Unnamed: 0
int64 0
389k
| code
stringlengths 26
79.6k
| docstring
stringlengths 1
46.9k
|
---|---|---|
20,900 | def camera_list(self, **kwargs):
api = self._api_info[]
payload = dict({
: self._sid,
: api[],
: ,
: api[],
}, **kwargs)
response = self._get_json_with_retry(api[], payload)
cameras = []
for data in response[][]:
cameras.append(Camera(data, self._video_stream_url))
return cameras | Return a list of cameras. |
20,901 | def video_set_callbacks(self, lock, unlock, display, opaque):
return libvlc_video_set_callbacks(self, lock, unlock, display, opaque) | Set callbacks and private data to render decoded video to a custom area
in memory.
Use L{video_set_format}() or L{video_set_format_callbacks}()
to configure the decoded format.
@param lock: callback to lock video memory (must not be NULL).
@param unlock: callback to unlock video memory (or NULL if not needed).
@param display: callback to display video (or NULL if not needed).
@param opaque: private pointer for the three callbacks (as first parameter).
@version: LibVLC 1.1.1 or later. |
20,902 | def main():
if in sys.argv:
print(main.__doc__)
sys.exit()
dir_path = pmag.get_named_arg("-WD", default_val=".")
input_dir_path = pmag.get_named_arg(, )
if not input_dir_path:
input_dir_path = dir_path
in_file = pmag.get_named_arg("-f", default_val="sites.txt")
in_file = pmag.resolve_file_name(in_file, input_dir_path)
if "-ID" not in sys.argv:
input_dir_path = os.path.split(in_file)[0]
plot_by = pmag.get_named_arg("-obj", default_val="all").lower()
spec_file = pmag.get_named_arg("-fsp", default_val="specimens.txt")
samp_file = pmag.get_named_arg("-fsa", default_val="samples.txt")
site_file = pmag.get_named_arg("-fsi", default_val="sites.txt")
loc_file = pmag.get_named_arg("-flo", default_val="locations.txt")
ignore_tilt = False
if in sys.argv:
ignore_tilt = True
color_map = "coolwarm"
if in sys.argv:
contour = True
if in sys.argv:
ind = sys.argv.index()
color_map = sys.argv[ind+1]
else:
color_map =
else:
contour = False
interactive = True
save_plots = False
if in sys.argv:
save_plots = True
interactive = False
plot_ell = False
if in sys.argv:
plot_ell = pmag.get_named_arg("-ell", "F")
crd = pmag.get_named_arg("-crd", default_val="g")
fmt = pmag.get_named_arg("-fmt", "svg")
ipmag.eqarea_magic(in_file, dir_path, input_dir_path, spec_file, samp_file, site_file, loc_file,
plot_by, crd, ignore_tilt, save_plots, fmt, contour, color_map,
plot_ell, "all", interactive) | NAME
eqarea_magic.py
DESCRIPTION
makes equal area projections from declination/inclination data
SYNTAX
eqarea_magic.py [command line options]
INPUT
takes magic formatted sites, samples, specimens, or measurements
OPTIONS
-h prints help message and quits
-f FILE: specify input magic format file from magic, default='sites.txt'
supported types=[measurements, specimens, samples, sites]
-fsp FILE: specify specimen file name, (required if you want to plot measurements by sample)
default='specimens.txt'
-fsa FILE: specify sample file name, (required if you want to plot specimens by site)
default='samples.txt'
-fsi FILE: specify site file name, default='sites.txt'
-flo FILE: specify location file name, default='locations.txt'
-obj OBJ: specify level of plot [all, sit, sam, spc], default is all
-crd [s,g,t]: specify coordinate system, [s]pecimen, [g]eographic, [t]ilt adjusted
default is geographic, unspecified assumed geographic
-fmt [svg,png,jpg] format for output plots
-ell [F,K,B,Be,Bv] plot Fisher, Kent, Bingham, Bootstrap ellipses or Boostrap eigenvectors
-c plot as colour contour
-cm CM use color map CM [default is coolwarm]
-sav save plot and quit quietly
-no-tilt data are unoriented, allows plotting of measurement dec/inc
NOTE
all: entire file; sit: site; sam: sample; spc: specimen |
20,903 | def _set_query_data_fast_1(self, page):
self.data[] = page.get()
assessments = page.get()
if assessments:
self.data[] = assessments
extract = page.get()
if extract:
self.data[] = extract
extext = html2text.html2text(extract)
if extext:
self.data[] = extext.strip()
fullurl = page.get()
if fullurl:
self.data[] = fullurl
self.data[] = fullurl +
length = page.get()
if length:
self.data[] = length
self._extend_data(, utils.get_links(page.get()))
self._update_data(, , page.get())
pageprops = page.get()
if pageprops:
wikibase = pageprops.get()
if wikibase:
self.data[] = wikibase
self.data[] = utils.wikidata_url(wikibase)
if in pageprops:
self.data[] = len(self.data[]) | set less expensive action=query response data PART 1 |
20,904 | def _merge_points(self, function_address):
try:
new_function = self.kb.functions[function_address]
except KeyError:
return [ ]
if function_address not in self._function_merge_points:
ordered_merge_points = CFGUtils.find_merge_points(function_address, new_function.endpoints,
new_function.graph)
self._function_merge_points[function_address] = ordered_merge_points
return self._function_merge_points[function_address] | Return the ordered merge points for a specific function.
:param int function_address: Address of the querying function.
:return: A list of sorted merge points (addresses).
:rtype: list |
20,905 | def from_df(cls, df_long, df_short):
pop = cls(1,1,1,1,1)
pop.orbpop_long = OrbitPopulation.from_df(df_long)
pop.orbpop_short = OrbitPopulation.from_df(df_short)
return pop | Builds TripleOrbitPopulation from DataFrame
``DataFrame`` objects must be of appropriate form to pass
to :func:`OrbitPopulation.from_df`.
:param df_long, df_short:
:class:`pandas.DataFrame` objects to pass to
:func:`OrbitPopulation.from_df`. |
20,906 | def str_presenter(dmpr, data):
if is_multiline(data):
return dmpr.represent_scalar(, data, style=)
return dmpr.represent_scalar(, data) | Return correct str_presenter to write multiple lines to a yaml field.
Source: http://stackoverflow.com/a/33300001 |
20,907 | def get_tag(self, el):
name = self.get_tag_name(el)
return util.lower(name) if name is not None and not self.is_xml else name | Get tag. |
20,908 | def register(klass):
assert(isinstance(klass, type))
name = klass.__name__.lower()
if name in Optimizer.opt_registry:
warnings.warn(
%
(klass.__module__, klass.__name__,
Optimizer.opt_registry[name].__module__,
Optimizer.opt_registry[name].__name__))
Optimizer.opt_registry[name] = klass
return klass | Registers a new optimizer.
Once an optimizer is registered, we can create an instance of this
optimizer with `create_optimizer` later.
Examples
--------
>>> @mx.optimizer.Optimizer.register
... class MyOptimizer(mx.optimizer.Optimizer):
... pass
>>> optim = mx.optimizer.Optimizer.create_optimizer('MyOptimizer')
>>> print(type(optim))
<class '__main__.MyOptimizer'> |
20,909 | def status(self):
if self._future.running():
_status = JobStatus.RUNNING
elif self._future.cancelled():
_status = JobStatus.CANCELLED
elif self._future.done():
_status = JobStatus.DONE if self._future.exception() is None else JobStatus.ERROR
else:
_status = JobStatus.INITIALIZING
return _status | Gets the status of the job by querying the Python's future
Returns:
qiskit.providers.JobStatus: The current JobStatus
Raises:
JobError: If the future is in unexpected state
concurrent.futures.TimeoutError: if timeout occurred. |
20,910 | def GetStream(data=None):
if len(__mstreams_available__) == 0:
if data:
mstream = MemoryStream(data)
mstream.seek(0)
else:
mstream = MemoryStream()
__mstreams__.append(mstream)
return mstream
mstream = __mstreams_available__.pop()
if data is not None and len(data):
mstream.Cleanup()
mstream.write(data)
mstream.seek(0)
return mstream | Get a MemoryStream instance.
Args:
data (bytes, bytearray, BytesIO): (Optional) data to create the stream from.
Returns:
MemoryStream: instance. |
20,911 | def parse_yaml(self, y):
self._targets = []
if in y:
for t in y[]:
if in t[]:
new_target = WaitTime()
elif in t[]:
new_target = Preceding()
else:
new_target = Condition()
new_target.parse_yaml(t)
self._targets.append(new_target)
return self | Parse a YAML speficication of a message sending object into this
object. |
20,912 | def get_dataset(self, dataset_key):
try:
return self._datasets_api.get_dataset(
*(parse_dataset_key(dataset_key))).to_dict()
except _swagger.rest.ApiException as e:
raise RestApiError(cause=e) | Retrieve an existing dataset definition
This method retrieves metadata about an existing
:param dataset_key: Dataset identifier, in the form of owner/id
:type dataset_key: str
:returns: Dataset definition, with all attributes
:rtype: dict
:raises RestApiException: If a server error occurs
Examples
--------
>>> import datadotworld as dw
>>> api_client = dw.api_client()
>>> intro_dataset = api_client.get_dataset(
... 'jonloyens/an-intro-to-dataworld-dataset') # doctest: +SKIP
>>> intro_dataset['title'] # doctest: +SKIP
'An Intro to data.world Dataset' |
20,913 | def room(model, solution=None, linear=False, delta=0.03, epsilon=1E-03):
with model:
add_room(model=model, solution=solution, linear=linear, delta=delta,
epsilon=epsilon)
solution = model.optimize()
return solution | Compute a single solution based on regulatory on/off minimization (ROOM).
Compute a new flux distribution that minimizes the number of active
reactions needed to accommodate a previous reference solution.
Regulatory on/off minimization (ROOM) is generally used to assess the
impact of knock-outs. Thus the typical usage is to provide a wildtype flux
distribution as reference and a model in knock-out state.
Parameters
----------
model : cobra.Model
The model state to compute a ROOM-based solution for.
solution : cobra.Solution, optional
A (wildtype) reference solution.
linear : bool, optional
Whether to use the linear ROOM formulation or not (default False).
delta: float, optional
The relative tolerance range (additive) (default 0.03).
epsilon: float, optional
The absolute tolerance range (multiplicative) (default 0.001).
Returns
-------
cobra.Solution
A flux distribution with minimal active reaction changes compared to
the reference.
See Also
--------
add_room : add ROOM constraints and objective |
20,914 | def secant(a, b, fn, epsilon):
f1 = fn(a)
if abs(f1) <= epsilon:
return a
f2 = fn(b)
if abs(f2) <= epsilon:
return b
for i in range(100):
slope = (f2 - f1) / (b - a)
c = b - f2 / slope
f3 = fn(c)
if abs(f3) < epsilon:
return c
a = b
b = c
f1 = f2
f2 = f3
return None | One of the fasest root-finding algorithms.
The method calculates the slope of the function fn and this enables it to converge
to a solution very fast. However, if started too far away from a root, the method
may not converge (returning a None). For this reason, it is recommended that this
function be used first in any guess-and-check workflow and, if it fails to find a
root, the bisect() method should be used.
Args:
a: The lowest possible boundary of the value you are tying to find.
b: The highest possible boundary of the value you are tying to find.
fn: A function representing the relationship between the value you are
trying to find and the target condition you are trying to satisfy.
It should typically be structured in the following way:
`def fn(value_trying_to_find):
funct(value_trying_to_find) - target_desired_from_funct`
...but the subtraction should be swtiched if value_trying_to_find
has a negative relationship with the funct.
epsilon: The acceptable error in the target_desired_from_funct.
Returns:
root: The value that gives the target_desired_from_funct.
References
----------
[1] Wikipedia contributors. (2018, December 29). Root-finding algorithm.
In Wikipedia, The Free Encyclopedia. Retrieved 18:16, December 30, 2018,
from https://en.wikipedia.org/wiki/Root-finding_algorithm#Secant_method |
20,915 | def Lorentzian(x, a, x0, sigma, y0):
return a / (1 + ((x - x0) / sigma) ** 2) + y0 | Lorentzian peak
Inputs:
-------
``x``: independent variable
``a``: scaling factor (extremal value)
``x0``: center
``sigma``: half width at half maximum
``y0``: additive constant
Formula:
--------
``a/(1+((x-x0)/sigma)^2)+y0`` |
20,916 | def reduce_l1(attrs, inputs, proto_obj):
new_attrs = translation_utils._fix_attribute_names(attrs, {:})
new_attrs = translation_utils._add_extra_attributes(new_attrs,
{ : 1})
return , new_attrs, inputs | Reduce input tensor by l1 normalization. |
20,917 | def assemble(self,roboset=None,color=None,format=None,bgset=None,sizex=300,sizey=300):
if roboset == :
if color in self.colors:
roboset = + color
else:
randomcolor = self.colors[self.hasharray[0] % len(self.colors) ]
roboset = + randomcolor
roboparts = self._get_list_of_files(self.resourcedir + + roboset)
if format == :
r, g, b, a = roboimg.split()
roboimg = Image.merge("RGB", (r, g, b))
if bgset is not None:
bg = Image.open(background)
bg = bg.resize((1024,1024))
bg.paste(roboimg,(0,0),roboimg)
roboimg = bg
self.img = roboimg.resize((sizex,sizey),Image.ANTIALIAS)
self.format = format | Build our Robot!
Returns the robot image itself. |
20,918 | def resize(self, width, height):
if not self.fbo:
return
self.width = width // self.widget.devicePixelRatio()
self.height = height // self.widget.devicePixelRatio()
self.buffer_width = width
self.buffer_height = height
super().resize(width, height) | Pyqt specific resize callback. |
20,919 | def scolor(self):
global palette
color = palette[self.color_index]
if len(palette) - 1 == self.color_index:
self.color_index = 0
else:
self.color_index += 1
self.color(color) | Set a unique color from a serie |
20,920 | def get(self, *raw_args, **raw_kwargs):
args = self.prepare_args(*raw_args)
kwargs = self.prepare_kwargs(**raw_kwargs)
key = self.key(*args, **kwargs)
item = self.cache.get(key)
call = Call(args=raw_args, kwargs=raw_kwargs)
if item is None:
if self.should_missing_item_be_fetched_synchronously(*args, **kwargs):
logger.debug(("Job %s with key - cache MISS - running "
"synchronous refresh"),
self.class_path, key)
result = self.refresh(*args, **kwargs)
return self.process_result(
result, call=call, cache_status=self.MISS, sync_fetch=True)
else:
logger.debug(("Job %s with key - cache MISS - triggering "
"async refresh and returning empty result"),
self.class_path, key)
result = self.empty()
self.store(key, self.timeout(*args, **kwargs), result)
self.async_refresh(*args, **kwargs)
return self.process_result(
result, call=call, cache_status=self.MISS,
sync_fetch=False)
expiry, data = item
delta = time.time() - expiry
if delta > 0:
if self.should_stale_item_be_fetched_synchronously(
delta, *args, **kwargs):
logger.debug(
("Job %s with key - STALE cache hit - running "
"synchronous refresh"),
self.class_path, key)
result = self.refresh(*args, **kwargs)
return self.process_result(
result, call=call, cache_status=self.STALE,
sync_fetch=True)
else:
logger.debug(
("Job %s with key - STALE cache hit - triggering "
"async refresh and returning stale result"),
self.class_path, key)
timeout = self.timeout(*args, **kwargs)
self.store(key, timeout, data)
self.async_refresh(*args, **kwargs)
return self.process_result(
data, call=call, cache_status=self.STALE, sync_fetch=False)
else:
logger.debug("Job %s with key - cache HIT", self.class_path, key)
return self.process_result(data, call=call, cache_status=self.HIT) | Return the data for this function (using the cache if possible).
This method is not intended to be overidden |
20,921 | def _get_template_list(self):
" Get the hierarchy of templates belonging to the object/box_type given. "
t_list = []
if hasattr(self.obj, ) and self.obj.category_id:
cat = self.obj.category
base_path = % (cat.path, self.name)
if hasattr(self.obj, ):
t_list.append(base_path + % (self.obj.slug, self.box_type,))
t_list.append(base_path + % (self.box_type,))
t_list.append(base_path + )
base_path = % self.name
if hasattr(self.obj, ):
t_list.append(base_path + % (self.obj.slug, self.box_type,))
t_list.append(base_path + % (self.box_type,))
t_list.append(base_path + )
t_list.append( % self.box_type)
t_list.append()
return t_list | Get the hierarchy of templates belonging to the object/box_type given. |
20,922 | def annot_heatmap(ax,dannot,
xoff=0,yoff=0,
kws_text={},
annot_left=,annot_right=,
annothalf=,
):
for xtli,xtl in enumerate(ax.get_xticklabels()):
xtl=xtl.get_text()
for ytli,ytl in enumerate(ax.get_yticklabels()):
ytl=ytl.get_text()
if annothalf==:
ax.text(xtli+0.5+xoff,ytli+0.5+yoff,dannot.loc[xtl,ytl],**kws_text,ha=)
else:
ax.text(ytli+0.5+yoff,xtli+0.5+xoff,dannot.loc[xtl,ytl],**kws_text,ha=)
return ax | kws_text={'marker','s','linewidth','facecolors','edgecolors'} |
20,923 | def set_forbidden_uptodate(self, uptodate):
if self._forbidden_uptodate == uptodate:
return
self._forbidden_uptodate = uptodate
self.invalidateFilter() | Set all forbidden uptodate values
:param uptodatees: a list with forbidden uptodate values
:uptodate uptodatees: list
:returns: None
:ruptodate: None
:raises: None |
20,924 | def __getRefererUrl(self, url=None):
if url is None:
url = "http://www.arcgis.com/sharing/rest/portals/self"
params = {
"f" : "json",
"token" : self.token
}
val = self._get(url=url, param_dict=params,
proxy_url=self._proxy_url,
proxy_port=self._proxy_port)
self._referer_url = "arcgis.com"
self._token = None
return self._referer_url | gets the referer url for the token handler |
20,925 | def extract_db_info(self, obj, keys):
objl = self.convert_in(obj)
if isinstance(objl, self.__class__):
return objl.update_meta_info()
try:
with builtins.open(objl, mode=) as fd:
state = json.load(fd)
except IOError as e:
raise e
result = super(BaseStructuredCalibration, self).extract_db_info(state, keys)
try:
minfo = state[]
result[] = minfo[]
origin = minfo[]
date_obs = origin[]
except KeyError:
origin = {}
date_obs = "1970-01-01T00:00:00.00"
result[] = state[]
result[] = state[]
result[] = state[]
result[] = state[]
result[] = conv.convert_date(date_obs)
result[] = origin
return result | Extract metadata from serialized file |
20,926 | def prior_transform(self, unit_coords, priors, prior_args=[]):
theta = []
for i, (u, p) in enumerate(zip(unit_coords, priors)):
func = p.unit_transform
try:
kwargs = prior_args[i]
except(IndexError):
kwargs = {}
theta.append(func(u, **kwargs))
return theta | An example of one way to use the `Prior` objects below to go from unit
cube to parameter space, for nested sampling. This takes and returns a
list instead of an array, to accomodate possible vector parameters. Thus
one will need something like ``theta_array=np.concatenate(*theta)``
:param unit_coords:
Coordinates on the unit prior hyper-cube. Iterable.
:param priors:
A list of `Prior` objects, iterable of same length as `unit_coords`.
:param prior_args: (optional)
A list of dictionaries of prior function keyword arguments.
:returns theta:
A list of parameter values corresponding to the given coordinates on
the prior unit hypercube. |
20,927 | def getPixels(self):
array = self.toArray()
(width, height, depth) = array.size
for x in range(width):
for y in range(height):
yield Pixel(array, x, y) | Return a stream of pixels from current Canvas. |
20,928 | def on_error(e):
exname = {: , : }
sys.stderr.write(.format(exname[e.__class__.__name__], str(e)))
sys.stderr.write()
sys.exit(1) | Error handler
RuntimeError or ValueError exceptions raised by commands will be handled
by this function. |
20,929 | def get_config(self):
config = {
: self.location,
: self.language,
: self.topic,
}
return config | function to get current configuration |
20,930 | def _machinectl(cmd,
output_loglevel=,
ignore_retcode=False,
use_vt=False):
prefix =
return __salt__[](.format(prefix, cmd),
output_loglevel=output_loglevel,
ignore_retcode=ignore_retcode,
use_vt=use_vt) | Helper function to run machinectl |
20,931 | def invoke_function(self, script_hash, operation, params, **kwargs):
contract_params = encode_invocation_params(params)
raw_result = self._call(
JSONRPCMethods.INVOKE_FUNCTION.value, [script_hash, operation, contract_params, ],
**kwargs)
return decode_invocation_result(raw_result) | Invokes a contract's function with given parameters and returns the result.
:param script_hash: contract script hash
:param operation: name of the operation to invoke
:param params: list of paramaters to be passed in to the smart contract
:type script_hash: str
:type operation: str
:type params: list
:return: result of the invocation
:rtype: dictionary |
20,932 | def _get_ned_sources_needing_metadata(
self):
self.log.debug(
)
tableName = self.dbTableName
sqlQuery = u % locals()
rows = readquery(
log=self.log,
sqlQuery=sqlQuery,
dbConn=self.cataloguesDbConn,
quiet=False
)
self.theseIds = []
self.theseIds[:] = [r["ned_name"] for r in rows]
self.log.debug(
)
return len(self.theseIds) | *Get the names of 50000 or less NED sources that still require metabase in the database*
**Return:**
- ``len(self.theseIds)`` -- the number of NED IDs returned
*Usage:*
.. code-block:: python
numberSources = stream._get_ned_sources_needing_metadata() |
20,933 | def _all_feature_values(
self,
column,
feature,
distinct=True,
contig=None,
strand=None):
return self.db.query_feature_values(
column=column,
feature=feature,
distinct=distinct,
contig=contig,
strand=strand) | Cached lookup of all values for a particular feature property from
the database, caches repeated queries in memory and
stores them as a CSV.
Parameters
----------
column : str
Name of property (e.g. exon_id)
feature : str
Type of entry (e.g. exon)
distinct : bool, optional
Keep only unique values
contig : str, optional
Restrict query to particular contig
strand : str, optional
Restrict results to "+" or "-" strands
Returns a list constructed from query results. |
20,934 | def create_record(self, rtype=None, name=None, content=None, **kwargs):
if not rtype and kwargs.get():
warnings.warn(,
DeprecationWarning)
rtype = kwargs.get()
return self._create_record(rtype, name, content) | Create record. If record already exists with the same content, do nothing. |
20,935 | def get_value(self,
entry_name: Text,
entry_lines: Sequence[Text]) -> Optional[Text]:
for line in entry_lines:
match = self._regex.match(line)
if match:
return match.group(1)
return None | See base class method. |
20,936 | def put(
self, item: _T, timeout: Union[float, datetime.timedelta] = None
) -> "Future[None]":
future = Future()
try:
self.put_nowait(item)
except QueueFull:
self._putters.append((item, future))
_set_timeout(future, timeout)
else:
future.set_result(None)
return future | Put an item into the queue, perhaps waiting until there is room.
Returns a Future, which raises `tornado.util.TimeoutError` after a
timeout.
``timeout`` may be a number denoting a time (on the same
scale as `tornado.ioloop.IOLoop.time`, normally `time.time`), or a
`datetime.timedelta` object for a deadline relative to the
current time. |
20,937 | def delete(self, name):
if self.service.splunk_version >= (5,):
Collection.delete(self, name)
else:
raise IllegalOperationException("Deleting indexes via the REST API is "
"not supported before Splunk version 5.") | Deletes a given index.
**Note**: This method is only supported in Splunk 5.0 and later.
:param name: The name of the index to delete.
:type name: ``string`` |
20,938 | def all(self):
identifiers = []
query = text()
for result in self.execute(query):
vid, type_, name = result
res = IdentifierSearchResult(
score=1, vid=vid, type=type_, name=name)
identifiers.append(res)
return identifiers | Returns list with all indexed identifiers. |
20,939 | def sanitize(self):
super(InfoMessage, self).sanitize()
if not isinstance(self.is_reply, bool):
raise ValueError()
if len(bytes(self.nonce)) != 8:
raise ValueError()
if self.key_id not in (KEY_ID_NONE, KEY_ID_HMAC_SHA_1_96,
KEY_ID_HMAC_SHA_256_128):
raise ValueError()
if not isinstance(self.authentication_data, bytes):
raise ValueError()
if not isinstance(self.ttl, numbers.Integral) \
or self.ttl < 0 or self.ttl > 0xffffffff:
raise ValueError()
if not isinstance(self.eid_prefix, (IPv4Network, IPv6Network)):
raise ValueError()
if self.is_reply:
if not isinstance(self.reply, LCAFNATTraversalAddress):
raise ValueError("An InfoMessage which is an Info-Reply must contain an LCAFNATTraversalAddress")
else:
if self.reply is not None:
raise ValueError("An InfoMessage which is an Info-Request can not contain a reply") | Check if the current settings conform to the LISP specifications and
fix them where possible. |
20,940 | def en_disable_breakpoint_by_number(self, bpnum, do_enable=True):
"Enable or disable a breakpoint given its breakpoint number."
success, msg, bp = self.get_breakpoint(bpnum)
if not success:
return success, msg
if do_enable:
endis =
else:
endis =
pass
if bp.enabled == do_enable:
return (False, ( %
(str(bpnum), endis,)))
bp.enabled = do_enable
return (True, ) | Enable or disable a breakpoint given its breakpoint number. |
20,941 | def proba2labels(proba: [list, np.ndarray], confident_threshold: float, classes: [list, np.ndarray]) -> List[List]:
y = []
for sample in proba:
to_add = np.where(sample > confident_threshold)[0]
if len(to_add) > 0:
y.append(np.array(classes)[to_add].tolist())
else:
y.append(np.array([np.array(classes)[np.argmax(sample)]]).tolist())
return y | Convert vectors of probabilities to labels using confident threshold
(if probability to belong with the class is bigger than confident_threshold, sample belongs with the class;
if no probabilities bigger than confident threshold, sample belongs with the class with the biggest probability)
Args:
proba: list of samples where each sample is a vector of probabilities to belong with given classes
confident_threshold (float): boundary of probability to belong with a class
classes: array of classes' names
Returns:
list of lists of labels for each sample |
20,942 | def _get_migration_files(self, path):
files = glob.glob(os.path.join(path, "[0-9]*_*.py"))
if not files:
return []
files = list(map(lambda f: os.path.basename(f).replace(".py", ""), files))
files = sorted(files)
return files | Get all of the migration files in a given path.
:type path: str
:rtype: list |
20,943 | def get_status(self):
logger.debug("get server status")
server_status = ctypes.c_int()
cpu_status = ctypes.c_int()
clients_count = ctypes.c_int()
error = self.library.Srv_GetStatus(self.pointer, ctypes.byref(server_status),
ctypes.byref(cpu_status),
ctypes.byref(clients_count))
check_error(error)
logger.debug("status server %s cpu %s clients %s" %
(server_status.value, cpu_status.value,
clients_count.value))
return snap7.snap7types.server_statuses[server_status.value], \
snap7.snap7types.cpu_statuses[cpu_status.value], \
clients_count.value | Reads the server status, the Virtual CPU status and the number of
the clients connected.
:returns: server status, cpu status, client count |
20,944 | def transferReporter(self, xferId, message):
if self.is_stopped():
return True
_asp_message = AsperaMessage(message)
if not _asp_message.is_msg_type(
[enumAsperaMsgType.INIT,
enumAsperaMsgType.DONE,
enumAsperaMsgType.ERROR,
enumAsperaMsgType.FILEERROR,
enumAsperaMsgType.STATS]):
return
_session_id = _asp_message.get_session_id()
_msg = self.debug_id(xferId, _session_id) + " : " + _asp_message._msg_type
logger.info(_msg)
with self._session_lock:
if _asp_message.is_msg_type([enumAsperaMsgType.INIT]):
assert(_session_id not in self._sessions)
_session = AsperaSession(_session_id)
self._sessions[_session_id] = _session
self.notify_init()
else:
_session = self._sessions[_session_id]
if _asp_message.is_msg_type([enumAsperaMsgType.DONE]):
if _session.set_bytes_transferred(_asp_message.get_bytes_transferred()):
self.notify_progress()
_session.set_success()
self.notify_done()
elif _asp_message.is_msg_type([enumAsperaMsgType.ERROR, enumAsperaMsgType.FILEERROR]):
_session.set_error(_asp_message.get_error_descr())
self.notify_done(error=True)
elif _asp_message.is_msg_type([enumAsperaMsgType.STATS]):
if _session.set_bytes_transferred(_asp_message.get_bytes_transferred()):
self.notify_progress() | the callback method used by the Aspera sdk during transfer
to notify progress, error or successful completion |
20,945 | def decide_child_program(args_executable, args_child_program):
if os.path.sep in args_child_program:
logger.error(
"The parameter to --exec must be a file name (to be found "
"inside venv%s' not found. If you want to run an executable "
"file from a library installed in the virtualenv "
"check the `--exec` option in the help.",
args_child_program)
raise FadesError("child program not found.")
analyzable_child_program = args_child_program
child_program = args_child_program
else:
analyzable_child_program = None
child_program = None
return analyzable_child_program, child_program | Decide which the child program really is (if any). |
20,946 | def set_filter(self, slices, values):
self.filters = [[sl,values[sl]] for sl in slices] | Sets Fourier-space filters for the image. The image is filtered by
subtracting values from the image at slices.
Parameters
----------
slices : List of indices or slice objects.
The q-values in Fourier space to filter.
values : np.ndarray
The complete array of Fourier space peaks to subtract off. values
should be the same size as the FFT of the image; only the portions
of values at slices will be removed.
Examples
--------
To remove a two Fourier peaks in the data at q=(10, 10, 10) &
(245, 245, 245), where im is the residuals of a model:
* slices = [(10,10,10), (245, 245, 245)]
* values = np.fft.fftn(im)
* im.set_filter(slices, values) |
20,947 | def getAsKml(self, session):
statement = .format(self.geometryColumnName,
self.tableName,
self.id)
result = session.execute(statement)
for row in result:
return row.kml | Retrieve the geometry in KML format.
This method is a veneer for an SQL query that calls the ``ST_AsKml()`` function on the geometry column.
Args:
session (:mod:`sqlalchemy.orm.session.Session`): SQLAlchemy session object bound to PostGIS enabled database.
Returns:
str: KML string representation of geometry. |
20,948 | def padded_sequence_accuracy(predictions,
labels,
weights_fn=common_layers.weights_nonzero):
if common_layers.shape_list(predictions)[-1] == 1:
return rounding_sequence_accuracy(
predictions, labels, weights_fn=weights_fn)
with tf.variable_scope(
"padded_sequence_accuracy", values=[predictions, labels]):
padded_predictions, padded_labels = common_layers.pad_with_zeros(
predictions, labels)
weights = weights_fn(padded_labels)
predictions_shape = common_layers.shape_list(padded_predictions)
batch_size = predictions_shape[0]
num_classes = predictions_shape[-1]
flat_size = common_layers.list_product(
common_layers.shape_list(padded_labels)[1:])
padded_predictions = tf.reshape(
padded_predictions,
[batch_size, common_layers.list_product(predictions_shape[1:-1]),
num_classes])
padded_labels = tf.reshape(padded_labels, [batch_size, flat_size])
weights = tf.reshape(weights, [batch_size, flat_size])
outputs = tf.to_int32(tf.argmax(padded_predictions, axis=-1))
padded_labels = tf.to_int32(padded_labels)
not_correct = tf.to_float(tf.not_equal(outputs, padded_labels)) * weights
axis = list(range(1, len(outputs.get_shape())))
correct_seq = 1.0 - tf.minimum(1.0, tf.reduce_sum(not_correct, axis=axis))
return correct_seq, tf.constant(1.0) | Percentage of times that predictions matches labels everywhere (non-0). |
20,949 | def ge(self, value):
self.op =
self.negate_op =
self.value = self._value(value)
return self | Construct a greater than or equal to (``>=``) filter.
:param value: Filter value
:return: :class:`filters.Field <filters.Field>` object
:rtype: filters.Field |
20,950 | def response_cookies(self):
try:
ret = {}
for cookie_base_uris in self.response.cookies._cookies.values():
for cookies in cookie_base_uris.values():
for cookie in cookies.keys():
ret[cookie] = cookies[cookie].value
return ret
except Exception as e:
self.error = ApiError(
"Exception in making Request with:: %s\n%s" % (
e_, traceback.format_exc()))
raise Exception(self.error) | This will return all cookies set
:return: dict {name, value} |
20,951 | def arg(self, state, index, stack_base=None):
session = self.arg_session
if self.args is None:
arg_loc = [session.next_arg(False) for _ in range(index + 1)][-1]
else:
arg_loc = self.args[index]
return arg_loc.get_value(state, stack_base=stack_base) | Returns a bitvector expression representing the nth argument of a function.
`stack_base` is an optional pointer to the top of the stack at the function start. If it is not
specified, use the current stack pointer.
WARNING: this assumes that none of the arguments are floating-point and they're all single-word-sized, unless
you've customized this CC. |
20,952 | def pretty_str(label, arr):
def is_col(a):
try:
return a.shape[0] > 1 and a.shape[1] == 1
except (AttributeError, IndexError):
return False
if label is None:
label =
if label:
label +=
if is_col(arr):
return label + str(arr.T).replace(, ) +
rows = str(arr).split()
if not rows:
return
s = label + rows[0]
pad = * len(label)
for line in rows[1:]:
s = s + + pad + line
return s | Generates a pretty printed NumPy array with an assignment. Optionally
transposes column vectors so they are drawn on one line. Strictly speaking
arr can be any time convertible by `str(arr)`, but the output may not
be what you want if the type of the variable is not a scalar or an
ndarray.
Examples
--------
>>> pprint('cov', np.array([[4., .1], [.1, 5]]))
cov = [[4. 0.1]
[0.1 5. ]]
>>> print(pretty_str('x', np.array([[1], [2], [3]])))
x = [[1 2 3]].T |
20,953 | def prettify_json(json_string):
try:
data = json.loads(json_string)
html = + json.dumps(data, sort_keys=True, indent=4) +
except:
html = json_string
return mark_safe(html) | Given a JSON string, it returns it as a
safe formatted HTML |
20,954 | def break_around_binary_operator(logical_line, tokens):
r
def is_binary_operator(token_type, text):
return ((token_type == tokenize.OP or text in [, ]) and
text not in "()[]{},:.;@=%~")
line_break = False
unary_context = True
previous_token_type = None
previous_text = None
for token_type, text, start, end, line in tokens:
if token_type == tokenize.COMMENT:
continue
if ( in text or in text) and token_type != tokenize.STRING:
line_break = True
else:
if (is_binary_operator(token_type, text) and line_break and
not unary_context and
not is_binary_operator(previous_token_type,
previous_text)):
yield start, "W503 line break before binary operator"
unary_context = text in
line_break = False
previous_token_type = token_type
previous_text = text | r"""
Avoid breaks before binary operators.
The preferred place to break around a binary operator is after the
operator, not before it.
W503: (width == 0\n + height == 0)
W503: (width == 0\n and height == 0)
Okay: (width == 0 +\n height == 0)
Okay: foo(\n -x)
Okay: foo(x\n [])
Okay: x = '''\n''' + ''
Okay: foo(x,\n -y)
Okay: foo(x, # comment\n -y)
Okay: var = (1 &\n ~2)
Okay: var = (1 /\n -2)
Okay: var = (1 +\n -1 +\n -2) |
20,955 | def dpi(self):
def int_dpi(dpi):
try:
int_dpi = int(round(float(dpi)))
if int_dpi < 1 or int_dpi > 2048:
int_dpi = 72
except (TypeError, ValueError):
int_dpi = 72
return int_dpi
def normalize_pil_dpi(pil_dpi):
if isinstance(pil_dpi, tuple):
return (int_dpi(pil_dpi[0]), int_dpi(pil_dpi[1]))
return (72, 72)
return normalize_pil_dpi(self._pil_props[2]) | A (horz_dpi, vert_dpi) 2-tuple specifying the dots-per-inch
resolution of this image. A default value of (72, 72) is used if the
dpi is not specified in the image file. |
20,956 | def list_build_configurations_for_product_version(product_id, version_id, page_size=200, page_index=0, sort="", q=""):
data = list_build_configurations_for_project_raw(product_id, version_id, page_size, page_index, sort, q)
if data:
return utils.format_json_list(data) | List all BuildConfigurations associated with the given ProductVersion |
20,957 | def _add_point_scalar(self, scalars, name, set_active=False, deep=True):
if not isinstance(scalars, np.ndarray):
raise TypeError()
if scalars.shape[0] != self.n_points:
raise Exception( +
)
if scalars.dtype == np.bool:
scalars = scalars.view(np.uint8)
if name not in self._point_bool_array_names:
self._point_bool_array_names.append(name)
if not scalars.flags.c_contiguous:
scalars = np.ascontiguousarray(scalars)
vtkarr = numpy_to_vtk(scalars, deep=deep)
vtkarr.SetName(name)
self.GetPointData().AddArray(vtkarr)
if set_active or self.active_scalar_info[1] is None:
self.GetPointData().SetActiveScalars(name)
self._active_scalar_info = [POINT_DATA_FIELD, name] | Adds point scalars to the mesh
Parameters
----------
scalars : numpy.ndarray
Numpy array of scalars. Must match number of points.
name : str
Name of point scalars to add.
set_active : bool, optional
Sets the scalars to the active plotting scalars. Default False.
deep : bool, optional
Does not copy scalars when False. A reference to the scalars
must be kept to avoid a segfault. |
20,958 | def _update_dict(data, default_data, replace_data=False):
if not data:
data = default_data.copy()
return data
if not isinstance(data, dict):
raise TypeError()
if len(data) > 255:
raise ValueError()
for i in data.keys():
if not isinstance(i, int):
raise TypeError()
if i < 0 or i > 255:
raise ValueError()
if not replace_data:
data.update(default_data)
return data | Update algorithm definition type dictionaries |
20,959 | def shot_chart_jointgrid(x, y, data=None, joint_type="scatter", title="",
joint_color="b", cmap=None, xlim=(-250, 250),
ylim=(422.5, -47.5), court_color="gray", court_lw=1,
outer_lines=False, flip_court=False,
joint_kde_shade=True, gridsize=None,
marginals_color="b", marginals_type="both",
marginals_kde_shade=True, size=(12, 11), space=0,
despine=False, joint_kws=None, marginal_kws=None,
**kwargs):
if joint_kws is None:
joint_kws = {}
joint_kws.update(kwargs)
if marginal_kws is None:
marginal_kws = {}
if cmap is None:
cmap = sns.light_palette(joint_color, as_cmap=True)
if flip_court:
xlim = xlim[::-1]
ylim = ylim[::-1]
grid = sns.JointGrid(x=x, y=y, data=data, xlim=xlim, ylim=ylim,
space=space)
if joint_type == "scatter":
grid = grid.plot_joint(plt.scatter, color=joint_color, **joint_kws)
elif joint_type == "kde":
grid = grid.plot_joint(sns.kdeplot, cmap=cmap,
shade=joint_kde_shade, **joint_kws)
elif joint_type == "hex":
if gridsize is None:
from seaborn.distributions import _freedman_diaconis_bins
x_bin = _freedman_diaconis_bins(x)
y_bin = _freedman_diaconis_bins(y)
gridsize = int(np.mean([x_bin, y_bin]))
grid = grid.plot_joint(plt.hexbin, gridsize=gridsize, cmap=cmap,
**joint_kws)
else:
raise ValueError("joint_type must be , , or .")
if marginals_type == "both":
grid = grid.plot_marginals(sns.distplot, color=marginals_color,
**marginal_kws)
elif marginals_type == "hist":
grid = grid.plot_marginals(sns.distplot, color=marginals_color,
kde=False, **marginal_kws)
elif marginals_type == "kde":
grid = grid.plot_marginals(sns.kdeplot, color=marginals_color,
shade=marginals_kde_shade, **marginal_kws)
else:
raise ValueError("marginals_type must be , , or .")
grid.fig.set_size_inches(size)
ax = grid.fig.get_axes()[0]
draw_court(ax, color=court_color, lw=court_lw, outer_lines=outer_lines)
grid.set_axis_labels(xlabel="", ylabel="")
ax.tick_params(labelbottom="off", labelleft="off")
ax.set_title(title, y=1.2, fontsize=18)
for spine in ax.spines:
ax.spines[spine].set_lw(court_lw)
ax.spines[spine].set_color(court_color)
grid.ax_marg_x.spines[spine].set_lw(court_lw)
grid.ax_marg_x.spines[spine].set_color(court_color)
grid.ax_marg_y.spines[spine].set_lw(court_lw)
grid.ax_marg_y.spines[spine].set_color(court_color)
if despine:
ax.spines["top"].set_visible(False)
ax.spines["bottom"].set_visible(False)
ax.spines["right"].set_visible(False)
ax.spines["left"].set_visible(False)
return grid | Returns a JointGrid object containing the shot chart.
This function allows for more flexibility in customizing your shot chart
than the ``shot_chart_jointplot`` function.
Parameters
----------
x, y : strings or vector
The x and y coordinates of the shots taken. They can be passed in as
vectors (such as a pandas Series) or as columns from the pandas
DataFrame passed into ``data``.
data : DataFrame, optional
DataFrame containing shots where ``x`` and ``y`` represent the shot
location coordinates.
joint_type : { "scatter", "kde", "hex" }, optional
The type of shot chart for the joint plot.
title : str, optional
The title for the plot.
joint_color : matplotlib color, optional
Color used to plot the shots on the joint plot.
cmap : matplotlib Colormap object or name, optional
Colormap for the range of data values. If one isn't provided, the
colormap is derived from the value passed to ``color``. Used for KDE
and Hexbin joint plots.
{x, y}lim : two-tuples, optional
The axis limits of the plot. The defaults represent the out of bounds
lines and half court line.
court_color : matplotlib color, optional
The color of the court lines.
court_lw : float, optional
The linewidth the of the court lines.
outer_lines : boolean, optional
If ``True`` the out of bound lines are drawn in as a matplotlib
Rectangle.
flip_court : boolean, optional
If ``True`` orients the hoop towards the bottom of the plot. Default is
``False``, which orients the court where the hoop is towards the top of
the plot.
joint_kde_shade : boolean, optional
Default is ``True``, which shades in the KDE contours on the joint plot.
gridsize : int, optional
Number of hexagons in the x-direction. The default is calculated using
the Freedman-Diaconis method.
marginals_color : matplotlib color, optional
Color used to plot the shots on the marginal plots.
marginals_type : { "both", "hist", "kde"}, optional
The type of plot for the marginal plots.
marginals_kde_shade : boolean, optional
Default is ``True``, which shades in the KDE contours on the marginal
plots.
size : tuple, optional
The width and height of the plot in inches.
space : numeric, optional
The space between the joint and marginal plots.
despine : boolean, optional
If ``True``, removes the spines.
{joint, marginal}_kws : dicts
Additional kewyord arguments for joint and marginal plot components.
kwargs : key, value pairs
Keyword arguments for matplotlib Collection properties or seaborn plots.
Returns
-------
grid : JointGrid
The JointGrid object with the shot chart plotted on it. |
20,960 | def set_scene_config(self, scene_id, config):
if not scene_id in self.state.scenes:
err_msg = "Requested to reconfigure scene {sceneNum}, which does not exist".format(sceneNum=scene_id)
logging.info(err_msg)
return(False, 0, err_msg)
if scene_id == self.state.activeSceneId:
pass
self.state.scenes[scene_id] = self.state.scenes[scene_id]._replace(config=config)
sequence_number = self.zmq_publisher.publish_scene_config(scene_id, config)
logging.debug("Reconfigured scene {sceneNum}".format(sceneNum=scene_id))
return (True, sequence_number, "OK") | reconfigure a scene by scene ID |
20,961 | def events(self):
if self._events is None:
self._events = EventList(self._version, workspace_sid=self._solution[], )
return self._events | Access the events
:returns: twilio.rest.taskrouter.v1.workspace.event.EventList
:rtype: twilio.rest.taskrouter.v1.workspace.event.EventList |
20,962 | def LineWrap(text, omit_sgr=False):
def _SplitWithSgr(text_line):
token_list = sgr_re.split(text_line)
text_line_list = []
line_length = 0
for (index, token) in enumerate(token_list):
if token is :
continue
if sgr_re.match(token):
text_line_list.append(token)
text_line = .join(token_list[index +1:])
else:
if line_length + len(token) <= width:
text_line_list.append(token)
line_length += len(token)
text_line = .join(token_list[index +1:])
else:
text_line_list.append(token[:width - line_length])
text_line = token[width - line_length:]
text_line += .join(token_list[index +1:])
break
return (.join(text_line_list), text_line)
| Break line to fit screen width, factoring in ANSI/SGR escape sequences.
Args:
text: String to line wrap.
omit_sgr: Bool, to omit counting ANSI/SGR sequences in the length.
Returns:
Text with additional line wraps inserted for lines grater than the width. |
20,963 | def add_entry(self, src, dst, duration=3600, src_port1=None,
src_port2=None, src_proto=,
dst_port1=None, dst_port2=None,
dst_proto=):
self.entries.setdefault(, []).append(prepare_blacklist(
src, dst, duration, src_port1, src_port2, src_proto, dst_port1,
dst_port2, dst_proto)) | Create a blacklist entry.
A blacklist can be added directly from the engine node, or from
the system context. If submitting from the system context, it becomes
a global blacklist. This will return the properly formatted json
to submit.
:param src: source address, with cidr, i.e. 10.10.10.10/32 or 'any'
:param dst: destination address with cidr, i.e. 1.1.1.1/32 or 'any'
:param int duration: length of time to blacklist
Both the system and engine context blacklist allow kw to be passed
to provide additional functionality such as adding source and destination
ports or port ranges and specifying the protocol. The following parameters
define the ``kw`` that can be passed.
The following example shows creating an engine context blacklist
using additional kw::
engine.blacklist('1.1.1.1/32', '2.2.2.2/32', duration=3600,
src_port1=1000, src_port2=1500, src_proto='predefined_udp',
dst_port1=3, dst_port2=3000, dst_proto='predefined_udp')
:param int src_port1: start source port to limit blacklist
:param int src_port2: end source port to limit blacklist
:param str src_proto: source protocol. Either 'predefined_tcp'
or 'predefined_udp'. (default: 'predefined_tcp')
:param int dst_port1: start dst port to limit blacklist
:param int dst_port2: end dst port to limit blacklist
:param str dst_proto: dst protocol. Either 'predefined_tcp'
or 'predefined_udp'. (default: 'predefined_tcp')
.. note:: if blocking a range of ports, use both src_port1 and
src_port2, otherwise providing only src_port1 is adequate. The
same applies to dst_port1 / dst_port2. In addition, if you provide
src_portX but not dst_portX (or vice versa), the undefined port
side definition will default to all ports. |
20,964 | def repr_def_class(self, class_data):
classname = self.formatted_classname(class_data["classname"])
if classname not in self.classes:
self.lines.append("")
self.lines.append("class %s(%s):" % (classname, self.basename))
kwargs = list()
setattr_arguments = list()
for attr in self._classes[classname]:
kwargs.append("%s=None" % attr)
setattr_arguments.append(
self.Tab2 + "self.%s = %s" % (attr, attr))
if len(kwargs):
line = self.Tab + "def __init__(self, %s):" % ", ".join(kwargs)
else:
line = self.Tab + "def __init__(self):"
self.lines.append(line)
for setattr_argument in setattr_arguments:
self.lines.append(setattr_argument)
if len(setattr_arguments):
self.lines.append("")
self.classes.add(classname) | Create code like this::
class Person(Base):
def __init__(self, person_id=None, name=None):
self.person_id = person_id
self.name = name |
20,965 | def addPolylineAnnot(self, points):
CheckParent(self)
val = _fitz.Page_addPolylineAnnot(self, points)
if not val: return
val.thisown = True
val.parent = weakref.proxy(self)
self._annot_refs[id(val)] = val
return val | Add a 'Polyline' annotation for a sequence of points. |
20,966 | def visit_Call(self, node):
s an Intrinsic)
or if Pythran already computed itdemobdef foo(a, d): __builtin__.dict.setdefault(d, 0, a)<unbound-value>aABCD
self.generic_visit(node)
f = node.func
if isinstance(f, ast.Attribute) and f.attr == "partial":
return self.add(node, {node})
else:
return_alias = self.call_return_alias(node)
all_aliases = set()
for value in return_alias:
if isinstance(value, (ContainerOf, ast.FunctionDef,
Intrinsic)):
all_aliases.add(value)
elif value in self.result:
all_aliases.update(self.result[value])
else:
try:
ap = Aliases.access_path(value)
all_aliases.update(self.aliases.get(ap, ()))
except NotImplementedError:
all_aliases.add(value)
return self.add(node, all_aliases) | Resulting node alias to the return_alias of called function,
if the function is already known by Pythran (i.e. it's an Intrinsic)
or if Pythran already computed it's ``return_alias`` behavior.
>>> from pythran import passmanager
>>> pm = passmanager.PassManager('demo')
>>> fun = """
... def f(a): return a
... def foo(b): c = f(b)"""
>>> module = ast.parse(fun)
The ``f`` function create aliasing between
the returned value and its first argument.
>>> result = pm.gather(Aliases, module)
>>> Aliases.dump(result, filter=ast.Call)
f(b) => ['b']
This also works with intrinsics, e.g ``dict.setdefault`` which
may create alias between its third argument and the return value.
>>> fun = 'def foo(a, d): __builtin__.dict.setdefault(d, 0, a)'
>>> module = ast.parse(fun)
>>> result = pm.gather(Aliases, module)
>>> Aliases.dump(result, filter=ast.Call)
__builtin__.dict.setdefault(d, 0, a) => ['<unbound-value>', 'a']
Note that complex cases can arise, when one of the formal parameter
is already known to alias to various values:
>>> fun = """
... def f(a, b): return a and b
... def foo(A, B, C, D): return f(A or B, C or D)"""
>>> module = ast.parse(fun)
>>> result = pm.gather(Aliases, module)
>>> Aliases.dump(result, filter=ast.Call)
f((A or B), (C or D)) => ['A', 'B', 'C', 'D'] |
20,967 | def plot_mv_grid_topology(self, technologies=False, **kwargs):
if self.network.pypsa is None:
try:
timesteps = self.network.timeseries.timeindex
self.network.pypsa = pypsa_io.to_pypsa(
self.network, mode=None, timesteps=timesteps)
except:
logging.warning(
"pypsa representation of MV grid needed to plot MV "
"grid topology.")
if self.network.pypsa is not None:
plots.mv_grid_topology(
self.network.pypsa, self.network.config,
node_color= if technologies is True else None,
filename=kwargs.get(, None),
grid_district_geom=kwargs.get(, True),
background_map=kwargs.get(, True),
xlim=kwargs.get(, None), ylim=kwargs.get(, None),
title=kwargs.get(, )) | Plots plain MV grid topology and optionally nodes by technology type
(e.g. station or generator).
Parameters
----------
technologies : :obj:`Boolean`
If True plots stations, generators, etc. in the grid in different
colors. If False does not plot any nodes. Default: False.
For more information see :func:`edisgo.tools.plots.mv_grid_topology`. |
20,968 | def merge_las(*las_files):
if len(las_files) == 1:
las_files = las_files[0]
if not las_files:
raise ValueError("No files to merge")
if not utils.files_have_same_dtype(las_files):
raise ValueError("All files must have the same point format")
header = las_files[0].header
num_pts_merged = sum(len(las.points) for las in las_files)
merged = create_from_header(header)
for dim_name, dim_type in las_files[0].points_data.point_format.extra_dims:
merged.add_extra_dim(dim_name, dim_type)
merged.points = np.zeros(num_pts_merged, merged.points.dtype)
merged_x = np.zeros(num_pts_merged, np.float64)
merged_y = np.zeros(num_pts_merged, np.float64)
merged_z = np.zeros(num_pts_merged, np.float64)
offset = 0
for i, las in enumerate(las_files, start=1):
slc = slice(offset, offset + len(las.points))
merged.points[slc] = las.points
merged_x[slc] = las.x
merged_y[slc] = las.y
merged_z[slc] = las.z
merged[][slc] = i
offset += len(las.points)
merged.x = merged_x
merged.y = merged_y
merged.z = merged_z
return merged | Merges multiple las files into one
merged = merge_las(las_1, las_2)
merged = merge_las([las_1, las_2, las_3])
Parameters
----------
las_files: Iterable of LasData or LasData
Returns
-------
pylas.lasdatas.base.LasBase
The result of the merging |
20,969 | def edit_profile():
if g.user is None:
abort(401)
form = dict(name=g.user.name, email=g.user.email)
if request.method == :
if in request.form:
User.get_collection().remove(g.user)
session[] = None
flash(u)
return redirect(url_for())
form[] = request.form[]
form[] = request.form[]
if not form[]:
flash(u)
elif not in form[]:
flash(u)
else:
flash(u)
g.user.name = form[]
g.user.email = form[]
uid = User.get_collection().save(g.user)
return redirect(url_for())
return render_template(, form=form) | Updates a profile |
20,970 | def modify_replication_instance(ReplicationInstanceArn=None, AllocatedStorage=None, ApplyImmediately=None, ReplicationInstanceClass=None, VpcSecurityGroupIds=None, PreferredMaintenanceWindow=None, MultiAZ=None, EngineVersion=None, AllowMajorVersionUpgrade=None, AutoMinorVersionUpgrade=None, ReplicationInstanceIdentifier=None):
pass | Modifies the replication instance to apply new settings. You can change one or more parameters by specifying these parameters and the new values in the request.
Some settings are applied during the maintenance window.
See also: AWS API Documentation
:example: response = client.modify_replication_instance(
ReplicationInstanceArn='string',
AllocatedStorage=123,
ApplyImmediately=True|False,
ReplicationInstanceClass='string',
VpcSecurityGroupIds=[
'string',
],
PreferredMaintenanceWindow='string',
MultiAZ=True|False,
EngineVersion='string',
AllowMajorVersionUpgrade=True|False,
AutoMinorVersionUpgrade=True|False,
ReplicationInstanceIdentifier='string'
)
:type ReplicationInstanceArn: string
:param ReplicationInstanceArn: [REQUIRED]
The Amazon Resource Name (ARN) of the replication instance.
:type AllocatedStorage: integer
:param AllocatedStorage: The amount of storage (in gigabytes) to be allocated for the replication instance.
:type ApplyImmediately: boolean
:param ApplyImmediately: Indicates whether the changes should be applied immediately or during the next maintenance window.
:type ReplicationInstanceClass: string
:param ReplicationInstanceClass: The compute and memory capacity of the replication instance.
Valid Values: dms.t2.micro | dms.t2.small | dms.t2.medium | dms.t2.large | dms.c4.large | dms.c4.xlarge | dms.c4.2xlarge | dms.c4.4xlarge
:type VpcSecurityGroupIds: list
:param VpcSecurityGroupIds: Specifies the VPC security group to be used with the replication instance. The VPC security group must work with the VPC containing the replication instance.
(string) --
:type PreferredMaintenanceWindow: string
:param PreferredMaintenanceWindow: The weekly time range (in UTC) during which system maintenance can occur, which might result in an outage. Changing this parameter does not result in an outage, except in the following situation, and the change is asynchronously applied as soon as possible. If moving this window to the current time, there must be at least 30 minutes between the current time and end of the window to ensure pending changes are applied.
Default: Uses existing setting
Format: ddd:hh24:mi-ddd:hh24:mi
Valid Days: Mon | Tue | Wed | Thu | Fri | Sat | Sun
Constraints: Must be at least 30 minutes
:type MultiAZ: boolean
:param MultiAZ: Specifies if the replication instance is a Multi-AZ deployment. You cannot set the AvailabilityZone parameter if the Multi-AZ parameter is set to true .
:type EngineVersion: string
:param EngineVersion: The engine version number of the replication instance.
:type AllowMajorVersionUpgrade: boolean
:param AllowMajorVersionUpgrade: Indicates that major version upgrades are allowed. Changing this parameter does not result in an outage and the change is asynchronously applied as soon as possible.
Constraints: This parameter must be set to true when specifying a value for the EngineVersion parameter that is a different major version than the replication instance's current version.
:type AutoMinorVersionUpgrade: boolean
:param AutoMinorVersionUpgrade: Indicates that minor version upgrades will be applied automatically to the replication instance during the maintenance window. Changing this parameter does not result in an outage except in the following case and the change is asynchronously applied as soon as possible. An outage will result if this parameter is set to true during the maintenance window, and a newer minor version is available, and AWS DMS has enabled auto patching for that engine version.
:type ReplicationInstanceIdentifier: string
:param ReplicationInstanceIdentifier: The replication instance identifier. This parameter is stored as a lowercase string.
:rtype: dict
:return: {
'ReplicationInstance': {
'ReplicationInstanceIdentifier': 'string',
'ReplicationInstanceClass': 'string',
'ReplicationInstanceStatus': 'string',
'AllocatedStorage': 123,
'InstanceCreateTime': datetime(2015, 1, 1),
'VpcSecurityGroups': [
{
'VpcSecurityGroupId': 'string',
'Status': 'string'
},
],
'AvailabilityZone': 'string',
'ReplicationSubnetGroup': {
'ReplicationSubnetGroupIdentifier': 'string',
'ReplicationSubnetGroupDescription': 'string',
'VpcId': 'string',
'SubnetGroupStatus': 'string',
'Subnets': [
{
'SubnetIdentifier': 'string',
'SubnetAvailabilityZone': {
'Name': 'string'
},
'SubnetStatus': 'string'
},
]
},
'PreferredMaintenanceWindow': 'string',
'PendingModifiedValues': {
'ReplicationInstanceClass': 'string',
'AllocatedStorage': 123,
'MultiAZ': True|False,
'EngineVersion': 'string'
},
'MultiAZ': True|False,
'EngineVersion': 'string',
'AutoMinorVersionUpgrade': True|False,
'KmsKeyId': 'string',
'ReplicationInstanceArn': 'string',
'ReplicationInstancePublicIpAddress': 'string',
'ReplicationInstancePrivateIpAddress': 'string',
'ReplicationInstancePublicIpAddresses': [
'string',
],
'ReplicationInstancePrivateIpAddresses': [
'string',
],
'PubliclyAccessible': True|False,
'SecondaryAvailabilityZone': 'string'
}
}
:returns:
Must contain from 1 to 63 alphanumeric characters or hyphens.
First character must be a letter.
Cannot end with a hyphen or contain two consecutive hyphens. |
20,971 | def newton_iterate(evaluate_fn, s, t):
r
norm_update_prev = None
norm_update = None
linear_updates = 0
current_s = s
current_t = t
for index in six.moves.xrange(MAX_NEWTON_ITERATIONS):
jacobian, func_val = evaluate_fn(current_s, current_t)
if jacobian is None:
return True, current_s, current_t
singular, delta_s, delta_t = _helpers.solve2x2(
jacobian, func_val[:, 0]
)
if singular:
break
norm_update_prev = norm_update
norm_update = np.linalg.norm([delta_s, delta_t], ord=2)
if index > 0 and norm_update > 0.25 * norm_update_prev:
linear_updates += 1
if index >= 4 and 3 * linear_updates >= 2 * index:
break
norm_soln = np.linalg.norm([current_s, current_t], ord=2)
current_s -= delta_s
current_t -= delta_t
if norm_update < NEWTON_ERROR_RATIO * norm_soln:
return True, current_s, current_t
return False, current_s, current_t | r"""Perform a Newton iteration.
In this function, we assume that :math:`s` and :math:`t` are nonzero,
this makes convergence easier to detect since "relative error" at
``0.0`` is not a useful measure.
There are several tolerance / threshold quantities used below:
* :math:`10` (:attr:`MAX_NEWTON_ITERATIONS`) iterations will be done before
"giving up". This is based on the assumption that we are already starting
near a root, so quadratic convergence should terminate quickly.
* :math:`\tau = \frac{1}{4}` is used as the boundary between linear
and superlinear convergence. So if the current error
:math:`\|p_{n + 1} - p_n\|` is not smaller than :math:`\tau` times
the previous error :math:`\|p_n - p_{n - 1}\|`, then convergence
is considered to be linear at that point.
* :math:`\frac{2}{3}` of all iterations must be converging linearly
for convergence to be stopped (and moved to the next regime). This
will only be checked after 4 or more updates have occurred.
* :math:`\tau = 2^{-42}` (:attr:`NEWTON_ERROR_RATIO`) is used to
determine that an update is sufficiently small to stop iterating. So if
the error :math:`\|p_{n + 1} - p_n\|` smaller than :math:`\tau` times
size of the term being updated :math:`\|p_n\|`, then we
exit with the "correct" answer.
It is assumed that ``evaluate_fn`` will use a Jacobian return value of
:data:`None` to indicate that :math:`F(s, t)` is exactly ``0.0``. We
**assume** that if the function evaluates to exactly ``0.0``, then we are
at a solution. It is possible however, that badly parameterized curves
can evaluate to exactly ``0.0`` for inputs that are relatively far away
from a solution (see issue #21).
Args:
evaluate_fn (Callable[Tuple[float, float], tuple]): A callable
which takes :math:`s` and :math:`t` and produces an evaluated
function value and the Jacobian matrix.
s (float): The (first) parameter where the iteration will start.
t (float): The (second) parameter where the iteration will start.
Returns:
Tuple[bool, float, float]: The triple of
* Flag indicating if the iteration converged.
* The current :math:`s` value when the iteration stopped.
* The current :math:`t` value when the iteration stopped. |
20,972 | def node_from_xml(xmlfile, nodefactory=Node):
root = parse(xmlfile).getroot()
return node_from_elem(root, nodefactory) | Convert a .xml file into a Node object.
:param xmlfile: a file name or file object open for reading |
20,973 | def build(args):
if len(args) != 1:
log.error()
app.quit(1)
target = address.new(args[0])
log.info(, target)
try:
bb = Butcher()
bb.clean()
bb.load_graph(target)
bb.build(target)
except (gitrepo.GitError,
error.BrokenGraph,
error.NoSuchTargetError) as err:
log.fatal(err)
app.quit(1)
except error.OverallBuildFailure as err:
log.fatal(err)
log.fatal()
[log.fatal(, e.node, e) for e in bb.failure_log]
app.quit(1) | Build a target and its dependencies. |
20,974 | def on_draw(self, e):
gloo.clear()
for visual in self.visuals:
logger.log(5, "Draw visual `%s`.", visual)
visual.on_draw() | Draw all visuals. |
20,975 | def multi(method):
@functools.wraps(method)
def multi(self, address=):
values = flask.request.values
address = urllib.parse.unquote_plus(address)
if address and values and not address.endswith():
address +=
result = {}
for a in values or :
try:
if not self.project:
raise ValueError()
ed = editor.Editor(address + a, self.project)
result[address + a] = {: method(self, ed, a)}
except:
if self.project:
traceback.print_exc()
result[address + a] = {: % a}
return flask.jsonify(result)
return multi | Decorator for RestServer methods that take multiple addresses |
20,976 | def _parse_application_info(self, info_container):
m = applications_regex.search(info_container.text)
if m:
self.open_applications = m.group(1) == "opened" | Parses the guild's application info.
Parameters
----------
info_container: :class:`bs4.Tag`
The parsed content of the information container. |
20,977 | def graph_from_dot_file(path):
fd = open(path, )
data = fd.read()
fd.close()
return graph_from_dot_data(data) | Load graph as defined by a DOT file.
The file is assumed to be in DOT format. It will
be loaded, parsed and a Dot class will be returned,
representing the graph. |
20,978 | def days_at_time(days, t, tz, day_offset=0):
days = pd.DatetimeIndex(days).tz_localize(None)
if len(days) == 0:
return days.tz_localize(UTC)
delta = pd.Timedelta(
days=day_offset,
hours=t.hour,
minutes=t.minute,
seconds=t.second,
)
return (days + delta).tz_localize(tz).tz_convert(UTC) | Create an index of days at time ``t``, interpreted in timezone ``tz``.
The returned index is localized to UTC.
Parameters
----------
days : DatetimeIndex
An index of dates (represented as midnight).
t : datetime.time
The time to apply as an offset to each day in ``days``.
tz : pytz.timezone
The timezone to use to interpret ``t``.
day_offset : int
The number of days we want to offset @days by
Examples
--------
In the example below, the times switch from 13:45 to 12:45 UTC because
March 13th is the daylight savings transition for US/Eastern. All the
times are still 8:45 when interpreted in US/Eastern.
>>> import pandas as pd; import datetime; import pprint
>>> dts = pd.date_range('2016-03-12', '2016-03-14')
>>> dts_at_845 = days_at_time(dts, datetime.time(8, 45), 'US/Eastern')
>>> pprint.pprint([str(dt) for dt in dts_at_845])
['2016-03-12 13:45:00+00:00',
'2016-03-13 12:45:00+00:00',
'2016-03-14 12:45:00+00:00'] |
20,979 | def listMembers(self, id, headers=None, query_params=None, content_type="application/json"):
uri = self.client.base_url + "/network/"+id+"/member"
return self.client.get(uri, None, headers, query_params, content_type) | Get a list of network members
It is method for GET /network/{id}/member |
20,980 | def _build_table(self) -> Dict[State, Tuple[Multiplex, ...]]:
result: Dict[State, Tuple[Multiplex, ...]] = {}
for state in self.influence_graph.all_states():
result[state] = tuple(multiplex for multiplex in self.influence_graph.multiplexes
if multiplex.is_active(state))
return result | Private method which build the table which map a State to the active multiplex. |
20,981 | def pad_batch_dimension_for_multiple_chains(
observed_time_series, model, chain_batch_shape):
[
observed_time_series,
is_missing
] = canonicalize_observed_time_series_with_mask(observed_time_series)
event_ndims = 2
model_batch_ndims = (
model.batch_shape.ndims if model.batch_shape.ndims is not None else
tf.shape(input=model.batch_shape_tensor())[0])
chain_batch_shape = tf.convert_to_tensor(
value=chain_batch_shape, name=, dtype=tf.int32)
if not chain_batch_shape.shape.is_fully_defined():
raise ValueError(.format(
chain_batch_shape))
if chain_batch_shape.shape.ndims == 0:
chain_batch_shape = chain_batch_shape[tf.newaxis]
chain_batch_ndims = tf.compat.dimension_value(chain_batch_shape.shape[0])
def do_padding(observed_time_series_tensor):
current_sample_shape = tf.shape(
input=observed_time_series_tensor)[:-(model_batch_ndims + event_ndims)]
current_batch_and_event_shape = tf.shape(
input=observed_time_series_tensor)[-(model_batch_ndims + event_ndims):]
return tf.reshape(
tensor=observed_time_series_tensor,
shape=tf.concat([
current_sample_shape,
tf.ones([chain_batch_ndims], dtype=tf.int32),
current_batch_and_event_shape], axis=0))
observed_time_series = prefer_static.cond(
(dist_util.prefer_static_rank(observed_time_series) >
model_batch_ndims + event_ndims),
lambda: do_padding(observed_time_series),
lambda: observed_time_series)
if is_missing is not None:
is_missing = prefer_static.cond(
(dist_util.prefer_static_rank(is_missing) >
model_batch_ndims + event_ndims),
lambda: do_padding(is_missing),
lambda: is_missing)
return missing_values_util.MaskedTimeSeries(observed_time_series,
is_missing=is_missing)
return observed_time_series | Expand the observed time series with extra batch dimension(s). |
20,982 | def update_video(video_data):
try:
video = _get_video(video_data.get("edx_video_id"))
except Video.DoesNotExist:
error_message = u"Video not found when trying to update video with edx_video_id: {0}".format(video_data.get("edx_video_id"))
raise ValVideoNotFoundError(error_message)
serializer = VideoSerializer(video, data=video_data)
if serializer.is_valid():
serializer.save()
return video_data.get("edx_video_id")
else:
raise ValCannotUpdateError(serializer.errors) | Called on to update Video objects in the database
update_video is used to update Video objects by the given edx_video_id in the video_data.
Args:
video_data (dict):
{
url: api url to the video
edx_video_id: ID of the video
duration: Length of video in seconds
client_video_id: client ID of video
encoded_video: a list of EncodedVideo dicts
url: url of the video
file_size: size of the video in bytes
profile: ID of the profile
courses: Courses associated with this video
}
Raises:
Raises ValVideoNotFoundError if the video cannot be retrieved.
Raises ValCannotUpdateError if the video cannot be updated.
Returns the successfully updated Video object |
20,983 | def build_save_containers(platforms, registry, load_cache) -> int:
from joblib import Parallel, delayed
if len(platforms) == 0:
return 0
platform_results = Parallel(n_jobs=PARALLEL_BUILDS, backend="multiprocessing")(
delayed(_build_save_container)(platform, registry, load_cache)
for platform in platforms)
is_error = False
for platform_result in platform_results:
if platform_result is not None:
logging.error(, platform_result)
is_error = True
return 1 if is_error else 0 | Entry point to build and upload all built dockerimages in parallel
:param platforms: List of platforms
:param registry: Docker registry name
:param load_cache: Load cache before building
:return: 1 if error occurred, 0 otherwise |
20,984 | def cancelPnL(self, account, modelCode: str = ):
key = (account, modelCode)
reqId = self.wrapper.pnlKey2ReqId.pop(key, None)
if reqId:
self.client.cancelPnL(reqId)
self.wrapper.pnls.pop(reqId, None)
else:
self._logger.error(
f) | Cancel PnL subscription.
Args:
account: Cancel for this account.
modelCode: If specified, cancel for this account model. |
20,985 | def complete_object_value(
self,
return_type: GraphQLObjectType,
field_nodes: List[FieldNode],
info: GraphQLResolveInfo,
path: ResponsePath,
result: Any,
) -> AwaitableOrValue[Dict[str, Any]]:
if return_type.is_type_of:
is_type_of = return_type.is_type_of(result, info)
if isawaitable(is_type_of):
async def collect_and_execute_subfields_async():
if not await is_type_of:
raise invalid_return_type_error(
return_type, result, field_nodes
)
return self.collect_and_execute_subfields(
return_type, field_nodes, path, result
)
return collect_and_execute_subfields_async()
if not is_type_of:
raise invalid_return_type_error(return_type, result, field_nodes)
return self.collect_and_execute_subfields(
return_type, field_nodes, path, result
) | Complete an Object value by executing all sub-selections. |
20,986 | def _get_html_contents(html):
parser = MyHTMLParser()
parser.feed(html)
if parser.is_code:
return (, parser.data.strip())
elif parser.is_math:
return (, parser.data.strip())
else:
return , | Process a HTML block and detects whether it is a code block,
a math block, or a regular HTML block. |
20,987 | def remove_file(self, filepath):
self._models.pop(filepath)
self._updates.pop(filepath, default=None)
self.signalModelDestroyed.emit(filepath) | Removes the DataFrameModel from being registered.
:param filepath: (str)
The filepath to delete from the DataFrameModelManager.
:return: None |
20,988 | def to_bool(value):
bool_value = False
if str(value).lower() in [, ]:
bool_value = True
return bool_value | Convert string value to bool. |
20,989 | def _from_string(cls, serialized):
parse = cls.URL_RE.match(serialized)
if not parse:
raise InvalidKeyError(cls, serialized)
parse = parse.groupdict()
if parse[]:
parse[] = cls.as_object_id(parse[])
return cls(**{key: parse.get(key) for key in cls.KEY_FIELDS}) | Return a DefinitionLocator parsing the given serialized string
:param serialized: matches the string to |
20,990 | def get_releasenotes(project_dir=os.curdir, bugtracker_url=):
releasenotes =
pkg_info_file = os.path.join(project_dir, )
releasenotes_file = os.path.join(project_dir, )
if os.path.exists(pkg_info_file) and os.path.exists(releasenotes_file):
with open(releasenotes_file) as releasenotes_fd:
releasenotes = releasenotes_fd.read()
else:
releasenotes = api.get_releasenotes(
repo_path=project_dir,
bugtracker_url=bugtracker_url,
)
return releasenotes | Retrieves the release notes, from the RELEASE_NOTES file (if in a package)
or generates it from the git history.
Args:
project_dir(str): Path to the git repo of the project.
bugtracker_url(str): Url to the bug tracker for the issues.
Returns:
str: release notes
Raises:
RuntimeError: If the release notes could not be retrieved |
20,991 | def mset_list(item, index, value):
if isinstance(index, (int, slice)):
item[index] = value
else:
map(item.__setitem__, index, value) | set mulitple items via index of int, slice or list |
20,992 | def addNoise(vecs, percent=0.1, n=2048):
noisyVecs = []
for vec in vecs:
nv = vec.copy()
for idx in vec:
if numpy.random.random() <= percent:
nv.discard(idx)
nv.add(numpy.random.randint(n))
noisyVecs.append(nv)
return noisyVecs | Add noise to the given sequence of vectors and return the modified sequence.
A percentage of the on bits are shuffled to other locations. |
20,993 | def list_quota_volume(name):
*
cmd = .format(name)
cmd +=
root = _gluster_xml(cmd)
if not _gluster_ok(root):
return None
ret = {}
for limit in _iter(root, ):
path = limit.find().text
ret[path] = _etree_to_dict(limit)
return ret | List quotas of glusterfs volume
name
Name of the gluster volume
CLI Example:
.. code-block:: bash
salt '*' glusterfs.list_quota_volume <volume> |
20,994 | def _map_content_types(archetype_tool, catalogs_definition):
ct_map = {}
to_reindex = []
map_types = archetype_tool.catalog_map
for catalog_id in catalogs_definition.keys():
catalog_info = catalogs_definition.get(catalog_id, {})
types = catalog_info.get(, [])
for t in types:
tmp_l = ct_map.get(t, [])
tmp_l.append(catalog_id)
ct_map[t] = tmp_l
for t in ct_map.keys():
catalogs_list = ct_map[t]
perv_catalogs_list = archetype_tool.catalog_map.get(t, [])
set1 = set(catalogs_list)
set2 = set(perv_catalogs_list)
if set1 != set2:
archetype_tool.setCatalogsByType(t, catalogs_list)
to_reindex = to_reindex + list(set1 - set2) + list(set2 - set1)
return to_reindex | Updates the mapping for content_types against catalogs
:archetype_tool: an archetype_tool object
:catalogs_definition: a dictionary like
{
CATALOG_ID: {
'types': ['ContentType', ...],
'indexes': {
'UID': 'FieldIndex',
...
},
'columns': [
'Title',
...
]
}
} |
20,995 | def is_device_connected(self, ip):
all_devices = self.get_all_connected_devices()
for device in all_devices:
if ip == device[]:
return device[] == 1
return False | Check if a device identified by it IP is connected to the box
:param ip: IP of the device you want to test
:type ip: str
:return: True is the device is connected, False if it's not
:rtype: bool |
20,996 | def configure_room(self, form):
if form.type == "cancel":
return None
elif form.type != "submit":
raise ValueError("A form required to configure a room")
iq = Iq(to_jid = self.room_jid.bare(), stanza_type = "set")
query = iq.new_query(MUC_OWNER_NS, "query")
form.as_xml(query)
self.manager.stream.set_response_handlers(
iq, self.process_configuration_success, self.process_configuration_error)
self.manager.stream.send(iq)
return iq.get_id() | Configure the room using the provided data.
Do nothing if the provided form is of type 'cancel'.
:Parameters:
- `form`: the configuration parameters. Should be a 'submit' form made by filling-in
the configuration form retireved using `self.request_configuration_form` or
a 'cancel' form.
:Types:
- `form`: `Form`
:return: id of the request stanza or `None` if a 'cancel' form was provieded.
:returntype: `unicode` |
20,997 | def insertOutputConfig(self, businput):
if not ("app_name" in businput and "release_version" in businput\
and "pset_hash" in businput and "output_module_label" in businput
and "global_tag" in businput):
dbsExceptionHandler(, "business/DBSOutputConfig/insertOutputConfig require:\
app_name, release_version, pset_hash, output_module_label and global_tag")
conn = self.dbi.connection()
tran = conn.begin()
try:
businput[] = businput.get("scenario", None)
businput[] = businput.get("pset_name", None)
self.outmodin.execute(conn, businput, tran)
tran.commit()
tran = None
except SQLAlchemyIntegrityError as ex:
if str(ex).find("unique constraint") != -1 or str(ex).lower().find("duplicate") != -1:
if str(ex).find("TUC_OMC_1") != -1: pass
else:
try:
self.outmodin.execute(conn, businput, tran)
tran.commit()
tran = None
except SQLAlchemyIntegrityError as ex1:
if str(ex1).find("unique constraint") != -1 and str(ex1).find("TUC_OMC_1") != -1: pass
except Exception as e1:
if tran:
tran.rollback()
tran = None
raise
else:
raise
except Exception as e:
if tran:
tran.rollback()
raise
finally:
if tran:
tran.rollback()
if conn:
conn.close() | Method to insert the Output Config.
app_name, release_version, pset_hash, global_tag and output_module_label are
required.
args:
businput(dic): input dictionary.
Updated Oct 12, 2011 |
20,998 | def import_csv(file_name, **kwargs):
sep = kwargs.get(, ",")
content = exch.read_file(file_name, skip_lines=1)
return exch.import_text_data(content, sep) | Reads control points from a CSV file and generates a 1-dimensional list of control points.
It is possible to use a different value separator via ``separator`` keyword argument. The following code segment
illustrates the usage of ``separator`` keyword argument.
.. code-block:: python
:linenos:
# By default, import_csv uses 'comma' as the value separator
ctrlpts = exchange.import_csv("control_points.csv")
# Alternatively, it is possible to import a file containing tab-separated values
ctrlpts = exchange.import_csv("control_points.csv", separator="\\t")
The only difference of this function from :py:func:`.exchange.import_txt()` is skipping the first line of the input
file which generally contains the column headings.
:param file_name: file name of the text file
:type file_name: str
:return: list of control points
:rtype: list
:raises GeomdlException: an error occurred reading the file |
20,999 | def points_from_x0y0x1y1(xyxy):
x0 = xyxy[0]
y0 = xyxy[1]
x1 = xyxy[2]
y1 = xyxy[3]
return "%s,%s %s,%s %s,%s %s,%s" % (
x0, y0,
x1, y0,
x1, y1,
x0, y1
) | Constructs a polygon representation from a rectangle described as a list [x0, y0, x1, y1] |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.