Unnamed: 0
int64 0
389k
| code
stringlengths 26
79.6k
| docstring
stringlengths 1
46.9k
|
---|---|---|
2,300 | def get_live_data_flat_binary(self):
byte_buffer = self.game.UpdateLiveDataPacketFlatbuffer()
if byte_buffer.size >= 4:
proto_string = ctypes.string_at(byte_buffer.ptr, byte_buffer.size)
self.game.Free(byte_buffer.ptr)
self.game_status(None, RLBotCoreStatus.Success)
return proto_string | Gets the live data packet in flatbuffer binary format. You'll need to do something like
GameTickPacket.GetRootAsGameTickPacket(binary, 0) to get the data out.
This is a temporary method designed to keep the integration test working. It returns the raw bytes
of the flatbuffer so that it can be stored in a file. We can get rid of this once we have a first-class
data recorder that lives inside the core dll. |
2,301 | def getReverseRankMaps(self):
reverseRankMaps = []
for preference in self.preferences:
reverseRankMaps.append(preference.getReverseRankMap())
return reverseRankMaps | Returns a list of dictionaries, one for each preference, that associates each position in
the ranking with a list of integer representations of the candidates ranked at that
position and returns a list of the number of times each preference is given. |
2,302 | def function(self, addr=None, name=None, create=False, syscall=False, plt=None):
if addr is not None:
try:
f = self._function_map.get(addr)
if plt is None or f.is_plt == plt:
return f
except KeyError:
if create:
f = self._function_map[addr]
if name is not None:
f.name = name
if syscall:
f.is_syscall=True
return f
elif name is not None:
for func in self._function_map.values():
if func.name == name:
if plt is None or func.is_plt == plt:
return func
return None | Get a function object from the function manager.
Pass either `addr` or `name` with the appropriate values.
:param int addr: Address of the function.
:param str name: Name of the function.
:param bool create: Whether to create the function or not if the function does not exist.
:param bool syscall: True to create the function as a syscall, False otherwise.
:param bool or None plt: True to find the PLT stub, False to find a non-PLT stub, None to disable this
restriction.
:return: The Function instance, or None if the function is not found and create is False.
:rtype: Function or None |
2,303 | def set_stop_chars_left(self, stop_chars):
if not isinstance(stop_chars, set):
raise TypeError("stop_chars should be type set "
"but {} was given".format(type(stop_chars)))
self._stop_chars_left = stop_chars
self._stop_chars = self._stop_chars_left | self._stop_chars_right | Set stop characters for text on left from TLD.
Stop characters are used when determining end of URL.
:param set stop_chars: set of characters
:raises: TypeError |
2,304 | def color_is_forced(**envars):
1
result = env.CLICOLOR_FORCE and env.CLICOLOR_FORCE !=
log.debug(, result, env.CLICOLOR_FORCE or )
for name, value in envars.items():
envar = getattr(env, name)
if envar.value == value:
result = True
log.debug(, name, value, result)
return result | Look for clues in environment, e.g.:
- https://bixense.com/clicolors/
Arguments:
envars: Additional environment variables to check for
equality, i.e. ``MYAPP_COLOR_FORCED='1'``
Returns:
Bool: Forced |
2,305 | def set_tag(self, tag):
if self._world:
if self._world.get_entity_by_tag(tag):
raise NonUniqueTagError(tag)
self._tag = tag | Sets the tag.
If the Entity belongs to the world it will check for tag conflicts. |
2,306 | def is_letter(uni_char):
category = Category.get(uni_char)
return (category == Category.UPPERCASE_LETTER or
category == Category.LOWERCASE_LETTER or
category == Category.TITLECASE_LETTER or
category == Category.MODIFIER_LETTER or
category == Category.OTHER_LETTER) | Determine whether the given Unicode character is a Unicode letter |
2,307 | def parse_note(cls, note):
if isinstance(note, tuple):
if len(note) != 2:
raise ValueError()
return note
try:
match = cls.re_note.match(note)
except TypeError:
return note, None
return match.groups() | Parse string annotation into object reference with optional name. |
2,308 | def update_template(self, template_id, template_dict):
return self._create_put_request(
resource=TEMPLATES,
billomat_id=template_id,
send_data=template_dict
) | Updates a template
:param template_id: the template id
:param template_dict: dict
:return: dict |
2,309 | def _compile_seriesflow(self):
string =
self.seriesflow = compile(eval(string), , ) | Post power flow computation of series device flow |
2,310 | def put_text(self, key, text):
with open(key, "w") as fh:
fh.write(text) | Put the text into the storage associated with the key. |
2,311 | def lookup_casstype(casstype):
if isinstance(casstype, (CassandraType, CassandraTypeType)):
return casstype
try:
return parse_casstype_args(casstype)
except (ValueError, AssertionError, IndexError) as e:
raise ValueError("Don't know how to parse type string %r: %s" % (casstype, e)) | Given a Cassandra type as a string (possibly including parameters), hand
back the CassandraType class responsible for it. If a name is not
recognized, a custom _UnrecognizedType subclass will be created for it.
Example:
>>> lookup_casstype('org.apache.cassandra.db.marshal.MapType(org.apache.cassandra.db.marshal.UTF8Type,org.apache.cassandra.db.marshal.Int32Type)')
<class 'cassandra.cqltypes.MapType(UTF8Type, Int32Type)'> |
2,312 | def error_values_summary(error_values, **summary_df_kwargs):
df = pf.summary_df_from_multi(error_values, **summary_df_kwargs)
imp_std, imp_std_unc, imp_frac, imp_frac_unc = \
nestcheck.error_analysis.implementation_std(
df.loc[(, )],
df.loc[(, )],
df.loc[(, )],
df.loc[(, )])
df.loc[(, ), df.columns] = imp_std
df.loc[(, ), df.columns] = imp_std_unc
df.loc[(, ), :] = imp_frac
df.loc[(, ), :] = imp_frac_unc
if in set(df.index.get_level_values()):
imp_rmse, imp_rmse_unc, imp_frac, imp_frac_unc = \
nestcheck.error_analysis.implementation_std(
df.loc[(, )],
df.loc[(, )],
df.loc[(, )],
df.loc[(, )])
df.loc[(, ), df.columns] = imp_rmse
df.loc[(, ), df.columns] = \
imp_rmse_unc
df.loc[(, ), :] = imp_frac
df.loc[(, ), :] = imp_frac_unc
calcs_to_keep = [, , ,
, ,
, ,
, ,
, ,
,
]
df = pd.concat([df.xs(calc, level=, drop_level=False) for
calc in calcs_to_keep if calc in
df.index.get_level_values()])
return df | Get summary statistics about calculation errors, including estimated
implementation errors.
Parameters
----------
error_values: pandas DataFrame
Of format output by run_list_error_values (look at it for more
details).
summary_df_kwargs: dict, optional
See pandas_functions.summary_df docstring for more details.
Returns
-------
df: pandas DataFrame
Table showing means and standard deviations of results and diagnostics
for the different runs. Also contains estimated numerical uncertainties
on results. |
2,313 | def formatPathExpressions(seriesList):
pathExpressions = sorted(set([s.pathExpression for s in seriesList]))
return .join(pathExpressions) | Returns a comma-separated list of unique path expressions. |
2,314 | def add(self, item):
if not item.startswith(self.prefix):
item = os.path.join(self.base, item)
self.files.add(os.path.normpath(item)) | Add a file to the manifest.
:param item: The pathname to add. This can be relative to the base. |
2,315 | def get_socket(host, port, timeout=None):
for res in getaddrinfo(host, port, 0, SOCK_STREAM):
af, socktype, proto, canonname, sa = res
sock = None
try:
sock = socket(af, socktype, proto)
if timeout is not None:
sock.settimeout(timeout)
sock.connect(sa)
return sock
except error:
if sock is not None:
sock.close()
raise error | Return a socket.
:param str host: the hostname to connect to
:param int port: the port number to connect to
:param timeout: if specified, set the socket timeout |
2,316 | def get_max_id(self, object_type, role):
if object_type == :
objectclass =
ldap_attr =
elif object_type == :
objectclass =
ldap_attr =
else:
raise ldap_tools.exceptions.InvalidResult()
minID, maxID = Client.__set_id_boundary(role)
filter = [
"(objectclass={})".format(objectclass), "({}>={})".format(ldap_attr, minID)
]
if maxID is not None:
filter.append("({}<={})".format(ldap_attr, maxID))
id_list = self.search(filter, [ldap_attr])
if id_list == []:
id = minID
else:
if object_type == :
id = max([i.uidNumber.value for i in id_list]) + 1
elif object_type == :
id = max([i.gidNumber.value for i in id_list]) + 1
else:
raise ldap_tools.exceptions.InvalidResult()
return id | Get the highest used ID. |
2,317 | def _replace_numeric_markers(operation, string_parameters):
def replace_markers(marker, op, parameters):
param_count = len(parameters)
marker_index = 0
start_offset = 0
while True:
found_offset = op.find(marker, start_offset)
if not found_offset > -1:
break
if marker_index < param_count:
op = op[:found_offset]+op[found_offset:].replace(marker, parameters[marker_index], 1)
start_offset = found_offset + len(parameters[marker_index])
marker_index += 1
else:
raise ProgrammingError("Incorrect number of bindings "
"supplied. The current statement uses "
"%d or more, and there are %d "
"supplied." % (marker_index + 1,
param_count))
if marker_index != 0 and marker_index != param_count:
raise ProgrammingError("Incorrect number of bindings "
"supplied. The current statement uses "
"%d or more, and there are %d supplied." %
(marker_index + 1, param_count))
return op
operation = replace_markers(, operation, string_parameters)
operation = replace_markers(r, operation, string_parameters)
string_parameters[index - 1])
return operation | Replaces qname, format, and numeric markers in the given operation, from
the string_parameters list.
Raises ProgrammingError on wrong number of parameters or bindings
when using qmark. There is no error checking on numeric parameters. |
2,318 | def infer_year(date):
if isinstance(date, str):
pattern = r
result = re.match(pattern, date)
if result:
return int(result.groupdict()[])
else:
raise ValueError(.format(date))
elif isinstance(date, np.datetime64):
return date.item().year
else:
return date.year | Given a datetime-like object or string infer the year.
Parameters
----------
date : datetime-like object or str
Input date
Returns
-------
int
Examples
--------
>>> infer_year('2000')
2000
>>> infer_year('2000-01')
2000
>>> infer_year('2000-01-31')
2000
>>> infer_year(datetime.datetime(2000, 1, 1))
2000
>>> infer_year(np.datetime64('2000-01-01'))
2000
>>> infer_year(DatetimeNoLeap(2000, 1, 1))
2000
>>> |
2,319 | def combine(self, expert_out, multiply_by_gates=True):
stitched = common_layers.convert_gradient_to_tensor(
tf.concat(expert_out, 0))
if multiply_by_gates:
stitched *= tf.expand_dims(self._nonzero_gates, 1)
combined = tf.unsorted_segment_sum(stitched, self._batch_index,
tf.shape(self._gates)[0])
return combined | Sum together the expert output, weighted by the gates.
The slice corresponding to a particular batch element `b` is computed
as the sum over all experts `i` of the expert output, weighted by the
corresponding gate values. If `multiply_by_gates` is set to False, the
gate values are ignored.
Args:
expert_out: a list of `num_experts` `Tensor`s, each with shape
`[expert_batch_size_i, <extra_output_dims>]`.
multiply_by_gates: a boolean
Returns:
a `Tensor` with shape `[batch_size, <extra_output_dims>]`. |
2,320 | def cancel_broadcast(self, broadcast_guid):
subpath = % broadcast_guid
broadcast = {: }
bcast_dict = self._call(subpath, method=, data=broadcast,
content_type=)
return bcast_dict | Cancel a broadcast specified by guid |
2,321 | def get_image(roi_rec, short, max_size, mean, std):
im = imdecode(roi_rec[])
if roi_rec["flipped"]:
im = im[:, ::-1, :]
im, im_scale = resize(im, short, max_size)
height, width = im.shape[:2]
im_info = np.array([height, width, im_scale], dtype=np.float32)
im_tensor = transform(im, mean, std)
if roi_rec[].size > 0:
gt_inds = np.where(roi_rec[] != 0)[0]
gt_boxes = np.empty((len(gt_inds), 5), dtype=np.float32)
gt_boxes[:, 0:4] = roi_rec[][gt_inds, :]
gt_boxes[:, 4] = roi_rec[][gt_inds]
gt_boxes[:, 0:4] *= im_scale
else:
gt_boxes = np.empty((0, 5), dtype=np.float32)
return im_tensor, im_info, gt_boxes | read, resize, transform image, return im_tensor, im_info, gt_boxes
roi_rec should have keys: ["image", "boxes", "gt_classes", "flipped"]
0 --- x (width, second dim of im)
|
y (height, first dim of im) |
2,322 | def get_inters(r, L, R_cut):
if r.shape[1] == 2:
_cell_list.cell_list_2d.make_inters(r.T, L, R_cut)
elif r.shape[1] == 3:
_cell_list.cell_list_3d.make_inters(r.T, L, R_cut)
else:
print(
)
return get_inters_direct(r, L, R_cut)
return _parse_inters() | Return points within a given cut-off of each other,
in a periodic system.
Uses a cell-list.
Parameters
----------
r: array, shape (n, d) where d is one of (2, 3).
A set of n point coordinates.
Coordinates are assumed to lie in [-L / 2, L / 2].
L: float.
Bounds of the system.
R_cut: float.
The maximum distance within which to consider points to lie
near each other.
Returns
-------
inters: array, shape (n, n)
Indices of the nearby points.
For each particle indexed by the first axis,
the second axis lists each index of a nearby point.
intersi: array, shape (n,)
Total number of nearby points.
This array should be used to index `inters`, as for point `i`,
elements in `inters[i]` beyond `intersi[i]` have no well-defined value. |
2,323 | def send_message(self, number, content):
outgoing_message = TextMessageProtocolEntity(content.encode("utf-8") if sys.version_info >= (3, 0)
else content, to=self.normalize_jid(number))
self.toLower(outgoing_message)
return outgoing_message | Send message
:param str number: phone number with cc (country code)
:param str content: body text of the message |
2,324 | def clearLocatorCache(self, login, tableName):
self.send_clearLocatorCache(login, tableName)
self.recv_clearLocatorCache() | Parameters:
- login
- tableName |
2,325 | def _check_token(self):
need_token = (self._token_info is None or
self.auth_handler.is_token_expired(self._token_info))
if need_token:
new_token = \
self.auth_handler.refresh_access_token(
self._token_info[])
if new_token is None:
return
self._token_info = new_token
self._auth_header = {"content-type": "application/json",
"Authorization": "Bearer {}".format(
self._token_info.get())} | Simple Mercedes me API. |
2,326 | def setup_exchange(self, exchange_name):
_logger.debug(, exchange_name)
self._channel.exchange_declare(self.on_exchange_declareok,
exchange_name,
self.EXCHANGE_TYPE,
durable=True,
passive=True) | Setup the exchange on RabbitMQ by invoking the Exchange.Declare RPC
command. When it is complete, the on_exchange_declareok method will
be invoked by pika.
:param str|unicode exchange_name: The name of the exchange to declare |
2,327 | def chart_part(self):
rId = self._element.chart_rId
chart_part = self.part.related_parts[rId]
return chart_part | The |ChartPart| object containing the chart in this graphic frame. |
2,328 | def _make_writeable(filename):
import stat
if sys.platform.startswith():
return
if not os.access(filename, os.W_OK):
st = os.stat(filename)
new_permissions = stat.S_IMODE(st.st_mode) | stat.S_IWUSR
os.chmod(filename, new_permissions) | Make sure that the file is writeable. Useful if our source is
read-only. |
2,329 | def _change_color(self, event):
h = self.bar.get()
self.square.set_hue(h)
(r, g, b), (h, s, v), sel_color = self.square.get()
self.red.set(r)
self.green.set(g)
self.blue.set(b)
self.hue.set(h)
self.saturation.set(s)
self.value.set(v)
self.hexa.delete(0, "end")
self.hexa.insert(0, sel_color.upper())
if self.alpha_channel:
self.alphabar.set_color((r, g, b))
self.hexa.insert(,
("%2.2x" % self.alpha.get()).upper())
self._update_preview() | Respond to motion of the hsv cursor. |
2,330 | def p_expression_logical(self, p):
p[0] = Expression(left=p[1], operator=p[2], right=p[3]) | expression : expression logical expression |
2,331 | def coarsen_line(line, level=2, exponential=False, draw=True):
xdata = line.get_xdata()
ydata = line.get_ydata()
xdata,ydata = _fun.coarsen_data(xdata, ydata, level=level, exponential=exponential)
if len(ydata) == 0: print("There's nothing left in "+str(line)+"!")
else: line.set_data(xdata, ydata)
if draw: _pylab.draw() | Coarsens the specified line (see spinmob.coarsen_data() for more information).
Parameters
----------
line
Matplotlib line instance.
level=2
How strongly to coarsen.
exponential=False
If True, use the exponential method (great for log-x plots).
draw=True
Redraw when complete. |
2,332 | def get_cipher(self):
return self.cipher_class.new(self.cipher_key, self.cipher_class.MODE_CBC, b * self.cipher_class.block_size) | Return a new Cipher object for each time we want to encrypt/decrypt. This is because
pgcrypto expects a zeroed block for IV (initial value), but the IV on the cipher
object is cumulatively updated each time encrypt/decrypt is called. |
2,333 | def read_relative_file(filename, relative_to=None):
if relative_to is None:
relative_to = os.path.dirname(__file__)
with open(os.path.join(os.path.dirname(relative_to), filename)) as f:
return f.read() | Returns contents of the given file, which path is supposed relative
to this package. |
2,334 | def findNestedClassLike(self, lst):
if self.kind == "class" or self.kind == "struct":
lst.append(self)
for c in self.children:
c.findNestedClassLike(lst) | Recursive helper function for finding nested classes and structs. If this node
is a class or struct, it is appended to ``lst``. Each node also calls each of
its child ``findNestedClassLike`` with the same list.
:Parameters:
``lst`` (list)
The list each class or struct node is to be appended to. |
2,335 | def list_actions(name, location=):
r\\minion-id
with salt.utils.winapi.Com():
task_service = win32com.client.Dispatch("Schedule.Service")
task_service.Connect()
task_folder = task_service.GetFolder(location)
task_definition = task_folder.GetTask(name).Definition
actions = task_definition.Actions
ret = []
for action in actions:
ret.append(action.Id)
return ret | r'''
List all actions that pertain to a task in the specified location.
:param str name: The name of the task for which list actions.
:param str location: A string value representing the location of the task
from which to list actions. Default is '\\' which is the root for the
task scheduler (C:\Windows\System32\tasks).
:return: Returns a list of actions.
:rtype: list
CLI Example:
.. code-block:: bash
salt 'minion-id' task.list_actions <task_name> |
2,336 | def frames(self, flush=True):
self.flush()
ret_val, frame = self._sensor.read()
if not ret_val:
raise Exception("Unable to retrieve frame from OpenCVCameraSensor for id {0}".format(self._device_id))
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
if self._upside_down:
frame = np.flipud(frame).astype(np.uint8)
frame = np.fliplr(frame).astype(np.uint8)
return ColorImage(frame) | Returns the latest color image from the stream
Raises:
Exception if opencv sensor gives ret_val of 0 |
2,337 | def get_dependent_items(self, item) -> typing.List:
with self.__dependency_tree_lock:
return copy.copy(self.__dependency_tree_source_to_target_map.get(weakref.ref(item), list())) | Return the list of data items containing data that directly depends on data in this item. |
2,338 | def pad(num, n=2, sign=False):
s = unicode(abs(num))
if len(s) < n:
s = * (n - len(s)) + s
if not sign:
return s
if num >= 0:
return + s
else:
return + s | returns n digit string representation of the num |
2,339 | def _pct_escape_handler(err):
chunk = err.object[err.start:err.end]
replacements = _pct_encoded_replacements(chunk)
return ("".join(replacements), err.end) | Encoding error handler that does percent-escaping of Unicode, to be used
with codecs.register_error
TODO: replace use of this with urllib.parse.quote as appropriate |
2,340 | def clean(self, timeout=60):
self.refresh()
tds = self[]
ftp = self[]
was_disabled_initially = self.disabled
try:
if (not was_disabled_initially and \
self.service.splunk_version < (5,)):
raise OperationError("Cleaning index %s took longer than %s seconds; timing out." % (self.name, timeout))
finally:
self.update(maxTotalDataSizeMB=tds, frozenTimePeriodInSecs=ftp)
if (not was_disabled_initially and \
self.service.splunk_version < (5,)):
self.enable()
return self | Deletes the contents of the index.
This method blocks until the index is empty, because it needs to restore
values at the end of the operation.
:param timeout: The time-out period for the operation, in seconds (the
default is 60).
:type timeout: ``integer``
:return: The :class:`Index`. |
2,341 | def set_href_prefix(self, prefix):
self.href_prefix = prefix
for property_ in self.properties.values():
property_.set_href_prefix(prefix)
for action_name in self.actions.keys():
for action in self.actions[action_name]:
action.set_href_prefix(prefix) | Set the prefix of any hrefs associated with this thing.
prefix -- the prefix |
2,342 | def get_status_code_and_schema_rst(self, responses):
for status_code, response_schema in responses.items():
status_code = int(status_code)
schema = response_schema.get(, None)
status = HTTP_STATUS_CODES.get(status_code, None)
if status is None or not (100 < status_code < 300):
continue
self.write(, 1)
self.write()
self.write(, 1)
self.write()
self.write(.format(status_code, status), 2)
self.write(.format(response_schema[]), 2)
self.write(, 2)
self.write()
if schema:
self.schema_handler(schema)
else:
self.write(, self.indent_depth) | Function for prepare information about responses with example, prepare only
responses with status code from `101` to `299`
:param responses: -- dictionary that contains responses, with status code as key
:type responses: dict
:return: |
2,343 | def plot_groups_unplaced(self, fout_dir=".", **kws_usr):
plotobj = PltGroupedGos(self)
return plotobj.plot_groups_unplaced(fout_dir, **kws_usr) | Plot each GO group. |
2,344 | def sampling_volume_value(self):
svi = self.pdx.SamplingVolume
tli = self.pdx.TransmitLength
return self._sampling_volume_value(svi, tli) | Returns the device samping volume value in m. |
2,345 | def set_color_scheme(self, foreground_color, background_color):
self.ansi_handler.set_color_scheme(foreground_color, background_color)
background_color = QColor(background_color)
foreground_color = QColor(foreground_color)
self.set_palette(background=background_color,
foreground=foreground_color)
self.set_pythonshell_font() | Set color scheme of the console (foreground and background). |
2,346 | def get_privacy_options(user):
privacy_options = {}
for ptype in user.permissions:
for field in user.permissions[ptype]:
if ptype == "self":
privacy_options["{}-{}".format(field, ptype)] = user.permissions[ptype][field]
else:
privacy_options[field] = user.permissions[ptype][field]
return privacy_options | Get a user's privacy options to pass as an initial value to a PrivacyOptionsForm. |
2,347 | def cumulative_detections(dates=None, template_names=None, detections=None,
plot_grouped=False, group_name=None, rate=False,
plot_legend=True, ax=None, **kwargs):
import matplotlib.pyplot as plt
from eqcorrscan.core.match_filter import Detection
colors = cycle([, , , , , ,
, , , , ])
linestyles = cycle([, , , ])
if not detections:
if type(dates[0]) != list:
dates = [dates]
else:
dates = []
template_names = []
for detection in detections:
if not type(detection) == Detection:
raise IOError(
)
dates.append(detection.detect_time.datetime)
template_names.append(detection.template_name)
_dates = []
_template_names = []
for template_name in list(set(template_names)):
_template_names.append(template_name)
_dates.append([date for i, date in enumerate(dates)
if template_names[i] == template_name])
dates = _dates
template_names = _template_names
if plot_grouped:
_dates = []
for template_dates in dates:
_dates += template_dates
dates = [_dates]
if group_name:
template_names = group_name
else:
template_names = []
if ax is None:
fig = plt.figure()
ax = fig.add_subplot(1, 1, 1)
else:
fig = ax.figure()
ax.margins(0, 0)
min_date = min([min(_d) for _d in dates])
max_date = max([max(_d) for _d in dates])
for k, template_dates in enumerate(dates):
template_dates.sort()
plot_dates = deepcopy(template_dates)
plot_dates.insert(0, min_date)
plot_dates.insert(-1, template_dates[-1])
color = next(colors)
if color == :
linestyle = next(linestyles)
counts = np.arange(-1, len(template_dates) + 1)
if rate:
if not plot_grouped:
msg =
raise NotImplementedError(msg)
if 31 < (max_date - min_date).days < 365:
bins = (max_date - min_date).days
ax.set_ylabel()
elif (max_date - min_date).days <= 31:
bins = (max_date - min_date).days * 4
ax.set_ylabel()
else:
bins = (max_date - min_date).days // 7
ax.set_ylabel()
if len(plot_dates) <= 10:
bins = 1
ax.hist(mdates.date2num(plot_dates), bins=bins,
label=, color=,
alpha=0.5)
else:
ax.plot(plot_dates, counts, linestyle,
color=color, label=template_names[k],
linewidth=2.0, drawstyle=)
ax.set_ylabel()
ax.set_xlabel()
mins = mdates.MinuteLocator()
max_date = dates[0][0]
min_date = max_date
for date_list in dates:
if max(date_list) > max_date:
max_date = max(date_list)
if min(date_list) < min_date:
min_date = min(date_list)
timedif = max_date - min_date
if 10800 <= timedif.total_seconds() <= 25200:
hours = mdates.MinuteLocator(byminute=[0, 30])
mins = mdates.MinuteLocator(byminute=np.arange(0, 60, 10))
elif 7200 <= timedif.total_seconds() < 10800:
hours = mdates.MinuteLocator(byminute=[0, 15, 30, 45])
mins = mdates.MinuteLocator(byminute=np.arange(0, 60, 5))
elif timedif.total_seconds() <= 1200:
hours = mdates.MinuteLocator(byminute=np.arange(0, 60, 2))
mins = mdates.MinuteLocator(byminute=np.arange(0, 60, 0.5))
elif 25200 < timedif.total_seconds() <= 86400:
hours = mdates.HourLocator(byhour=np.arange(0, 24, 3))
mins = mdates.HourLocator(byhour=np.arange(0, 24, 1))
elif 86400 < timedif.total_seconds() <= 172800:
hours = mdates.HourLocator(byhour=np.arange(0, 24, 6))
mins = mdates.HourLocator(byhour=np.arange(0, 24, 1))
elif timedif.total_seconds() > 172800:
hours = mdates.AutoDateLocator()
mins = mdates.HourLocator(byhour=np.arange(0, 24, 3))
else:
hours = mdates.MinuteLocator(byminute=np.arange(0, 60, 5))
if timedif.total_seconds() < 172800:
ax.xaxis.set_minor_locator(mins)
hrFMT = mdates.DateFormatter()
else:
hrFMT = mdates.DateFormatter()
ax.xaxis.set_major_locator(hours)
ax.xaxis.set_major_formatter(hrFMT)
fig.autofmt_xdate()
locs, labels = plt.xticks()
plt.setp(labels, rotation=15)
if not rate:
ax.set_ylim([0, max([len(_d) for _d in dates])])
if plot_legend:
if ax.legend() is not None:
leg = ax.legend(loc=2, prop={: 8}, ncol=2)
leg.get_frame().set_alpha(0.5)
fig = _finalise_figure(fig=fig, **kwargs)
return fig | Plot cumulative detections or detection rate in time.
Simple plotting function to take a list of either datetime objects or
:class:`eqcorrscan.core.match_filter.Detection` objects and plot
a cumulative detections list. Can take dates as a list of lists and will
plot each list separately, e.g. if you have dates from more than one
template it will overlay them in different colours.
:type dates: list
:param dates: Must be a list of lists of datetime.datetime objects
:type template_names: list
:param template_names: List of the template names in order of the dates
:type detections: list
:param detections: List of :class:`eqcorrscan.core.match_filter.Detection`
:type plot_grouped: bool
:param plot_grouped:
Plot detections for each template individually, or group them all
together - set to False (plot template detections individually) by
default.
:type rate: bool
:param rate:
Whether or not to plot the rate of detection per day. Only works for
plot_grouped=True
:type plot_legend: bool
:param plot_legend:
Specify whether to plot legend of template names. Defaults to True.
:returns: :class:`matplotlib.figure.Figure`
.. note::
Can either take lists of
:class:`eqcorrscan.core.match_filter.Detection` objects directly, or
two lists of dates and template names - either/or, not both.
.. rubric:: Example
>>> import datetime as dt
>>> import numpy as np
>>> from eqcorrscan.utils.plotting import cumulative_detections
>>> dates = []
>>> for i in range(3):
... dates.append([dt.datetime(2012, 3, 26) + dt.timedelta(n)
... for n in np.random.randn(100)])
>>> cumulative_detections(dates, ['a', 'b', 'c'],
... show=True) # doctest: +SKIP
.. plot::
import datetime as dt
import numpy as np
from eqcorrscan.utils.plotting import cumulative_detections
dates = []
for i in range(3):
dates.append([dt.datetime(2012, 3, 26) + dt.timedelta(n)
for n in np.random.randn(100)])
cumulative_detections(dates, ['a', 'b', 'c'], show=True)
.. rubric:: Example 2: Rate plotting
>>> import datetime as dt
>>> import numpy as np
>>> from eqcorrscan.utils.plotting import cumulative_detections
>>> dates = []
>>> for i in range(3):
... dates.append([dt.datetime(2012, 3, 26) + dt.timedelta(n)
... for n in np.random.randn(100)])
>>> cumulative_detections(dates, ['a', 'b', 'c'], plot_grouped=True,
... rate=True, show=True) # doctest: +SKIP
.. plot::
import datetime as dt
import numpy as np
from eqcorrscan.utils.plotting import cumulative_detections
dates = []
for i in range(3):
dates.append([dt.datetime(2012, 3, 26) + dt.timedelta(n)
for n in np.random.randn(100)])
cumulative_detections(dates, ['a', 'b', 'c'], plot_grouped=True,
rate=True, show=True) |
2,348 | def _set_factory_context(factory_class, bundle_context):
try:
context = getattr(factory_class, constants.IPOPO_FACTORY_CONTEXT)
except AttributeError:
return None
if not context.completed:
return None
context.set_bundle_context(bundle_context)
return context | Transforms the context data dictionary into its FactoryContext object form.
:param factory_class: A manipulated class
:param bundle_context: The class bundle context
:return: The factory context, None on error |
2,349 | def remove_task_db(self, fid, force=False):
self.remove_slice_db(fid)
sql =
self.cursor.execute(sql, [fid, ])
self.check_commit(force=force) | 将任务从数据库中删除 |
2,350 | def parse_datetime(value):
if not value:
return None
elif isinstance(value, datetime.datetime):
return value
return dateutil.parser.parse(value) | Attempts to parse `value` into an instance of ``datetime.datetime``. If
`value` is ``None``, this function will return ``None``.
Args:
value: A timestamp. This can be a string or datetime.datetime value. |
2,351 | def total_border_pixels_from_mask_and_edge_pixels(mask, edge_pixels, masked_grid_index_to_pixel):
border_pixel_total = 0
for i in range(edge_pixels.shape[0]):
if check_if_border_pixel(mask, edge_pixels[i], masked_grid_index_to_pixel):
border_pixel_total += 1
return border_pixel_total | Compute the total number of borders-pixels in a masks. |
2,352 | def get_view(self):
view = self.view
if not view.is_initialized:
view.initialize()
if not view.proxy_is_active:
view.activate_proxy()
return view.proxy.widget | Get the root view to display. Make sure it is
properly initialized. |
2,353 | def reset(self):
self.indent_spaces = 0
self._buffer[:] = []
self.source =
self.code = None
self._is_complete = False
self._full_dedent = False | Reset the input buffer and associated state. |
2,354 | def geometry(AA):
if(AA==):
return GlyGeo()
elif(AA==):
return AlaGeo()
elif(AA==):
return SerGeo()
elif(AA==):
return CysGeo()
elif(AA==):
return ValGeo()
elif(AA==):
return IleGeo()
elif(AA==):
return LeuGeo()
elif(AA==):
return ThrGeo()
elif(AA==):
return ArgGeo()
elif(AA==):
return LysGeo()
elif(AA==):
return AspGeo()
elif(AA==):
return GluGeo()
elif(AA==):
return AsnGeo()
elif(AA==):
return GlnGeo()
elif(AA==):
return MetGeo()
elif(AA==):
return HisGeo()
elif(AA==):
return ProGeo()
elif(AA==):
return PheGeo()
elif(AA==):
return TyrGeo()
elif(AA==):
return TrpGeo()
else:
return GlyGeo() | Generates the geometry of the requested amino acid.
The amino acid needs to be specified by its single-letter
code. If an invalid code is specified, the function
returns the geometry of Glycine. |
2,355 | def post_events(self, events):
url = "{0}/{1}/projects/{2}/events".format(self.base_url, self.api_version,
self.project_id)
headers = utilities.headers(self.write_key)
payload = json.dumps(events)
response = self.fulfill(HTTPMethods.POST, url, data=payload, headers=headers, timeout=self.post_timeout)
self._error_handling(response)
return self._get_response_json(response) | Posts a single event to the Keen IO API. The write key must be set first.
:param events: an Event to upload |
2,356 | def parse_file(src):
if config.dest_dir == None:
dest = src.dir
else:
dest = config.dest_dir
output = get_output(src)
output_file = dest + + src.basename +
f = open(output_file,)
f.write(jsmin.jsmin(output))
f.close()
print "Wrote combined and minified file to: %s" % (output_file) | find file in config and output to dest dir |
2,357 | def get_logger(name, verbosity, stream):
logger = logging.getLogger(name)
logger.setLevel(
{0: DEFAULT_LOGGING_LEVEL, 1: logging.INFO, 2: logging.DEBUG}.get(min(2, verbosity), DEFAULT_LOGGING_LEVEL)
)
logger.handlers = []
handler = logging.StreamHandler(stream)
handler.setLevel(logging.DEBUG)
handler.setFormatter(logging.Formatter(LOG_FORMAT))
logger.addHandler(handler)
return logger | Returns simple console logger. |
2,358 | def select_action(self, pos1, pos2, ctrl, shift):
assert pos1.surf.surf_type == pos2.surf.surf_type
assert pos1.surf.world_to_obs == pos2.surf.world_to_obs
action = sc_pb.Action()
action_spatial = pos1.action_spatial(action)
if pos1.world_pos == pos2.world_pos:
select = action_spatial.unit_selection_point
pos1.obs_pos.assign_to(select.selection_screen_coord)
mod = sc_spatial.ActionSpatialUnitSelectionPoint
if ctrl:
select.type = mod.AddAllType if shift else mod.AllType
else:
select.type = mod.Toggle if shift else mod.Select
else:
select = action_spatial.unit_selection_rect
rect = select.selection_screen_coord.add()
pos1.obs_pos.assign_to(rect.p0)
pos2.obs_pos.assign_to(rect.p1)
select.selection_add = shift
units = self._units_in_area(point.Rect(pos1.world_pos, pos2.world_pos))
if units:
self.clear_queued_action()
return action | Return a `sc_pb.Action` with the selection filled. |
2,359 | def extract_rzip (archive, compression, cmd, verbosity, interactive, outdir):
cmdlist = [cmd, , ]
if verbosity > 1:
cmdlist.append()
outfile = util.get_single_outfile(outdir, archive)
cmdlist.extend(["-o", outfile, archive])
return cmdlist | Extract an RZIP archive. |
2,360 | def combine_assignments(self, assignments):
group_by_fn = collections.defaultdict(list)
for a in assignments:
if not isinstance(a, Assign):
raise ValueError("ops should be instances of mtf.Assign")
group_by_fn[a.assign_fn].append(a)
assignments_set = set(assignments)
self._operations = [
op for op in self._operations if op not in assignments_set]
ret = []
for fn, ops in six.iteritems(group_by_fn):
variables = []
values = []
for a in ops:
variables.extend(a.variables)
values.extend(a.inputs)
ret.append(Assign(variables, values, fn))
return ret | Rewrite the current graph to combine "Assign" operations.
Combine similar Assign operations into grouped Assign operations.
This is useful when using the rewrite_stack_variables() optimization,
since variables can only be stacked if they are present in the same set
of Assign operations.
This function takes a list of Assign operations and returns a possibly
shorter list of Assign operations. The input Assignment operations
are removed from the graph and become invalid.
Args:
assignments: a list of Assign objects
Returns:
a list of Assign objects |
2,361 | def which(name):
for path in path_val.split(os.pathsep):
filename = os.path.join(path, name)
if os.access(filename, os.X_OK):
return filename
return None | Returns the full path to executable in path matching provided name.
`name`
String value.
Returns string or ``None``. |
2,362 | def collectInterest(self):
if self.collectedInterest:
return False
pg = self.usr.getPage("http://www.neopets.com/bank.phtml")
form = pg.form(action="process_bank.phtml")
form[] = "interest"
pg = form.submit()
if "Itpg': pg})
return False | Collects user's daily interest, returns result
Returns
bool - True if successful, False otherwise |
2,363 | def y(self, y):
if y is None:
return None
return (self.height * (y - self.box.ymin) / self.box.height) | Project reversed y |
2,364 | def _copy_circuit_metadata(source_dag, coupling_map):
target_dag = DAGCircuit()
target_dag.name = source_dag.name
for creg in source_dag.cregs.values():
target_dag.add_creg(creg)
device_qreg = QuantumRegister(len(coupling_map.physical_qubits), )
target_dag.add_qreg(device_qreg)
return target_dag | Return a copy of source_dag with metadata but empty.
Generate only a single qreg in the output DAG, matching the size of the
coupling_map. |
2,365 | def extract_output(self, output_variables_list):
variables_mapping = self.session_context.session_variables_mapping
output = {}
for variable in output_variables_list:
if variable not in variables_mapping:
logger.log_warning(
"variable can not be found in variables mapping, failed to output!"\
.format(variable)
)
continue
output[variable] = variables_mapping[variable]
utils.print_info(output)
return output | extract output variables |
2,366 | def _rdistributive(self, expr, op_example):
if expr.isliteral:
return expr
expr_class = expr.__class__
args = (self._rdistributive(arg, op_example) for arg in expr.args)
args = tuple(arg.simplify() for arg in args)
if len(args) == 1:
return args[0]
expr = expr_class(*args)
dualoperation = op_example.dual
if isinstance(expr, dualoperation):
expr = expr.distributive()
return expr | Recursively flatten the `expr` expression for the `op_example`
AND or OR operation instance exmaple. |
2,367 | def _do_validate_sources_present(self, target):
if not self.validate_sources_present:
return True
sources = target.sources_relative_to_buildroot()
if not sources:
message = (.format(target.address.spec))
if not self.get_options().allow_empty:
raise TaskError(message)
else:
logging.warn(message)
return False
return True | Checks whether sources is empty, and either raises a TaskError or just returns False.
The specifics of this behavior are defined by whether the user sets --allow-empty to True/False:
--allow-empty=False will result in a TaskError being raised in the event of an empty source
set. If --allow-empty=True, this method will just return false and log a warning.
Shared for all SimpleCodegenTask subclasses to help keep errors consistent and descriptive.
:param target: Target to validate.
:return: True if sources is not empty, False otherwise. |
2,368 | def atmos_worker(srcs, window, ij, args):
src = srcs[0]
rgb = src.read(window=window)
rgb = to_math_type(rgb)
atmos = simple_atmo(rgb, args["atmo"], args["contrast"], args["bias"])
return scale_dtype(atmos, args["out_dtype"]) | A simple atmospheric correction user function. |
2,369 | def extract_links(self, selector=, *args, **kwargs):
try:
links = self.get_tree_tag(selector=selector)
for link in links:
next_url = urljoin(self.url, link.get())
yield type(self)(next_url)
except XPathError:
raise Exception("Invalid %s selector - %s" % (self.__selector_type__, selector))
except Exception:
raise Exception("Invalid %s selector - %s" % (self.__selector_type__, selector)) | Method for performing the link extraction for the crawler. \
The selector passed as the argument is a selector to point to the anchor tags \
that the crawler should pass through. A list of links is obtained, and the links \
are iterated through. The relative paths are converted into absolute paths and \
a ``XpathSelector``/``CssSelector`` object (as is the case) is created with the URL of the next page as the argument \
and this created object is yielded.
The extract_links method basically generates ``XpathSelector``/``CssSelector`` objects for all of \
the links to be crawled through.
:param selector: The selector for the anchor tags to be crawled through
:return: A ``XpathSelector``/``CssSelector`` object for every page to be crawled through |
2,370 | def adupdates_simple(x, g, L, stepsize, inner_stepsizes, niter,
random=False):
length = len(g)
ranges = [Li.range for Li in L]
duals = [space.zero() for space in ranges]
for _ in range(niter):
for i in range(length):
x -= (1.0 / stepsize) * L[i].adjoint(duals[i])
rng = np.random.permutation(range(length)) if random else range(length)
for j in rng:
dual_tmp = ranges[j].element()
dual_tmp = (g[j].convex_conj.proximal
(stepsize * inner_stepsizes[j]
if np.isscalar(inner_stepsizes[j])
else stepsize * np.asarray(inner_stepsizes[j]))
(duals[j] + stepsize * inner_stepsizes[j] * L[j](x)
if np.isscalar(inner_stepsizes[j])
else duals[j] + stepsize *
np.asarray(inner_stepsizes[j]) * L[j](x)))
x -= 1.0 / stepsize * L[j].adjoint(dual_tmp - duals[j])
duals[j].assign(dual_tmp) | Non-optimized version of ``adupdates``.
This function is intended for debugging. It makes a lot of copies and
performs no error checking. |
2,371 | def get_signalcheck(self, sar, **params):
params = sar
endpoint =
retValue = self._API__request(endpoint, ,
params=params, convJSON=True)
return retValue | get_signalcheck - perform a signal check.
Parameters
----------
sar : dict
signal-api-request specified as a dictionary of parameters.
All of these parameters are optional. For details
check https://api.postcode.nl/documentation/signal-api-example.
returns :
a response dictionary |
2,372 | def remove_bond(self, particle_pair):
from mbuild.port import Port
if self.root.bond_graph is None or not self.root.bond_graph.has_edge(
*particle_pair):
warn("Bond between {} and {} doesnport[$]port[$]') | Deletes a bond between a pair of Particles
Parameters
----------
particle_pair : indexable object, length=2, dtype=mb.Compound
The pair of Particles to remove the bond between |
2,373 | def new_chain(table=, chain=None, table_type=None, hook=None, priority=None, family=):
******
ret = {: ,
: False}
if not chain:
ret[] =
return ret
res = check_table(table, family=family)
if not res[]:
return res
res = check_chain(table, chain, family=family)
if res[]:
ret[] = .\
format(chain, table, family)
return ret
nft_family = _NFTABLES_FAMILIES[family]
cmd = .\
format(_nftables_cmd(), nft_family, table, chain)
if table_type or hook or priority:
if table_type and hook and six.text_type(priority):
cmd = r.\
format(cmd, table_type, hook, priority)
else:
ret[] =
return ret
out = __salt__[](cmd, python_shell=False)
if not out:
ret[] = .\
format(chain, table, family)
ret[] = True
else:
ret[] = .\
format(chain, table, family)
return ret | .. versionadded:: 2014.7.0
Create new chain to the specified table.
CLI Example:
.. code-block:: bash
salt '*' nftables.new_chain filter input
salt '*' nftables.new_chain filter input \\
table_type=filter hook=input priority=0
salt '*' nftables.new_chain filter foo
IPv6:
salt '*' nftables.new_chain filter input family=ipv6
salt '*' nftables.new_chain filter input \\
table_type=filter hook=input priority=0 family=ipv6
salt '*' nftables.new_chain filter foo family=ipv6 |
2,374 | def normalize(self):
median_diff = np.median(np.diff(self.x))
bin_edges = [self.x[0] - median_diff/2.0]
bin_edges.extend(median_diff/2.0 + self.x)
self.y_raw = self.y_raw/(self.y_raw.sum()*np.diff(bin_edges))
self.smooth() | Normalizes the given data such that the area under the histogram/curve
comes to 1. Also re applies smoothing once done. |
2,375 | def import_model(cls, ins_name):
try:
package_space = getattr(cls, )
except AttributeError:
raise ValueError()
else:
return import_object(ins_name, package_space) | Import model class in models package |
2,376 | def parse(self, what):
if not in what:
key, spec = what,
else:
key, spec = what.split()
if spec and not spec.startswith((, )):
raise ValueError( % what)
elif spec == :
aids = []
arefs = []
for aid, rec in enumerate(self.assetcol.array):
aids.append(aid)
arefs.append(self.asset_refs[aid])
elif spec.startswith():
sid = int(spec[4:])
aids = []
arefs = []
for aid, rec in enumerate(self.assetcol.array):
if rec[] == sid:
aids.append(aid)
arefs.append(self.asset_refs[aid])
elif spec.startswith():
arefs = [spec[4:]]
aids = [self.str2asset[arefs[0]][]]
else:
raise ValueError( % what)
return aids, arefs, spec, key | :param what:
can be 'rlz-1/ref-asset1', 'rlz-2/sid-1', ... |
2,377 | def add_to_inventory(self):
if self.lb_attrs:
self.lb_attrs = self.consul.lb_details(
self.lb_attrs[A.loadbalancer.ID]
)
host = self.lb_attrs[][0][]
self.stack.add_lb_secgroup(self.name, [host], self.backend_port)
self.stack.add_host(
host,
[self.name],
self.lb_attrs
) | Adds lb IPs to stack inventory |
2,378 | def has_builder(self):
try:
b = self.builder
except AttributeError:
b = self.builder = None
return b is not None | Return whether this Node has a builder or not.
In Boolean tests, this turns out to be a *lot* more efficient
than simply examining the builder attribute directly ("if
node.builder: ..."). When the builder attribute is examined
directly, it ends up calling __getattr__ for both the __len__
and __nonzero__ attributes on instances of our Builder Proxy
class(es), generating a bazillion extra calls and slowing
things down immensely. |
2,379 | def sdot( U, V ):
nu = U.ndim
return np.tensordot( U, V, axes=(nu-1,0) ) | Computes the tensorproduct reducing last dimensoin of U with first dimension of V.
For matrices, it is equal to regular matrix product. |
2,380 | def add_fileobj(self, fileobj, path, compress, flags=None):
f = file_iter(fileobj)
flags = flags or os.stat(path) & 0o777
return self.add_stream(f, path, compress, flags) | Add the contents of a file object to the MAR file.
Args:
fileobj (file-like object): open file object
path (str): name of this file in the MAR file
compress (str): One of 'xz', 'bz2', or None. Defaults to None.
flags (int): permission of this file in the MAR file. Defaults to the permissions of `path` |
2,381 | def package_data(pkg, root_list):
data = []
for root in root_list:
for dirname, _, files in os.walk(os.path.join(pkg, root)):
for fname in files:
data.append(os.path.relpath(os.path.join(dirname, fname), pkg))
return {pkg: data} | Generic function to find package_data for `pkg` under `root`. |
2,382 | def init_fakemod_dict(fm,adict=None):
dct = {}
dct.setdefault(,lambda : True)
dct.setdefault(,__file__)
if adict is not None:
dct.update(adict)
fm.__dict__.clear()
fm.__dict__.update(dct) | Initialize a FakeModule instance __dict__.
Kept as a standalone function and not a method so the FakeModule API can
remain basically empty.
This should be considered for private IPython use, used in managing
namespaces for %run.
Parameters
----------
fm : FakeModule instance
adict : dict, optional |
2,383 | def ensure_index(self, index, mappings=None, settings=None, clear=False):
mappings = mappings or []
if isinstance(mappings, dict):
mappings = [mappings]
exists = self.indices.exists_index(index)
if exists and not mappings and not clear:
return
if exists and clear:
self.indices.delete_index(index)
exists = False
if exists:
if not mappings:
self.indices.delete_index(index)
self.indices.refresh()
self.indices.create_index(index, settings)
return
if clear:
for maps in mappings:
for key in list(maps.keys()):
self.indices.delete_mapping(index, doc_type=key)
self.indices.refresh()
if isinstance(mappings, SettingsBuilder):
for name, data in list(mappings.mappings.items()):
self.indices.put_mapping(doc_type=name, mapping=data, indices=index)
else:
from pyes.mappings import DocumentObjectField, ObjectField
for maps in mappings:
if isinstance(maps, tuple):
name, mapping = maps
self.indices.put_mapping(doc_type=name, mapping=mapping, indices=index)
elif isinstance(maps, dict):
for name, data in list(maps.items()):
self.indices.put_mapping(doc_type=name, mapping=maps, indices=index)
elif isinstance(maps, (DocumentObjectField, ObjectField)):
self.put_mapping(doc_type=maps.name, mapping=maps.as_dict(), indices=index)
return
if settings:
if isinstance(settings, dict):
settings = SettingsBuilder(settings, mappings)
else:
if isinstance(mappings, SettingsBuilder):
settings = mappings
else:
settings = SettingsBuilder(mappings=mappings)
if not exists:
self.indices.create_index(index, settings)
self.indices.refresh(index, timesleep=1) | Ensure if an index with mapping exists |
2,384 | def add_metrics(self, metrics: Iterable[float]) -> None:
for metric in metrics:
self.add_metric(metric) | Helper to add multiple metrics at once. |
2,385 | def is_deb_package_installed(pkg):
with settings(hide(, , , ),
warn_only=True, capture=True):
result = sudo( % pkg)
return not bool(result.return_code) | checks if a particular deb package is installed |
2,386 | def ellipsis(text, length, symbol="..."):
if len(text) > length:
pos = text.rfind(" ", 0, length)
if pos < 0:
return text[:length].rstrip(".") + symbol
else:
return text[:pos].rstrip(".") + symbol
else:
return text | Present a block of text of given length.
If the length of available text exceeds the requested length, truncate and
intelligently append an ellipsis. |
2,387 | def _syndic_return(self, load):
if any(key not in load for key in (, , )):
return None
if in load:
fstr = .format(self.opts[])
self.mminion.returners[fstr](load[], load[])
for key, item in six.iteritems(load[]):
ret = {: load[],
: key,
: item}
if in load:
ret[] = load[]
self._return(ret) | Receive a syndic minion return and format it to look like returns from
individual minions. |
2,388 | def getSequence(title, db=):
titleId = title.split(, 1)[0]
try:
gi = titleId.split()[1]
except IndexError:
client.close()
return record | Get information about a sequence from Genbank.
@param title: A C{str} sequence title from a BLAST hit. Of the form
'gi|63148399|gb|DQ011818.1| Description...'.
@param db: The C{str} name of the Entrez database to consult.
NOTE: this uses the network! Also, there is a 3 requests/second limit
imposed by NCBI on these requests so be careful or your IP will be banned. |
2,389 | def uptime(human_readable=False):
**
startup_time = datetime.datetime.fromtimestamp(psutil.boot_time())
uptime = datetime.datetime.now() - startup_time
return six.text_type(uptime) if human_readable else uptime.total_seconds() | .. versionadded:: 2015.8.0
Return the system uptime for the machine
Args:
human_readable (bool):
Return uptime in human readable format if ``True``, otherwise
return seconds. Default is ``False``
.. note::
Human readable format is ``days, hours:min:sec``. Days will only
be displayed if more than 0
Returns:
str:
The uptime in seconds or human readable format depending on the
value of ``human_readable``
CLI Example:
.. code-block:: bash
salt '*' status.uptime
salt '*' status.uptime human_readable=True |
2,390 | def p_try_statement_2(self, p):
p[0] = ast.Try(statements=p[2], fin=p[3]) | try_statement : TRY block finally |
2,391 | def get_queryset(self, *args, **kwargs):
select_sql = {}
encrypted_fields = []
for f in self.model._meta.get_fields_with_model():
field = f[0]
if isinstance(field, PGPMixin):
select_sql[field.name] = self.get_decrypt_sql(field).format(
field.model._meta.db_table,
field.name,
settings.PGPFIELDS_PRIVATE_KEY,
)
encrypted_fields.append(field.name)
return super(PGPEncryptedManager, self).get_queryset(
*args, **kwargs).defer(*encrypted_fields).extra(select=select_sql) | Django queryset.extra() is used here to add decryption sql to query. |
2,392 | def is_country(self, text):
ct_list = self._just_cts.keys()
if text in ct_list:
return True
else:
return False | Check if a piece of text is in the list of countries |
2,393 | def invalidate_cache(user, size=None):
sizes = set(settings.AVATAR_AUTO_GENERATE_SIZES)
if size is not None:
sizes.add(size)
for prefix in cached_funcs:
for size in sizes:
cache.delete(get_cache_key(user, size, prefix)) | Function to be called when saving or changing an user's avatars. |
2,394 | def chimera_layout(G, scale=1., center=None, dim=2):
if not isinstance(G, nx.Graph):
empty_graph = nx.Graph()
empty_graph.add_edges_from(G)
G = empty_graph
if G.graph.get("family") == "chimera":
m = G.graph[]
n = G.graph[]
t = G.graph[]
xy_coords = chimera_node_placer_2d(m, n, t, scale, center, dim)
if G.graph.get() == :
pos = {v: xy_coords(*v) for v in G.nodes()}
elif G.graph.get():
pos = {v: xy_coords(*dat[]) for v, dat in G.nodes(data=True)}
else:
coord = chimera_coordinates(m, n, t)
pos = {v: xy_coords(*coord.tuple(v)) for v in G.nodes()}
else:
if all( in dat for __, dat in G.nodes(data=True)):
chimera_indices = {v: dat[] for v, dat in G.nodes(data=True)}
else:
chimera_indices = find_chimera_indices(G)
m = max(idx[0] for idx in itervalues(chimera_indices)) + 1
n = max(idx[1] for idx in itervalues(chimera_indices)) + 1
t = max(idx[3] for idx in itervalues(chimera_indices)) + 1
xy_coords = chimera_node_placer_2d(m, n, t, scale, center, dim)
pos = {v: xy_coords(i, j, u, k) for v, (i, j, u, k) in iteritems(chimera_indices)}
return pos | Positions the nodes of graph G in a Chimera cross topology.
NumPy (http://scipy.org) is required for this function.
Parameters
----------
G : NetworkX graph
Should be a Chimera graph or a subgraph of a
Chimera graph. If every node in G has a `chimera_index`
attribute, those are used to place the nodes. Otherwise makes
a best-effort attempt to find positions.
scale : float (default 1.)
Scale factor. When scale = 1, all positions fit within [0, 1]
on the x-axis and [-1, 0] on the y-axis.
center : None or array (default None)
Coordinates of the top left corner.
dim : int (default 2)
Number of dimensions. When dim > 2, all extra dimensions are
set to 0.
Returns
-------
pos : dict
A dictionary of positions keyed by node.
Examples
--------
>>> G = dnx.chimera_graph(1)
>>> pos = dnx.chimera_layout(G) |
2,395 | def process_macros(self, content, source=None):
macro_options = {: self.relative, : self.linenos}
classes = []
for macro_class in self.macros:
try:
macro = macro_class(logger=self.logger, embed=self.embed,
options=macro_options)
content, add_classes = macro.process(content, source)
if add_classes:
classes += add_classes
except Exception as e:
self.log(u"%s processing failed in %s: %s"
% (macro, source, e))
return content, classes | Processed all macros. |
2,396 | def share_item(self, token, item_id, dest_folder_id):
parameters = dict()
parameters[] = token
parameters[] = item_id
parameters[] = dest_folder_id
response = self.request(, parameters)
return response | Share an item to the destination folder.
:param token: A valid token for the user in question.
:type token: string
:param item_id: The id of the item to be shared.
:type item_id: int | long
:param dest_folder_id: The id of destination folder where the item is
shared to.
:type dest_folder_id: int | long
:returns: Dictionary containing the details of the shared item.
:rtype: dict |
2,397 | def _compute_slices(self, start_idx, end_idx, assets):
return _compute_row_slices(
self._first_rows,
self._last_rows,
self._calendar_offsets,
start_idx,
end_idx,
assets,
) | Compute the raw row indices to load for each asset on a query for the
given dates after applying a shift.
Parameters
----------
start_idx : int
Index of first date for which we want data.
end_idx : int
Index of last date for which we want data.
assets : pandas.Int64Index
Assets for which we want to compute row indices
Returns
-------
A 3-tuple of (first_rows, last_rows, offsets):
first_rows : np.array[intp]
Array with length == len(assets) containing the index of the first
row to load for each asset in `assets`.
last_rows : np.array[intp]
Array with length == len(assets) containing the index of the last
row to load for each asset in `assets`.
offset : np.array[intp]
Array with length == (len(asset) containing the index in a buffer
of length `dates` corresponding to the first row of each asset.
The value of offset[i] will be 0 if asset[i] existed at the start
of a query. Otherwise, offset[i] will be equal to the number of
entries in `dates` for which the asset did not yet exist. |
2,398 | def build(self, builder):
builder.start("Question", {})
for translation in self.translations:
translation.build(builder)
builder.end("Question") | Build XML by appending to builder
.. note:: Questions can contain translations |
2,399 | def parse_image_response(self, response):
if in response.headers.get():
xml = xmltodict.parse(response.text)
self.analyze_reply_code(xml_response_dict=xml)
multi_parts = self._get_multiparts(response)
parsed = []
for part in multi_parts:
clean_part = part.strip()
if in clean_part:
header, body = clean_part.split(, 1)
else:
header = clean_part
body = None
part_header_dict = {k.strip(): v.strip() for k, v in (h.split(, 1) for h in header.split())}
if in part_header_dict.get():
body = body[:body.index() + 2] if in body else body
xml = xmltodict.parse(body)
try:
self.analyze_reply_code(xml_response_dict=xml)
except RETSException as e:
if e.reply_code == :
continue
raise e
if body:
obj = self._response_object_from_header(
obj_head_dict=part_header_dict,
content=body.encode() if six.PY3 else body)
else:
obj = self._response_object_from_header(obj_head_dict=part_header_dict)
parsed.append(obj)
return parsed | Parse multiple objects from the RETS feed. A lot of string methods are used to handle the response before
encoding it back into bytes for the object.
:param response: The response from the feed
:return: list of SingleObjectParser |
Subsets and Splits
No saved queries yet
Save your SQL queries to embed, download, and access them later. Queries will appear here once saved.