_r)
menu_head_r.set_use_underline(True)
menu.append(menu_head_r)
command_signal =
data = {: routes, : event.copy()}
for group, commands in self.route_commands.iteritems():
for command, title in commands.iteritems():
menu_item_j = gtk.MenuItem(title)
menu_r.append(menu_item_j)
_connect_callback(menu_item_j, command_signal, group,
command, data)
menu.show_all()
return menu | Parameters
----------
event : gtk.gdk.Event
GTK mouse click event.
shape : str
Electrode shape identifier (e.g., `"electrode028"`).
Returns
-------
gtk.Menu
Context menu.
.. versionchanged:: 0.13
- Deprecate hard-coded commands (e.g., clear electrodes, clear
routes).
- Add anonymous global commands section at head of menu (i.e.,
commands not specific to an electrode or route).
- Add "Electrode" and "Route(s)" sub-menus. |
16,770 | def delete_fastqs(job, patient_dict):
for key in patient_dict.keys():
if not in key:
continue
job.fileStore.logToMaster( % (patient_dict[], key) +
)
job.fileStore.deleteGlobalFile(patient_dict[key])
return None | Delete the fastqs from the job Store once their purpose has been achieved (i.e. after all
mapping steps)
:param dict patient_dict: Dict of list of input fastqs |
16,771 | async def update_template_context(self, context: dict) -> None:
processors = self.template_context_processors[None]
if has_request_context():
blueprint = _request_ctx_stack.top.request.blueprint
if blueprint is not None and blueprint in self.template_context_processors:
processors = chain(processors, self.template_context_processors[blueprint])
extra_context: dict = {}
for processor in processors:
extra_context.update(await processor())
original = context.copy()
context.update(extra_context)
context.update(original) | Update the provided template context.
This adds additional context from the various template context
processors.
Arguments:
context: The context to update (mutate). |
16,772 | def tangent_approx(f: SYM, x: SYM, a: SYM = None, assert_linear: bool = False) -> Dict[str, SYM]:
if a is None:
a = ca.DM.zeros(x.numel(), 1)
f_a = ca.substitute(f, x, a)
J = ca.jacobian(f, x)
if assert_linear and ca.depends_on(J, x):
raise AssertionError()
return ca.solve(J, -f_a) | Create a tangent approximation of a non-linear function f(x) about point a
using a block lower triangular solver
0 = f(x) = f(a) + J*x # taylor series about a (if f(x) linear in x, then globally valid)
J*x = -f(a) # solve for x
x = -J^{-1}f(a) # but inverse is slow, so we use solve
where J = df/dx |
16,773 | def parse(self):
url = self.config.get()
self.cnml = CNMLParser(url)
self.parsed_data = self.cnml.getNodes() | parse data |
16,774 | def get_qtls_from_mapqtl_data(matrix, threshold, inputfile):
trait_name = inputfile.split(, 1)[1].split()[0]
qtls = []
qtl = None
for entry in matrix[1:]:
if qtl is None:
qtl = entry
if qtl[1] != entry[1]:
if float(qtl[4]) > float(threshold):
qtl[0] = trait_name
qtls.append(qtl)
qtl = entry
if entry[4] == :
entry[4] = 0
if qtl[4] == :
qtl[4] = 0
if float(entry[4]) > float(qtl[4]):
qtl = entry
if float(qtl[4]) > float(threshold):
qtl[0] = trait_name
if qtl not in qtls:
qtls.append(qtl)
return qtls | Extract the QTLs found by MapQTL reading its file.
This assume that there is only one QTL per linkage group.
:arg matrix, the MapQTL file read in memory
:arg threshold, threshold used to determine if a given LOD value is
reflective the presence of a QTL.
:arg inputfile, name of the inputfile in which the QTLs have been
found |
16,775 | def get_importable_modules(folder):
for fname in os.listdir(folder):
if fname.endswith() and not fname.startswith():
yield fname[:-3] | Find all module files in the given folder that end with '.py' and
don't start with an underscore.
@return module names
@rtype: iterator of string |
16,776 | def _cleanup_label(label):
conjunctions = [, , , , , ]
little_preps = [
, , , , , , , , , ]
articles = [, , ]
lbl = label.split(r)[0]
fixedwords = []
i = 0
for wrd in lbl.split():
i += 1
if i > 1 and re.match(romanNumeralPattern, wrd):
n = fromRoman(wrd)
if 0 < n < 100:
suffix = wrd.replace(toRoman(n), , 1)
fixed = .join((str(n), suffix))
wrd = fixed
wrd = wrd.title()
if wrd.lower() in (conjunctions+little_preps+articles) and i != 1:
wrd = wrd.lower()
fixedwords.append(wrd)
lbl = .join(fixedwords)
return lbl | Reformat the ALL CAPS OMIM labels to something more pleasant to read.
This will:
1. remove the abbreviation suffixes
2. convert the roman numerals to integer numbers
3. make the text title case,
except for suplied conjunctions/prepositions/articles
:param label:
:return: |
16,777 | def prefix_dict_keys(d: Dict[str, Any], prefix: str) -> Dict[str, Any]:
result = {}
for k, v in d.items():
result[prefix + k] = v
return result | Returns a dictionary that's a copy of as ``d`` but with ``prefix``
prepended to its keys. |
16,778 | def delete(self):
self.room.check_owner()
self.conn.make_call("deleteFiles", [self.fid]) | Remove this file |
16,779 | def get(self, request, *args, **kwargs):
response = super(EntryProtectionMixin, self).get(
request, *args, **kwargs)
if self.object.login_required and not request.user.is_authenticated:
return self.login()
if (self.object.password and self.object.password !=
self.request.session.get(self.session_key % self.object.pk)):
return self.password()
return response | Do the login and password protection. |
16,780 | def makeNetwork(self):
if "weight" in self.data_friendships.keys():
self.G=G=x.DiGraph()
else:
self.G=G=x.Graph()
F=self.data_friends
for friendn in range(self.n_friends):
if "posts" in F.keys():
G.add_node(F["name"][friendn],
label=F["label"][friendn],
posts=F["posts"][friendn])
elif "agerank" in F.keys():
G.add_node(F["name"][friendn],
label=F["label"][friendn],
gender=F["sex"][friendn],
locale=F["locale"][friendn],
agerank=F["agerank"][friendn])
else:
G.add_node(F["name"][friendn],
label=F["label"][friendn],
gender=F["sex"][friendn],
locale=F["locale"][friendn])
F=self.data_friendships
for friendshipn in range(self.n_friendships):
if "weight" in F.keys():
G.add_edge(F["node1"][friendshipn],F["node2"][friendshipn],weight=F["weight"][friendshipn])
else:
G.add_edge(F["node1"][friendshipn],F["node2"][friendshipn]) | Makes graph object from .gdf loaded data |
16,781 | def get_or_create_head(root):
head = _create_cssselector("head")(root)
if not head:
head = etree.Element("head")
body = _create_cssselector("body")(root)[0]
body.getparent().insert(0, head)
return head
else:
return head[0] | Ensures that `root` contains a <head> element and returns it. |
16,782 | def search(self, text, lookup=None):
return self.query().search(text, lookup=lookup) | Returns a new :class:`Query` for :attr:`Manager.model` with
a full text search value. |
16,783 | def revoke_token(self, token, headers=None, **kwargs):
self._check_configuration("site", "revoke_uri")
url = "%s%s" % (self.site, quote(self.revoke_url))
data = {: token}
data.update(kwargs)
return self._make_request(url, data=data, headers=headers) | Revoke an access token |
16,784 | def __call_api(self, path, params=None, api_url=FORECAST_URL):
if not params:
params = dict()
payload = {: self.api_key}
payload.update(params)
url = "%s/%s" % (api_url, path)
sess = self.__retry_session()
req = sess.get(url, params=payload, timeout=1)
try:
data = req.json()
except ValueError:
raise APIException("DataPoint has not returned any data, this could be due to an incorrect API key")
self.call_response = data
if req.status_code != 200:
msg = [data[m] for m in ("message", "error_message", "status") \
if m in data][0]
raise Exception(msg)
return data | Call the datapoint api using the requests module |
16,785 | def plot_3d_dist(Z, X, Y, N=1000, AxisOffset=0, Angle=-40, LowLim=None, HighLim=None, show_fig=True):
angle = Angle
fig = _plt.figure(figsize=(8, 6))
ax = fig.add_subplot(111, projection=)
y = Z[0:N]
x = X[0:N]
z = Y[0:N]
ax.scatter(x, y, z, alpha=0.3)
xlim = ax.get_xlim()
ylim = ax.get_ylim()
zlim = ax.get_zlim()
if LowLim != None:
lowLim = LowLim - AxisOffset
else:
lowLim = min([xlim[0], ylim[0], zlim[0]]) - AxisOffset
if HighLim != None:
highLim = HighLim + AxisOffset
else:
highLim = max([xlim[1], ylim[1], zlim[1]]) + AxisOffset
ax.set_xlim([lowLim, highLim])
ax.set_ylim([lowLim, highLim])
ax.set_zlim([lowLim, highLim])
ax.set_xlabel("x")
ax.set_ylabel("z")
ax.set_zlabel("y")
ax.view_init(30, angle)
h, yedges, zedges = _np.histogram2d(y, z, bins=50)
h = h.transpose()
normalized_map = _plt.cm.Blues(h/h.max())
yy, zz = _np.meshgrid(yedges, zedges)
xpos = lowLim
xflat = _np.full_like(yy, xpos)
p = ax.plot_surface(xflat, yy, zz, facecolors=normalized_map, rstride=1, cstride=1, shade=False)
h, xedges, zedges = _np.histogram2d(x, z, bins=50)
h = h.transpose()
normalized_map = _plt.cm.Blues(h/h.max())
xx, zz = _np.meshgrid(xedges, zedges)
ypos = highLim
yflat = _np.full_like(xx, ypos)
p = ax.plot_surface(xx, yflat, zz, facecolors=normalized_map, rstride=1, cstride=1, shade=False)
h, yedges, xedges = _np.histogram2d(y, x, bins=50)
h = h.transpose()
normalized_map = _plt.cm.Blues(h/h.max())
yy, xx = _np.meshgrid(yedges, xedges)
zpos = lowLim
zflat = _np.full_like(yy, zpos)
p = ax.plot_surface(xx, yy, zflat, facecolors=normalized_map, rstride=1, cstride=1, shade=False)
if show_fig == True:
_plt.show()
return fig, ax | Plots Z, X and Y as a 3d scatter plot with heatmaps of each axis pair.
Parameters
----------
Z : ndarray
Array of Z positions with time
X : ndarray
Array of X positions with time
Y : ndarray
Array of Y positions with time
N : optional, int
Number of time points to plot (Defaults to 1000)
AxisOffset : optional, double
Offset to add to each axis from the data - used to get a better view
of the heat maps (Defaults to 0)
LowLim : optional, double
Lower limit of x, y and z axis
HighLim : optional, double
Upper limit of x, y and z axis
show_fig : optional, bool
Whether to show the produced figure before returning
Returns
-------
fig : matplotlib.figure.Figure object
The figure object created
ax : matplotlib.axes.Axes object
The subplot object created |
16,786 | def trade_signals_handler(self, signals):
alloc = {}
if signals[] or signals[]:
try:
alloc, e_ret, e_risk = self.optimize(
self.date, signals[], signals[],
self._optimizer_parameters)
except Exception, error:
raise PortfolioOptimizationFailed(
reason=error, date=self.date, data=signals)
return _remove_useless_orders(alloc) | Process buy and sell signals from the simulation |
16,787 | def _kwarg(self, kwargs, kwname, default=None):
return kwargs.get(kwname) or \
self.settings.config.get(self.name, {}).get(kwname) or \
self.settings.config.get(, {}).get(kwname) or \
default | Resolves keyword arguments from constructor or :doc:`config`.
.. note::
The keyword arguments take this order of precedence:
1. Arguments passed to constructor through the
:func:`authomatic.login`.
2. Provider specific arguments from :doc:`config`.
3. Arguments from :doc:`config` set in the ``__defaults__`` key.
2. The value from :data:`default` argument.
:param dict kwargs:
Keyword arguments dictionary.
:param str kwname:
Name of the desired keyword argument. |
16,788 | def to_csv(weekmatrices, filename, digits=5):
with open(filename, ) as f:
w = csv.writer(f, lineterminator=)
w.writerow([, , , , ])
def make_repr(item):
if item is None:
return None
elif isinstance(item, float):
return repr(round(item, digits))
else:
return str(item)
for row in weekmatrices:
w.writerow([make_repr(item) for item in row]) | Exports a list of week-matrices to a specified filename in the CSV format.
Parameters
----------
weekmatrices : list
The week-matrices to export.
filename : string
Path for the exported CSV file. |
16,789 | def plot_clock_diagrams(self, colormap="summer"):
cmap = plt.get_cmap(colormap)
for res in self.topology_data.dict_of_plotted_res:
colors = [cmap(i) for i in numpy.linspace(0, 1, len(self.topology_data.dict_of_plotted_res[res]))]
traj_colors_ = {traj:colors[i] for i,traj in enumerate(self.topology_data.dict_of_plotted_res[res])}
plt.figure(figsize=(2.25, 2.25))
ring_number=[sum(1 for x in v if x) for k,v in self.topology_data.dict_of_plotted_res.items()][0]
self.topology_data.ring_number = ring_number
rings=[]
if ring_number<2:
width = 0.3
else:
width = 0.2
for ring in range(0,ring_number):
ring,_=plt.pie([self.topology_data.dict_of_plotted_res[res][ring],1-self.topology_data.dict_of_plotted_res[res][ring]], radius=0.9+width*(ring+1), startangle=90, colors=[colors[ring],"white"], counterclock=False)
rings=rings+ring
plt.setp(rings, width=width)
if len(self.topology_data.universe.protein.segments)<=1:
plt.text(-0.0,-0.62,res[0]+"\n"+res[1],ha=,size=32, fontweight=)
else:
plt.text(-0.0,-0.72,res[0]+"\n"+res[1]+"\n"+res[2],ha=,size=25, fontweight=)
pylab.savefig(res[1]+res[2]+".svg", dpi=300, transparent=True) | Ploting clock diagrams - one or more rings around residue name and id (and chain id).
The rings show the fraction of simulation time this residue has spent in the vicinity of the
ligand - characterised by distance. |
16,790 | def get_attribute_values(self, att_name):
lc = []
if not CPEComponent.is_valid_attribute(att_name):
errmsg = "Invalid attribute name: {0}".format(att_name)
raise ValueError(errmsg)
for pk in CPE.CPE_PART_KEYS:
elements = self.get(pk)
for elem in elements:
comp = elem.get(att_name)
if (isinstance(comp, CPEComponentEmpty) or
isinstance(comp, CPEComponentUndefined)):
value = CPEComponent1_1.VALUE_EMPTY
else:
value = comp.get_value()
lc.append(value)
return lc | Returns the values of attribute "att_name" of CPE Name.
By default a only element in each part.
:param string att_name: Attribute name to get
:returns: List of attribute values
:rtype: list
:exception: ValueError - invalid attribute name |
16,791 | def list_vms_sub(access_token, subscription_id):
endpoint = .join([get_rm_endpoint(),
, subscription_id,
,
, COMP_API])
return do_get_next(endpoint, access_token) | List VMs in a subscription.
Args:
access_token (str): A valid Azure authentication token.
subscription_id (str): Azure subscription id.
Returns:
HTTP response. JSON body of a list of VM model views. |
16,792 | def send_async(self, transaction, headers=None):
return self.transport.forward_request(
method=,
path=self.path,
json=transaction,
params={: },
headers=headers) | Submit a transaction to the Federation with the mode `async`.
Args:
transaction (dict): the transaction to be sent
to the Federation node(s).
headers (dict): Optional headers to pass to the request.
Returns:
dict: The transaction sent to the Federation node(s). |
16,793 | def collection_keys(coll, sep=):
def _keys(x, pre=):
for k in x:
yield (pre + k)
if isinstance(x[k], dict):
for nested in _keys(x[k], pre + k + sep):
yield nested
return list(_keys(coll.find_one())) | Get a list of all (including nested) keys in a collection.
Examines the first document in the collection.
:param sep: Separator for nested keys
:return: List of str |
16,794 | def extract(args):
p = OptionParser(extract.__doc__)
p.add_option("--format", default=False, action="store_true",
help="enable flag to reformat header into a symbol separated list of constituent reads "+ \
"[default: %default]")
p.add_option("--singlets", default=False, action="store_true",
help="ask the program to look in the singlets file (should be in the same folder) for " +\
"unused reads and put them in the resultant fasta file [default: %default]")
p.set_sep(sep="|", help="Separator used to list the reads in the FASTA header")
opts, args = p.parse_args(args)
if len(args) != 1:
sys.exit(not p.print_help())
acefile, = args
ace = Ace.read(must_open(acefile))
logging.debug(.format(acefile))
fastafile = acefile.rsplit(".", 1)[0] + ".fasta"
fw = open(fastafile, "w")
for c in ace.contigs:
id = c.name
if opts.format:
id = opts.sep.join([read.name for read in c.af])
seqrec = SeqRecord(Seq(c.sequence), id=id, description="")
SeqIO.write([seqrec], fw, "fasta")
if opts.singlets:
singletsfile = acefile.rsplit(".", 1)[0] + ".singlets"
if os.path.getsize(singletsfile) > 0:
fp = SeqIO.parse(must_open(singletsfile), "fasta")
for rec in fp:
SeqIO.write(rec, fw, "fasta")
fw.close()
logging.debug(.format(fastafile)) | %prog extract [--options] ace_file
Extract contigs from ace file and if necessary reformat header with
a pipe(|) separated list of constituent reads. |
16,795 | def list_storage_accounts_rg(access_token, subscription_id, rgname):
endpoint = .join([get_rm_endpoint(),
, subscription_id,
, rgname,
,
, STORAGE_API])
return do_get(endpoint, access_token) | List the storage accounts in the specified resource group.
Args:
access_token (str): A valid Azure authentication token.
subscription_id (str): Azure subscription id.
rgname (str): Azure resource group name.
Returns:
HTTP response. JSON body list of storage accounts. |
16,796 | def display_monthly_returns(self):
data = [[, , , , , ,
, , , , , , , ]]
for k in self.return_table.index:
r = self.return_table.loc[k].values
data.append([k] + [fmtpn(x) for x in r])
print(tabulate(data, headers=)) | Display a table containing monthly returns and ytd returns
for every year in range. |
16,797 | def _get_rest_doc(self, request, start_response):
api = request.body_json[]
version = request.body_json[]
generator = discovery_generator.DiscoveryGenerator(request=request)
services = [s for s in self._backend.api_services if
s.api_info.name == api and s.api_info.api_version == version]
doc = generator.pretty_print_config_to_json(services)
if not doc:
error_msg = (
) % (version, api)
_logger.error(, error_msg)
return util.send_wsgi_error_response(error_msg, start_response)
return self._send_success_response(doc, start_response) | Sends back HTTP response with API directory.
This calls start_response and returns the response body. It will return
the discovery doc for the requested api/version.
Args:
request: An ApiRequest, the transformed request sent to the Discovery API.
start_response: A function with semantics defined in PEP-333.
Returns:
A string, the response body. |
16,798 | def _run_hooks(self, name, module):
hooks = self.post_load_hooks.pop(name, [])
for hook in hooks:
hook(module) | Run all hooks for a module. |
16,799 | def RemoveObject(self, identifier):
if identifier not in self._values:
raise KeyError(.format(
identifier))
del self._values[identifier] | Removes a cached object based on the identifier.
This method ignores the cache value reference count.
Args:
identifier (str): VFS object identifier.
Raises:
KeyError: if the VFS object is not found in the cache. |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.