Unnamed: 0
int64
0
389k
code
stringlengths
26
79.6k
docstring
stringlengths
1
46.9k
20,600
def ggnn_fast_dense(node_states, adjacency_matrix, num_edge_types, total_value_depth, name=None): with tf.variable_scope( name, default_name="ggnn_fast_dense", values=[node_states, adjacency_matrix, num_edge_types]): nodes_shape = common_layers.shape_list(node_states) v = _compute_edge_transforms(node_states, total_value_depth, num_edge_types, name="v_mpnn") v = tf.reshape(v, [nodes_shape[0], nodes_shape[1], num_edge_types, total_value_depth ]) v = tf.transpose(v, [0, 2, 1, 3]) edge_vectors = tf.transpose(adjacency_matrix, [0, 3, 1, 2]) output = compute_values(edge_vectors, v) return output
ggnn version of the MPNN from Gilmer et al. Let B be the number of batches. Let D be the size of the node hidden states. Let K be the size of the attention keys/queries. Let V be the size of the output of the ggnn. Let T be the number of transforms / edge types. Args: node_states: The value Tensor of shape [B, T, N, D]. adjacency_matrix: A Tensor of shape [B, N, N, T]. An entry at indices b, i, j, k is the indicator of the edge from node j to node i in batch b. A standard adjacency matrix will only have values of one, while a mutigraph may have larger integer values. num_edge_types: An integer specifying number of edge types. total_value_depth: An integer (V) name: A string. Returns: A Tensor of shape [B, N, V] storing the result of computing attention weights using the queries and keys and combining the values according to those weights. Raises: ValueError: if num_transforms doesn't equal num_edge_types and not using weighted sum.
20,601
def shift_right_3d(x, pad_value=None): if pad_value is None: shifted_targets = tf.pad(x, [[0, 0], [1, 0], [0, 0]])[:, :-1, :] else: shifted_targets = tf.concat([pad_value, x], axis=1)[:, :-1, :] return shifted_targets
Shift the second dimension of x right by one.
20,602
def compute(self): if "Signature" in self.params: raise RuntimeError("Existing signature in parameters") if self.signature_version is not None: version = self.signature_version else: version = self.params["SignatureVersion"] if str(version) == "1": bytes = self.old_signing_text() hash_type = "sha1" elif str(version) == "2": bytes = self.signing_text() if self.signature_method is not None: signature_method = self.signature_method else: signature_method = self.params["SignatureMethod"] hash_type = signature_method[len("Hmac"):].lower() else: raise RuntimeError("Unsupported SignatureVersion: " % version) return self.creds.sign(bytes, hash_type)
Compute and return the signature according to the given data.
20,603
def setTau(self, vehID, tau): self._connection._sendDoubleCmd( tc.CMD_SET_VEHICLE_VARIABLE, tc.VAR_TAU, vehID, tau)
setTau(string, double) -> None Sets the driver's tau-parameter (reaction time or anticipation time depending on the car-following model) in s for this vehicle.
20,604
def split_filename(pathname): filepart = win32.PathFindFileName(pathname) pathpart = win32.PathRemoveFileSpec(pathname) return (pathpart, filepart)
@type pathname: str @param pathname: Absolute path. @rtype: tuple( str, str ) @return: Tuple containing the path to the file and the base filename.
20,605
def get_source_from_contracts_list(self, contracts): if contracts is None or len(contracts) == 0: return if isinstance(contracts[0], SolidityContract): self.source_type = "solidity-file" self.source_format = "text" for contract in contracts: self.source_list += [file.filename for file in contract.solidity_files] self._source_hash.append(contract.bytecode_hash) self._source_hash.append(contract.creation_bytecode_hash) elif isinstance(contracts[0], EVMContract): self.source_format = "evm-byzantium-bytecode" self.source_type = ( "ethereum-address" if len(contracts[0].name) == 42 and contracts[0].name[0:2] == "0x" else "raw-bytecode" ) for contract in contracts: if contract.creation_code: self.source_list.append(contract.creation_bytecode_hash) if contract.code: self.source_list.append(contract.bytecode_hash) self._source_hash = self.source_list else: assert False
get the source data from the contracts list :param contracts: the list of contracts :return:
20,606
def get_relationship_query_session_for_family(self, family_id=None, proxy=None): if not family_id: raise NullArgument if not self.supports_relationship_query(): raise Unimplemented() try: from . import sessions except ImportError: raise OperationFailed() proxy = self._convert_proxy(proxy) try: session = sessions.RelationshipQuerySession(family_id, proxy=proxy, runtime=self._runtime) except AttributeError: raise OperationFailed() return session
Gets the ``OsidSession`` associated with the relationship query service for the given family. arg: family_id (osid.id.Id): the ``Id`` of the family arg: proxy (osid.proxy.Proxy): a proxy return: (osid.relationship.RelationshipQuerySession) - a ``RelationshipQuerySession`` raise: NotFound - no ``Family`` found by the given ``Id`` raise: NullArgument - ``family_id`` or ``proxy`` is ``null`` raise: OperationFailed - unable to complete request raise: Unimplemented - ``supports_relationship_query()`` or ``supports_visible_federation()`` is ``false`` *compliance: optional -- This method must be implemented if ``supports_relationship_query()`` and ``supports_visible_federation()`` are ``true``*
20,607
def get_mean_and_stddevs(self, sites, rup, dists, imt, stddev_types): mean, stds = self._get_mean_and_stddevs(sites, rup, dists, imt, stddev_types) stddevs = [np.ones(len(dists.repi))*get_sigma(imt)] return mean, stddevs
See documentation for method `GroundShakingIntensityModel` in :class:~`openquake.hazardlib.gsim.base.GSIM`
20,608
def is_all_field_none(self): if self._uuid is not None: return False if self._avatar is not None: return False if self._public_nick_name is not None: return False if self._display_name is not None: return False if self._country is not None: return False return True
:rtype: bool
20,609
def _countOverlap(rep1, rep2): overlap = 0 for e in rep1: if e in rep2: overlap += 1 return overlap
Return the overlap between two representations. rep1 and rep2 are lists of non-zero indices.
20,610
def list_campaigns(self, **kwargs): kwargs = self._verify_sort_options(kwargs) kwargs = self._verify_filters(kwargs, Campaign, True) api = self._get_api(update_service.DefaultApi) return PaginatedResponse(api.update_campaign_list, lwrap_type=Campaign, **kwargs)
List all update campaigns. :param int limit: number of campaigns to retrieve :param str order: sort direction of campaigns when ordered by creation time (desc|asc) :param str after: get campaigns after given campaign ID :param dict filters: Dictionary of filters to apply :return: List of :py:class:`Campaign` objects :rtype: PaginatedResponse
20,611
def _iterbfs(self, start, end=None, forward=True): queue, visited = deque([(start, 0)]), set([start]) if forward: get_edges = self.out_edges get_next = self.tail else: get_edges = self.inc_edges get_next = self.head while queue: curr_node, curr_step = queue.popleft() yield (curr_node, curr_step) if curr_node == end: break for edge in get_edges(curr_node): tail = get_next(edge) if tail not in visited: visited.add(tail) queue.append((tail, curr_step + 1))
The forward parameter specifies whether it is a forward or backward traversal. Returns a list of tuples where the first value is the hop value the second value is the node id.
20,612
def moreData(ra,dec,box): import cfhtCutout cdata={: ra, : dec, : 0.2} inter=cfhtCutout.find_images(cdata,0.2)
Search the CFHT archive for more images of this location
20,613
def get(self, key): s key :return: corresponding value ' if key in self._data_fields: return self._data_fields[key] if key in self._sub_reports: return self._sub_reports[key] return None
Get a value for a given key :param key: entry's key :return: corresponding value
20,614
def _update_secrets(self): self.secrets = read_client_secrets() if self.secrets is not None: if "registry" in self.secrets: if "base" in self.secrets[]: self.base = self.secrets[][] self._update_base()
update secrets will take a secrets credential file either located at .sregistry or the environment variable SREGISTRY_CLIENT_SECRETS and update the current client secrets as well as the associated API base.
20,615
def averageValues(self): assert self.opts[] and self.opts[] == filled = self.density > 1 v = self.values.copy() v[filled] /= self.density[filled] v[~filled] *= self.density[~filled] return v
return the averaged values in the grid
20,616
def pull_tar(url, name, verify=False): return _pull_image(, url, name, verify=verify)
Execute a ``machinectl pull-raw`` to download a .tar container image, and add it to /var/lib/machines as a new container. .. note:: **Requires systemd >= 219** url URL from which to download the container name Name for the new container verify : False Perform signature or checksum verification on the container. See the ``machinectl(1)`` man page (section titled "Image Transfer Commands") for more information on requirements for image verification. To perform signature verification, use ``verify=signature``. For checksum verification, use ``verify=checksum``. By default, no verification will be performed. CLI Examples: .. code-block:: bash salt myminion nspawn.pull_tar http://foo.domain.tld/containers/archlinux-2015.02.01.tar.gz arch2
20,617
def _(f, x): result = {} for k, v in x.items(): k_, v_ = f(k, v) result[k_] = v_ return result
fmap for dict like, not `f` should have signature `f::key->value->(key, value)`
20,618
def _get_driver(self): ComputeEngine = get_driver(Provider.GCE) return ComputeEngine( self.service_account_email, self.service_account_file, project=self.service_account_project )
Get authenticated GCE driver.
20,619
def create_weapon_layer(weapon, hashcode, isSecond=False): return pgnreader.parse_pagan_file(( % (PACKAGE_DIR, os.sep, os.sep)) + weapon + , hashcode, sym=False, invert=isSecond)
Creates the layer for weapons.
20,620
def decimal(self, prompt, default=None, lower=None, upper=None): prompt = prompt if prompt is not None else "Enter a decimal number" prompt += " [{0}]: ".format(default) if default is not None else return self.input( curry(filter_decimal, default=default, lower=lower, upper=upper), prompt )
Prompts user to input decimal, with optional default and bounds.
20,621
def exit_config_mode(self, exit_config="exit configuration-mode"): output = "" if self.check_config_mode(): output = self.send_command_timing( exit_config, strip_prompt=False, strip_command=False ) if "uncommitted changes" in output: output += self.send_command_timing( "yes", strip_prompt=False, strip_command=False ) if self.check_config_mode(): raise ValueError("Failed to exit configuration mode") return output
Exit configuration mode.
20,622
def insert(self, context, plan): op = execution.Insert(self.__comp_name, self.__comp()) if op not in plan and self.available(context) != True: for dep_stub in self.dependencies(): dep_stub.insert(context, plan) plan.append(op)
Include an insert operation to the given plan. :param execution.Context context: Current execution context. :param list plan: List of :class:`execution.Operation` instances.
20,623
def run(**kwargs): c3.large if in kwargs: kwargs.pop() ret = { : list(kwargs), : {}, : , : None, } functions = [func for func in kwargs if in func] missing = [] tests = [] for func in functions: func = func.split()[0] if func not in __salt__: missing.append(func) elif __opts__[]: tests.append(func) if tests or missing: ret[] = .join([ missing and "Unavailable function{plr}: " "{func}.".format(plr=(len(missing) > 1 or ), func=(.join(missing) or )) or , tests and "Function{plr} {func} to be " "executed.".format(plr=(len(tests) > 1 or ), func=(.join(tests)) or ) or , ]).strip() ret[] = not (missing or not tests) if ret[] is None: ret[] = True failures = [] success = [] for func in functions: _func = func.split()[0] try: func_ret = _call_function(_func, returner=kwargs.get(), func_args=kwargs.get(func)) if not _get_result(func_ret, ret[].get(, {})): if isinstance(func_ret, dict): failures.append(" failed: {1}".format( func, func_ret.get(, ))) else: success.append(.format( func, func_ret.get(, ) if isinstance(func_ret, dict) else func_ret)) ret[][func] = func_ret except (SaltInvocationError, TypeError) as ex: failures.append(" failed: {1}".format(func, ex)) ret[] = .join(failures + success) ret[] = not bool(failures) return ret
Run a single module function or a range of module functions in a batch. Supersedes ``module.run`` function, which requires ``m_`` prefix to function-specific parameters. :param returner: Specify a common returner for the whole batch to send the return data :param kwargs: Pass any arguments needed to execute the function(s) .. code-block:: yaml some_id_of_state: module.run: - network.ip_addrs: - interface: eth0 - cloud.create: - names: - test-isbm-1 - test-isbm-2 - ssh_username: sles - image: sles12sp2 - securitygroup: default - size: 'c3.large' - location: ap-northeast-1 - delvol_on_destroy: True :return:
20,624
def rollback(self): logger.info() config_text = self.compare_config(other=self.original_config) if len(config_text) > 0: return self._commit(config_text, force=True, reload_original_config=False)
It will rollback all changes and go to the *original_config*
20,625
def set_default(self): try: os.makedirs(os.path.dirname(self._configfile)) except: pass self._config = configparser.RawConfigParser() self._config.add_section() for key, val in self.DEFAULTS.items(): self._config.set(, key, val) with open(self._configfile, ) as f: self._config.write(f)
Set config to default.
20,626
def smooth(x0, rho, gamma, axis=0): n = x0.shape[axis] lap_op = spdiags([(2 + rho / gamma) * np.ones(n), -1 * np.ones(n), -1 * np.ones(n)], [0, -1, 1], n, n, format=) x_out = np.rollaxis(spsolve(gamma * lap_op, rho * np.rollaxis(x0, axis, 0)), axis, 0) return x_out
Proximal operator for a smoothing function enforced via the discrete laplacian operator Notes ----- Currently only works with matrices (2-D arrays) as input Parameters ---------- x0 : array_like The starting or initial point used in the proximal update step rho : float Momentum parameter for the proximal step (larger value -> stays closer to x0) gamma : float A constant that weights how strongly to enforce the constraint Returns ------- theta : array_like The parameter vector found after running the proximal update step
20,627
def add_sign(xml, key, cert, debug=False, sign_algorithm=OneLogin_Saml2_Constants.RSA_SHA1, digest_algorithm=OneLogin_Saml2_Constants.SHA1): if xml is None or xml == : raise Exception() elem = OneLogin_Saml2_XML.to_etree(xml) sign_algorithm_transform_map = { OneLogin_Saml2_Constants.DSA_SHA1: xmlsec.Transform.DSA_SHA1, OneLogin_Saml2_Constants.RSA_SHA1: xmlsec.Transform.RSA_SHA1, OneLogin_Saml2_Constants.RSA_SHA256: xmlsec.Transform.RSA_SHA256, OneLogin_Saml2_Constants.RSA_SHA384: xmlsec.Transform.RSA_SHA384, OneLogin_Saml2_Constants.RSA_SHA512: xmlsec.Transform.RSA_SHA512 } sign_algorithm_transform = sign_algorithm_transform_map.get(sign_algorithm, xmlsec.Transform.RSA_SHA1) signature = xmlsec.template.create(elem, xmlsec.Transform.EXCL_C14N, sign_algorithm_transform, ns=) issuer = OneLogin_Saml2_XML.query(elem, ) if len(issuer) > 0: issuer = issuer[0] issuer.addnext(signature) elem_to_sign = issuer.getparent() else: entity_descriptor = OneLogin_Saml2_XML.query(elem, ) if len(entity_descriptor) > 0: elem.insert(0, signature) else: elem[0].insert(0, signature) elem_to_sign = elem elem_id = elem_to_sign.get(, None) if elem_id is not None: if elem_id: elem_id = + elem_id else: generated_id = generated_id = OneLogin_Saml2_Utils.generate_unique_id() elem_id = + generated_id elem_to_sign.attrib[] = generated_id xmlsec.enable_debug_trace(debug) xmlsec.tree.add_ids(elem_to_sign, ["ID"]) digest_algorithm_transform_map = { OneLogin_Saml2_Constants.SHA1: xmlsec.Transform.SHA1, OneLogin_Saml2_Constants.SHA256: xmlsec.Transform.SHA256, OneLogin_Saml2_Constants.SHA384: xmlsec.Transform.SHA384, OneLogin_Saml2_Constants.SHA512: xmlsec.Transform.SHA512 } digest_algorithm_transform = digest_algorithm_transform_map.get(digest_algorithm, xmlsec.Transform.SHA1) ref = xmlsec.template.add_reference(signature, digest_algorithm_transform, uri=elem_id) xmlsec.template.add_transform(ref, xmlsec.Transform.ENVELOPED) xmlsec.template.add_transform(ref, xmlsec.Transform.EXCL_C14N) key_info = xmlsec.template.ensure_key_info(signature) xmlsec.template.add_x509_data(key_info) dsig_ctx = xmlsec.SignatureContext() sign_key = xmlsec.Key.from_memory(key, xmlsec.KeyFormat.PEM, None) sign_key.load_cert_from_memory(cert, xmlsec.KeyFormat.PEM) dsig_ctx.key = sign_key dsig_ctx.sign(signature) return OneLogin_Saml2_XML.to_string(elem)
Adds signature key and senders certificate to an element (Message or Assertion). :param xml: The element we should sign :type: string | Document :param key: The private key :type: string :param cert: The public :type: string :param debug: Activate the xmlsec debug :type: bool :param sign_algorithm: Signature algorithm method :type sign_algorithm: string :param digest_algorithm: Digest algorithm method :type digest_algorithm: string :returns: Signed XML :rtype: string
20,628
def remove_functions(source, all_inline=False): global INLINE_COUNT inline = {} hoisted = {} n = 0 limit = len(source) - 9 res = last = 0 while n < limit: if n and source[n - 1] in IDENTIFIER_PART: n += 1 continue if source[n:n + 8] == and source[n + 8] not in IDENTIFIER_PART: if source[:n].rstrip().endswith( ): n += 1 continue if source[n + 8:].lstrip().startswith( ): n += 1 continue entered = n res += source[last:n] name = n = pass_white(source, n + 8) if source[n] in IDENTIFIER_START: name, n = parse_identifier(source, n) args, n = pass_bracket(source, n, ) if not args: raise SyntaxError() args = args.strip() args = tuple(parse_identifier(e, 0)[0] for e in argsplit(args)) if args else () if len(args) - len(set(args)): raise SyntaxError( ) block, n = pass_bracket(source, n, ) if not block: raise SyntaxError( ) mixed = False if name and not all_inline: before = source[:entered].rstrip() if any(endswith_keyword(before, e) for e in PRE_EXP_STARTS): mixed = True elif before and before[-1] not in PRE_ALLOWED and not before[ -2:] in INCREMENTS: mixed = True else: hoisted[name] = block, args if not name or mixed or all_inline: INLINE_COUNT += 1 iname = INLINE_NAME % INLINE_COUNT res += + iname inline[ % ( iname, name )] = block, args last = n else: n += 1 res += source[last:] return res, hoisted, inline
removes functions and returns new source, and 2 dicts. first dict with removed hoisted(global) functions and second with replaced inline functions
20,629
def _baseattrs(self): result = super()._baseattrs result["params"] = ", ".join(self.parameters) return result
A dict of members expressed in literals
20,630
def loggers(self): ret = [] if self.logger_name: if isinstance(self.logger_name, logging.Logger): ret.append((self.logger_name.name, self.logger_name)) else: ret.append((self.logger_name, logging.getLogger(self.logger_name))) else: ret = list(logging.Logger.manager.loggerDict.items()) ret.append(("root", logging.getLogger())) return ret
Return all the loggers that should be activated
20,631
def _detach(cls, disk_id): disk = cls._info(disk_id) opers = [] if disk.get(): for vm_id in disk[]: cls.echo( % vm_id) cls.echo() opers.append(cls.call(, vm_id, disk_id)) return opers
Detach a disk from a vm.
20,632
def sponsored(self, **kwargs): eqs = self.search(**kwargs) eqs = eqs.filter(AllSponsored()) published_offset = getattr(settings, "RECENT_SPONSORED_OFFSET_HOURS", None) if published_offset: now = timezone.now() eqs = eqs.filter( Published( after=now - timezone.timedelta(hours=published_offset), before=now ) ) return eqs
Search containing any sponsored pieces of Content.
20,633
def downgrade(): op.drop_constraint(op.f(), , type_=) op.drop_index(op.f(), table_name=) op.create_foreign_key(, , , [], []) op.drop_constraint( op.f(), , type_=) op.drop_index(op.f(), table_name=) op.create_foreign_key( , , , [], []) op.drop_constraint(op.f(), , type_=) op.drop_index(op.f(), table_name=) op.create_foreign_key(, , , [], [])
Downgrade database.
20,634
def sub_symbols(pattern, code, symbol): return pattern.replace(, code).replace(, symbol)
Substitutes symbols in CLDR number pattern.
20,635
def albedo(self, value=999.0): if value is not None: try: value = float(value) except ValueError: raise ValueError( .format(value)) self._albedo = value
Corresponds to IDD Field `albedo` Args: value (float): value for IDD Field `albedo` Missing value: 999.0 if `value` is None it will not be checked against the specification and is assumed to be a missing value Raises: ValueError: if `value` is not a valid value
20,636
def get(self, request, uri): uri = self.decode_uri(uri) revisions = cio.revisions(uri) revisions = [list(revision) for revision in revisions] return self.render_to_json(revisions)
List uri revisions. JSON Response: [[uri, state], ...]
20,637
def grant(self, lock, unit): if not hookenv.is_leader(): return False granted = set() for u in self.grants: if lock in self.grants[u]: granted.add(u) if unit in granted: return True reqs = set() for u in self.requests: if u in granted: continue for _lock, ts in self.requests[u].items(): if _lock == lock: reqs.add((ts, u)) queue = [t[1] for t in sorted(reqs)] if unit not in queue: return False grant_func = getattr(self, .format(lock), self.default_grant) if grant_func(lock, unit, granted, queue): self.msg(.format(lock, unit)) self.grants.setdefault(unit, {})[lock] = self.requests[unit][lock] return True return False
Maybe grant the lock to a unit. The decision to grant the lock or not is made for $lock by a corresponding method grant_$lock, which you may define in a subclass. If no such method is defined, the default_grant method is used. See Serial.default_grant() for details.
20,638
def write_summary(self, global_step, delta_train_start, lesson_num=0): if global_step % self.trainer_parameters[] == 0 and global_step != 0: is_training = "Training." if self.is_training and self.get_step <= self.get_max_steps else "Not Training." if len(self.stats[]) > 0: mean_reward = np.mean( self.stats[]) LOGGER.info(" {}: {}: Step: {}. " "Time Elapsed: {:0.3f} s " "Mean " "Reward: {" ":0.3f}. Std of Reward: {:0.3f}. {}" .format(self.run_id, self.brain_name, min(self.get_step, self.get_max_steps), delta_train_start, mean_reward, np.std( self.stats[]), is_training)) else: LOGGER.info(" {}: {}: Step: {}. No episode was completed since last summary. {}" .format(self.run_id, self.brain_name, self.get_step, is_training)) summary = tf.Summary() for key in self.stats: if len(self.stats[key]) > 0: stat_mean = float(np.mean(self.stats[key])) summary.value.add(tag=.format( key), simple_value=stat_mean) self.stats[key] = [] summary.value.add(tag=, simple_value=lesson_num) self.summary_writer.add_summary(summary, self.get_step) self.summary_writer.flush()
Saves training statistics to Tensorboard. :param delta_train_start: Time elapsed since training started. :param lesson_num: Current lesson number in curriculum. :param global_step: The number of steps the simulation has been going for
20,639
def dump_service(self, sc): def lprint(fmt, data, index): ispchr = lambda x: x >= 32 and x <= 126 def print_bytes(octets): return .join([ % x for x in octets]) def print_chars(octets): return .join([chr(x) if ispchr(x) else for x in octets]) return fmt.format(index, print_bytes(data), print_chars(data)) data_line_fmt = "{0:04X}: {1} |{2}|" same_line_fmt = "{0:<4s} {1} |{2}|" lines = list() last_data = None same_data = 0 for i in itertools.count(): assert i < 0x10000 try: this_data = self.read_without_encryption([sc], [BlockCode(i)]) except Type3TagCommandError: i = i - 1 break if this_data == last_data: same_data += 1 else: if same_data > 1: lines.append(lprint(same_line_fmt, last_data, "*")) lines.append(lprint(data_line_fmt, this_data, i)) last_data = this_data same_data = 0 if same_data > 1: lines.append(lprint(same_line_fmt, last_data, "*")) if same_data > 0: lines.append(lprint(data_line_fmt, this_data, i)) return lines
Read all data blocks of a given service. :meth:`dump_service` reads all data blocks from the service with service code *sc* and returns a list of strings suitable for printing. The number of strings returned does not necessarily reflect the number of data blocks because a range of data blocks with equal content is reduced to fewer lines of output.
20,640
def get_historical_klines(symbol, interval, start_str, end_str=None): client = Client("", "") output_data = [] limit = 500 timeframe = interval_to_milliseconds(interval) start_ts = date_to_milliseconds(start_str) end_ts = None if end_str: end_ts = date_to_milliseconds(end_str) idx = 0 symbol_existed = False while True: temp_data = client.get_klines( symbol=symbol, interval=interval, limit=limit, startTime=start_ts, endTime=end_ts ) if not symbol_existed and len(temp_data): symbol_existed = True if symbol_existed: output_data += temp_data start_ts = temp_data[len(temp_data) - 1][0] + timeframe else: start_ts += timeframe idx += 1 if len(temp_data) < limit: break if idx % 3 == 0: time.sleep(1) return output_data
Get Historical Klines from Binance See dateparse docs for valid start and end string formats http://dateparser.readthedocs.io/en/latest/ If using offset strings for dates add "UTC" to date string e.g. "now UTC", "11 hours ago UTC" :param symbol: Name of symbol pair e.g BNBBTC :type symbol: str :param interval: Biannce Kline interval :type interval: str :param start_str: Start date string in UTC format :type start_str: str :param end_str: optional - end date string in UTC format :type end_str: str :return: list of OHLCV values
20,641
def get_profile_info(self, raw_token, profile_info_params={}): "Fetch user profile information." try: response = self.request(, self.provider.profile_url, token=raw_token, params=profile_info_params) response.raise_for_status() except RequestException as e: logger.error(.format(e)) return None else: return response.json() or response.text
Fetch user profile information.
20,642
def add_cookie_header(self, request, referrer_host=None): new_request = convert_http_request(request, referrer_host) self._cookie_jar.add_cookie_header(new_request) request.fields.clear() for name, value in new_request.header_items(): request.fields.add(name, value)
Wrapped ``add_cookie_header``. Args: request: An instance of :class:`.http.request.Request`. referrer_host (str): An hostname or IP address of the referrer URL.
20,643
def get_issues_in_queue(self, service_desk_id, queue_id, start=0, limit=50): url = .format(service_desk_id, queue_id) params = {} if start is not None: params[] = int(start) if limit is not None: params[] = int(limit) return self.get(url, headers=self.experimental_headers, params=params)
Returns a page of issues inside a queue for a given queue ID. Only fields that the queue is configured to show are returned. For example, if a queue is configured to show only Description and Due Date, then only those two fields are returned for each issue in the queue. Permissions: The calling user must have permission to view the requested queue, i.e. they must be an agent of the service desk that the queue belongs to. :param service_desk_id: str :param queue_id: str :param start: int :param limit: int :return: a page of issues
20,644
def check_auth(self, username, password): if username == self.args.username: from glances.password import GlancesPassword pwd = GlancesPassword() return pwd.check_password(self.args.password, pwd.sha256_hash(password)) else: return False
Check if a username/password combination is valid.
20,645
def list_load_areas(self, session, mv_districts): lv_loads_threshold = cfg_ding0.get(, ) gw2kw = 10 ** 6 stations_list = [d.mv_grid._station.id_db for d in mv_districts] lv_load_areas_sqla = session.query( self.orm[].id.label(), (self.orm[].sector_peakload_residential * gw2kw).\ label(), (self.orm[].sector_peakload_retail * gw2kw).\ label(), (self.orm[].sector_peakload_industrial * gw2kw).\ label(), (self.orm[].sector_peakload_agricultural * gw2kw).\ label(), ). \ filter(self.orm[].subst_id.in_(stations_list)).\ filter(((self.orm[].sector_peakload_residential + self.orm[].sector_peakload_retail + self.orm[].sector_peakload_industrial + self.orm[].sector_peakload_agricultural) * gw2kw) > lv_loads_threshold). \ filter(self.orm[]) lv_load_areas = pd.read_sql_query(lv_load_areas_sqla.statement, session.bind, index_col=) return lv_load_areas
list load_areas (load areas) peak load from database for a single MV grid_district Parameters ---------- session : sqlalchemy.orm.session.Session Database session mv_districts: List of MV districts
20,646
def json_files_serializer(objs, status=None): files = [file_serializer(obj) for obj in objs] return make_response(json.dumps(files), status)
JSON Files Serializer. :parma objs: A list of:class:`invenio_files_rest.models.ObjectVersion` instances. :param status: A HTTP Status. (Default: ``None``) :returns: A Flask response with JSON data. :rtype: :py:class:`flask.Response`.
20,647
def _validate_schema(self, schema, field, value): if schema is None: return if isinstance(value, Sequence) and not isinstance(value, _str_type): self.__validate_schema_sequence(field, schema, value) elif isinstance(value, Mapping): self.__validate_schema_mapping(field, schema, value)
{'type': ['dict', 'string'], 'anyof': [{'validator': 'schema'}, {'validator': 'bulk_schema'}]}
20,648
def sun_ra_dec(utc_time): jdate = jdays2000(utc_time) / 36525.0 eps = np.deg2rad(23.0 + 26.0 / 60.0 + 21.448 / 3600.0 - (46.8150 * jdate + 0.00059 * jdate * jdate - 0.001813 * jdate * jdate * jdate) / 3600) eclon = sun_ecliptic_longitude(utc_time) x__ = np.cos(eclon) y__ = np.cos(eps) * np.sin(eclon) z__ = np.sin(eps) * np.sin(eclon) r__ = np.sqrt(1.0 - z__ * z__) declination = np.arctan2(z__, r__) right_ascension = 2 * np.arctan2(y__, (x__ + r__)) return right_ascension, declination
Right ascension and declination of the sun at *utc_time*.
20,649
def sort(self, col: str): try: self.df = self.df.copy().sort_values(col) except Exception as e: self.err(e, "Can not sort the dataframe from column " + str(col))
Sorts the main dataframe according to the given column :param col: column name :type col: str :example: ``ds.sort("Col 1")``
20,650
def safe_dump(d, fname, *args, **kwargs): if osp.exists(fname): os.rename(fname, fname + ) lock = fasteners.InterProcessLock(fname + ) lock.acquire() try: with open(fname, ) as f: ordered_yaml_dump(d, f, *args, **kwargs) except: raise finally: lock.release()
Savely dump `d` to `fname` using yaml This method creates a copy of `fname` called ``fname + '~'`` before saving `d` to `fname` using :func:`ordered_yaml_dump` Parameters ---------- d: object The object to dump fname: str The path where to dump `d` Other Parameters ---------------- ``*args, **kwargs`` Will be forwarded to the :func:`ordered_yaml_dump` function
20,651
def _getReader(self, filename, scoreClass): if filename.endswith() or filename.endswith(): return JSONRecordsReader(filename, scoreClass) else: raise ValueError( % filename)
Obtain a JSON record reader for DIAMOND records. @param filename: The C{str} file name holding the JSON. @param scoreClass: A class to hold and compare scores (see scores.py).
20,652
def _sentiment(self, distance=True): sum_pos = 0 sum_neg = 0 text = self.parent entity_positions = range(self.start, self.end) non_entity_positions = set(range(len(text.words))).difference(entity_positions) if not distance: non_entity_polarities = np.array([text.words[i].polarity for i in non_entity_positions]) sum_pos = sum(non_entity_polarities == 1) sum_neg = sum(non_entity_polarities == -1) else: polarities = np.array([w.polarity for w in text.words]) polarized_positions = np.argwhere(polarities != 0)[0] polarized_non_entity_positions = non_entity_positions.intersection(polarized_positions) sentence_len = len(text.words) for i in polarized_non_entity_positions: min_dist = min(abs(self.start - i), abs(self.end - i)) if text.words[i].polarity == 1: sum_pos += 1.0 - (min_dist - 1.0) / (2.0 * sentence_len) else: sum_neg += 1.0 - (min_dist - 1.0) / (2.0 *sentence_len) return (sum_pos, sum_neg)
Calculates the sentiment of an entity as it appears in text.
20,653
def filter_renderers(self, renderers, format): renderers = [renderer for renderer in renderers if renderer.format == format] if not renderers: raise Http404 return renderers
If there is a '.json' style format suffix, filter the renderers so that we only negotiation against those that accept that format.
20,654
def _adaptSegment(self, segUpdate): trimSegment = False c, i, segment = segUpdate.columnIdx, segUpdate.cellIdx, segUpdate.segment activeSynapses = segUpdate.activeSynapses synToUpdate = set([syn for syn in activeSynapses if type(syn) == int]) if segment is not None: if self.verbosity >= 4: print "Reinforcing segment print " before:", segment.debugPrint() segment.lastActiveIteration = self.lrnIterationIdx segment.positiveActivations += 1 segment.dutyCycle(active=True) lastSynIndex = len(segment.syns) - 1 inactiveSynIndices = [s for s in xrange(0, lastSynIndex+1) \ if s not in synToUpdate] trimSegment = segment.updateSynapses(inactiveSynIndices, -self.permanenceDec) activeSynIndices = [syn for syn in synToUpdate if syn <= lastSynIndex] segment.updateSynapses(activeSynIndices, self.permanenceInc) synsToAdd = [syn for syn in activeSynapses if type(syn) != int] if self.maxSynapsesPerSegment > 0 \ and len(synsToAdd) + len(segment.syns) > self.maxSynapsesPerSegment: numToFree = (len(segment.syns) + len(synsToAdd) - self.maxSynapsesPerSegment) segment.freeNSynapses(numToFree, inactiveSynIndices, self.verbosity) for newSyn in synsToAdd: segment.addSynapse(newSyn[0], newSyn[1], self.initialPerm) if self.verbosity >= 4: print " after:", segment.debugPrint() else: newSegment = Segment(tm=self, isSequenceSeg=segUpdate.sequenceSegment) for synapse in activeSynapses: newSegment.addSynapse(synapse[0], synapse[1], self.initialPerm) if self.verbosity >= 3: print "New segment newSegment.debugPrint() self.cells[c][i].append(newSegment) return trimSegment
This function applies segment update information to a segment in a cell. Synapses on the active list get their permanence counts incremented by permanenceInc. All other synapses get their permanence counts decremented by permanenceDec. We also increment the positiveActivations count of the segment. :param segUpdate SegmentUpdate instance :returns: True if some synapses were decremented to 0 and the segment is a candidate for trimming
20,655
def fit_transform(self, Z): self._validate_vocabulary() analyze = self.build_analyzer() A = Z.transform(lambda X: list(map(analyze, X)), column=).persist() X = A[:, ] if isinstance(A, DictRDD) else A self.vocabulary_ = self._init_vocab(X) mapper = self.broadcast(self._count_vocab, A.context) Z = A.transform(mapper, column=, dtype=sp.spmatrix) if not self.fixed_vocabulary_: X = Z[:, ] if isinstance(Z, DictRDD) else Z max_df = self.max_df min_df = self.min_df max_features = self.max_features n_doc = X.shape[0] max_doc_count = (max_df if isinstance(max_df, numbers.Integral) else max_df * n_doc) min_doc_count = (min_df if isinstance(min_df, numbers.Integral) else min_df * n_doc) if max_doc_count < min_doc_count: raise ValueError( "max_df corresponds to < documents than min_df") kept_indices, self.stop_words_ = self._limit_features( X, self.vocabulary_, max_doc_count, min_doc_count, max_features) map_index = self._sort_features(self.vocabulary_) mask = kept_indices[map_index] Z = Z.transform(lambda x: x[:, mask], column=, dtype=sp.spmatrix) A.unpersist() return Z
Learn the vocabulary dictionary and return term-document matrix. This is equivalent to fit followed by transform, but more efficiently implemented. Parameters ---------- Z : iterable or DictRDD with column 'X' An iterable of raw_documents which yields either str, unicode or file objects; or a DictRDD with column 'X' containing such iterables. Returns ------- X : array, [n_samples, n_features] or DictRDD Document-term matrix.
20,656
def generate_description(dataset_name, local_cache_dir=None): assert (local_cache_dir!=None) readme_file = open(os.path.join(local_cache_dir,,dataset_name,), ) try: df = fetch_data(dataset_name) fnames = [col for col in df.columns if col!=] types = get_types(df.ix[:, df.columns != ]) feat=count_features_type(df.ix[:, df.columns != ]) endpoint=determine_endpoint_type(df.ix[:, df.columns == ]) mse=imbalance_metrics(df[].tolist()) readme_file.write( % dataset_name) readme_file.write() readme_file.write( % str(len(df.axes[0]))) readme_file.write(" readme_file.write(" readme_file.write(" readme_file.write(" readme_file.write("Endpoint type: %s\n\n" % endpoint) readme_file.write(" readme_file.write("Imbalance metric: %s\n\n" % mse[1]) readme_file.write( % .join([f + + t for f,t in zip(fnames,types)])) except IOError as err: print(err) finally: readme_file.close()
Generates desription for a given dataset in its README.md file in a dataset local_cache_dir file. :param dataset_name: str The name of the data set to load from PMLB. :param local_cache_dir: str (required) The directory on your local machine to store the data files. If None, then the local data cache will not be used.
20,657
def predict(self, Xnew, full_cov=False, kern=None, **kwargs): return self.predict_noiseless(Xnew, full_cov=full_cov, kern=kern)
Predict the function(s) at the new point(s) Xnew. For Student-t processes, this method is equivalent to predict_noiseless as no likelihood is included in the model.
20,658
def _get_encoding(encoding_or_label): if hasattr(encoding_or_label, ): return encoding_or_label encoding = lookup(encoding_or_label) if encoding is None: raise LookupError( % encoding_or_label) return encoding
Accept either an encoding object or label. :param encoding: An :class:`Encoding` object or a label string. :returns: An :class:`Encoding` object. :raises: :exc:`~exceptions.LookupError` for an unknown label.
20,659
def _piecewise(x, condlist, funclist, *args, **kw): x = asanyarray(x) n2 = len(funclist) if isscalar(condlist) or \ (isinstance(condlist, np.ndarray) and condlist.ndim == 0) or \ (x.ndim > 0 and condlist[0].ndim == 0): condlist = [condlist] condlist = [asarray(c, dtype=bool) for c in condlist] n = len(condlist) zerod = False if x.ndim == 0: x = x[None] zerod = True newcondlist = [] for k in range(n): if condlist[k].ndim == 0: condition = condlist[k][None] else: condition = condlist[k] newcondlist.append(condition) condlist = newcondlist if n == n2-1: totlist = condlist[0] for k in range(1, n): totlist |= condlist[k] condlist.append(~totlist) n += 1 if (n != n2): raise ValueError( "function list and condition list must be the same") y = zeros(x.shape, x.dtype) for k in range(n): item = funclist[k] if not callable(item): y[condlist[k]] = item else: vals = x[condlist[k]] if vals.size > 0: y[condlist[k]] = item(vals, *args, **kw) if zerod: y = y.squeeze() return y
Fixed version of numpy.piecewise for 0-d arrays
20,660
def uinit(self, ushape): if self.opt[] is None: return np.zeros(ushape, dtype=self.dtype) else: U0 = np.sign(self.block_sep0(self.Y)) / self.rho U1 = self.block_sep1(self.Y) - self.S return self.block_cat(U0, U1)
Return initialiser for working variable U.
20,661
def get_query_error(self,i): x = self._query_hpas[i] h = x[] pos = x[] prob = 0 be = BaseError() be.set_observable(h.get_target(),h.get_query()) if i != 0 and pos == 0: prev = x[] if len(prev.get_query()) == 0: be.set_unobserved_before(len(prev.get_target()),0,prev.get_target()[0],0.5) if i != len(self._query_hpas)-1 and pos == len(h.get_query())-1: if x[]: foll = x[] if len(foll.get_query()) == 0: be.set_unobserved_after(len(foll.get_target()),0,foll.get_target()[0],0.5) return be
Just get a single error characterization based on the index :param i: list index :type i: int :returns: base-wise error :rtype: HPA group description
20,662
def executed_without_callbacks(self): T = self.tm.trace if T: T.write(self.trace_message(, self.node)) for t in self.targets: if t.get_state() == NODE_EXECUTING: for side_effect in t.side_effects: side_effect.set_state(NODE_NO_STATE) t.set_state(NODE_EXECUTED)
Called when the task has been successfully executed and the Taskmaster instance doesn't want to call the Node's callback methods.
20,663
def keys(self): keys = list() for n in range(len(self)): key = self.get_value() if not key in [, None]: keys.append(key) return keys
Returns a sorted list of keys
20,664
def filter_trends(self, pattern=): filtered_trends = {} with open(self.abspath) as fobj: for idx, line in enumerate(fobj): variable_idx = idx-self._attributes[]-1 if in line: break if pattern in line and variable_idx > 0: filtered_trends[variable_idx] = line return filtered_trends
Filter available trends
20,665
def check_output(self, cmd): ret, output = self._exec(cmd) if not ret == 0: raise CommandError(self) return output
Wrapper for subprocess.check_output.
20,666
def setdbo(self, bond1, bond2, dboval): if self.bondtype != 2: raise FrownsError("To set double bond order, center bond must be double!") assert dboval in [DX_CHI_CIS, DX_CHI_TRANS, DX_CHI_NO_DBO], "bad dboval value" self.dbo.append(bond1, bond2, dboval)
Set the double bond orientation for bond1 and bond2 based on this bond
20,667
def update_tab_label(self, state_m): state_identifier = self.get_state_identifier(state_m) if state_identifier not in self.tabs and state_identifier not in self.closed_tabs: return tab_info = self.tabs[state_identifier] if state_identifier in self.tabs else self.closed_tabs[state_identifier] page = tab_info[] set_tab_label_texts(page.title_label, state_m, tab_info[])
Update all tab labels :param rafcon.state_machine.states.state.State state_m: State model who's tab label is to be updated
20,668
def num_samples(input_filepath): validate_input_file(input_filepath) output = soxi(input_filepath, ) if output == : logger.warning("Number of samples unavailable for %s", input_filepath) return int(output)
Show number of samples (0 if unavailable). Parameters ---------- input_filepath : str Path to audio file. Returns ------- n_samples : int total number of samples in audio file. Returns 0 if empty or unavailable
20,669
def reduce_multiline(string): string = str(string) return " ".join([item.strip() for item in string.split("\n") if item.strip()])
reduces a multiline string to a single line of text. args: string: the text to reduce
20,670
def _register_template(cls, template_bytes): elif isinstance(o, _Child): cls.bind_template_child_full(name, True, 0) bound_widgets.add(name) cls.set_connect_func(_connect_func, cls) cls.__gtemplate_methods__ = bound_methods cls.__gtemplate_widgets__ = bound_widgets base_init_template = cls.init_template cls.init_template = lambda s: _init_template(s, cls, base_init_template)
Registers the template for the widget and hooks init_template
20,671
def sanitize_for_archive(url, headers, payload): url = re.sub(, , url) return url, headers, payload
Sanitize URL of a HTTP request by removing the token information before storing/retrieving archived items :param: url: HTTP url request :param: headers: HTTP headers request :param: payload: HTTP payload request :returns the sanitized url, plus the headers and payload
20,672
def _scope_and_enforce_robots(self, site, parent_page, outlinks): pages = {} blocked = set() out_of_scope = set() for url in outlinks or []: url_for_scoping = urlcanon.semantic(url) url_for_crawling = urlcanon.whatwg(url) decision = site.accept_reject_or_neither( url_for_scoping, parent_page=parent_page) if decision is True: hops_off = 0 elif decision is None: decision = parent_page.hops_off < site.scope.get( , 0) hops_off = parent_page.hops_off + 1 if decision is True: if brozzler.is_permitted_by_robots(site, str(url_for_crawling)): fresh_page = self._build_fresh_page( site, parent_page, url, hops_off) if fresh_page.id in pages: self._merge_page(pages[fresh_page.id], fresh_page) else: pages[fresh_page.id] = fresh_page else: blocked.add(str(url_for_crawling)) else: out_of_scope.add(str(url_for_crawling)) return pages, blocked, out_of_scope
Returns tuple ( dict of {page_id: Page} of fresh `brozzler.Page` representing in scope links accepted by robots policy, set of in scope urls (canonicalized) blocked by robots policy, set of out-of-scope urls (canonicalized)).
20,673
def pre_fork(self, process_manager): salt.transport.mixins.auth.AESReqServerMixin.pre_fork(self, process_manager) process_manager.add_process(self.zmq_device)
Pre-fork we need to create the zmq router device :param func process_manager: An instance of salt.utils.process.ProcessManager
20,674
def get_reduced_assignment( self, original_assignment, cluster_topology, max_partition_movements, max_leader_only_changes, max_movement_size=DEFAULT_MAX_MOVEMENT_SIZE, force_progress=False, ): new_assignment = cluster_topology.assignment if (not original_assignment or not new_assignment or max_partition_movements < 0 or max_leader_only_changes < 0 or max_movement_size < 0): return {} leaders_changes = [ (t_p, new_assignment[t_p]) for t_p, replica in six.iteritems(original_assignment) if replica != new_assignment[t_p] and set(replica) == set(new_assignment[t_p]) ] partition_change_count = [ ( t_p, len(set(replica) - set(new_assignment[t_p])), ) for t_p, replica in six.iteritems(original_assignment) if set(replica) != set(new_assignment[t_p]) ] self.log.info( "Total number of actions before reduction: %s.", len(partition_change_count) + len(leaders_changes), ) reduced_actions = self._extract_actions_unique_topics( partition_change_count, max_partition_movements, cluster_topology, max_movement_size, ) if len(reduced_actions) == 0 and force_progress: smallest_size = min([cluster_topology.partitions[t_p[0]].size for t_p in partition_change_count]) self.log.warning( .format( max_movement_size=max_movement_size, smallest_size=smallest_size, ) ) max_movement_size = smallest_size reduced_actions = self._extract_actions_unique_topics( partition_change_count, max_partition_movements, cluster_topology, max_movement_size, ) reduced_partition_changes = [ (t_p, new_assignment[t_p]) for t_p in reduced_actions ] self.log.info( "Number of partition changes: %s." " Number of leader-only changes: %s", len(reduced_partition_changes), min(max_leader_only_changes, len(leaders_changes)), ) reduced_assignment = { t_p: replicas for t_p, replicas in ( reduced_partition_changes + leaders_changes[:max_leader_only_changes] ) } return reduced_assignment
Reduce the assignment based on the total actions. Actions represent actual partition movements and/or changes in preferred leader. Get the difference of original and proposed assignment and take the subset of this plan for given limit. Argument(s): original_assignment: Current assignment of cluster in zookeeper cluster_topology: Cluster topology containing the new proposed-assignment of cluster max_partition_movements:Maximum number of partition-movements in final set of actions max_leader_only_changes:Maximum number of actions with leader only changes max_movement_size: Maximum size, in bytes, to move in final set of actions force_progress: Whether to force progress if max_movement_size is too small :return: :reduced_assignment: Final reduced assignment
20,675
def request_token(self): logging.debug("Getting request token from %s:%d", self.server, self.port) token, secret = self._token("/oauth/requestToken") return "{}/oauth/authorize?oauth_token={}".format(self.host, token), \ token, secret
Returns url, request_token, request_secret
20,676
def referencegenomefinder(self): referencematch = defaultdict(make_dict) referencehits = defaultdict(make_dict) referencegenomeprofile = .format(self.referenceprofilepath) with open(referencegenomeprofile) as referencefile: referencetypes = json.load(referencefile) for sample in self.metadata: if sample[self.analysistype].reportdir != : for genome in referencetypes: referencehits[sample.name][genome] = 0 for gene in self.bestdict[sample.name]: if list(self.bestdict[sample.name][gene].keys())[0] == referencetypes[genome][gene]: referencematch[sample.name][genome][gene] = 1 referencehits[sample.name][genome] += 1 else: referencematch[sample.name][genome][gene] = 0 for sample in self.metadata: if sample[self.analysistype].reportdir != : try: matches = sorted(referencehits[sample.name].items(), key=operator.itemgetter(1), reverse=True) most_matches = matches[0][1] i = 0 match_list = list() while matches[i][1] == most_matches: match_list.append(matches[i]) i += 1 sorted_list = sorted(match_list) sortedmatches = sorted_list[0] except IndexError: sortedmatches = (0, 0) if 0 < int(sortedmatches[1]) < len(sample[self.analysistype].allelenames): mismatches = [] for gene, allele in referencetypes[sortedmatches[0]].items(): percentidentity = .format(list(self.bestdict[sample.name][gene].values())[0]) self.referencegenome[sample.name][sortedmatches[0]][sortedmatches[1]][gene][list(self.bestdict[ sample.name][gene].keys())[0]] = percentidentity if list(self.bestdict[sample.name][gene].keys())[0] != allele: sample[self.analysistype].referencegenome = sortedmatches[0] sample.general.referencegenus = sortedmatches[0].split()[0] sample[self.analysistype].referencegenomepath = \ .format(self.referenceprofilepath, sortedmatches[0]) sample[self.analysistype].matchestoreferencegenome = sortedmatches[1] mismatches.append(({gene: (.format(list(self.bestdict[sample.name][gene] .keys())[0], allele))})) sample[self.analysistype].mismatchestoreferencegenome = mismatches elif sortedmatches == 0: for gene in sample[self.analysistype].allelenames: self.referencegenome[sample.name][sortedmatches[0]][0][gene][] = 0 sample[self.analysistype].referencegenome = sample.general.referencegenus = sample[self.analysistype].referencegenomepath = sample[self.analysistype].matchestoreferencegenome = 0 sample[self.analysistype].mismatchestoreferencegenome = [0] else: for gene in referencetypes[sortedmatches[0]]: self.referencegenome[sample.name][sortedmatches[0]][sortedmatches[1]][gene][list(self.bestdict[ sample.name][gene].keys())[0]] = .format(list(self.bestdict[ sample.name][gene].values())[0]) sample[self.analysistype].referencegenome = sortedmatches[0] sample[self.analysistype].referencegenomepath = \ .format(self.referenceprofilepath, sortedmatches[0]) sample.general.referencegenus = sortedmatches[0].split()[0] sample[self.analysistype].matchestoreferencegenome = sortedmatches[1] sample[self.analysistype].mismatchestoreferencegenome = [0] make_path(self.reportpath) with open(.format(self.reportpath), ) as referencegenomereport: row = for sample in self.metadata: if sample[self.analysistype].reportdir != : row += .format(sample.name, sample[self.analysistype].referencegenome, sample[self.analysistype].matchestoreferencegenome) referencegenomereport.write(row) dotter()
Finds the closest reference genome to the profile of interest
20,677
def identical_dataset_and_algorithm_tuner(self, additional_parents=None): return self._create_warm_start_tuner(additional_parents=additional_parents, warm_start_type=WarmStartTypes.IDENTICAL_DATA_AND_ALGORITHM)
Creates a new ``HyperparameterTuner`` by copying the request fields from the provided parent to the new instance of ``HyperparameterTuner``. Followed by addition of warm start configuration with the type as "IdenticalDataAndAlgorithm" and parents as the union of provided list of ``additional_parents`` and the ``self`` Args: additional_parents (set{str}): Set of additional parents along with the self to be used in warm starting the identical dataset and algorithm tuner. Returns: sagemaker.tuner.HyperparameterTuner: HyperparameterTuner instance which can be used to launch identical dataset and algorithm tuning job. Examples: >>> parent_tuner = HyperparameterTuner.attach(tuning_job_name="parent-job-1") >>> identical_dataset_algo_tuner = parent_tuner.identical_dataset_and_algorithm_tuner( >>> additional_parents={"parent-job-2"}) Later On: >>> identical_dataset_algo_tuner.fit(inputs={})
20,678
def sens_mppt_send(self, mppt_timestamp, mppt1_volt, mppt1_amp, mppt1_pwm, mppt1_status, mppt2_volt, mppt2_amp, mppt2_pwm, mppt2_status, mppt3_volt, mppt3_amp, mppt3_pwm, mppt3_status, force_mavlink1=False): return self.send(self.sens_mppt_encode(mppt_timestamp, mppt1_volt, mppt1_amp, mppt1_pwm, mppt1_status, mppt2_volt, mppt2_amp, mppt2_pwm, mppt2_status, mppt3_volt, mppt3_amp, mppt3_pwm, mppt3_status), force_mavlink1=force_mavlink1)
Maximum Power Point Tracker (MPPT) sensor data for solar module power performance tracking mppt_timestamp : MPPT last timestamp (uint64_t) mppt1_volt : MPPT1 voltage (float) mppt1_amp : MPPT1 current (float) mppt1_pwm : MPPT1 pwm (uint16_t) mppt1_status : MPPT1 status (uint8_t) mppt2_volt : MPPT2 voltage (float) mppt2_amp : MPPT2 current (float) mppt2_pwm : MPPT2 pwm (uint16_t) mppt2_status : MPPT2 status (uint8_t) mppt3_volt : MPPT3 voltage (float) mppt3_amp : MPPT3 current (float) mppt3_pwm : MPPT3 pwm (uint16_t) mppt3_status : MPPT3 status (uint8_t)
20,679
def get_ngrams(inputfile, n=1, use_transcript=False, use_vtt=False): words = [] if use_transcript: for s in audiogrep.convert_timestamps(inputfile): for w in s[]: words.append(w[0]) elif use_vtt: vtts = get_vtt_files(inputfile) for vtt in vtts: with open(vtt[], ) as infile: sentences = parse_auto_sub(infile.read()) for s in sentences: for w in s[]: words.append(w[]) else: text = srts = get_subtitle_files(inputfile) for srt in srts: lines = clean_srt(srt) if lines: for timespan in lines.keys(): line = lines[timespan].strip() text += line + words = re.split(r, text) ngrams = zip(*[words[i:] for i in range(n)]) return ngrams
Get ngrams from a text Sourced from: https://gist.github.com/dannguyen/93c2c43f4e65328b85af
20,680
def get_compositions_by_repository(self, repository_id): mgr = self._get_provider_manager(, local=True) lookup_session = mgr.get_composition_lookup_session_for_repository(repository_id, proxy=self._proxy) lookup_session.use_isolated_repository_view() return lookup_session.get_compositions()
Gets the list of ``Compositions`` associated with a ``Repository``. arg: repository_id (osid.id.Id): ``Id`` of the ``Repository`` return: (osid.repository.CompositionList) - list of related compositions raise: NotFound - ``repository_id`` is not found raise: NullArgument - ``repository_id`` is ``null`` raise: OperationFailed - unable to complete request raise: PermissionDenied - authorization failure *compliance: mandatory -- This method must be implemented.*
20,681
def make_tarfile(output_filename, source_dir): with tarfile.open(output_filename, "w:gz") as tar: tar.add(source_dir, arcname=os.path.basename(source_dir))
Tar a directory
20,682
def status_favourite(self, id): id = self.__unpack_id(id) url = .format(str(id)) return self.__api_request(, url)
Favourite a status. Returns a `toot dict`_ with the favourited status.
20,683
def _open_ftp(self): _ftp = FTP() _ftp.set_debuglevel(0) with ftp_errors(self): _ftp.connect(self.host, self.port, self.timeout) _ftp.login(self.user, self.passwd, self.acct) self._features = {} try: feat_response = _decode(_ftp.sendcmd("FEAT"), "latin-1") except error_perm: self.encoding = "latin-1" else: self._features = self._parse_features(feat_response) self.encoding = "utf-8" if "UTF8" in self._features else "latin-1" if not PY2: _ftp.file = _ftp.sock.makefile( "r", encoding=self.encoding ) _ftp.encoding = self.encoding self._welcome = _ftp.welcome return _ftp
Open a new ftp object.
20,684
def process(source, target, rdfsonly, base=None, logger=logging): for link in source.match(): s, p, o = link[:3] if s == (base or ) + : continue if p in RESOURCE_MAPPING: p = RESOURCE_MAPPING[p] if o in RESOURCE_MAPPING: o = RESOURCE_MAPPING[o] if p == VERSA_BASEIRI + : tlinks = list(source.match(s, TYPE_REL)) if tlinks: if tlinks[0][TARGET] == VERSA_BASEIRI + : p = I(RDFS_NAMESPACE + ) elif tlinks[0][TARGET] == VERSA_BASEIRI + : p = I(RDFS_NAMESPACE + ) if p == VERSA_BASEIRI + : suri = I(iri.absolutize(s, base)) if base else s target.add((URIRef(o), URIRef(RDFS_NAMESPACE + ), URIRef(suri))) continue if p == VERSA_BASEIRI + : if o not in [, ]: ouri = I(iri.absolutize(o, base)) if base else o target.add((URIRef(s), URIRef(RDFS_NAMESPACE + ), URIRef(ouri))) continue s = URIRef(s) p = RDF.type if p == TYPE_REL else URIRef(p) o = URIRef(o) if isinstance(o, I) else Literal(o) if not rdfsonly or p.startswith(RDF_NAMESPACE) or p.startswith(RDFS_NAMESPACE): target.add((s, p, o)) return
Prepare a statement into a triple ready for rdflib graph
20,685
def mutate(self, row): mutation_count = len(row._get_mutations()) if mutation_count > MAX_MUTATIONS: raise MaxMutationsError( "The row key {} exceeds the number of mutations {}.".format( row.row_key, mutation_count ) ) if (self.total_mutation_count + mutation_count) >= MAX_MUTATIONS: self.flush() self.rows.append(row) self.total_mutation_count += mutation_count self.total_size += row.get_mutations_size() if self.total_size >= self.max_row_bytes or len(self.rows) >= self.flush_count: self.flush()
Add a row to the batch. If the current batch meets one of the size limits, the batch is sent synchronously. For example: .. literalinclude:: snippets.py :start-after: [START bigtable_batcher_mutate] :end-before: [END bigtable_batcher_mutate] :type row: class :param row: class:`~google.cloud.bigtable.row.DirectRow`. :raises: One of the following: * :exc:`~.table._BigtableRetryableError` if any row returned a transient error. * :exc:`RuntimeError` if the number of responses doesn't match the number of rows that were retried * :exc:`.batcher.MaxMutationsError` if any row exceeds max mutations count.
20,686
def query(self, coords, **kwargs): return super(Lenz2017Query, self).query(coords, **kwargs)
Returns E(B-V), in mags, at the specified location(s) on the sky. Args: coords (:obj:`astropy.coordinates.SkyCoord`): The coordinates to query. Returns: A float array of the reddening, in magnitudes of E(B-V), at the selected coordinates.
20,687
def write_config_file(self, parsed_namespace, output_file_paths, exit_after=False): for output_file_path in output_file_paths: try: with open(output_file_path, "w") as output_file: pass except IOError as e: raise ValueError("Couldn't open %s for writing: %s" % ( output_file_path, e)) if output_file_paths: config_items = self.get_items_for_config_file_output( self._source_to_settings, parsed_namespace) file_contents = self._config_file_parser.serialize(config_items) for output_file_path in output_file_paths: with open(output_file_path, "w") as output_file: output_file.write(file_contents) message = "Wrote config file to " + ", ".join(output_file_paths) if exit_after: self.exit(0, message) else: print(message)
Write the given settings to output files. Args: parsed_namespace: namespace object created within parse_known_args() output_file_paths: any number of file paths to write the config to exit_after: whether to exit the program after writing the config files
20,688
def find_threads_by_name(self, name, bExactMatch = True): found_threads = list() if name is None: for aThread in self.iter_threads(): if aThread.get_name() is None: found_threads.append(aThread) elif bExactMatch: for aThread in self.iter_threads(): if aThread.get_name() == name: found_threads.append(aThread) else: for aThread in self.iter_threads(): t_name = aThread.get_name() if t_name is not None and name in t_name: found_threads.append(aThread) return found_threads
Find threads by name, using different search methods. @type name: str, None @param name: Name to look for. Use C{None} to find nameless threads. @type bExactMatch: bool @param bExactMatch: C{True} if the name must be B{exactly} as given, C{False} if the name can be loosely matched. This parameter is ignored when C{name} is C{None}. @rtype: list( L{Thread} ) @return: All threads matching the given name.
20,689
def main(self, c): conj = self.conjugate.main(c) mult = self.complex_mult.main(c, conj) angle = self.angle.main(mult) self.y = self.GAIN_SFIX * angle return self.y
:type c: Complex :rtype: Sfix
20,690
def get_object(self): obj = super(PublishActionView, self).get_object() if obj: if not hasattr(obj, ): raise http.Http404 return obj
Get the object for publishing Raises a http404 error if the object is not found.
20,691
def pset_field(item_type, optional=False, initial=()): return _sequence_field(CheckedPSet, item_type, optional, initial)
Create checked ``PSet`` field. :param item_type: The required type for the items in the set. :param optional: If true, ``None`` can be used as a value for this field. :param initial: Initial value to pass to factory if no value is given for the field. :return: A ``field`` containing a ``CheckedPSet`` of the given type.
20,692
def redirect_to(): args_dict = request.args.items() args = CaseInsensitiveDict(args_dict) response = app.make_response("") response.status_code = 302 if "status_code" in args: status_code = int(args["status_code"]) if status_code >= 300 and status_code < 400: response.status_code = status_code response.headers["Location"] = args["url"].encode("utf-8") return response
302/3XX Redirects to the given URL. --- tags: - Redirects produces: - text/html get: parameters: - in: query name: url type: string required: true - in: query name: status_code type: int post: consumes: - application/x-www-form-urlencoded parameters: - in: formData name: url type: string required: true - in: formData name: status_code type: int required: false patch: consumes: - application/x-www-form-urlencoded parameters: - in: formData name: url type: string required: true - in: formData name: status_code type: int required: false put: consumes: - application/x-www-form-urlencoded parameters: - in: formData name: url type: string required: true - in: formData name: status_code type: int required: false responses: 302: description: A redirection.
20,693
def inspect_built_image(self): logger.info("inspecting built image ", self.image_id) self.ensure_is_built() inspect_data = self.tasker.inspect_image(self.image_id) return inspect_data
inspect built image :return: dict
20,694
def get(self): self.lock.acquire() try: c = self.conn.popleft() yield c except self.exc_classes: gevent.spawn_later(1, self._addOne) raise except: self.conn.append(c) self.lock.release() raise else: self.conn.append(c) self.lock.release()
Get a connection from the pool, to make and receive traffic. If the connection fails for any reason (socket.error), it is dropped and a new one is scheduled. Please use @retry as a way to automatically retry whatever operation you were performing.
20,695
def task(self, task_name): return Task(uri=.join((self._engine_name, task_name)), cwd=self._cwd)
Returns an ENVI Py Engine Task object. See ENVI Py Engine Task for examples. :param task_name: The name of the task to retrieve. :return: An ENVI Py Engine Task object.
20,696
def apply(self, func, *args, **kwargs): self._prep_pandas_groupby() def key_by_index(data): for key, row in data.iterrows(): yield (key, pd.DataFrame.from_dict( dict([(key, row)]), orient=)) myargs = self._myargs mykwargs = self._mykwargs regroupedRDD = self._distributedRDD.mapValues( lambda data: data.groupby(*myargs, **mykwargs)) appliedRDD = regroupedRDD.map( lambda key_data: key_data[1].apply(func, *args, **kwargs)) reKeyedRDD = appliedRDD.flatMap(key_by_index) dataframe = self._sortIfNeeded(reKeyedRDD).values() return DataFrame.fromDataFrameRDD(dataframe, self.sql_ctx)
Apply the provided function and combine the results together in the same way as apply from groupby in pandas. This returns a DataFrame.
20,697
def __bindings(self): self.textctrl.Bind(wx.EVT_TEXT, self.OnText) self.fontbutton.Bind(wx.EVT_BUTTON, self.OnFont) self.Bind(csel.EVT_COLOURSELECT, self.OnColor)
Binds events to handlers
20,698
def get_grouped_translations(instances, **kwargs): grouped_translations = collections.defaultdict(list) if not instances: return grouped_translations if not isinstance(instances, collections.Iterable): instances = [instances] if isinstance(instances, QuerySet): model = instances.model else: model = instances[0]._meta.model instances_ids = [] for instance in instances: instances_ids.append(instance.pk) if instance._meta.model != model: raise Exception( "You cannot use different model instances, only one authorized." ) from .models import Translation from .mixins import ModelMixin decider = model._meta.linguist.get("decider", Translation) identifier = model._meta.linguist.get("identifier", None) chunks_length = kwargs.get("chunks_length", None) populate_missing = kwargs.get("populate_missing", True) if identifier is None: raise Exception() lookup = dict(identifier=identifier) for kwarg in ("field_names", "languages"): value = kwargs.get(kwarg, None) if value is not None: if not isinstance(value, (list, tuple)): value = [value] lookup["%s__in" % kwarg[:-1]] = value if chunks_length is not None: translations_qs = [] for ids in utils.chunks(instances_ids, chunks_length): ids_lookup = copy.copy(lookup) ids_lookup["object_id__in"] = ids translations_qs.append(decider.objects.filter(**ids_lookup)) translations = itertools.chain.from_iterable(translations_qs) else: lookup["object_id__in"] = instances_ids translations = decider.objects.filter(**lookup) for translation in translations: grouped_translations[translation.object_id].append(translation) return grouped_translations
Takes instances and returns grouped translations ready to be set in cache.
20,699
def _scan_for_tokens(contents): scanner = re.Scanner([ (r"(?<![^\s\(])([\"\]([^\])*$", lambda s, t: (TokenType.BeginSingleQuotedLiteral, t)), (r"[^\s]*(?<!\\)[\'](?![^\s\)])", lambda s, t: (TokenType.EndSingleQuotedLiteral, t)), (r" (r" (r" (r" (r"([^\s\(\)]+|[^\s\(]*[^\)]|[^\(][^\s\)]*)", lambda s, t: (TokenType.UnquotedLiteral, t)) ]) tokens_return = [] lines = contents.splitlines(True) lineno = 0 for line in lines: lineno += 1 col = 1 tokens, remaining = scanner.scan(line) if remaining != "": msg = "Unknown tokens found on line {0}: {1}".format(lineno, remaining) raise RuntimeError(msg) for token_type, token_contents in tokens: tokens_return.append(Token(type=token_type, content=token_contents, line=lineno, col=col)) col += len(token_contents) return tokens_return
Scan a string for tokens and return immediate form tokens.