Unnamed: 0
int64
0
389k
code
stringlengths
26
79.6k
docstring
stringlengths
1
46.9k
23,200
def configure(host=DEFAULT_HOST, port=DEFAULT_PORT, prefix=): global _client logging.info("Reconfiguring metrics: {}:{}/{}".format(host, port, prefix)) _client = statsdclient.StatsdClient(host, port, prefix)
>>> configure() >>> configure('localhost', 8125, 'mymetrics')
23,201
def shrunk_covariance(self, delta=0.2): self.delta = delta N = self.S.shape[1] mu = np.trace(self.S) / N F = np.identity(N) * mu shrunk_cov = delta * F + (1 - delta) * self.S return self.format_and_annualise(shrunk_cov)
Shrink a sample covariance matrix to the identity matrix (scaled by the average sample variance). This method does not estimate an optimal shrinkage parameter, it requires manual input. :param delta: shrinkage parameter, defaults to 0.2. :type delta: float, optional :return: shrunk sample covariance matrix :rtype: np.ndarray
23,202
def main(): mlperf_log.ROOT_DIR_GNMT = os.path.dirname(os.path.abspath(__file__)) mlperf_log.LOGGER.propagate = False args = parse_args() device = utils.set_device(args.cuda, args.local_rank) distributed = utils.init_distributed(args.cuda) gnmt_print(key=mlperf_log.RUN_START, sync=True) args.rank = utils.get_rank() if not args.cudnn: torch.backends.cudnn.enabled = False save_path = os.path.join(args.results_dir, args.save) args.save_path = save_path os.makedirs(save_path, exist_ok=True) log_filename = f utils.setup_logging(os.path.join(save_path, log_filename)) if args.env: utils.log_env_info() logging.info(f) logging.info(f) if args.train_global_batch_size is not None: global_bs = args.train_global_batch_size bs = args.train_batch_size world_size = utils.get_world_size() assert global_bs % (bs * world_size) == 0 args.train_iter_size = global_bs // (bs * world_size) logging.info(f f) worker_seeds, shuffling_seeds = utils.setup_seeds(args.seed, args.epochs, device) worker_seed = worker_seeds[args.rank] logging.info(f) torch.manual_seed(worker_seed) pad_vocab = utils.pad_vocabulary(args.math) tokenizer = Tokenizer(os.path.join(args.dataset_dir, config.VOCAB_FNAME), pad_vocab) gnmt_print(key=mlperf_log.PREPROC_TOKENIZE_TRAINING, sync=False) gnmt_print(key=mlperf_log.TRAIN_HP_MAX_SEQ_LEN, value=args.max_length_train, sync=False) train_data = LazyParallelDataset( src_fname=os.path.join(args.dataset_dir, config.SRC_TRAIN_FNAME), tgt_fname=os.path.join(args.dataset_dir, config.TGT_TRAIN_FNAME), tokenizer=tokenizer, min_len=args.min_length_train, max_len=args.max_length_train, sort=False, max_size=args.max_size) gnmt_print(key=mlperf_log.PREPROC_NUM_TRAIN_EXAMPLES, value=len(train_data), sync=False) val_data = ParallelDataset( src_fname=os.path.join(args.dataset_dir, config.SRC_VAL_FNAME), tgt_fname=os.path.join(args.dataset_dir, config.TGT_VAL_FNAME), tokenizer=tokenizer, min_len=args.min_length_val, max_len=args.max_length_val, sort=True) gnmt_print(key=mlperf_log.PREPROC_TOKENIZE_EVAL, sync=False) test_data = TextDataset( src_fname=os.path.join(args.dataset_dir, config.SRC_TEST_FNAME), tokenizer=tokenizer, min_len=args.min_length_test, max_len=args.max_length_test, sort=True) gnmt_print(key=mlperf_log.PREPROC_NUM_EVAL_EXAMPLES, value=len(test_data), sync=False) vocab_size = tokenizer.vocab_size gnmt_print(key=mlperf_log.PREPROC_VOCAB_SIZE, value=vocab_size, sync=False) model_config = {: args.hidden_size, : args.num_layers, : args.dropout, : False, : args.share_embedding} model = GNMT(vocab_size=vocab_size, **model_config) logging.info(model) batch_first = model.batch_first criterion = build_criterion(vocab_size, config.PAD, args.smoothing) opt_config = {: args.optimizer, : args.lr} opt_config.update(literal_eval(args.optimizer_extra)) logging.info(f) scheduler_config = {: args.warmup_steps, : args.remain_steps, : args.decay_interval, : args.decay_steps, : args.decay_factor} logging.info(f) num_parameters = sum([l.nelement() for l in model.parameters()]) logging.info(f) batching_opt = {: args.shard_size, : args.num_buckets} train_loader = train_data.get_loader(batch_size=args.train_batch_size, seeds=shuffling_seeds, batch_first=batch_first, shuffle=True, batching=args.batching, batching_opt=batching_opt, num_workers=args.train_loader_workers) gnmt_print(key=mlperf_log.INPUT_BATCH_SIZE, value=args.train_batch_size * utils.get_world_size(), sync=False) gnmt_print(key=mlperf_log.INPUT_SIZE, value=train_loader.sampler.num_samples, sync=False) val_loader = val_data.get_loader(batch_size=args.val_batch_size, batch_first=batch_first, shuffle=False, num_workers=args.val_loader_workers) test_loader = test_data.get_loader(batch_size=args.test_batch_size, batch_first=batch_first, shuffle=False, pad=True, num_workers=args.test_loader_workers) gnmt_print(key=mlperf_log.EVAL_SIZE, value=len(test_loader.dataset), sync=False) translator = Translator(model=model, tokenizer=tokenizer, loader=test_loader, beam_size=args.beam_size, max_seq_len=args.max_length_test, len_norm_factor=args.len_norm_factor, len_norm_const=args.len_norm_const, cov_penalty_factor=args.cov_penalty_factor, cuda=args.cuda, print_freq=args.print_freq, dataset_dir=args.dataset_dir, target_bleu=args.target_bleu, save_path=args.save_path) total_train_iters = len(train_loader) // args.train_iter_size * args.epochs save_info = {: model_config, : args, : tokenizer.get_state()} trainer_options = dict( criterion=criterion, grad_clip=args.grad_clip, iter_size=args.train_iter_size, save_path=save_path, save_freq=args.save_freq, save_info=save_info, opt_config=opt_config, scheduler_config=scheduler_config, train_iterations=total_train_iters, batch_first=batch_first, keep_checkpoints=args.keep_checkpoints, math=args.math, print_freq=args.print_freq, cuda=args.cuda, distributed=distributed, intra_epoch_eval=args.intra_epoch_eval, translator=translator) trainer_options[] = model trainer = trainers.Seq2SeqTrainer(**trainer_options) if args.resume: checkpoint_file = args.resume if os.path.isdir(checkpoint_file): checkpoint_file = os.path.join( checkpoint_file, ) if os.path.isfile(checkpoint_file): trainer.load(checkpoint_file) else: logging.error(f) best_loss = float() break_training = False test_bleu = None gnmt_print(key=mlperf_log.TRAIN_LOOP, sync=True) for epoch in range(args.start_epoch, args.epochs): logging.info(f) gnmt_print(key=mlperf_log.TRAIN_EPOCH, value=epoch, sync=True) train_loader.sampler.set_epoch(epoch) trainer.epoch = epoch train_loss, train_perf = trainer.optimize(train_loader) if args.eval: logging.info(f) val_loss, val_perf = trainer.evaluate(val_loader) gnmt_print(key=mlperf_log.TRAIN_CHECKPOINT, sync=False) if args.rank == 0: is_best = val_loss < best_loss best_loss = min(val_loss, best_loss) trainer.save(save_all=args.save_all, is_best=is_best) if args.eval: gnmt_print(key=mlperf_log.EVAL_START, value=epoch, sync=True) test_bleu, break_training = translator.run(calc_bleu=True, epoch=epoch) gnmt_print(key=mlperf_log.EVAL_ACCURACY, value={"epoch": epoch, "value": round(test_bleu, 2)}, sync=False) gnmt_print(key=mlperf_log.EVAL_TARGET, value=args.target_bleu, sync=False) gnmt_print(key=mlperf_log.EVAL_STOP, sync=True) acc_log = [] acc_log += [f] acc_log += [f] if args.eval: acc_log += [f] acc_log += [f] perf_log = [] perf_log += [f] perf_log += [f] if args.eval: perf_log += [f] if args.rank == 0: logging.info(.join(acc_log)) logging.info(.join(perf_log)) logging.info(f) if break_training: break gnmt_print(key=mlperf_log.RUN_STOP, value={"success": bool(break_training)}, sync=True) gnmt_print(key=mlperf_log.RUN_FINAL, sync=False)
Launches data-parallel multi-gpu training.
23,203
def minimize_memory(self): if self.__samples is None: self.log(u"Not initialized, returning") else: self.log(u"Initialized, minimizing memory...") self.preallocate_memory(self.__samples_length) self.log(u"Initialized, minimizing memory... done")
Reduce the allocated memory to the minimum required to store the current audio samples. This function is meant to be called when building a wave incrementally, after the last append operation. .. versionadded:: 1.5.0
23,204
def _slice_take_blocks_ax0(self, slice_or_indexer, fill_tuple=None): allow_fill = fill_tuple is not None sl_type, slobj, sllen = _preprocess_slice_or_indexer( slice_or_indexer, self.shape[0], allow_fill=allow_fill) if self._is_single_block: blk = self.blocks[0] if sl_type in (, ): return [blk.getitem_block(slobj, new_mgr_locs=slice(0, sllen))] elif not allow_fill or self.ndim == 1: if allow_fill and fill_tuple[0] is None: _, fill_value = maybe_promote(blk.dtype) fill_tuple = (fill_value, ) return [blk.take_nd(slobj, axis=0, new_mgr_locs=slice(0, sllen), fill_tuple=fill_tuple)] if sl_type in (, ): blknos = self._blknos[slobj] blklocs = self._blklocs[slobj] else: blknos = algos.take_1d(self._blknos, slobj, fill_value=-1, allow_fill=allow_fill) blklocs = algos.take_1d(self._blklocs, slobj, fill_value=-1, allow_fill=allow_fill) blocks = [] for blkno, mgr_locs in libinternals.get_blkno_placements(blknos, self.nblocks, group=True): if blkno == -1: for mgr_loc in mgr_locs: newblk = blk.copy(deep=True) newblk.mgr_locs = slice(mgr_loc, mgr_loc + 1) blocks.append(newblk) else: blocks.append(blk.take_nd(blklocs[mgr_locs.indexer], axis=0, new_mgr_locs=mgr_locs, fill_tuple=None)) return blocks
Slice/take blocks along axis=0. Overloaded for SingleBlock Returns ------- new_blocks : list of Block
23,205
def serialize(self, value, greedy=True): if greedy and not isinstance(value, Column): value = self.normalize(value) if isinstance(value, Column): return value.id else: return value
Greedy serialization requires the value to either be a column or convertible to a column, whereas non-greedy serialization will pass through any string as-is and will only serialize Column objects. Non-greedy serialization is useful when preparing queries with custom filters or segments.
23,206
async def verifier_verify_proof(proof_request_json: str, proof_json: str, schemas_json: str, credential_defs_json: str, rev_reg_defs_json: str, rev_regs_json: str) -> bool: logger = logging.getLogger(__name__) logger.debug("verifier_verify_proof: >>> proof_request_json: %r, proof_json: %r, schemas_json: %r, " "credential_defs_jsons: %r, rev_reg_defs_json: %r, rev_regs_json: %r", proof_request_json, proof_json, schemas_json, credential_defs_json, rev_reg_defs_json, rev_regs_json) if not hasattr(verifier_verify_proof, "cb"): logger.debug("verifier_verify_proof: Creating callback") verifier_verify_proof.cb = create_cb(CFUNCTYPE(None, c_int32, c_int32, c_bool)) c_proof_request_json = c_char_p(proof_request_json.encode()) c_proof_json = c_char_p(proof_json.encode()) c_schemas_json = c_char_p(schemas_json.encode()) c_credential_defs_json = c_char_p(credential_defs_json.encode()) c_rev_reg_defs_json = c_char_p(rev_reg_defs_json.encode()) c_rev_regs_json = c_char_p(rev_regs_json.encode()) res = await do_call(, c_proof_request_json, c_proof_json, c_schemas_json, c_credential_defs_json, c_rev_reg_defs_json, c_rev_regs_json, verifier_verify_proof.cb) logger.debug("verifier_verify_proof: <<< res: %r", res) return res
Verifies a proof (of multiple credential). All required schemas, public keys and revocation registries must be provided. :param proof_request_json: { "name": string, "version": string, "nonce": string, "requested_attributes": { // set of requested attributes "<attr_referent>": <attr_info>, // see below ..., }, "requested_predicates": { // set of requested predicates "<predicate_referent>": <predicate_info>, // see below ..., }, "non_revoked": Optional<<non_revoc_interval>>, // see below, // If specified prover must proof non-revocation // for date in this interval for each attribute // (can be overridden on attribute level) } :param proof_json: created for request proof json { "requested_proof": { "revealed_attrs": { "requested_attr1_id": {sub_proof_index: number, raw: string, encoded: string}, "requested_attr4_id": {sub_proof_index: number: string, encoded: string}, }, "unrevealed_attrs": { "requested_attr3_id": {sub_proof_index: number} }, "self_attested_attrs": { "requested_attr2_id": self_attested_value, }, "requested_predicates": { "requested_predicate_1_referent": {sub_proof_index: int}, "requested_predicate_2_referent": {sub_proof_index: int}, } } "proof": { "proofs": [ <credential_proof>, <credential_proof>, <credential_proof> ], "aggregated_proof": <aggregated_proof> } "identifiers": [{schema_id, cred_def_id, Optional<rev_reg_id>, Optional<timestamp>}] } :param schemas_json: all schema jsons participating in the proof { <schema1_id>: <schema1_json>, <schema2_id>: <schema2_json>, <schema3_id>: <schema3_json>, } :param credential_defs_json: all credential definitions json participating in the proof { "cred_def1_id": <credential_def1_json>, "cred_def2_id": <credential_def2_json>, "cred_def3_id": <credential_def3_json>, } :param rev_reg_defs_json: all revocation registry definitions json participating in the proof { "rev_reg_def1_id": <rev_reg_def1_json>, "rev_reg_def2_id": <rev_reg_def2_json>, "rev_reg_def3_id": <rev_reg_def3_json>, } :param rev_regs_json: all revocation registries json participating in the proof { "rev_reg_def1_id": { "timestamp1": <rev_reg1>, "timestamp2": <rev_reg2>, }, "rev_reg_def2_id": { "timestamp3": <rev_reg3> }, "rev_reg_def3_id": { "timestamp4": <rev_reg4> }, } :return: valid: true - if signature is valid, false - otherwise
23,207
def _gen_from_dircmp(dc, lpath, rpath): left_only = dc.left_only left_only.sort() for f in left_only: fp = join(dc.left, f) if isdir(fp): for r, _ds, fs in walk(fp): r = relpath(r, lpath) for f in fs: yield(LEFT, join(r, f)) else: yield (LEFT, relpath(fp, lpath)) right_only = dc.right_only right_only.sort() for f in right_only: fp = join(dc.right, f) if isdir(fp): for r, _ds, fs in walk(fp): r = relpath(r, rpath) for f in fs: yield(RIGHT, join(r, f)) else: yield (RIGHT, relpath(fp, rpath)) diff_files = dc.diff_files diff_files.sort() for f in diff_files: yield (DIFF, join(relpath(dc.right, rpath), f)) same_files = dc.same_files same_files.sort() for f in same_files: yield (BOTH, join(relpath(dc.left, lpath), f)) subdirs = dc.subdirs.values() subdirs = sorted(subdirs) for sub in subdirs: for event in _gen_from_dircmp(sub, lpath, rpath): yield event
do the work of comparing the dircmp
23,208
def snake2ucamel(value): UNDER, LETTER, OTHER = object(), object(), object() def group_key_function(char): if char == "_": return UNDER if char in string.ascii_letters: return LETTER return OTHER def process_group(idx, key, chars): if key is LETTER: return "".join([chars[0].upper()] + chars[1:]) if key is OTHER \ or len(chars) != 1 \ or idx in [0, last] \ or LETTER not in (groups[idx-1][1], groups[idx+1][1]): return "".join(chars) return "" raw_groups_gen = itertools.groupby(value, key=group_key_function) groups = [(idx, key, list(group_gen)) for idx, (key, group_gen) in enumerate(raw_groups_gen)] last = len(groups) - 1 return "".join(itertools.starmap(process_group, groups))
Casts a snake_case string to an UpperCamelCase string.
23,209
def in_base(self, unit_system=None): us = _sanitize_unit_system(unit_system, self) try: conv_data = _check_em_conversion( self.units, unit_system=us, registry=self.units.registry ) except MKSCGSConversionError: raise UnitsNotReducible(self.units, us) if any(conv_data): to_units, (conv, offset) = _em_conversion( self.units, conv_data, unit_system=us ) else: to_units = self.units.get_base_equivalent(unit_system) conv, offset = self.units.get_conversion_factor(to_units, self.dtype) new_dtype = np.dtype("f" + str(self.dtype.itemsize)) conv = new_dtype.type(conv) ret = self.v * conv if offset: ret = ret - offset return type(self)(ret, to_units)
Creates a copy of this array with the data in the specified unit system, and returns it in that system's base units. Parameters ---------- unit_system : string, optional The unit system to be used in the conversion. If not specified, the configured default base units of are used (defaults to MKS). Examples -------- >>> from unyt import erg, s >>> E = 2.5*erg/s >>> print(E.in_base("mks")) 2.5e-07 W
23,210
def list_container_processes(container): cmd = [, , , .join(PsRow.columns())] ps_lines = output_lines(container.exec_run(cmd)) header = ps_lines.pop(0) ps_rows = [row for row in ps_rows if row.args != cmd_string] return ps_rows
List the processes running inside a container. We use an exec rather than `container.top()` because we want to run 'ps' inside the container. This is because we want to get PIDs and usernames in the container's namespaces. `container.top()` uses 'ps' from outside the container in the host's namespaces. Note that this requires the container to have a 'ps' that responds to the arguments we give it-- we use BusyBox's (Alpine's) 'ps' as a baseline for available functionality. :param container: the container to query :return: a list of PsRow objects
23,211
def output_extras(self, output_file): output_directory = dirname(output_file) def local_path(name): return join(output_directory, self.path_helper.local_name(name)) files_directory = "%s_files%s" % (basename(output_file)[0:-len(".dat")], self.path_helper.separator) names = filter(lambda o: o.startswith(files_directory), self.output_directory_contents) return dict(map(lambda name: (local_path(name), name), names))
Returns dict mapping local path to remote name.
23,212
def parse_value(parser, event, node): value = (next_event, next_node) = six.next(parser) if next_event == pulldom.CHARACTERS: value = next_node.nodeValue (next_event, next_node) = six.next(parser) if not _is_end(next_event, next_node, ): raise ParseError() return value
Parse CIM/XML VALUE element and return the value
23,213
def _apply_backwards_compatibility(df): df.row_count = types.MethodType(lambda self: len(self.index), df) df.col_count = types.MethodType(lambda self: len(self.columns), df) df.dataframe = df
Attach properties to the Dataframe to make it backwards compatible with older versions of this library :param df: The dataframe to be modified
23,214
def selectrangeopenleft(table, field, minv, maxv, complement=False): minv = Comparable(minv) maxv = Comparable(maxv) return select(table, field, lambda v: minv <= v < maxv, complement=complement)
Select rows where the given field is greater than or equal to `minv` and less than `maxv`.
23,215
def pull_screenrecord(self, bit_rate: int = 5000000, time_limit: int = 180, remote: _PATH = , local: _PATH = ) -> None: self.screenrecord(bit_rate, time_limit, filename=remote) self.pull(remote, local)
Recording the display of devices running Android 4.4 (API level 19) and higher. Then copy it to your computer. Args: bit_rate:You can increase the bit rate to improve video quality, but doing so results in larger movie files. time_limit: Sets the maximum recording time, in seconds, and the maximum value is 180 (3 minutes).
23,216
def from_dict(data, ctx): data = data.copy() if data.get() is not None: data[] = \ ctx.instrument.CandlestickData.from_dict( data[], ctx ) if data.get() is not None: data[] = \ ctx.instrument.CandlestickData.from_dict( data[], ctx ) if data.get() is not None: data[] = \ ctx.instrument.CandlestickData.from_dict( data[], ctx ) return Candlestick(**data)
Instantiate a new Candlestick from a dict (generally from loading a JSON response). The data used to instantiate the Candlestick is a shallow copy of the dict passed in, with any complex child types instantiated appropriately.
23,217
def connect(self, db_uri, debug=False): kwargs = {: debug, : True} if in db_uri: kwargs[] = 3600 elif not in db_uri: logger.debug("detected sqlite path URI: {}".format(db_uri)) db_path = os.path.abspath(os.path.expanduser(db_uri)) db_uri = "sqlite:///{}".format(db_path) self.engine = create_engine(db_uri, **kwargs) logger.debug() BASE.metadata.bind = self.engine self.session = scoped_session(sessionmaker(bind=self.engine)) self.query = self.session.query return self
Configure connection to a SQL database. Args: db_uri (str): path/URI to the database to connect to debug (Optional[bool]): whether to output logging information
23,218
def add(self, schema, data): binding = self.get_binding(schema, data) uri, triples = triplify(binding) for triple in triples: self.graph.add(triple) return uri
Stage ``data`` as a set of statements, based on the given ``schema`` definition.
23,219
def _AddVariable(self, variable): if isinstance(variable, Signal): if not variable in self.signals: self.signals.append(variable) elif isinstance(variable, Variable): if not variable in self.variables: self.variables.append(variable) else: raise TypeError self._utd_graph = False
Add a variable to the model. Should not be used by end-user
23,220
def set_position(self, decl_pos): if decl_pos["typehint"] == "LineSourcePosition": self.editor.set_cursor(decl_pos[], 0) else: point = decl_pos["offset"] row, col = self.editor.point2pos(point + 1) self.editor.set_cursor(row, col)
Set editor position from ENSIME declPos data.
23,221
def add(self, item_numid, collect_type, shared, session): request = TOPRequest() request[] = item_numid request[] = collect_type request[] = shared self.create(self.execute(request, session)) return self.result
taobao.favorite.add 添加收藏夹 根据用户昵称和收藏目标的数字id以及收藏目标的类型,实现收藏行为
23,222
def iter_create_panes(self, w, wconf): assert isinstance(w, Window) pane_base_index = int(w.show_window_option(, g=True)) p = None for pindex, pconf in enumerate(wconf[], start=pane_base_index): if pindex == int(pane_base_index): p = w.attached_pane else: def get_pane_start_directory(): if in pconf: return pconf[] elif in wconf: return wconf[] else: return None p = w.split_window( attach=True, start_directory=get_pane_start_directory(), target=p.id ) assert isinstance(p, Pane) if in wconf: w.select_layout(wconf[]) if in pconf: suppress = pconf[] elif in wconf: suppress = wconf[] else: suppress = True for cmd in pconf[]: p.send_keys(cmd, suppress_history=suppress) if in pconf and pconf[]: w.select_pane(p[]) w.server._update_panes() yield p, pconf
Return :class:`libtmux.Pane` iterating through window config dict. Run ``shell_command`` with ``$ tmux send-keys``. Parameters ---------- w : :class:`libtmux.Window` window to create panes for wconf : dict config section for window Returns ------- tuple of (:class:`libtmux.Pane`, ``pconf``) Newly created pane, and the section from the tmuxp configuration that was used to create the pane.
23,223
def _set_ldp_fec_vcs(self, v, load=False): if hasattr(v, "_utype"): v = v._utype(v) try: t = YANGDynClass(v,base=ldp_fec_vcs.ldp_fec_vcs, is_container=, presence=False, yang_name="ldp-fec-vcs", rest_name="ldp-fec-vcs", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u: {u: u, u: None}}, namespace=, defining_module=, yang_type=, is_config=False) except (TypeError, ValueError): raise ValueError({ : , : "container", : , }) self.__ldp_fec_vcs = t if hasattr(self, ): self._set()
Setter method for ldp_fec_vcs, mapped from YANG variable /mpls_state/ldp/fec/ldp_fec_vcs (container) If this variable is read-only (config: false) in the source YANG file, then _set_ldp_fec_vcs is considered as a private method. Backends looking to populate this variable should do so via calling thisObj._set_ldp_fec_vcs() directly.
23,224
def get_unused_port(port=None): if port is None or port < 1024 or port > 65535: port = random.randint(1024, 65535) assert(1024 <= port <= 65535) while True: s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) try: s.bind((, port)) except socket.error as e: if e.errno in (98, 10048): return get_unused_port(None) raise e s.close() return port
Checks if port is already in use.
23,225
async def process_graph_input(graph, stream, value, rpc_executor): graph.sensor_log.push(stream, value) if stream.important: associated_output = stream.associated_stream() graph.sensor_log.push(associated_output, value) to_check = deque([x for x in graph.roots]) while len(to_check) > 0: node = to_check.popleft() if node.triggered(): try: results = node.process(rpc_executor, graph.mark_streamer) for result in results: if inspect.iscoroutine(result.value): result.value = await asyncio.ensure_future(result.value) result.raw_time = value.raw_time graph.sensor_log.push(node.stream, result) except: logging.getLogger(__name__).exception("Unhandled exception in graph node processing function for node %s", str(node)) if len(results) > 0: to_check.extend(node.outputs)
Process an input through this sensor graph. The tick information in value should be correct and is transfered to all results produced by nodes acting on this tick. This coroutine is an asyncio compatible version of SensorGraph.process_input() Args: stream (DataStream): The stream the input is part of value (IOTileReading): The value to process rpc_executor (RPCExecutor): An object capable of executing RPCs in case we need to do that.
23,226
def get_value(self, name): factory = self._registered.get(name) if not factory: raise KeyError() if factory._giveme_singleton: if name in self._singletons: return self._singletons[name] self._singletons[name] = factory() return self._singletons[name] elif factory._giveme_threadlocal: if hasattr(self._threadlocals, name): return getattr(self._threadlocals, name) setattr(self._threadlocals, name, factory()) return getattr(self._threadlocals, name) return factory()
Get return value of a dependency factory or a live singleton instance.
23,227
def is_date(self): dt = DATA_TYPES[] if type(self.data) is dt[] and in str(self.data) and str(self.data).count() == 2: date_split = str(self.data).split() y, m, d = date_split[0], date_split[1], date_split[2] valid_year, valid_months, valid_days = int(y) in YEARS, int(m) in MONTHS, int(d) in DAYS if all(i is True for i in (valid_year, valid_months, valid_days)): self.type = .upper() self.len = None return True
Determine if a data record is of type DATE.
23,228
def get_environments(): environments = set() cwd = os.getcwd() for d in os.listdir(cwd): if d == : environments.add(VirtualEnvironment(cwd)) continue path = unipath(cwd, d) if utils.is_environment(path): environments.add(VirtualEnvironment(path)) home = get_home_path() for d in os.listdir(home): path = unipath(home, d) if utils.is_environment(path): environments.add(VirtualEnvironment(path)) for env in EnvironmentCache: environments.add(env) return sorted(list(environments), key=lambda x: x.name)
Returns a list of all known virtual environments as :class:`VirtualEnvironment` instances. This includes those in CPENV_HOME and any others that are cached(created by the current user or activated once by full path.)
23,229
def add_nodes_to_axes(self): if all([i == "" for i in self.node_labels]): return marks = [] for nidx in self.ttree.get_node_values(, 1, 1): nlabel = self.node_labels[nidx] nsize = self.node_sizes[nidx] nmarker = self.node_markers[nidx] nstyle = deepcopy(self.style.node_style) nlstyle = deepcopy(self.style.node_labels_style) nstyle["fill"] = self.node_colors[nidx] if (nlabel or nsize): mark = toyplot.marker.create( shape=nmarker, label=str(nlabel), size=nsize, mstyle=nstyle, lstyle=nlstyle, ) else: mark = "" marks.append(mark) if self.style.node_hover is True: title = self.get_hover() elif isinstance(self.style.node_hover, list): title = self.style.node_hover else: title = None self.axes.scatterplot( self.coords.verts[:, 0], self.coords.verts[:, 1], marker=marks, title=title, )
Creates a new marker for every node from idx indexes and lists of node_values, node_colors, node_sizes, node_style, node_labels_style. Pulls from node_color and adds to a copy of the style dict for each node to create marker. Node_colors has priority to overwrite node_style['fill']
23,230
def majmin(reference_labels, estimated_labels): validate(reference_labels, estimated_labels) maj_semitones = np.array(QUALITIES[][:8]) min_semitones = np.array(QUALITIES[][:8]) ref_roots, ref_semitones, _ = encode_many(reference_labels, False) est_roots, est_semitones, _ = encode_many(estimated_labels, False) eq_root = ref_roots == est_roots eq_quality = np.all(np.equal(ref_semitones[:, :8], est_semitones[:, :8]), axis=1) comparison_scores = (eq_root * eq_quality).astype(np.float) is_maj = np.all(np.equal(ref_semitones[:, :8], maj_semitones), axis=1) is_min = np.all(np.equal(ref_semitones[:, :8], min_semitones), axis=1) is_none = np.logical_and(ref_roots < 0, np.all(ref_semitones == 0, axis=1)) comparison_scores[(is_maj + is_min + is_none) == 0] = -1 return comparison_scores
Compare chords along major-minor rules. Chords with qualities outside Major/minor/no-chord are ignored. Examples -------- >>> (ref_intervals, ... ref_labels) = mir_eval.io.load_labeled_intervals('ref.lab') >>> (est_intervals, ... est_labels) = mir_eval.io.load_labeled_intervals('est.lab') >>> est_intervals, est_labels = mir_eval.util.adjust_intervals( ... est_intervals, est_labels, ref_intervals.min(), ... ref_intervals.max(), mir_eval.chord.NO_CHORD, ... mir_eval.chord.NO_CHORD) >>> (intervals, ... ref_labels, ... est_labels) = mir_eval.util.merge_labeled_intervals( ... ref_intervals, ref_labels, est_intervals, est_labels) >>> durations = mir_eval.util.intervals_to_durations(intervals) >>> comparisons = mir_eval.chord.majmin(ref_labels, est_labels) >>> score = mir_eval.chord.weighted_accuracy(comparisons, durations) Parameters ---------- reference_labels : list, len=n Reference chord labels to score against. estimated_labels : list, len=n Estimated chord labels to score against. Returns ------- comparison_scores : np.ndarray, shape=(n,), dtype=float Comparison scores, in [0.0, 1.0], or -1 if the comparison is out of gamut.
23,231
def paddingsize(self, namedstruct): if self.base is not None: return self.base.paddingsize(namedstruct) realsize = namedstruct._realsize() return (realsize + self.padding - 1) // self.padding * self.padding
Return the size of the padded struct (including the "real" size and the padding bytes) :param namedstruct: a NamedStruct object of this type. :returns: size including both data and padding.
23,232
def read(self, sync_map_format, input_file_path, parameters=None): if sync_map_format is None: self.log_exc(u"Sync map format is None", None, True, ValueError) if sync_map_format not in SyncMapFormat.CODE_TO_CLASS: self.log_exc(u"Sync map format is not allowed" % (sync_map_format), None, True, ValueError) if not gf.file_can_be_read(input_file_path): self.log_exc(u"Cannot read sync map file . Wrong permissions?" % (input_file_path), None, True, OSError) self.log([u"Input format: ", sync_map_format]) self.log([u"Input path: ", input_file_path]) self.log([u"Input parameters: ", parameters]) reader = (SyncMapFormat.CODE_TO_CLASS[sync_map_format])( variant=sync_map_format, parameters=parameters, rconf=self.rconf, logger=self.logger ) self.log(u"Reading input file...") with io.open(input_file_path, "r", encoding="utf-8") as input_file: input_text = input_file.read() reader.parse(input_text=input_text, syncmap=self) self.log(u"Reading input file... done") language = gf.safe_get(parameters, gc.PPN_SYNCMAP_LANGUAGE, None) if language is not None: self.log([u"Overwriting language to ", language]) for fragment in self.fragments: fragment.text_fragment.language = language
Read sync map fragments from the given file in the specified format, and add them the current (this) sync map. Return ``True`` if the call succeeded, ``False`` if an error occurred. :param sync_map_format: the format of the sync map :type sync_map_format: :class:`~aeneas.syncmap.SyncMapFormat` :param string input_file_path: the path to the input file to read :param dict parameters: additional parameters (e.g., for ``SMIL`` input) :raises: ValueError: if ``sync_map_format`` is ``None`` or it is not an allowed value :raises: OSError: if ``input_file_path`` does not exist
23,233
def is_unicode_string(string): if string is None: return None if PY2: return isinstance(string, unicode) return isinstance(string, str)
Return ``True`` if the given string is a Unicode string, that is, of type ``unicode`` in Python 2 or ``str`` in Python 3. Return ``None`` if ``string`` is ``None``. :param str string: the string to be checked :rtype: bool
23,234
def graph(self): if not hasattr(self, ) or self._graph is None: self._graph = ConjunctiveGraph(store=self.store, identifier=self.base_uri) return self._graph
A conjunctive graph of all statements in the current instance.
23,235
def stream_download(url, target_path, verbose=False): response = requests.get(url, stream=True) handle = open(target_path, "wb") if verbose: print("Beginning streaming download of %s" % url) start = datetime.now() try: content_length = int(response.headers[]) content_MB = content_length/1048576.0 print("Total file size: %.2f MB" % content_MB) except KeyError: pass for chunk in response.iter_content(chunk_size=512): if chunk: handle.write(chunk) if verbose: print( "Download completed to %s in %s" % (target_path, datetime.now() - start))
Download a large file without loading it into memory.
23,236
def gevent_worker(self): while not self.task_queue.empty(): task_kwargs = self.task_queue.get() handler_type = task_kwargs.pop() if handler_type == : super(Command, self).link_file(**task_kwargs) else: super(Command, self).copy_file(**task_kwargs)
Process one task after another by calling the handler (`copy_file` or `copy_link`) method of the super class.
23,237
def _set_attributes(self): for parameter, data in self._data.items(): if isinstance(data, dict) or isinstance(data, OrderedDict): field_names, field_values = zip(*data.items()) sorted_indices = np.argsort(field_names) attr = namedtuple( parameter, [field_names[i] for i in sorted_indices] ) setattr( self, parameter, attr(*[field_values[i] for i in sorted_indices]) ) else: setattr(self, parameter, data)
Traverse the internal dictionary and set the getters
23,238
def register_plugin(self): self.focus_changed.connect(self.main.plugin_focus_changed) self.main.add_dockwidget(self) self.main.console.set_help(self) self.internal_shell = self.main.console.shell self.console = self.main.console
Register plugin in Spyder's main window
23,239
def est_entropy(self): r nz_weights = self.particle_weights[self.particle_weights > 0] return -np.sum(np.log(nz_weights) * nz_weights)
r""" Estimates the entropy of the current particle distribution as :math:`-\sum_i w_i \log w_i` where :math:`\{w_i\}` is the set of particles with nonzero weight.
23,240
def load_x509_certificates(buf): if not isinstance(buf, basestring): raise ValueError( % type(buf)) for pem in re.findall(, buf): yield load_certificate(crypto.FILETYPE_PEM, pem[0])
Load one or multiple X.509 certificates from a buffer. :param str buf: A buffer is an instance of `basestring` and can contain multiple certificates. :return: An iterator that iterates over certificates in a buffer. :rtype: list[:class:`OpenSSL.crypto.X509`]
23,241
def prompt_gui(path): import subprocess filepath, extension = os.path.splitext(path) basename = os.path.basename(filepath) dirname = os.path.dirname(filepath) retry_text = icon = if have(): args = [, , , , + basename, , + icon] retry_args = args + [ + retry_text + , ] elif have(): base = [, , + basename, , ] args = base + [] retry_args = base + [ + retry_text] else: fatal() try: new_basename = subprocess.check_output( args, universal_newlines=True).strip() except subprocess.CalledProcessError: sys.exit(1) while os.path.exists(os.path.join(dirname, new_basename + extension)) and \ new_basename != basename: try: new_basename = subprocess.check_output( retry_args, universal_newlines=True).strip() except subprocess.CalledProcessError: sys.exit(1) if new_basename == : new_basename = basename return os.path.join(dirname, new_basename + extension)
Prompt for a new filename via GUI.
23,242
def strtimezone (): if time.daylight: zone = time.altzone else: zone = time.timezone return "%+04d" % (-zone//SECONDS_PER_HOUR)
Return timezone info, %z on some platforms, but not supported on all.
23,243
def routingAreaUpdateComplete(ReceiveNpduNumbersList_presence=0): a = TpPd(pd=0x3) b = MessageType(mesType=0xa) packet = a / b if ReceiveNpduNumbersList_presence is 1: c = ReceiveNpduNumbersList(ieiRNNL=0x26) packet = packet / c return packet
ROUTING AREA UPDATE COMPLETE Section 9.4.16
23,244
def __writeDocstring(self): while True: firstLineNum, lastLineNum, lines = (yield) newDocstringLen = lastLineNum - firstLineNum + 1 while len(lines) < newDocstringLen: lines.append() self.docLines[firstLineNum: lastLineNum + 1] = lines
Runs eternally, dumping out docstring line batches as they get fed in. Replaces original batches of docstring lines with modified versions fed in via send.
23,245
def version(ctx, version=None, force=False): updates = { ctx.directory.joinpath("setup.cfg"): [ (r"^(version\s?=\s?)(.*)", "\\g<1>{version}") ], ctx.package.directory.joinpath("__version__.py"): [ (r"(__version__\s?=\s?)(.*)", ) ], } previous_version = get_previous_version(ctx) if isinstance(version, str): version = parver.Version.parse(version) if not force and version <= previous_version: error_message = ( f"version {version!s} is <= to previous version {previous_version!s}" ) report.error(ctx, "package.version", error_message) raise ValueError(error_message) else: version = previous_version.bump_release(index=len(previous_version.release) - 1) report.info(ctx, "package.version", f"updating version to {version!s}") for (path, replacements) in updates.items(): if path.is_file(): content = path.read_text() for (pattern, sub) in replacements: report.debug( ctx, "package.version", f"applying replacement ({pattern!r}, {sub!r}) to {path!s}", ) content = re.sub(pattern, sub.format(version=version), content, re.M) path.write_text(content)
Specify a new version for the package. .. important:: If no version is specified, will take the most recent parsable git tag and bump the patch number. :param str version: The new version of the package. :param bool force: If True, skips version check
23,246
def resp_set_lightpower(self, resp, power_level=None): if power_level is not None: self.power_level=power_level elif resp: self.power_level=resp.power_level
Default callback for set_power
23,247
def edge(self, from_node, to_node, edge_type="", **args): self._stream.write( % (self._indent, edge_type, from_node, to_node) ) self._write_attributes(EDGE_ATTRS, **args) self._stream.write("}\n")
draw an edge from a node to another.
23,248
def get_acronyms(fulltext): acronyms = {} for m in ACRONYM_BRACKETS_REGEX.finditer(fulltext): acronym = DOTS_REGEX.sub("", m.group(1)) potential_expansion = fulltext[m.start() - 80:m.start()].replace("\n", " ") potential_expansion = re.sub("(\W).(\W)", "\1\2", potential_expansion) potential_expansion = re.sub("(\w)\(s\)\W", "\1", potential_expansion) potential_expansion = re.sub(, "", potential_expansion) potential_expansion = re.sub("[[(].+[\])]", "", potential_expansion) potential_expansion = re.sub(" {2,}", " ", potential_expansion) match = re.search(, potential_expansion) if match is None: match = re.search(, potential_expansion) if match is not None: if acronym in match.group(1): continue pattern = "" for char in acronym[:-1]: pattern += "%s\w+\W*" % char pattern += "%s\w+" % acronym[-1] if re.search(pattern, match.group(1), re.I) is not None: _add_expansion_to_acronym_dict(acronym, match.group(1), 0, acronyms) continue pattern = "\W(" for char in acronym[:-1]: pattern += "%s\w+\W+" % char pattern += "%s\w+)$" % acronym[-1] match = re.search(pattern, potential_expansion) if match is not None: _add_expansion_to_acronym_dict( acronym, match.group(1), 1, acronyms) continue match = re.search(pattern, potential_expansion, re.I) if match is not None: _add_expansion_to_acronym_dict( acronym, match.group(1), 2, acronyms) continue potential_expansion_stripped = " ".join([word for word in _words(potential_expansion) if word not in STOPLIST]) match = re.search(pattern, potential_expansion_stripped, re.I) if match is not None: first_expansion_word = re.search("\w+", match.group(1)).group() start = potential_expansion.lower().rfind(first_expansion_word) _add_expansion_to_acronym_dict( acronym, potential_expansion[start:], 3, acronyms ) continue reversed_words = _words(potential_expansion_stripped) reversed_words.reverse() reversed_acronym = list(acronym.lower()) reversed_acronym.reverse() index0 = 0 index1 = 0 word = "" try: while index0 < len(reversed_acronym) and index1 < len( reversed_words): word = reversed_words[index1] if index0 + 1 < len(reversed_words): next_word = reversed_words[index0 + 1] else: next_word = "_" char = reversed_acronym[index0] if index0 + 1 < len(reversed_acronym): next_char = reversed_acronym[index0 + 1] else: next_char = "_" if char == next_char and \ word.startswith(char) and \ word.count(char) > 1 and \ not next_word.startswith(char): index0 += 2 index1 += 1 if word.startswith(char): index0 += 1 index1 += 1 elif char in word and \ not word.endswith(char) and \ word.startswith(next_char): index0 += 2 index1 += 1 else: word = "" break except IndexError: word = "" if not word.startswith(char): word = "" if word: start = potential_expansion.lower().rfind(word) _add_expansion_to_acronym_dict(acronym, potential_expansion[start:], 4, acronyms) continue reversed_words = _words(potential_expansion.lower()) reversed_words.reverse() reversed_acronym = list(acronym.lower()) reversed_acronym.reverse() index0 = 0 index1 = 0 word = "" try: while index0 < len(reversed_acronym) and index1 < len( reversed_words): word = reversed_words[index1] if index0 + 1 < len(reversed_words): next_word = reversed_words[index0 + 1] else: next_word = "" char = reversed_acronym[index0] if index0 + 1 < len(reversed_acronym): next_char = reversed_acronym[index0 + 1] else: next_char = "" if char == next_char and word.startswith(char) and \ word.count(char) > 1 and \ not next_word.startswith(char): index0 += 2 index1 += 1 if word.startswith(char): index0 += 1 index1 += 1 elif char in word and \ not word.endswith(char) and \ word.startswith(next_char): index0 += 2 index1 += 1 else: word = "" break except IndexError: word = "" if not word.startswith(char): word = "" if word: start = potential_expansion.lower().rfind(word) _add_expansion_to_acronym_dict(acronym, potential_expansion[start:], 5, acronyms) continue return acronyms
Find acronyms and expansions from the fulltext. If needed, acronyms can already contain a dictionary of previously found acronyms that will be merged with the current results.
23,249
def find(objs, selector, context=None): typetypetypetypeleftlayoutleftplot return (obj for obj in objs if match(obj, selector, context))
Query a collection of Bokeh models and yield any that match the a selector. Args: obj (Model) : object to test selector (JSON-like) : query selector context (dict) : kwargs to supply callable query attributes Yields: Model : objects that match the query Queries are specified as selectors similar to MongoDB style query selectors, as described for :func:`~bokeh.core.query.match`. Examples: .. code-block:: python # find all objects with type Grid find(p.references(), {'type': Grid}) # find all objects with type Grid or Axis find(p.references(), {OR: [ {'type': Grid}, {'type': Axis} ]}) # same query, using IN operator find(p.references(), {'type': {IN: [Grid, Axis]}}) # find all plot objects on the 'left' layout of the Plot # here layout is a method that takes a plot as context find(p.references(), {'layout': 'left'}, {'plot': p})
23,250
def get_counter(self, name, start=0): item = self.get_item(hash_key=name, start=start) counter = Counter(dynamo_item=item, pool=self) return counter
Gets the DynamoDB item behind a counter and ties it to a Counter instace.
23,251
def rnn(name, input, state, kernel, bias, new_state, number_of_gates = 2): nn = Build(name) nn.tanh( nn.mad(kernel=kernel, bias=bias, x=nn.concat(input, state)), out=new_state); return nn.layers;
- Ht = f(Xt*Wi + Ht_1*Ri + Wbi + Rbi)
23,252
def upload_directory_contents(input_dict, environment_dict): if environment_dict["currentkeyname"] is None: raise seash_exceptions.UserError() if environment_dict["currenttarget"] is None: raise seash_exceptions.UserError() file_list = os.listdir(source_directory) for filename in file_list: path_and_filename = source_directory + os.sep + filename if not os.path.isdir(path_and_filename): print "Uploading ..."
This function serves to upload every file in a user-supplied source directory to all of the vessels in the current target group. It essentially calls seash's `upload` function repeatedly, each time with a file name taken from the source directory. A note on the input_dict argument: `input_dict` contains our own `command_dict` (see below), with the `"[ARGUMENT]"` sub-key of `children` renamed to what argument the user provided. In our case, this will be the source dir to read from. (If not, this is an error!)
23,253
def V_vertical_torispherical_concave(D, f, k, h): r alpha = asin((1-2*k)/(2.*(f-k))) a1 = f*D*(1-cos(alpha)) a2 = k*D*cos(alpha) D1 = 2*f*D*sin(alpha) s = (k*D*sin(alpha))**2 t = 2*a2 def V1(h): u = h-f*D*(1-cos(alpha)) v1 = pi/4*(2*a1**3/3. + a1*D1**2/2.) + pi*u*((D/2.-k*D)**2 +s) v1 += pi*t*u**2/2. - pi*u**3/3. v1 += pi*D*(1-2*k)*((2*u-t)/4.*(s+t*u-u**2)**0.5 + t*s**0.5/4. + k**2*D**2/2.*(acos((t-2*u)/(2*k*D)) -alpha)) return v1 def V2(h): v2 = pi*h**2/4.*(2*a1 + D1**2/(2.*a1) - 4*h/3.) return v2 if 0 <= h < a2: Vf = pi*D**2*h/4 - V1(a1+a2) + V1(a1+a2-h) elif a2 <= h < a1 + a2: Vf = pi*D**2*h/4 - V1(a1+a2) + V2(a1+a2-h) else: Vf = pi*D**2*h/4 - V1(a1+a2) return Vf
r'''Calculates volume of a vertical tank with a concave torispherical bottom, according to [1]_. No provision for the top of the tank is made here. .. math:: V = \frac{\pi D^2 h}{4} - v_1(h=a_1+a_2) + v_1(h=a_1 + a_2 -h),\; 0 \le h < a_2 .. math:: V = \frac{\pi D^2 h}{4} - v_1(h=a_1+a_2) + v_2(h=a_1 + a_2 -h),\; a_2 \le h < a_1 + a_2 .. math:: V = \frac{\pi D^2 h}{4} - v_1(h=a_1+a_2) + 0,\; h \ge a_1 + a_2 .. math:: v_1 = \frac{\pi}{4}\left(\frac{2a_1^3}{3} + \frac{a_1D_1^2}{2}\right) +\pi u\left[\left(\frac{D}{2}-kD\right)^2 +s\right] + \frac{\pi tu^2}{2} - \frac{\pi u^3}{3} + \pi D(1-2k)\left[ \frac{2u-t}{4}\sqrt{s+tu-u^2} + \frac{t\sqrt{s}}{4} + \frac{k^2D^2}{2}\left(\cos^{-1}\frac{t-2u}{2kD}-\alpha\right)\right] .. math:: v_2 = \frac{\pi h^2}{4}\left(2a_1 + \frac{D_1^2}{2a_1} - \frac{4h}{3}\right) .. math:: \alpha = \sin^{-1}\frac{1-2k}{2(f-k)} .. math:: a_1 = fD(1-\cos\alpha) .. math:: a_2 = kD\cos\alpha .. math:: D_1 = 2fD\sin\alpha .. math:: s = (kD\sin\alpha)^2 .. math:: t = 2a_2 .. math:: u = h - fD(1-\cos\alpha) Parameters ---------- D : float Diameter of the main cylindrical section, [m] f : float Dish-radius parameter; fD = dish radius [1/m] k : float knuckle-radius parameter ; kD = knuckle radius [1/m] h : float Height, as measured up to where the fluid ends, [m] Returns ------- V : float Volume [m^3] Examples -------- Matching example from [1]_, with inputs in inches and volume in gallons. >>> V_vertical_torispherical_concave(D=113., f=0.71, k=0.081, h=15)/231 103.88569287163769 References ---------- .. [1] Jones, D. "Compute Fluid Volumes in Vertical Tanks." Chemical Processing. December 18, 2003. http://www.chemicalprocessing.com/articles/2003/193/
23,254
def _get_isolated(self, hostport): assert hostport, "hostport is required" if hostport not in self._peers: peer = self.peer_class( tchannel=self.tchannel, hostport=hostport, ) self._peers[peer.hostport] = peer return self._peers[hostport]
Get a Peer for the given destination for a request. A new Peer is added and returned if one does not already exist for the given host-port. Otherwise, the existing Peer is returned. **NOTE** new peers will not be added to the peer heap.
23,255
def get_processing_block_ids(self): _processing_block_ids = [] pattern = block_ids = self._db.get_ids(pattern) for block_id in block_ids: id_split = block_id.split()[-1] _processing_block_ids.append(id_split) return sorted(_processing_block_ids)
Get list of processing block ids using the processing block id
23,256
def MultiOpenOrdered(self, urns, **kwargs): precondition.AssertIterableType(urns, rdfvalue.RDFURN) urn_filedescs = {} for filedesc in self.MultiOpen(urns, **kwargs): urn_filedescs[filedesc.urn] = filedesc filedescs = [] for urn in urns: try: filedescs.append(urn_filedescs[urn]) except KeyError: raise IOError("No associated AFF4 object for `%s`" % urn) return filedescs
Opens many URNs and returns handles in the same order. `MultiOpen` can return file handles in arbitrary order. This makes it more efficient and in most cases the order does not matter. However, there are cases where order is important and this function should be used instead. Args: urns: A list of URNs to open. **kwargs: Same keyword arguments as in `MultiOpen`. Returns: A list of file-like objects corresponding to the specified URNs. Raises: IOError: If one of the specified URNs does not correspond to the AFF4 object.
23,257
def load(self): def on_list_task(info, error=None): self.loading_spin.stop() self.loading_spin.hide() if not info: self.app.toast(_()) if error or not info: logger.error( % (info, error)) return tasks = info[] for task in tasks: self.liststore.append([ task[], task[], task[], task[], 0, 0, int(task[]), 0, , gutil.escape(task[]) ]) self.scan_tasks() nonlocal start start = start + len(tasks) if info[] > start: gutil.async_call(pcs.cloud_list_task, self.app.cookie, self.app.tokens, start, callback=on_list_task) self.loading_spin.start() self.loading_spin.show_all() start = 0 gutil.async_call(pcs.cloud_list_task, self.app.cookie, self.app.tokens, start, callback=on_list_task)
获取当前的离线任务列表
23,258
def make_job_graph(infiles, fragfiles, blastcmds): joblist = [] dbjobdict = build_db_jobs(infiles, blastcmds) jobnum = len(dbjobdict) for idx, fname1 in enumerate(fragfiles[:-1]): for fname2 in fragfiles[idx + 1 :]: jobnum += 1 jobs = [ pyani_jobs.Job( "%s_exe_%06d_a" % (blastcmds.prefix, jobnum), blastcmds.build_blast_cmd(fname1, fname2.replace("-fragments", "")), ), pyani_jobs.Job( "%s_exe_%06d_b" % (blastcmds.prefix, jobnum), blastcmds.build_blast_cmd(fname2, fname1.replace("-fragments", "")), ), ] jobs[0].add_dependency(dbjobdict[fname1.replace("-fragments", "")]) jobs[1].add_dependency(dbjobdict[fname2.replace("-fragments", "")]) joblist.extend(jobs) return joblist
Return a job dependency graph, based on the passed input sequence files. - infiles - a list of paths to input FASTA files - fragfiles - a list of paths to fragmented input FASTA files By default, will run ANIb - it *is* possible to make a mess of passing the wrong executable for the mode you're using. All items in the returned graph list are BLAST executable jobs that must be run *after* the corresponding database creation. The Job objects corresponding to the database creation are contained as dependencies. How those jobs are scheduled depends on the scheduler (see run_multiprocessing.py, run_sge.py)
23,259
def _run_in_reactor(self, function, _, args, kwargs): def runs_in_reactor(result, args, kwargs): d = maybeDeferred(function, *args, **kwargs) result._connect_deferred(d) result = EventualResult(None, self._reactor) self._registry.register(result) self._reactor.callFromThread(runs_in_reactor, result, args, kwargs) return result
Implementation: A decorator that ensures the wrapped function runs in the reactor thread. When the wrapped function is called, an EventualResult is returned.
23,260
def uninstall(self, name: str, force: bool = False, noprune: bool = False ) -> None: try: self.__docker.images.remove(image=name, force=force, noprune=noprune) except docker.errors.ImageNotFound as e: if force: return raise e
Attempts to uninstall a given Docker image. Parameters: name: the name of the Docker image. force: a flag indicating whether or not an exception should be thrown if the image associated with the given build instructions is not installed. If `True`, no exception will be thrown; if `False`, exception will be thrown. noprune: a flag indicating whether or not dangling image layers should also be removed. Raises: docker.errors.ImageNotFound: if the image associated with the given instructions can't be found.
23,261
def fractal_dimension(image): pixels = [] for i in range(image.shape[0]): for j in range(image.shape[1]): if image[i, j] > 0: pixels.append((i, j)) lx = image.shape[1] ly = image.shape[0] pixels = np.array(pixels) if len(pixels) < 2: return 0 scales = np.logspace(1, 4, num=20, endpoint=False, base=2) Ns = [] for scale in scales: H, edges = np.histogramdd(pixels, bins=(np.arange(0, lx, scale), np.arange(0, ly, scale))) H_sum = np.sum(H > 0) if H_sum == 0: H_sum = 1 Ns.append(H_sum) coeffs = np.polyfit(np.log(scales), np.log(Ns), 1) hausdorff_dim = -coeffs[0] return hausdorff_dim
Estimates the fractal dimension of an image with box counting. Counts pixels with value 0 as empty and everything else as non-empty. Input image has to be grayscale. See, e.g `Wikipedia <https://en.wikipedia.org/wiki/Fractal_dimension>`_. :param image: numpy.ndarray :returns: estimation of fractal dimension :rtype: float
23,262
async def jsk_load(self, ctx: commands.Context, *extensions: ExtensionConverter): paginator = commands.Paginator(prefix=, suffix=) for extension in itertools.chain(*extensions): method, icon = ( (self.bot.reload_extension, "\N{CLOCKWISE RIGHTWARDS AND LEFTWARDS OPEN CIRCLE ARROWS}") if extension in self.bot.extensions else (self.bot.load_extension, "\N{INBOX TRAY}") ) try: method(extension) except Exception as exc: traceback_data = .join(traceback.format_exception(type(exc), exc, exc.__traceback__, 1)) paginator.add_line( f"{icon}\N{WARNING SIGN} `{extension}`\n```py\n{traceback_data}\n```", empty=True ) else: paginator.add_line(f"{icon} `{extension}`", empty=True) for page in paginator.pages: await ctx.send(page)
Loads or reloads the given extension names. Reports any extensions that failed to load.
23,263
def is_free(self): raise NotImplementedError("%s not implemented for %s" % (self.is_free.__func__.__name__, self.__class__.__name__))
Returns a concrete determination as to whether the chunk is free.
23,264
def pad_line_to_ontonotes(line, domain) -> List[str]: word_ind, word = line[ : 2] pos = oie_tags = line[2 : ] line_num = 0 parse = "-" lemma = "-" return [domain, line_num, word_ind, word, pos, parse, lemma, ,\ , , ] + list(oie_tags) + [, ]
Pad line to conform to ontonotes representation.
23,265
def get_fs(path): scheme = if in path: scheme = path.partition()[0] for schemes, fs_class in FILE_EXTENSIONS: if scheme in schemes: return fs_class return FileSystem
Find the file system implementation for this path.
23,266
def method(value, arg): if hasattr(value, str(arg)): return getattr(value, str(arg)) return "[%s has no method %s]" % (value, arg)
Method attempts to see if the value has a specified method. Usage: {% load custom_filters %} {% if foo|method:"has_access" %}
23,267
def threshold_monitor_hidden_threshold_monitor_sfp_policy_area_alert_above_above_highthresh_action(self, **kwargs): config = ET.Element("config") threshold_monitor_hidden = ET.SubElement(config, "threshold-monitor-hidden", xmlns="urn:brocade.com:mgmt:brocade-threshold-monitor") threshold_monitor = ET.SubElement(threshold_monitor_hidden, "threshold-monitor") sfp = ET.SubElement(threshold_monitor, "sfp") policy = ET.SubElement(sfp, "policy") policy_name_key = ET.SubElement(policy, "policy_name") policy_name_key.text = kwargs.pop() area = ET.SubElement(policy, "area") type_key = ET.SubElement(area, "type") type_key.text = kwargs.pop() area_value_key = ET.SubElement(area, "area_value") area_value_key.text = kwargs.pop() alert = ET.SubElement(area, "alert") above = ET.SubElement(alert, "above") above_highthresh_action = ET.SubElement(above, "above-highthresh-action") above_highthresh_action.text = kwargs.pop() callback = kwargs.pop(, self._callback) return callback(config)
Auto Generated Code
23,268
def set_instances(name, instances, test=False, region=None, key=None, keyid=None, profile=None): ret = True current = set([i[] for i in get_instance_health(name, region, key, keyid, profile)]) desired = set(instances) add = desired - current remove = current - desired if test: return bool(add or remove) if remove: if deregister_instances(name, list(remove), region, key, keyid, profile) is False: ret = False if add: if register_instances(name, list(add), region, key, keyid, profile) is False: ret = False return ret
Set the instances assigned to an ELB to exactly the list given CLI example: .. code-block:: bash salt myminion boto_elb.set_instances myelb region=us-east-1 instances="[instance_id,instance_id]"
23,269
def _combine_season_stats(self, table_rows, career_stats, all_stats_dict): most_recent_season = self._most_recent_season if not table_rows: table_rows = [] for row in table_rows: season = self._parse_season(row) try: all_stats_dict[season][] += str(row) except KeyError: all_stats_dict[season] = {: str(row)} most_recent_season = season self._most_recent_season = most_recent_season if not career_stats: return all_stats_dict try: all_stats_dict[][] += str(next(career_stats)) except KeyError: try: all_stats_dict[] = {: str(next(career_stats))} except StopIteration: return all_stats_dict return all_stats_dict
Combine all stats for each season. Since all of the stats are spread across multiple tables, they should be combined into a single field which can be used to easily query stats at once. Parameters ---------- table_rows : generator A generator where each element is a row in a stats table. career_stats : generator A generator where each element is a row in the footer of a stats table. Career stats are kept in the footer, hence the usage. all_stats_dict : dictionary A dictionary of all stats separated by season where each key is the season ``string``, such as '2017', and the value is a ``dictionary`` with a ``string`` of 'data' and ``string`` containing all of the data. Returns ------- dictionary Returns an updated version of the passed all_stats_dict which includes more metrics from the provided table.
23,270
def copy_pkg(self, filename, id_=-1): for repo in self._children: repo.copy_pkg(filename, id_)
Copy a pkg, dmg, or zip to all repositories. Args: filename: String path to the local file to copy. id_: Integer ID you wish to associate package with for a JDS or CDP only. Default is -1, which is used for creating a new package object in the database.
23,271
def get_hosted_zone_by_name(client, zone_name): p = client.get_paginator("list_hosted_zones") for i in p.paginate(): for zone in i["HostedZones"]: if zone["Name"] == zone_name: return parse_zone_id(zone["Id"]) return None
Get the zone id of an existing zone by name. Args: client (:class:`botocore.client.Route53`): The connection used to interact with Route53's API. zone_name (string): The name of the DNS hosted zone to create. Returns: string: The Id of the Hosted Zone.
23,272
def prune_missing(table): try: for item in table.select(): if not os.path.isfile(item.file_path): logger.info("File disappeared: %s", item.file_path) item.delete() except: logger.exception("Error pruning %s", table)
Prune any files which are missing from the specified table
23,273
def predict(self,param_dict): encoder_dict = self._designmatrix_object.encoder X, col_names = self._designmatrix_object.run_encoder(param_dict, encoder_dict) Y_pred = self._compute_prediction(X) return Y_pred
predict new waveforms using multivar fit
23,274
def _xml_namespace_strip(root): if not in root.tag: return for element in root.iter(): if in element.tag: element.tag = element.tag.split()[1] else: pass
Strip the XML namespace prefix from all element tags under the given root Element.
23,275
def desc(self): doc = inspect.getdoc(self.controller_class) if not doc: doc = return doc
return the description of this endpoint
23,276
def errint(marker, number): marker = stypes.stringToCharP(marker) number = ctypes.c_int(number) libspice.errint_c(marker, number)
Substitute an integer for the first occurrence of a marker found in the current long error message. http://naif.jpl.nasa.gov/pub/naif/toolkit_docs/C/cspice/errint_c.html :param marker: A substring of the error message to be replaced. :type marker: str :param number: The integer to substitute for marker. :type number: int
23,277
def list_settings(self): result = super().list_settings() result.append((self.SETTING_FLAG_HEADER, True)) result.append((self.SETTING_HEADER_CONTENT, )) result.append((self.SETTING_HEADER_FORMATING, {: })) result.append((self.SETTING_FLAG_ENUMERATE, False)) result.append((self.SETTING_COLUMNS, None)) result.append((self.SETTING_ROW_HIGHLIGHT, None)) return result
Get list of all appropriate settings and their default values.
23,278
def load_creditscoring1(cost_mat_parameters=None): module_path = dirname(__file__) raw_data = pd.read_csv(join(module_path, , ), delimiter=, compression=) descr = open(join(module_path, , )).read() raw_data = raw_data.dropna() raw_data = raw_data.loc[(raw_data[] > 0)] raw_data = raw_data.loc[(raw_data[] < 1)] target = raw_data[].values.astype(np.int) data = raw_data.drop([, ], 1) if cost_mat_parameters is None: cost_mat_parameters = {: 0.0479 / 12, : 0.0294 / 12, : 25000, : 24, : 3, : .75} pi_1 = target.mean() cost_mat = _creditscoring_costmat(data[].values, data[].values, pi_1, cost_mat_parameters) return Bunch(data=data.values, target=target, cost_mat=cost_mat, target_names=[, ], DESCR=descr, feature_names=data.columns.values, name=)
Load and return the credit scoring Kaggle Credit competition dataset (classification). The credit scoring is a easily transformable example-dependent cost-sensitive classification dataset. Parameters ---------- cost_mat_parameters : Dictionary-like object, optional (default=None) If not None, must include 'int_r', 'int_cf', 'cl_max', 'n_term', 'k','lgd' Returns ------- data : Bunch Dictionary-like object, the interesting attributes are: 'data', the data to learn, 'target', the classification labels, 'cost_mat', the cost matrix of each example, 'target_names', the meaning of the labels, 'feature_names', the meaning of the features, and 'DESCR', the full description of the dataset. References ---------- .. [1] A. Correa Bahnsen, D.Aouada, B, Ottersten, "Example-Dependent Cost-Sensitive Logistic Regression for Credit Scoring", in Proceedings of the International Conference on Machine Learning and Applications, , 2014. Examples -------- Let's say you are interested in the samples 10, 25, and 50 >>> from costcla.datasets import load_creditscoring1 >>> data = load_creditscoring1() >>> data.target[[10, 17, 400]] array([0, 1, 0]) >>> data.cost_mat[[10, 17, 400]] array([[ 1023.73054104, 18750. , 0. , 0. ], [ 717.25781516, 6749.25 , 0. , 0. ], [ 1004.32819923, 17990.25 , 0. , 0. ]])
23,279
def _parse_node(graph, text): match = _NODEPAT.match(text) if match is not None: node = match.group(1) graph.node(node, label=match.group(2), shape=) return node match = _LEAFPAT.match(text) if match is not None: node = match.group(1) graph.node(node, label=match.group(2), shape=) return node raise ValueError(.format(text))
parse dumped node
23,280
def arch_prefixes(self): archs = self.archs(as_list=True) prefixes = [] for i in range(1, len(archs)+1): prefixes.append(archs[:i]) return prefixes
Return the initial 1, 2, ..., N architectures as a prefix list For arch1/arch2/arch3, this returns [arch1],[arch1/arch2],[arch1/arch2/arch3]
23,281
def get_innerclasses(self): buff = self.get_attribute("InnerClasses") if buff is None: return tuple() with unpack(buff) as up: return tuple(up.unpack_objects(JavaInnerClassInfo, self.cpool))
sequence of JavaInnerClassInfo instances describing the inner classes of this class definition reference: http://docs.oracle.com/javase/specs/jvms/se7/html/jvms-4.html#jvms-4.7.6
23,282
def save_intermediate_array(self, array, name): if self.intermediate_results: fits.writeto(name, array, overwrite=True)
Save intermediate array object as FITS.
23,283
def export_path(self, relname, export_dir=None): name, ext = relname.replace(, ).rsplit(, 1) newname = % (name, self.calc_id, ext) if export_dir is None: export_dir = self.export_dir return os.path.join(export_dir, newname)
Return the path of the exported file by adding the export_dir in front, the calculation ID at the end. :param relname: relative file name :param export_dir: export directory (if None use .export_dir)
23,284
def replacebranch1(idf, loop, branchname, listofcomponents_tuples, fluid=None, debugsave=False): if fluid is None: fluid = listofcomponents_tuples = _clean_listofcomponents_tuples(listofcomponents_tuples) branch = idf.getobject(, branchname) listofcomponents = [] for comp_type, comp_name, compnode in listofcomponents_tuples: comp = getmakeidfobject(idf, comp_type.upper(), comp_name) listofcomponents.append((comp, compnode)) newbr = replacebranch(idf, loop, branch, listofcomponents, debugsave=debugsave, fluid=fluid) return newbr
do I even use this ? .... yup! I do
23,285
def get_backup_end_segment_and_time(self, db_conn, backup_mode): cursor = db_conn.cursor() cursor.execute("SELECT now(), pg_is_in_recovery()") backup_end_time, in_recovery = cursor.fetchone() if in_recovery: db_conn.commit() return None, backup_end_time if self.pg_version_server >= 100000: cursor.execute("SELECT pg_walfile_name(pg_current_wal_lsn()), txid_current()") else: cursor.execute("SELECT pg_xlogfile_name(pg_current_xlog_location()), txid_current()") backup_end_wal_segment, _ = cursor.fetchone() db_conn.commit() backup_end_name = "pghoard_end_of_backup" if backup_mode == "non-exclusive": cursor.execute("SELECT pg_start_backup(%s, true, false)", [backup_end_name]) cursor.execute("SELECT pg_stop_backup(false)") elif backup_mode == "pgespresso": cursor.execute("SELECT pgespresso_start_backup(%s, false)", [backup_end_name]) backup_label = cursor.fetchone()[0] cursor.execute("SELECT pgespresso_stop_backup(%s)", [backup_label]) else: cursor.execute("SELECT pg_start_backup(%s)", [backup_end_name]) cursor.execute("SELECT pg_stop_backup()") db_conn.commit() return backup_end_wal_segment, backup_end_time
Grab a timestamp and WAL segment name after the end of the backup: this is a point in time to which we must be able to recover to, and the last WAL segment that is required for the backup to be consistent. Note that pg_switch_xlog()/pg_switch_wal() is a superuser-only function, but since pg_start_backup() and pg_stop_backup() cause an WAL switch we'll call them instead. The downside is an unnecessary checkpoint.
23,286
def _sliced_list(self, selector): if self.skipmissing: return self.obj[selector] keys = xrange(selector.start or 0, selector.stop or sys.maxint, selector.step or 1) res = [] for key in keys: self._append(self.obj, key, res, skipmissing=False) return res
For slice selectors operating on lists, we need to handle them differently, depending on ``skipmissing``. In explicit mode, we may have to expand the list with ``default`` values.
23,287
def jieba_tokenize(text, external_wordlist=False): global jieba_tokenizer, jieba_orig_tokenizer if external_wordlist: if jieba_orig_tokenizer is None: jieba_orig_tokenizer = jieba.Tokenizer(dictionary=ORIG_DICT_FILENAME) return jieba_orig_tokenizer.lcut(text) else: if jieba_tokenizer is None: jieba_tokenizer = jieba.Tokenizer(dictionary=DICT_FILENAME) tokens = [] for _token, start, end in jieba_tokenizer.tokenize(simplify_chinese(text), HMM=False): tokens.append(text[start:end]) return tokens
Tokenize the given text into tokens whose word frequencies can probably be looked up. This uses Jieba, a word-frequency-based tokenizer. If `external_wordlist` is False, we tell Jieba to default to using wordfreq's own Chinese wordlist, and not to infer unknown words using a hidden Markov model. This ensures that the multi-character tokens that it outputs will be ones whose word frequencies we can look up. If `external_wordlist` is True, this will use the largest version of Jieba's original dictionary, with HMM enabled, so its results will be independent of the data in wordfreq. These results will be better optimized for purposes that aren't looking up word frequencies, such as general- purpose tokenization, or collecting word frequencies in the first place.
23,288
def get_relationship(self, relationship_id=None): if relationship_id is None: raise NullArgument() url_path = ( + self._catalog_idstr + + str(relationship_id)) return objects.Relationship(self._get_request(url_path))
Gets the ``Relationship`` specified by its ``Id``. arg: relationship_id (osid.id.Id): the ``Id`` of the ``Relationship`` to retrieve return: (osid.relationship.Relationship) - the returned ``Relationship`` raise: NotFound - no ``Relationship`` found with the given ``Id`` raise: NullArgument - ``relationship_id`` is ``null`` raise: OperationFailed - unable to complete request raise: PermissionDenied - authorization failure *compliance: mandatory -- This method must be implemented.*
23,289
def data(self): data=np.empty((self.nRows,self.nCols),dtype=np.float) data[:]=np.nan for colNum,colData in enumerate(self.colData): validIs=np.where([np.isreal(v) for v in colData])[0] validData=np.ones(len(colData))*np.nan validData[validIs]=np.array(colData)[validIs] data[:len(colData),colNum]=validData return data
return all of colData as a 2D numpy array.
23,290
def _UpdateAuthorizedKeys(self, user, ssh_keys): pw_entry = self._GetUser(user) if not pw_entry: return uid = pw_entry.pw_uid gid = pw_entry.pw_gid home_dir = pw_entry.pw_dir ssh_dir = os.path.join(home_dir, ) for i, line in enumerate(lines): if i not in google_lines and line: line += if not line.endswith() else updated_keys.write(line) for ssh_key in ssh_keys: ssh_key += if not ssh_key.endswith() else updated_keys.write( % self.google_comment) updated_keys.write(ssh_key) updated_keys.flush() shutil.copy(updated_keys_file, authorized_keys_file) file_utils.SetPermissions( authorized_keys_file, mode=0o600, uid=uid, gid=gid)
Update the authorized keys file for a Linux user with a list of SSH keys. Args: user: string, the name of the Linux user account. ssh_keys: list, the SSH key strings associated with the user. Raises: IOError, raised when there is an exception updating a file. OSError, raised when setting permissions or writing to a read-only file system.
23,291
def connect(self, server, port=6667): self.socket.connect((server, port)) self.lines = self._read_lines() for event_handler in list(self.on_connect): event_handler(self)
Connects to a given IRC server. After the connection is established, it calls the on_connect event handler.
23,292
def serialize(self, data, fmt=): gmf_set_nodes = [] for gmf_set in data: gmf_set_node = Node() if gmf_set.investigation_time: gmf_set_node[] = str( gmf_set.investigation_time) gmf_set_node[] = str( gmf_set.stochastic_event_set_id) gmf_set_node.nodes = gen_gmfs(gmf_set) gmf_set_nodes.append(gmf_set_node) gmf_container = Node() gmf_container[SM_TREE_PATH] = self.sm_lt_path gmf_container[GSIM_TREE_PATH] = self.gsim_lt_path gmf_container.nodes = gmf_set_nodes with open(self.dest, ) as dest: nrml.write([gmf_container], dest, fmt)
Serialize a collection of ground motion fields to XML. :param data: An iterable of "GMF set" objects. Each "GMF set" object should: * have an `investigation_time` attribute * have an `stochastic_event_set_id` attribute * be iterable, yielding a sequence of "GMF" objects Each "GMF" object should: * have an `imt` attribute * have an `sa_period` attribute (only if `imt` is 'SA') * have an `sa_damping` attribute (only if `imt` is 'SA') * have a `event_id` attribute (to indicate which rupture contributed to this gmf) * be iterable, yielding a sequence of "GMF node" objects Each "GMF node" object should have: * a `gmv` attribute (to indicate the ground motion value * `lon` and `lat` attributes (to indicate the geographical location of the ground motion field)
23,293
def _read(cls, filepath_or_buffer, **kwargs): try: args, _, _, defaults, _, _, _ = inspect.getfullargspec(cls.read_csv) defaults = dict(zip(args[2:], defaults)) filtered_kwargs = { kw: kwargs[kw] for kw in kwargs if kw in defaults and not isinstance(kwargs[kw], type(defaults[kw])) or kwargs[kw] != defaults[kw] } except AttributeError: filtered_kwargs = kwargs if isinstance(filepath_or_buffer, str): if not file_exists(filepath_or_buffer): ErrorMessage.default_to_pandas("File path could not be resolved") return cls._read_csv_from_pandas(filepath_or_buffer, filtered_kwargs) elif not isinstance(filepath_or_buffer, py.path.local): read_from_pandas = True try: import pathlib if isinstance(filepath_or_buffer, pathlib.Path): read_from_pandas = False except ImportError: pass if read_from_pandas: ErrorMessage.default_to_pandas("Reading from buffer.") return cls._read_csv_from_pandas(filepath_or_buffer, kwargs) if ( _infer_compression(filepath_or_buffer, kwargs.get("compression")) is not None ): ErrorMessage.default_to_pandas("Compression detected.") return cls._read_csv_from_pandas(filepath_or_buffer, filtered_kwargs) chunksize = kwargs.get("chunksize") if chunksize is not None: ErrorMessage.default_to_pandas("Reading chunks from a file.") return cls._read_csv_from_pandas(filepath_or_buffer, filtered_kwargs) skiprows = kwargs.get("skiprows") if skiprows is not None and not isinstance(skiprows, int): ErrorMessage.default_to_pandas("skiprows parameter not optimized yet.") return cls._read_csv_from_pandas(filepath_or_buffer, kwargs) if kwargs.get("nrows") is not None: ErrorMessage.default_to_pandas("`read_csv` with `nrows`") return cls._read_csv_from_pandas(filepath_or_buffer, filtered_kwargs) else: return cls._read_csv_from_file_pandas_on_ray( filepath_or_buffer, filtered_kwargs )
Read csv file from local disk. Args: filepath_or_buffer: The filepath of the csv file. We only support local files for now. kwargs: Keyword arguments in pandas.read_csv
23,294
def cross(environment, book, row, sheet_source, column_source, column_key): a = book.sheets[sheet_source] return environment.copy(a.get(**{column_key: row[column_key]})[column_source])
Returns a single value from a column from a different dataset, matching by the key.
23,295
def _read_columns_file(f): try: columns = json.loads(open(f, ).read(), object_pairs_hook=collections.OrderedDict) except Exception as err: raise InvalidColumnsFileError( "There was an error while reading {0}: {1}".format(f, err)) if in columns: del columns[] return columns
Return the list of column queries read from the given JSON file. :param f: path to the file to read :type f: string :rtype: list of dicts
23,296
def flatten_(structure): if isinstance(structure, dict): if structure: structure = zip(*sorted(structure.items(), key=lambda x: x[0]))[1] else: structure = () if isinstance(structure, (tuple, list)): result = [] for element in structure: result += flatten_(element) return tuple(result) return (structure,)
Combine all leaves of a nested structure into a tuple. The nested structure can consist of any combination of tuples, lists, and dicts. Dictionary keys will be discarded but values will ordered by the sorting of the keys. Args: structure: Nested structure. Returns: Flat tuple.
23,297
def is_os(name, version_id=None): Debian GNU/LinuxUbuntu14.0416.048 result = False os_release_infos = _fetch_os_release_infos() if name == os_release_infos.get(, None): if version_id is None: result = True elif version_id == os_release_infos.get(, None): result = True return result
Return True if OS name in /etc/lsb-release of host given by fabric param `-H` is the same as given by argument, False else. If arg version_id is not None only return True if it is the same as in /etc/lsb-release, too. Args: name: 'Debian GNU/Linux', 'Ubuntu' version_id(None or str): None, '14.04', (Ubuntu) '16.04', (Ubuntu) '8', (Debian)
23,298
def set_chebyshev_approximators(self, deg_forward=50, deg_backwards=200): r from fluids.optional.pychebfun import Chebfun to_fit = lambda h: self.V_from_h(h, ) self.c_backward = Chebfun.from_function(np.vectorize(to_fit), [0.0, self.V_total], N=deg_backwards).coefficients().tolist() self.h_from_V_cheb = lambda x : chebval((2.0*x-self.V_total)/(self.V_total), self.c_backward) self.chebyshev = True
r'''Method to derive and set coefficients for chebyshev polynomial function approximation of the height-volume and volume-height relationship. A single set of chebyshev coefficients is used for the entire height- volume and volume-height relationships respectively. The forward relationship, `V_from_h`, requires far fewer coefficients in its fit than the reverse to obtain the same relative accuracy. Optionally, deg_forward or deg_backwards can be set to None to try to automatically fit the series to machine precision. Parameters ---------- deg_forward : int, optional The degree of the chebyshev polynomial to be created for the `V_from_h` curve, [-] deg_backwards : int, optional The degree of the chebyshev polynomial to be created for the `h_from_V` curve, [-]
23,299
def _connected(self, link_uri): print( % link_uri) p_toc = self._cf.param.toc.toc for group in sorted(p_toc.keys()): print(.format(group)) for param in sorted(p_toc[group].keys()): print(.format(param)) self._param_check_list.append(.format(group, param)) self._param_groups.append(.format(group)) self._cf.param.add_update_callback(group=group, name=None, cb=self._param_callback) self._cf.param.add_update_callback(group=, name=, cb=self._cpu_flash_callback) print()
This callback is called form the Crazyflie API when a Crazyflie has been connected and the TOCs have been downloaded.