Unnamed: 0
int64
0
389k
code
stringlengths
26
79.6k
docstring
stringlengths
1
46.9k
25,100
def sync(self, ws_name): path = self.config["workspaces"][ws_name]["path"] repositories = self.config["workspaces"][ws_name]["repositories"] logger = logging.getLogger(__name__) color = Color() for r in os.listdir(path): try: repo = Repository(os.path.join(path, r)) except RepositoryError: continue else: repositories[r] = repo.path for repo_name, path in repositories.items(): logger.info(color.colored( " - %s" % repo_name, "blue")) self.config["workspaces"][ws_name]["repositories"] self.config.write()
Synchronise workspace's repositories.
25,101
def set_windows_env_var(key, value): if not isinstance(key, text_type): raise TypeError("%r not of type %r" % (key, text_type)) if not isinstance(value, text_type): raise TypeError("%r not of type %r" % (value, text_type)) status = winapi.SetEnvironmentVariableW(key, value) if status == 0: raise ctypes.WinError()
Set an env var. Raises: WindowsError
25,102
def x(self, x): if x is None: return None if self._force_vertical: return super(HorizontalLogView, self).x(x) return super(XLogView, self).y(x)
Project x as y
25,103
def log_predictive_density(self, x_test, y_test, Y_metadata=None): mu_star, var_star = self._raw_predict(x_test) return self.likelihood.log_predictive_density(y_test, mu_star, var_star, Y_metadata=Y_metadata)
Calculation of the log predictive density .. math: p(y_{*}|D) = p(y_{*}|f_{*})p(f_{*}|\mu_{*}\\sigma^{2}_{*}) :param x_test: test locations (x_{*}) :type x_test: (Nx1) array :param y_test: test observations (y_{*}) :type y_test: (Nx1) array :param Y_metadata: metadata associated with the test points
25,104
def locator(self, value): self._locator = value self._latitude, self._longitude = utils.from_grid_locator(value)
Update the locator, and trigger a latitude and longitude update. Args: value (str): New Maidenhead locator string
25,105
def is_depfilter_handler(class_, filter_name, filter_): try: handlers = get_magic_attr(filter_) except AttributeError: return False return _depfilter_spec(class_, filter_name) in handlers
Return true if `filter_` has been decorated with :func:`depfilter` for the given filter and class.
25,106
def _BuildHttpRoutingMap(self, router_cls): if not issubclass(router_cls, api_call_router.ApiCallRouter): raise ValueError("Router has to be an instance of ApiCallRouter.") routing_map = routing.Map() for _, metadata in iteritems(router_cls.GetAnnotatedMethods()): for http_method, path, unused_options in metadata.http_methods: routing_map.add( routing.Rule(path, methods=[http_method], endpoint=metadata)) routing_map.add( routing.Rule( path.replace("/api/", "/api/v2/"), methods=[http_method], endpoint=metadata)) return routing_map
Builds a werkzeug routing map out of a given router class.
25,107
def convert_job(row: list) -> dict: state = row[-2] start_time_raw = row[-4] end_time_raw = row[-3] if state not in (, ): start_time = datetime.strptime(start_time_raw, ) if state != : end_time = datetime.strptime(end_time_raw, ) else: end_time = None else: start_time = end_time = None job_name = row[1] step_name, step_context = job_name.rstrip().rstrip().rsplit(, 1) return { : int(row[0]), : job_name, : step_name, : step_context, : state, : start_time, : end_time, : time_to_sec(row[-5]), : time_to_sec(row[-6]), : state == , }
Convert sacct row to dict.
25,108
def getListForEvent(self, event=None): names = list(self.guestlistname_set.annotate( guestType=Case( When(notes__isnull=False, then=F()), default=Value(ugettext()), output_field=models.CharField() ) ).values(,,)) components = self.guestlistcomponent_set.all() filters = Q(pk__isnull=True) for component in components: if event and self.appliesToEvent(event): filters = filters | self.getComponentFilters(component,event=event) else: filters = filters | self.getComponentFilters(component,dateTime=timezone.now()) if self.includeStaff and event and self.appliesToEvent(event): filters = filters | Q(eventstaffmember__event=event) names += list(StaffMember.objects.filter(filters).annotate( guestType=Case( When(eventstaffmember__event=event, then=Concat(Value(), )), default=Value(ugettext()), output_field=models.CharField() ) ).distinct().values(,,)) if self.includeRegistrants and event and self.appliesToEvent(event): names += list(Registration.objects.filter(eventregistration__event=event).annotate( guestType=Value(_(),output_field=models.CharField()) ).values(,,)) return names
Get the list of names associated with a particular event.
25,109
def add(setname=None, entry=None, family=, **kwargs): ** if not setname: return if not entry: return setinfo = _find_set_info(setname) if not setinfo: return .format(setname) settype = setinfo[] cmd = .format(entry) if in kwargs: if not in setinfo[]: return .format(setname) if in kwargs or in kwargs: if not in setinfo[]: return .format(setname) if in kwargs: if not in setinfo[]: return .format(setname) if not in entry: cmd = .format(cmd, kwargs[]) if set([, , ]) & set(kwargs): if not in setinfo[]: return .format(setname) for item in _ADD_OPTIONS[settype]: if item in kwargs: cmd = .format(cmd, item, kwargs[item]) current_members = _find_set_members(setname) if cmd in current_members: return .format(cmd, setname) cmd = .format(_ipset_cmd(), setname, cmd) out = __salt__[](cmd, python_shell=False) if not out: return return .format(out)
Append an entry to the specified set. CLI Example: .. code-block:: bash salt '*' ipset.add setname 192.168.1.26 salt '*' ipset.add setname 192.168.0.3,AA:BB:CC:DD:EE:FF
25,110
def _connect(self): self.logger.info("Attempting connection to %s:%s", self.server[0], self.server[1]) try: self._open_socket() peer = self.sock.getpeername() self.logger.info("Connected to %s", str(peer)) self.sock.setblocking(1) self.sock.settimeout(5) self.sock.setsockopt(socket.SOL_SOCKET, socket.SO_KEEPALIVE, 1) banner = self.sock.recv(512) if is_py3: banner = banner.decode() if banner[0] == " self.logger.debug("Banner: %s", banner.rstrip()) else: raise ConnectionError("invalid banner from server") except ConnectionError as e: self.logger.error(str(e)) self.close() raise except (socket.error, socket.timeout) as e: self.close() self.logger.error("Socket error: %s" % str(e)) if str(e) == "timed out": raise ConnectionError("no banner from server") else: raise ConnectionError(e) self._connected = True
Attemps connection to the server
25,111
def cli_tempurl(context, method, path, seconds=None, use_container=False): with contextlib.nested( context.io_manager.with_stdout(), context.client_manager.with_client()) as (fp, client): method = method.upper() path = path.lstrip() seconds = seconds if seconds is not None else 3600 if not in path: raise ReturnCode( % path) if use_container: key_type = container = path.split(, 1)[0] status, reason, headers, contents = \ client.head_container(container) else: key_type = status, reason, headers, contents = \ client.head_account() if status // 100 != 2: raise ReturnCode( % (key_type.title(), status, reason)) key = headers.get( % key_type) if not key: raise ReturnCode( % (key_type.title(), key_type)) url = client.storage_url + + path fp.write(generate_temp_url(method, url, seconds, key)) fp.write() fp.flush()
Generates a TempURL and sends that to the context.io_manager's stdout. See :py:mod:`swiftly.cli.tempurl` for context usage information. See :py:class:`CLITempURL` for more information. :param context: The :py:class:`swiftly.cli.context.CLIContext` to use. :param method: The method for the TempURL (GET, PUT, etc.) :param path: The path the TempURL should direct to. :param seconds: The number of seconds the TempURL should be good for. Default: 3600 :param use_container: If True, will create a container level TempURL useing X-Container-Meta-Temp-Url-Key instead of X-Account-Meta-Temp-Url-Key.
25,112
def batch_accumulate(max_batch_size, a_generator, cooperator=None): if cooperator: own_cooperate = cooperator.cooperate else: own_cooperate = cooperate spigot = ValueBucket() items = stream_tap((spigot,), a_generator) d = own_cooperate(i_batch(max_batch_size, items)).whenDone() d.addCallback(accumulation_handler, spigot) return d
Start a Deferred whose callBack arg is a deque of the accumulation of the values yielded from a_generator which is iterated over in batches the size of max_batch_size. It should be more efficient to iterate over the generator in batches and still provide enough speed for non-blocking execution. :param max_batch_size: The number of iterations of the generator to consume at a time. :param a_generator: An iterator which yields some not None values. :return: A Deferred to which the next callback will be called with the yielded contents of the generator function.
25,113
def _set_dense_defaults_and_eval(kwargs): kwargs[] = kwargs.get(, ) kwargs[] = kwargs.get(, ) kwargs[] = kwargs.get(, False) kwargs[] = kwargs.get(, False) kwargs[] = kwargs.get(, ) kwargs[] = kwargs.get(, ) for key, val in kwargs.iteritems(): try: kwargs[key] = eval(val) except: kwargs[key] = val return kwargs
Sets default values in kwargs if kwargs are not already given. Evaluates all values using eval Parameters ----------- kwargs : dict Dictionary of dense specific keyword args Returns ------- : dict Default, evaluated dictionary
25,114
def submit(self, coro, callback=None): callback = callback or self.default_callback if self.async_running: return self.run_coroutine_threadsafe(coro, callback=callback) else: return NewTask(coro, loop=self.loop, callback=callback)
Submit a coro as NewTask to self.loop without loop.frequncy control. :: from torequests.dummy import Loop import asyncio loop = Loop() async def test(i): result = await asyncio.sleep(1) return (loop.frequency, i) coro = test(0) task = loop.submit(coro) print(task) # loop.x can be ignore loop.x print(task.x) # <NewTask pending coro=<test() running at torequests/temp_code.py:58>> # (Frequency(sem=<0/0>, interval=0, name=loop_sem), 0)
25,115
def list_all_store_credit_transactions(cls, **kwargs): kwargs[] = True if kwargs.get(): return cls._list_all_store_credit_transactions_with_http_info(**kwargs) else: (data) = cls._list_all_store_credit_transactions_with_http_info(**kwargs) return data
List StoreCreditTransactions Return a list of StoreCreditTransactions This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async=True >>> thread = api.list_all_store_credit_transactions(async=True) >>> result = thread.get() :param async bool :param int page: page number :param int size: page size :param str sort: page order :return: page[StoreCreditTransaction] If the method is called asynchronously, returns the request thread.
25,116
def _surpress_formatting_errors(fn): @wraps(fn) def inner(*args, **kwargs): try: return fn(*args, **kwargs) except ValueError: return "" return inner
I know this is dangerous and the wrong way to solve the problem, but when using both row and columns summaries it's easier to just swallow errors so users can format their tables how they need.
25,117
def _parse_guild_info(self, info_container): m = founded_regex.search(info_container.text) if m: description = m.group("desc").strip() self.description = description if description else None self.world = m.group("world") self.founded = parse_tibia_date(m.group("date").replace("\xa0", " ")) self.active = "currently active" in m.group("status")
Parses the guild's general information and applies the found values. Parameters ---------- info_container: :class:`bs4.Tag` The parsed content of the information container.
25,118
def accept(self, *args): integer64t match, return None. ' token = self.peek() if token is None: return None for arg in args: if token.type == arg: self.position += 1 return token return None
Consume and return the next token if it has the correct type Multiple token types (as strings, e.g. 'integer64') can be given as arguments. If the next token is one of them, consume and return it. If the token type doesn't match, return None.
25,119
def simulate(args): p = OptionParser(simulate.__doc__) p.set_outfile() opts, args = p.parse_args(args) if len(args) != 1: sys.exit(not p.print_help()) idsfile, = args fp = open(idsfile) fw = must_open(opts.outfile, "w") for row in fp: name, size = row.split() size = int(size) simulate_one(fw, name, size) fp.close()
%prog simulate idsfile Simulate random FASTA file based on idsfile, which is a two-column tab-separated file with sequence name and size.
25,120
def _scale_fig_size(figsize, textsize, rows=1, cols=1): params = mpl.rcParams rc_width, rc_height = tuple(params["figure.figsize"]) rc_ax_labelsize = params["axes.labelsize"] rc_titlesize = params["axes.titlesize"] rc_xt_labelsize = params["xtick.labelsize"] rc_linewidth = params["lines.linewidth"] rc_markersize = params["lines.markersize"] if isinstance(rc_ax_labelsize, str): rc_ax_labelsize = 15 if isinstance(rc_titlesize, str): rc_titlesize = 16 if isinstance(rc_xt_labelsize, str): rc_xt_labelsize = 14 if figsize is None: width, height = rc_width, rc_height sff = 1 if (rows == cols == 1) else 1.15 width = width * cols * sff height = height * rows * sff else: width, height = figsize if textsize is not None: scale_factor = textsize / rc_xt_labelsize elif rows == cols == 1: scale_factor = ((width * height) / (rc_width * rc_height)) ** 0.5 else: scale_factor = 1 ax_labelsize = rc_ax_labelsize * scale_factor titlesize = rc_titlesize * scale_factor xt_labelsize = rc_xt_labelsize * scale_factor linewidth = rc_linewidth * scale_factor markersize = rc_markersize * scale_factor return (width, height), ax_labelsize, titlesize, xt_labelsize, linewidth, markersize
Scale figure properties according to rows and cols. Parameters ---------- figsize : float or None Size of figure in inches textsize : float or None fontsize rows : int Number of rows cols : int Number of columns Returns ------- figsize : float or None Size of figure in inches ax_labelsize : int fontsize for axes label titlesize : int fontsize for title xt_labelsize : int fontsize for axes ticks linewidth : int linewidth markersize : int markersize
25,121
def cluster(dset,min_distance,min_cluster_size,prefix=None): if prefix==None: prefix = nl.suffix(dset, % min_cluster_size) return available_method()(dset,min_distance,min_cluster_size,prefix)
clusters given ``dset`` connecting voxels ``min_distance``mm away with minimum cluster size of ``min_cluster_size`` default prefix is ``dset`` suffixed with ``_clust%d``
25,122
def conv_lstm_2d(inputs, state, output_channels, kernel_size=5, name=None, spatial_dims=None): input_shape = common_layers.shape_list(inputs) batch_size, input_channels = input_shape[0], input_shape[-1] if spatial_dims is None: input_shape = input_shape[1:] else: input_shape = spatial_dims + [input_channels] cell = tf.contrib.rnn.ConvLSTMCell( 2, input_shape, output_channels, [kernel_size, kernel_size], name=name) if state is None: state = cell.zero_state(batch_size, tf.float32) outputs, new_state = cell(inputs, state) return outputs, new_state
2D Convolutional LSTM.
25,123
def show_tables(): _State.connection() _State.reflect_metadata() metadata = _State.metadata response = select() return {row[]: row[] for row in response}
Return the names of the tables currently in the database.
25,124
def partial_transform(self, traj): ca = [a.index for a in traj.top.atoms if a.name == ] if len(ca) < 4: return np.zeros((len(traj), 0), dtype=np.float32) alpha_indices = np.array( [(ca[i - 1], ca[i], ca[i + 1], ca[i + 2]) for i in range(1, len(ca) - 2)]) result = md.compute_dihedrals(traj, alpha_indices) x = [] if self.atom_indices is None: self.atom_indices = np.vstack(alpha_indices) if self.sincos: x.extend([np.cos(result), np.sin(result)]) else: x.append(result) return np.hstack(x)
Featurize an MD trajectory into a vector space via calculation of dihedral (torsion) angles of alpha carbon backbone Parameters ---------- traj : mdtraj.Trajectory A molecular dynamics trajectory to featurize. Returns ------- features : np.ndarray, dtype=float, shape=(n_samples, n_features) A featurized trajectory is a 2D array of shape `(length_of_trajectory x n_features)` where each `features[i]` vector is computed by applying the featurization function to the `i`th snapshot of the input trajectory.
25,125
def _InitializeURL(self, upload_url, current_content_length): if current_content_length != 0: return upload_url headers = { : , : 0, : } req = urllib2.Request(upload_url, data={}, headers=headers) resp = self._url_opener.open(req) return resp.headers[]
Ensures that the URL used to upload operations is properly initialized. Args: upload_url: a string url. current_content_length: an integer identifying the current content length of data uploaded to the Batch Job. Returns: An initialized string URL, or the provided string URL if the URL has already been initialized.
25,126
def generate_template(template_name, **context): context.update(href=href, format_datetime=format_datetime) return template_loader.load(template_name).generate(**context)
Load and generate a template.
25,127
def _sample_action_fluent(self, name: str, dtype: tf.DType, size: Sequence[int], constraints: Dict[str, Constraints], default_value: tf.Tensor, prob: float) -> tf.Tensor: shape = [self.batch_size] + list(size) if dtype == tf.float32: bounds = constraints.get(name) if bounds is None: low, high = -self.MAX_REAL_VALUE, self.MAX_REAL_VALUE dist = tf.distributions.Uniform(low=low, high=high) sampled_fluent = dist.sample(shape) else: low, high = bounds batch = (low is not None and low.batch) or (high is not None and high.batch) low = tf.cast(low.tensor, tf.float32) if low is not None else -self.MAX_REAL_VALUE high = tf.cast(high.tensor, tf.float32) if high is not None else self.MAX_REAL_VALUE dist = tf.distributions.Uniform(low=low, high=high) if batch: sampled_fluent = dist.sample() elif isinstance(low, tf.Tensor) or isinstance(high, tf.Tensor): if (low+high).shape.as_list() == list(size): sampled_fluent = dist.sample([self.batch_size]) else: raise ValueError() else: sampled_fluent = dist.sample(shape) elif dtype == tf.int32: logits = [1.0] * self.MAX_INT_VALUE dist = tf.distributions.Categorical(logits=logits, dtype=tf.int32) sampled_fluent = dist.sample(shape) elif dtype == tf.bool: probs = 0.5 dist = tf.distributions.Bernoulli(probs=probs, dtype=tf.bool) sampled_fluent = dist.sample(shape) select_default = tf.distributions.Bernoulli(prob, dtype=tf.bool).sample(self.batch_size) action_fluent = tf.where(select_default, default_value, sampled_fluent) return action_fluent
Samples the action fluent with given `name`, `dtype`, and `size`. With probability `prob` it chooses the action fluent `default_value`, with probability 1-`prob` it samples the fluent w.r.t. its `constraints`. Args: name (str): The name of the action fluent. dtype (tf.DType): The data type of the action fluent. size (Sequence[int]): The size and shape of the action fluent. constraints (Dict[str, Tuple[Optional[TensorFluent], Optional[TensorFluent]]]): The bounds for each action fluent. default_value (tf.Tensor): The default value for the action fluent. prob (float): A probability measure. Returns: tf.Tensor: A tensor for sampling the action fluent.
25,128
def add_value(self, value, row, col): self.__values[(row, col)] = value
Adds a single value (cell) to a worksheet at (row, col). Return the (row, col) where the value has been put. :param value: Value to write to the sheet. :param row: Row where the value should be written. :param col: Column where the value should be written.
25,129
def assign(pid_type, pid_value, status, object_type, object_uuid, overwrite): from .models import PersistentIdentifier obj = PersistentIdentifier.get(pid_type, pid_value) if status is not None: obj.status = status obj.assign(object_type, object_uuid, overwrite=overwrite) db.session.commit() click.echo(obj.status)
Assign persistent identifier.
25,130
def list_records_for_project(id=None, name=None, page_size=200, page_index=0, sort="", q=""): data = list_records_for_project_raw(id, name, page_size, page_index, sort, q) if data: return utils.format_json_list(data)
List all BuildRecords for a given Project
25,131
def object_build(self, node, obj): if obj in self._done: return self._done[obj] self._done[obj] = node for name in dir(obj): try: member = getattr(obj, name) except AttributeError: _build_from_function(node, name, member, self._module) else: attach_dummy_node(node, name, member) return None
recursive method which create a partial ast from real objects (only function, class, and method are handled)
25,132
def wrap_cell(entity, json_obj, mapping, table_view=False): html_class = out = if entity[]: out = ", ".join( map(lambda x: num2name(x, entity, mapping), json_obj.get(entity[], [])) ) elif entity[]: out = html_formula(json_obj[ entity[] ]) if entity[] in json_obj else elif entity[] == : html_class = out = json_obj.get() if out is None: out = elif entity[] == : html_class = out = "%6.5f" % json_obj[] if json_obj[] else elif entity[] == : out = "%4.2f" % json_obj[] if json_obj[] in [2, 3] else else: out = num2name(json_obj.get(entity[]), entity, mapping) or if table_view: return + str(entity[]) + html_class + + str(out) + elif html_class: return + html_class + + str(out) + return str(out)
Cell wrappers for customizing the GUI data table TODO : must coincide with hierarchy! TODO : simplify this!
25,133
def collection(self, collection_name): path = .format(collection_name) url = self._build_url(path) LOGGER.debug(.format(url)) response = requests.get(url, headers=REQUEST_HEADERS).json() return response
implements Requirement 15 (/req/core/sfc-md-op) @type collection_name: string @param collection_name: name of collection @returns: feature collection metadata
25,134
def multiget_slice(self, keys, column_parent, predicate, consistency_level): self._seqid += 1 d = self._reqs[self._seqid] = defer.Deferred() self.send_multiget_slice(keys, column_parent, predicate, consistency_level) return d
Performs a get_slice for column_parent and predicate for the given keys in parallel. Parameters: - keys - column_parent - predicate - consistency_level
25,135
def article(word, function=INDEFINITE, gender=MALE, role=SUBJECT): return function == DEFINITE \ and definite_article(word, gender, role) \ or indefinite_article(word, gender, role)
Returns the indefinite (ein) or definite (der/die/das/die) article for the given word.
25,136
def tag(self, text): if self.search_method == : events = self._find_events_ahocorasick(text.text) elif self.search_method == : events = self._find_events_naive(text.text) events = self._resolve_conflicts(events) self._event_intervals(events, text) if self.return_layer: return events else: text[self.layer_name] = events
Retrieves list of events in the text. Parameters ---------- text: Text The text to search for events. Returns ------- list of events sorted by start, end
25,137
def produce_frequency_explorer(corpus, category, category_name=None, not_category_name=None, term_ranker=termranking.AbsoluteFrequencyRanker, alpha=0.01, use_term_significance=False, term_scorer=None, not_categories=None, grey_threshold=1.96, y_axis_values=None, frequency_transform=lambda x: scale(np.log(x) - np.log(1)), **kwargs): t in category. E.g., "Below 5-star reviews". Defaults to "Not " + category_name term_ranker : TermRanker TermRanker class for determining term frequency ranks. alpha : float, default = 0.01 Uniform dirichlet prior for p-value calculation use_term_significance : bool, True by default Use term scorer term_scorer : TermSignificance Subclass of TermSignificance to use as for scores and significance not_categories : list All categories other than category by default. Documents labeled with remaining category. grey_threshold : float Score to grey points. Default is 1.96 y_axis_values : list Custom y-axis values. Defaults to linspace frequency_transfom : lambda, default lambda x: scale(np.log(x) - np.log(1)) Takes a vector of frequencies and returns their x-axis scale. Remaining arguments are from `produce_scattertext_explorer`. if not_categories is None: not_categories = [c for c in corpus.get_categories() if c != category] if term_scorer is None: term_scorer = LogOddsRatioUninformativeDirichletPrior(alpha) my_term_ranker = term_ranker(corpus) if kwargs.get(, False): my_term_ranker.use_non_text_features() term_freq_df = my_term_ranker.get_ranks() + 1 freqs = term_freq_df[[c + for c in [category] + not_categories]].sum(axis=1).values x_axis_values = [round_downer(10 ** x) for x in np.linspace(0, np.log(freqs.max()) / np.log(10), 5)] x_axis_values = [x for x in x_axis_values if x > 1 and x <= freqs.max()] frequencies_log_scaled = frequency_transform(freqs) if not in kwargs: kwargs[] = get_term_scorer_scores(category, corpus, kwargs.get(, False), not_categories, kwargs.get(, False), term_ranker, term_scorer, kwargs.get(, False)) def y_axis_rescale(coords): return ((coords - 0.5) / (np.abs(coords - 0.5).max()) + 1) / 2 def round_to_1(x): if x == 0: return 0 return round(x, -int(np.floor(np.log10(abs(x))))) if y_axis_values is None: max_score = np.floor(np.max(kwargs[]) * 100) / 100 min_score = np.ceil(np.min(kwargs[]) * 100) / 100 if min_score < 0 and max_score > 0: central = 0 else: central = 0.5 y_axis_values = [x for x in [min_score, central, max_score] if x >= min_score and x <= max_score] scores_scaled_for_charting = scale_neg_1_to_1_with_zero_mean_abs_max(kwargs[]) if use_term_significance: kwargs[] = term_scorer kwargs[] = kwargs.get(, term_scorer.get_name()) kwargs[] = kwargs.get(, % (grey_threshold, grey_threshold)) return produce_scattertext_explorer(corpus, category=category, category_name=category_name, not_category_name=not_category_name, x_coords=frequencies_log_scaled, y_coords=scores_scaled_for_charting, original_x=freqs, original_y=kwargs[], x_axis_values=x_axis_values, y_axis_values=y_axis_values, rescale_x=scale, rescale_y=y_axis_rescale, sort_by_dist=False, term_ranker=term_ranker, not_categories=not_categories, x_label=kwargs.get(, ), **kwargs)
Produces a Monroe et al. style visualization, with the x-axis being the log frequency Parameters ---------- corpus : Corpus Corpus to use. category : str Name of category column as it appears in original data frame. category_name : str or None Name of category to use. E.g., "5-star reviews." Defaults to category not_category_name : str or None Name of everything that isn't in category. E.g., "Below 5-star reviews". Defaults to "Not " + category_name term_ranker : TermRanker TermRanker class for determining term frequency ranks. alpha : float, default = 0.01 Uniform dirichlet prior for p-value calculation use_term_significance : bool, True by default Use term scorer term_scorer : TermSignificance Subclass of TermSignificance to use as for scores and significance not_categories : list All categories other than category by default. Documents labeled with remaining category. grey_threshold : float Score to grey points. Default is 1.96 y_axis_values : list Custom y-axis values. Defaults to linspace frequency_transfom : lambda, default lambda x: scale(np.log(x) - np.log(1)) Takes a vector of frequencies and returns their x-axis scale. Remaining arguments are from `produce_scattertext_explorer`.' Returns ------- str, html of visualization
25,138
def get_region (self, rs,cs, re,ce): rs = constrain (rs, 1, self.rows) re = constrain (re, 1, self.rows) cs = constrain (cs, 1, self.cols) ce = constrain (ce, 1, self.cols) if rs > re: rs, re = re, rs if cs > ce: cs, ce = ce, cs sc = [] for r in range (rs, re+1): line = u for c in range (cs, ce + 1): ch = self.get_abs (r,c) line = line + ch sc.append (line) return sc
This returns a list of lines representing the region.
25,139
def key_value_pairs(self): self.op_data = [] hdrs = self.ip_data[0] for row in self.ip_data[1:]: id_col = row[0] for col_num, col in enumerate(row): self.op_data.append([id_col, hdrs[col_num], col])
convert list to key value pairs This should also create unique id's to allow for any dataset to be transposed, and then later manipulated r1c1,r1c2,r1c3 r2c1,r2c2,r2c3 should be converted to ID COLNUM VAL r1c1,
25,140
def to_automaton_(f, labels:Set[Symbol]=None): nnf = f.to_nnf() if labels is None: labels = nnf.find_labels() alphabet = powerset(labels) initial_state = MacroState({nnf}) final_states = {MacroState()} delta = set() d = f.delta(PLFalseInterpretation(), epsilon=True) if d.truth(d): final_states.add(initial_state) states = {MacroState(), initial_state} states_changed, delta_changed = True, True while states_changed or delta_changed: states_changed, delta_changed = False, False for actions_set in alphabet: states_list = list(states) for q in states_list: delta_formulas = [f.delta(actions_set) for f in q] atomics = [s for subf in delta_formulas for s in find_atomics(subf)] symbol2formula = {Symbol(str(f)): f for f in atomics if f != PLTrue() and f != PLFalse()} formula2atomic_formulas = { f: PLAtomic(Symbol(str(f))) if f != PLTrue() and f != PLFalse() else f for f in atomics } transformed_delta_formulas = [_transform_delta(f, formula2atomic_formulas) for f in delta_formulas] if len(transformed_delta_formulas) == 0: conjunctions = PLTrue() elif len(transformed_delta_formulas) == 1: conjunctions = transformed_delta_formulas[0] else: conjunctions = PLAnd(transformed_delta_formulas) models = frozenset(conjunctions.minimal_models(Alphabet(symbol2formula))) if len(models) == 0: continue for min_model in models: q_prime = MacroState( {symbol2formula[s] for s in min_model.true_propositions}) len_before = len(states) states.add(q_prime) if len(states) == len_before + 1: states_list.append(q_prime) states_changed = True len_before = len(delta) delta.add((q, actions_set, q_prime)) if len(delta) == len_before + 1: delta_changed = True if len(q_prime) == 0: final_states.add(q_prime) else: subf_deltas = [subf.delta(PLFalseInterpretation(), epsilon=True) for subf in q_prime] if len(subf_deltas)==1: q_prime_delta_conjunction = subf_deltas[0] else: q_prime_delta_conjunction = PLAnd(subf_deltas) if q_prime_delta_conjunction.truth(PLFalseInterpretation()): final_states.add(q_prime) alphabet = PythomataAlphabet({PLInterpretation(set(sym)) for sym in alphabet}) delta = frozenset((i, PLInterpretation(set(a)), o) for i, a, o in delta) nfa = NFA.fromTransitions( alphabet=alphabet, states=frozenset(states), initial_state=initial_state, accepting_states=frozenset(final_states), transitions=delta ) return nfa
DEPRECATED From a LDLfFormula, build the automaton. :param f: a LDLfFormula; :param labels: a set of Symbol, the fluents of our domain. If None, retrieve them from the formula; :param determinize: True if you need to determinize the NFA, obtaining a DFA; :param minimize: True if you need to minimize the DFA (if determinize is False this flag has no effect.) :return: a NFA or a DFA which accepts the same traces that makes the formula True.
25,141
def Compile(self, filter_implementation): operator = self.operator.lower() if operator in (, ): method = elif operator in (, ): method = else: raise errors.ParseError( .format(operator)) args = [x.Compile(filter_implementation) for x in self.args] return getattr(filter_implementation, method)(*args)
Compile the binary expression into a filter object.
25,142
def _read(self): with open(self.path, ) as file_handle: content = file_handle.read() return compat.unicode(content)
Open the file and return its contents.
25,143
def record_variant_id(record): if record.ID: return record.ID else: return record.CHROM + + str(record.POS)
Get variant ID from pyvcf.model._Record
25,144
def list(self,table, **kparams): result = self.table_api_get(table, **kparams) return self.to_records(result, table)
get a collection of records by table name. returns a dict (the json map) for python 3.4
25,145
def build_expressions(verb): def partial(func, col, *args, **kwargs): def new_func(gdf): return func(gdf[col], *args, **kwargs) return new_func def make_statement(func, col): if isinstance(func, str): expr = .format(func, col) elif callable(func): expr = partial(func, col, *verb.args, **verb.kwargs) else: raise TypeError("{} is not a function".format(func)) return expr def func_name(func): if isinstance(func, str): return func try: return func.__name__ except AttributeError: return if isinstance(verb.functions, (tuple, list)): names = (func_name(func) for func in verb.functions) names_and_functions = zip(names, verb.functions) else: names_and_functions = verb.functions.items() columns = Selector.get(verb) postfixes = [] stmts = [] for name, func in names_and_functions: postfixes.append(name) for col in columns: stmts.append(make_statement(func, col)) if not stmts: stmts = columns add_postfix = (isinstance(verb.functions, dict) or len(verb.functions) > 1) if add_postfix: fmt = .format new_columns = [fmt(c, p) for p in postfixes for c in columns] else: new_columns = columns expressions = [Expression(stmt, col) for stmt, col in zip(stmts, new_columns)] return expressions, new_columns
Build expressions for helper verbs Parameters ---------- verb : verb A verb with a *functions* attribute. Returns ------- out : tuple (List of Expressions, New columns). The expressions and the new columns in which the results of those expressions will be stored. Even when a result will stored in a column with an existing label, that column is still considered new, i.e An expression ``x='x+1'``, will create a new_column `x` to replace an old column `x`.
25,146
def Ainv(self): if getattr(self, , None) is None: self._Ainv = self.Solver(self.A, 13) self._Ainv.run_pardiso(12) return self._Ainv
Returns a Solver instance
25,147
def invite(self, username): url = self._build_url(, username, base_url=self._api) return self._json(self._put(url), 200)
Invite the user to join this team. This returns a dictionary like so:: {'state': 'pending', 'url': 'https://api.github.com/teams/...'} :param str username: (required), user to invite to join this team. :returns: dictionary
25,148
def get_all_instances(sql, class_type, *args, **kwargs): records = CoyoteDb.get_all_records(sql, *args, **kwargs) instances = [CoyoteDb.get_object_from_dictionary_representation( dictionary=record, class_type=class_type) for record in records] for instance in instances: instance._query = sql return instances
Returns a list of instances of class_type populated with attributes from the DB record @param sql: Sql statement to execute @param class_type: The type of class to instantiate and populate with DB record @return: Return a list of instances with attributes set to values from DB
25,149
def pack_rgb(rgb): orig_shape = None if isinstance(rgb, np.ndarray): assert rgb.shape[-1] == 3 orig_shape = rgb.shape[:-1] else: assert len(rgb) == 3 rgb = np.array(rgb) rgb = rgb.astype(int).reshape((-1, 3)) packed = (rgb[:, 0] << 16 | rgb[:, 1] << 8 | rgb[:, 2]) if orig_shape is None: return packed else: return packed.reshape(orig_shape)
Packs a 24-bit RGB triples into a single integer, works on both arrays and tuples.
25,150
def make_format(format_spec): fill = align = zero = width = format_spec.width if format_spec.align: align = format_spec.align[0] if format_spec.fill: fill = format_spec.fill[0] if format_spec.zero: zero = precision_part = "" if format_spec.precision: precision_part = ".%s" % format_spec.precision return "%s%s%s%s%s%s" % (fill, align, zero, width, precision_part, format_spec.type)
Build format string from a format specification. :param format_spec: Format specification (as FormatSpec object). :return: Composed format (as string).
25,151
def url(self): return get_url(CDN_URL, handle=self.handle, security=self.security)
Returns the URL for the instance, which can be used to retrieve, delete, and overwrite the file. If security is enabled, signature and policy parameters will be included, *returns* [String] ```python filelink = client.upload(filepath='/path/to/file') filelink.url # https://cdn.filestackcontent.com/FILE_HANDLE ```
25,152
def _handle_invalid_read_response(self, res, expected_len): if not res: reset(self.stick) raise pyhsm.exception.YHSM_Error( \ % (pyhsm.defines.cmd2str(self.command)) ) self.stick.write(, ) res2 = self.stick.read(50) lines = res2.split() for this in lines: if re.match(, this): raise pyhsm.exception.YHSM_Error() raise pyhsm.exception.YHSM_Error( \ % (self.stick.device, res.encode()))
This function is called when we do not get the expected frame header in response to a command. Probable reason is that we are not talking to a YubiHSM in HSM mode (might be a modem, or a YubiHSM in configuration mode). Throws a hopefully helpful exception.
25,153
def confirm_build(build_url, keeper_token): data = { : True } r = requests.patch( build_url, auth=(keeper_token, ), json=data) if r.status_code != 200: raise KeeperError(r)
Confirm a build upload is complete. Wraps ``PATCH /builds/{build}``. Parameters ---------- build_url : `str` URL of the build resource. Given a build resource, this URL is available from the ``self_url`` field. keeper_token : `str` Auth token (`ltdconveyor.keeper.get_keeper_token`). Raises ------ ltdconveyor.keeper.KeeperError Raised if there is an error communicating with the LTD Keeper API.
25,154
def open_stored_file(value, url): upload = None result = deserialize_upload(value, url) filename = result[] storage_class = result[] if storage_class and filename: storage = storage_class() if storage.exists(filename): upload = storage.open(filename) upload.name = os.path.basename(filename) return upload
Deserialize value for a given upload url and return open file. Returns None if deserialization fails.
25,155
def add(self, method, pattern, callback): pat_type, pat = self._normalize_pattern(pattern) if pat_type == : self._literal[method][pat] = callback elif pat_type == : self._wildcard[method].append(WildcardRoute(pat, callback)) else: self._regex[method].append(RegexRoute(pat, callback))
Add a route. Arguments: method (str): HTTP method, e.g. GET, POST, etc. pattern (str): Pattern that request paths must match. callback (str): Route handler that is invoked when a request path matches the *pattern*.
25,156
def _process_out_of_bounds(self, value, start, end): "Clips out of bounds values" if isinstance(value, np.datetime64): v = dt64_to_dt(value) if isinstance(start, (int, float)): start = convert_timestamp(start) if isinstance(end, (int, float)): end = convert_timestamp(end) s, e = start, end if isinstance(s, np.datetime64): s = dt64_to_dt(s) if isinstance(e, np.datetime64): e = dt64_to_dt(e) else: v, s, e = value, start, end if v < s: value = start elif v > e: value = end return value
Clips out of bounds values
25,157
def core_periphery_dir(W, gamma=1, C0=None, seed=None): s global random state to generate random numbers. Otherwise, use a new np.random.RandomState instance seeded with the given value. Infinite Loop aborted') flag = False ixes = np.arange(n) Ct = C.copy() while len(ixes) > 0: Qt = np.zeros((n,)) ctix, = np.where(Ct) nctix, = np.where(np.logical_not(Ct)) q0 = (np.sum(B[np.ix_(ctix, ctix)]) - np.sum(B[np.ix_(nctix, nctix)])) Qt[ctix] = q0 - 2 * np.sum(B[ctix, :], axis=1) Qt[nctix] = q0 + 2 * np.sum(B[nctix, :], axis=1) max_Qt = np.max(Qt[ixes]) u, = np.where(np.abs(Qt[ixes]-max_Qt) < 1e-10) u = u[rng.randint(len(u))] Ct[ixes[u]] = np.logical_not(Ct[ixes[u]]) ixes = np.delete(ixes, u) if max_Qt - q > 1e-10: flag = True C = Ct.copy() cix, = np.where(C) ncix, = np.where(np.logical_not(C)) q = (np.sum(B[np.ix_(cix, cix)]) - np.sum(B[np.ix_(ncix, ncix)])) cix, = np.where(C) ncix, = np.where(np.logical_not(C)) q = np.sum(B[np.ix_(cix, cix)]) - np.sum(B[np.ix_(ncix, ncix)]) return C, q
The optimal core/periphery subdivision is a partition of the network into two nonoverlapping groups of nodes, a core group and a periphery group. The number of core-group edges is maximized, and the number of within periphery edges is minimized. The core-ness is a statistic which quantifies the goodness of the optimal core/periphery subdivision (with arbitrary relative value). The algorithm uses a variation of the Kernighan-Lin graph partitioning algorithm to optimize a core-structure objective described in Borgatti & Everett (2000) Soc Networks 21:375-395 See Rubinov, Ypma et al. (2015) PNAS 112:10032-7 Parameters ---------- W : NxN np.ndarray directed connection matrix gamma : core-ness resolution parameter Default value = 1 gamma > 1 detects small core, large periphery 0 < gamma < 1 detects large core, small periphery C0 : NxN np.ndarray Initial core structure seed : hashable, optional If None (default), use the np.random's global random state to generate random numbers. Otherwise, use a new np.random.RandomState instance seeded with the given value.
25,158
def copyidfobject(self, idfobject): return addthisbunch(self.idfobjects, self.model, self.idd_info, idfobject, self)
Add an IDF object to the IDF. Parameters ---------- idfobject : EpBunch object The IDF object to remove. This usually comes from another idf file, or it can be used to copy within this idf file.
25,159
def matrix_multiply(m1, m2): mm = [[0.0 for _ in range(len(m2[0]))] for _ in range(len(m1))] for i in range(len(m1)): for j in range(len(m2[0])): for k in range(len(m2)): mm[i][j] += float(m1[i][k] * m2[k][j]) return mm
Matrix multiplication (iterative algorithm). The running time of the iterative matrix multiplication algorithm is :math:`O(n^{3})`. :param m1: 1st matrix with dimensions :math:`(n \\times p)` :type m1: list, tuple :param m2: 2nd matrix with dimensions :math:`(p \\times m)` :type m2: list, tuple :return: resultant matrix with dimensions :math:`(n \\times m)` :rtype: list
25,160
def download(self, torrent_id, directory, filename) : return self.call( % torrent_id, params={ : filename, : directory})
Download a torrent
25,161
def read_file(self, filename): logger.info("Reading file: %s", format_path(filename)) contents = self.context.read_file(filename) num_lines = len(contents.splitlines()) logger.debug("Read %s from %s.", pluralize(num_lines, ), format_path(filename)) return contents.rstrip()
Read a text file and provide feedback to the user. :param filename: The pathname of the file to read (a string). :returns: The contents of the file (a string).
25,162
def main(): args = parse_command_line() print(HEADER.format(ip.__version__)) np.random.seed(args.rseed) if os.path.exists(ip.__debugflag__): os.remove(ip.__debugflag__) if args.debug: print("\n ** Enabling debug mode ** ") ip._debug_on() if args.json: data = ipa.tetrad(name=args.name, workdir=args.workdir, load=True) if args.force: data._refresh() else: data.run(force=args.force, ipyclient=ipyclient)
main function
25,163
def answer(request): if request.method == : return render(request, , {}, help_text=answer.__doc__) elif request.method == : practice_filter = get_filter(request) practice_context = PracticeContext.objects.from_content(practice_filter) saved_answers = _save_answers(request, practice_context, True) return render_json(request, saved_answers, status=200, template=) else: return HttpResponseBadRequest("method %s is not allowed".format(request.method))
Save the answer. GET parameters: html: turn on the HTML version of the API BODY json in following format: { "answer": #answer, -- for one answer "answers": [#answer, #answer, #answer ...] -- for multiple answers } answer = { "answer_class": str, -- class of answer to save (e.g., flashcard_answer) "response_time": int, -- response time in milliseconds "meta": "str" -- optional information "time_gap": int -- waiting time in frontend in seconds ... -- other fields depending on aswer type (see from_json method of Django model class) }
25,164
def grating(period, number_of_teeth, fill_frac, width, position, direction, lda=1, sin_theta=0, focus_distance=-1, focus_width=-1, evaluations=99, layer=0, datatype=0): +x-x+y-y if focus_distance < 0: path = gdspy.L1Path( (position[0] - 0.5 * width, position[1] + 0.5 * (number_of_teeth - 1 + fill_frac) * period), , period * fill_frac, [width], [], number_of_teeth, period, layer=layer, datatype=datatype) else: neff = lda / float(period) + sin_theta qmin = int(focus_distance / float(period) + 0.5) path = gdspy.Path(period * fill_frac, position) max_points = 199 if focus_width < 0 else 2 * evaluations c3 = neff**2 - sin_theta**2 w = 0.5 * width for q in range(qmin, qmin + number_of_teeth): c1 = q * lda * sin_theta c2 = (q * lda)**2 path.parametric( lambda t: (width * t - w, (c1 + neff * numpy.sqrt(c2 - c3 * ( width * t - w)**2)) / c3), number_of_evaluations=evaluations, max_points=max_points, layer=layer, datatype=datatype) path.x = position[0] path.y = position[1] if focus_width >= 0: path.polygons[0] = numpy.vstack( (path.polygons[0][:evaluations, :], ([position] if focus_width == 0 else [(position[0] + 0.5 * focus_width, position[1]), (position[0] - 0.5 * focus_width, position[1])]))) path.fracture() if direction == : return path.rotate(0.5 * numpy.pi, position) elif direction == : return path.rotate(-0.5 * numpy.pi, position) elif direction == : return path.rotate(numpy.pi, position) else: return path
Straight or focusing grating. period : grating period number_of_teeth : number of teeth in the grating fill_frac : filling fraction of the teeth (w.r.t. the period) width : width of the grating position : grating position (feed point) direction : one of {'+x', '-x', '+y', '-y'} lda : free-space wavelength sin_theta : sine of incidence angle focus_distance : focus distance (negative for straight grating) focus_width : if non-negative, the focusing area is included in the result (usually for negative resists) and this is the width of the waveguide connecting to the grating evaluations : number of evaluations of `path.parametric` layer : GDSII layer number datatype : GDSII datatype number Return `PolygonSet`
25,165
def from_value(self, instance, value): try: parsed = self.type_.parse(value) except (TypeError, ValueError): if self.erroneous_as_absent: return False raise self._set_from_recv(instance, parsed) return True
Convert the given value using the set `type_` and store it into `instance`’ attribute.
25,166
def notify_event(self, session_info, topic): try: self.event_bus.sendMessage(topic, items=session_info) except AttributeError: msg = "Could not publish {} event".format(topic) raise AttributeError(msg)
:type identifiers: SimpleIdentifierCollection
25,167
def get_resource_listing(url, offset, limit, properties): query = [ QPARA_OFFSET + + str(offset), QPARA_LIMIT + + str(limit) ] if not properties is None: if len(properties) > 0: query.append(QPARA_ATTRIBUTES + + .join(properties)) url = url + + .join(query) json_obj = JsonResource(url).json resources = [] for element in json_obj[]: resource = ResourceHandle(element) if not properties is None: resource.properties = {} for prop in properties: if prop in element: resource.properties[prop] = element[prop] resources.append(resource) return resources
Gneric method to retrieve a resource listing from a SCO-API. Takes the resource-specific API listing Url as argument. Parameters ---------- url : string Resource listing Url for a SCO-API offset : int, optional Starting offset for returned list items limit : int, optional Limit the number of items in the result properties : List(string) List of additional object properties to be included for items in the result Returns ------- List(ResourceHandle) List of resource handle (one per subject in the object listing)
25,168
def getDefaultApplicationForMimeType(self, pchMimeType, pchAppKeyBuffer, unAppKeyBufferLen): fn = self.function_table.getDefaultApplicationForMimeType result = fn(pchMimeType, pchAppKeyBuffer, unAppKeyBufferLen) return result
return the app key that will open this mime type
25,169
def point_cloud(df, columns=[0, 1, 2]): df = df if isinstance(df, pd.DataFrame) else pd.DataFrame(df) if not all(c in df.columns for c in columns): columns = list(df.columns)[:3] fig = plt.figure() ax = fig.add_subplot(111, projection=) Axes3D.scatter(*[df[columns[i]] for i in range(3)], zdir=, s=20, c=None, depthshade=True) return ax
3-D Point cloud for plotting things like mesh models of horses ;)
25,170
def sheet2matrixidx(self,x,y): r,c = self.sheet2matrix(x,y) r = np.floor(r) c = np.floor(c) if hasattr(r,): return r.astype(int), c.astype(int) else: return int(r),int(c)
Convert a point (x,y) in sheet coordinates to the integer row and column index of the matrix cell in which that point falls, given a bounds and density. Returns (row,column). Note that if coordinates along the right or bottom boundary are passed into this function, the returned matrix coordinate of the boundary will be just outside the matrix, because the right and bottom boundaries are exclusive. Valid for scalar or array x and y.
25,171
def plot(self, axis=None, node_size=40, node_color=, node_alpha=0.8, edge_alpha=0.5, edge_cmap=, edge_linewidth=2, vary_line_width=True, colorbar=True): try: import matplotlib.pyplot as plt from matplotlib.collections import LineCollection except ImportError: raise ImportError() if self._data.shape[0] > 32767: warn() return None if axis is None: axis = plt.gca() if self._data.shape[1] > 2: if self._data.shape[1] > 32: data_for_projection = PCA(n_components=32).fit_transform(self._data) else: data_for_projection = self._data.copy() projection = TSNE().fit_transform(data_for_projection) else: projection = self._data.copy() if vary_line_width: line_width = edge_linewidth * (np.log(self._mst.T[2].max() / self._mst.T[2]) + 1.0) else: line_width = edge_linewidth line_coords = projection[self._mst[:, :2].astype(int)] line_collection = LineCollection(line_coords, linewidth=line_width, cmap=edge_cmap, alpha=edge_alpha) line_collection.set_array(self._mst[:, 2].T) axis.add_artist(line_collection) axis.scatter(projection.T[0], projection.T[1], c=node_color, alpha=node_alpha, s=node_size) axis.set_xticks([]) axis.set_yticks([]) if colorbar: cb = plt.colorbar(line_collection) cb.ax.set_ylabel() return axis
Plot the minimum spanning tree (as projected into 2D by t-SNE if required). Parameters ---------- axis : matplotlib axis, optional The axis to render the plot to node_size : int, optional The size of nodes in the plot (default 40). node_color : matplotlib color spec, optional The color to render nodes (default black). node_alpha : float, optional The alpha value (between 0 and 1) to render nodes with (default 0.8). edge_cmap : matplotlib colormap, optional The colormap to color edges by (varying color by edge weight/distance). Can be a cmap object or a string recognised by matplotlib. (default `viridis_r`) edge_alpha : float, optional The alpha value (between 0 and 1) to render edges with (default 0.5). edge_linewidth : float, optional The linewidth to use for rendering edges (default 2). vary_line_width : bool, optional Edge width is proportional to (log of) the inverse of the mutual reachability distance. (default True) colorbar : bool, optional Whether to draw a colorbar. (default True) Returns ------- axis : matplotlib axis The axis used the render the plot.
25,172
def readBoolean(self): byte = self.stream.read(1) if byte == : return False elif byte == : return True else: raise ValueError("Error reading boolean")
Read C{Boolean}. @raise ValueError: Error reading Boolean. @rtype: C{bool} @return: A Boolean value, C{True} if the byte is nonzero, C{False} otherwise.
25,173
def available(self, **kwargs): uri = "%s/%s" % (self.uri, "available") response, instance = self.request("GET", uri, params=kwargs) return instance
Find available dedicated numbers to buy. Returns dictionary like this: :: { "numbers": [ "12146124143", "12172100315", "12172100317", "12172100319", "12172100321", "12172100323", "12172100325", "12172100326", "12172100327", "12172100328" ], "price": 2.4 } :Example: numbers = client.numbers.available(country="US") :param str country: Dedicated number country. Required. :param str prefix: Desired number prefix. Should include country code (i.e. 447 for GB)
25,174
def parse(): parser = argparse.ArgumentParser( description=, formatter_class=argparse.RawTextHelpFormatter ) group = parser.add_mutually_exclusive_group() group.add_argument( , , help=, metavar=, ) group.add_argument( , , help=, metavar=, ) parser.add_argument( , , help=, metavar=, required=False, ) parser.add_argument( , , help=, required=False, action=, ) parser.add_argument( , , help=, required=False, action=, ) parser.add_argument( , , help=, required=False, action=, ) parser.add_argument( , , help=, required=False, action=, ) parser.add_argument( , , help=, required=False, action=, ) parser.add_argument( , , help=, required=False, metavar=, ) return vars(parser.parse_args())
parse arguments supplied by cmd-line
25,175
def tplot_restore(filename): if not (os.path.isfile(filename)): print("Not a valid file name") return if filename.endswith(): temp_tplot = readsav(filename) for i in range(len(temp_tplot[])): data_name = temp_tplot[][i][0].decode("utf-8") temp_x_data = temp_tplot[][i][1][0][0] if len(temp_tplot[][i][1][0][2].shape) == 2: temp_y_data = np.transpose(temp_tplot[][i][1][0][2]) else: temp_y_data = temp_tplot[][i][1][0][2] if len(temp_tplot[][i][1][0]) > 4: temp_v_data = temp_tplot[][i][1][0][4] if (temp_x_data.dtype.byteorder == ): temp_x_data = temp_x_data.byteswap().newbyteorder() if (temp_y_data.dtype.byteorder == ): temp_y_data = temp_y_data.byteswap().newbyteorder() if (temp_v_data.dtype.byteorder == ): temp_v_data = temp_v_data.byteswap().newbyteorder() store_data(data_name, data={:temp_x_data, :temp_y_data, :temp_v_data}) else: if (temp_x_data.dtype.byteorder == ): temp_x_data = temp_x_data.byteswap().newbyteorder() if (temp_y_data.dtype.byteorder == ): temp_y_data = temp_y_data.byteswap().newbyteorder() store_data(data_name, data={:temp_x_data, :temp_y_data}) if temp_tplot[][i][3].dtype.names is not None: for option_name in temp_tplot[][i][3].dtype.names: options(data_name, option_name, temp_tplot[][i][3][option_name][0]) data_quants[data_name].trange = temp_tplot[][i][4].tolist() data_quants[data_name].dtype = temp_tplot[][i][5] data_quants[data_name].create_time = temp_tplot[][i][6] for option_name in temp_tplot[][0][0].dtype.names: if option_name == : tplot_options(, temp_tplot[][0][0][option_name][0]) if option_name == : tplot_options(, temp_tplot[][0][0][option_name][0]) if option_name == : tplot_options(, temp_tplot[][0][0][option_name][0]) if in temp_tplot[][0][1].tolist(): for option_name in temp_tplot[][0][1][][0].dtype.names: if option_name == : tplot_options(, temp_tplot[][0][1][][0][option_name][0]) else: temp = pickle.load(open(filename,"rb")) num_data_quants = temp[0] for i in range(0, num_data_quants): data_quants[temp[i+1].name] = temp[i+1] tplot_opt_glob = temp[num_data_quants+1] return
This function will restore tplot variables that have been saved with the "tplot_save" command. .. note:: This function is compatible with the IDL tplot_save routine. If you have a ".tplot" file generated from IDL, this procedure will restore the data contained in the file. Not all plot options will transfer over at this time. Parameters: filename : str The file name and full path generated by the "tplot_save" command. Returns: None Examples: >>> # Restore the saved data from the tplot_save example >>> import pytplot >>> pytplot.restore('C:/temp/variable1.pytplot')
25,176
def _using_stdout(self): if WINDOWS and colorama: return self.stream.wrapped is sys.stdout return self.stream is sys.stdout
Return whether the handler is using sys.stdout.
25,177
def open(self, mode): if mode == : return self.format.pipe_writer(AtomicFtpFile(self._fs, self.path)) elif mode == : temp_dir = os.path.join(tempfile.gettempdir(), ) self.__tmp_path = temp_dir + + self.path.lstrip() + % random.randrange(0, 1e10) self._fs.get(self.path, self.__tmp_path) return self.format.pipe_reader( FileWrapper(io.BufferedReader(io.FileIO(self.__tmp_path, ))) ) else: raise Exception("mode must be or (got: %s)" % mode)
Open the FileSystem target. This method returns a file-like object which can either be read from or written to depending on the specified mode. :param mode: the mode `r` opens the FileSystemTarget in read-only mode, whereas `w` will open the FileSystemTarget in write mode. Subclasses can implement additional options. :type mode: str
25,178
def get_bounds(self, bin_num): min_bound = (self.bin_size * bin_num) + self.min_value max_bound = min_bound + self.bin_size return self.Bounds(min_bound, max_bound)
Get the bonds of a bin, given its index `bin_num`. :returns: a `Bounds` namedtuple with properties min and max respectively.
25,179
def compute_venn3_subsets(a, b, c): if not (type(a) == type(b) == type(c)): raise ValueError("All arguments must be of the same type") set_size = len if type(a) != Counter else lambda x: sum(x.values()) return (set_size(a - (b | c)), set_size(b - (a | c)), set_size((a & b) - c), set_size(c - (a | b)), set_size((a & c) - b), set_size((b & c) - a), set_size(a & b & c))
Given three set or Counter objects, computes the sizes of (a & ~b & ~c, ~a & b & ~c, a & b & ~c, ....), as needed by the subsets parameter of venn3 and venn3_circles. Returns the result as a tuple. >>> compute_venn3_subsets(set([1,2,3]), set([2,3,4]), set([3,4,5,6])) (1, 0, 1, 2, 0, 1, 1) >>> compute_venn3_subsets(Counter([1,2,3]), Counter([2,3,4]), Counter([3,4,5,6])) (1, 0, 1, 2, 0, 1, 1) >>> compute_venn3_subsets(Counter([1,1,1]), Counter([1,1,1]), Counter([1,1,1,1])) (0, 0, 0, 1, 0, 0, 3) >>> compute_venn3_subsets(Counter([1,1,2,2,3,3]), Counter([2,2,3,3,4,4]), Counter([3,3,4,4,5,5,6,6])) (2, 0, 2, 4, 0, 2, 2) >>> compute_venn3_subsets(Counter([1,2,3]), Counter([2,2,3,3,4,4]), Counter([3,3,4,4,4,5,5,6])) (1, 1, 1, 4, 0, 3, 1) >>> compute_venn3_subsets(set([]), set([]), set([])) (0, 0, 0, 0, 0, 0, 0) >>> compute_venn3_subsets(set([1]), set([]), set([])) (1, 0, 0, 0, 0, 0, 0) >>> compute_venn3_subsets(set([]), set([1]), set([])) (0, 1, 0, 0, 0, 0, 0) >>> compute_venn3_subsets(set([]), set([]), set([1])) (0, 0, 0, 1, 0, 0, 0) >>> compute_venn3_subsets(Counter([]), Counter([]), Counter([1])) (0, 0, 0, 1, 0, 0, 0) >>> compute_venn3_subsets(set([1]), set([1]), set([1])) (0, 0, 0, 0, 0, 0, 1) >>> compute_venn3_subsets(set([1,3,5,7]), set([2,3,6,7]), set([4,5,6,7])) (1, 1, 1, 1, 1, 1, 1) >>> compute_venn3_subsets(Counter([1,3,5,7]), Counter([2,3,6,7]), Counter([4,5,6,7])) (1, 1, 1, 1, 1, 1, 1) >>> compute_venn3_subsets(Counter([1,3,5,7]), set([2,3,6,7]), set([4,5,6,7])) Traceback (most recent call last): ... ValueError: All arguments must be of the same type
25,180
def off_coordinator(self, year): try: oc_anchor = self._year_info_pq(year, )() if oc_anchor: return oc_anchor.attr[] except ValueError: return None
Returns the coach ID for the team's OC in a given year. :year: An int representing the year. :returns: A string containing the coach ID of the OC.
25,181
def load_hdf5(path): with h5py.File(path, ) as f: is_sparse = f[][...] if is_sparse: shape = tuple(f[][...]) data = f[][...] indices = f[][...] indptr = f[][...] X = sparse.csr_matrix((data, indices, indptr), shape=shape) else: X = f[][...] y = f[][...] return X, y
Load data from a HDF5 file. Args: path (str): A path to the HDF5 format file containing data. dense (boolean): An optional variable indicating if the return matrix should be dense. By default, it is false. Returns: Data matrix X and target vector y
25,182
def get_id(self, name, recurse=True): self._dlog("getting id ".format(name)) var = self._search("vars", name, recurse) return var
Get the first id matching ``name``. Will either be a local or a var. :name: TODO :returns: TODO
25,183
def etree_to_dict(source): def etree_to_dict_recursive(parent): children = parent.getchildren() if children: d = {} identical_children = False for child in children: if not identical_children: if child.tag in d: identical_children = True l = [{key: d[key]} for key in d] l.append({child.tag: etree_to_dict_recursive(child)}) del d else: d.update({child.tag: etree_to_dict_recursive(child)}) else: l.append({child.tag: etree_to_dict_recursive(child)}) return (d if not identical_children else l) else: return parent.text if hasattr(source, ): source = source.getroot() if hasattr(source, ): return {source.tag: etree_to_dict_recursive(source)} else: raise TypeError("Requires an Element or an ElementTree.")
Recursively load dict/list representation of an XML tree into an etree representation. Args: source -- An etree Element or ElementTree. Returns: A dictionary representing sorce's xml structure where tags with multiple identical childrens contain list of all their children dictionaries.. >>> etree_to_dict(ET.fromstring('<content><id>12</id><title/></content>')) {'content': {'id': '12', 'title': None}} >>> etree_to_dict(ET.fromstring('<content><list><li>foo</li><li>bar</li></list></content>')) {'content': {'list': [{'li': 'foo'}, {'li': 'bar'}]}}
25,184
def _load_packets(file_h, header, layers=0): pkts = [] hdrp = ctypes.pointer(header) while True: pkt = _read_a_packet(file_h, hdrp, layers) if pkt: pkts.append(pkt) else: break return pkts
Read packets from the capture file. Expects the file handle to point to the location immediately after the header (24 bytes).
25,185
def run_hive(args, check_return_code=True): cmd = load_hive_cmd() + args p = subprocess.Popen(cmd, stdout=subprocess.PIPE, stderr=subprocess.PIPE) stdout, stderr = p.communicate() if check_return_code and p.returncode != 0: raise HiveCommandError("Hive command: {0} failed with error code: {1}".format(" ".join(cmd), p.returncode), stdout, stderr) return stdout.decode()
Runs the `hive` from the command line, passing in the given args, and returning stdout. With the apache release of Hive, so of the table existence checks (which are done using DESCRIBE do not exit with a return code of 0 so we need an option to ignore the return code and just return stdout for parsing
25,186
def delNode(self, address): if address in self.nodes: del self.nodes[address] self.poly.delNode(address)
Just send it along if requested, should be able to delete the node even if it isn't in our config anywhere. Usually used for normalization.
25,187
def enable_contactgroup_host_notifications(self, contactgroup): for contact_id in contactgroup.get_contacts(): self.enable_contact_host_notifications(self.daemon.contacts[contact_id])
Enable host notifications for a contactgroup Format of the line that triggers function call:: ENABLE_CONTACTGROUP_HOST_NOTIFICATIONS;<contactgroup_name> :param contactgroup: contactgroup to enable :type contactgroup: alignak.objects.contactgroup.Contactgroup :return: None
25,188
def _remove_non_serializable_store_entries(store: Store) -> dict: cleaned_store_data = {} for key, value in store.items(): if Script._is_serializable(key) and Script._is_serializable(value): cleaned_store_data[key] = value else: _logger.info("Skip non-serializable item in the local script store. Key: , Value: . " "This item cannot be saved and therefore will be lost when autokey quits.".format( key, value )) return cleaned_store_data
Copy all serializable data into a new dict, and skip the rest. This makes sure to keep the items during runtime, even if the user edits and saves the script.
25,189
def _start_http_session(self): api_logger.debug("Starting new HTTP session...") self.session = FuturesSession(executor=self.executor, max_workers=self.max_workers) self.session.headers.update({"User-Agent": self.user_agent}) if self.username and self.password: api_logger.debug("Requests will use authorization.") self.session.auth = HTTPBasicAuth(self.username, self.password)
Start a new requests HTTP session, clearing cookies and session data. :return: None
25,190
def port_profile_qos_profile_qos_flowcontrol_flowcontrolglobal_tx(self, **kwargs): config = ET.Element("config") port_profile = ET.SubElement(config, "port-profile", xmlns="urn:brocade.com:mgmt:brocade-port-profile") name_key = ET.SubElement(port_profile, "name") name_key.text = kwargs.pop() qos_profile = ET.SubElement(port_profile, "qos-profile") qos = ET.SubElement(qos_profile, "qos") flowcontrol = ET.SubElement(qos, "flowcontrol") flowcontrolglobal = ET.SubElement(flowcontrol, "flowcontrolglobal") tx = ET.SubElement(flowcontrolglobal, "tx") tx.text = kwargs.pop() callback = kwargs.pop(, self._callback) return callback(config)
Auto Generated Code
25,191
def get_many(d, required=[], optional=[], one_of=[]): d = d or {} r = [d[k] for k in required] r += [d.get(k)for k in optional] if one_of: for k in (k for k in one_of if k in d): return r + [d[k]] raise KeyError("Missing a one_of value.") return r
Returns a predictable number of elements out of ``d`` in a list for auto-expanding. Keys in ``required`` will raise KeyError if not found in ``d``. Keys in ``optional`` will return None if not found in ``d``. Keys in ``one_of`` will raise KeyError if none exist, otherwise return the first in ``d``. Example:: uid, action, limit, offset = get_many(request.params, required=['uid', 'action'], optional=['limit', 'offset']) Note: This function has been added to the webhelpers package.
25,192
def connect(self, target, acceptor, wrapper=None): if not self.running: raise ValueError("TendrilManager not running") fam = utils.addr_info(target) if self.addr_family != fam: raise ValueError("address family mismatch")
Initiate a connection from the tendril manager's endpoint. Once the connection is completed, a Tendril object will be created and passed to the given acceptor. :param target: The target of the connection attempt. :param acceptor: A callable which will initialize the state of the new Tendril object. :param wrapper: A callable taking, as its first argument, a socket.socket object. The callable must return a valid proxy for the socket.socket object, which will subsequently be used to communicate on the connection. For passing extra arguments to the acceptor or the wrapper, see the ``TendrilPartial`` class; for chaining together multiple wrappers, see the ``WrapperChain`` class.
25,193
def find_codon_mismatches(sbjct_start, sbjct_seq, qry_seq): mis_matches = [] codon_offset = (sbjct_start-1) % 3 i_start = 0 if codon_offset != 0: i_start = 3 - codon_offset sbjct_start = sbjct_start + i_start sbjct_seq = sbjct_seq[i_start:] qry_seq = qry_seq[i_start:] codon_no = int((sbjct_start-1) / 3) q_shift = 0 s_shift = 0 mut_no = 0 indel_no = 0 indels = get_indels(sbjct_seq, qry_seq, sbjct_start) for index in range(0, len(sbjct_seq), 3): codon_no += 1 s_i = index + s_shift q_i = index + q_shift sbjct_codon = sbjct_seq[s_i:s_i+3] qry_codon = qry_seq[q_i:q_i+3] if len(sbjct_seq[s_i:].replace("-","")) + len(qry_codon[q_i:].replace("-","")) < 6: break if sbjct_codon.upper() != qry_codon.upper(): if "-" in sbjct_codon or "-" in qry_codon: try: indel_data = indels[indel_no] except IndexError: print(sbjct_codon, qry_codon) print(indels) print(gene, indel_data, indel_no) mut = indel_data[0] codon_no_indel = indel_data[1] seq_pos = indel_data[2] + sbjct_start - 1 indel = indel_data[3] indel_no +=1 if mut == "ins": sbjct_rf_indel = get_inframe_gap(sbjct_seq[s_i:], 3) qry_rf_indel = get_inframe_gap(qry_seq[q_i:], int(math.floor(len(sbjct_rf_indel)/3) *3)) else: qry_rf_indel = get_inframe_gap(qry_seq[q_i:], 3) sbjct_rf_indel = get_inframe_gap(sbjct_seq[s_i:], int(math.floor(len(qry_rf_indel)/3) *3)) mut_name, aa_ref, aa_alt = name_indel_mutation(sbjct_seq, indel, sbjct_rf_indel, qry_rf_indel, codon_no, mut, sbjct_start - 1) shift_diff_before = abs(s_shift - q_shift) s_shift += len(sbjct_rf_indel) - 3 q_shift += len(qry_rf_indel) - 3 shift_diff = abs(s_shift - q_shift) if shift_diff_before != 0 and shift_diff %3 == 0: if s_shift > q_shift: nucs_needed = int((len(sbjct_rf_indel)/3) *3) + shift_diff pre_qry_indel = qry_rf_indel qry_rf_indel = get_inframe_gap(qry_seq[q_i:], nucs_needed) q_shift += len(qry_rf_indel) - len(pre_qry_indel) elif q_shift > s_shift: nucs_needed = int((len(qry_rf_indel)/3)*3) + shift_diff pre_sbjct_indel = sbjct_rf_indel sbjct_rf_indel = get_inframe_gap(sbjct_seq[s_i:], nucs_needed) s_shift += len(sbjct_rf_indel) - len(pre_sbjct_indel) mut_name, aa_ref, aa_alt = name_indel_mutation(sbjct_seq, indel, sbjct_rf_indel, qry_rf_indel, codon_no, mut, sbjct_start - 1) if "Frameshift" in mut_name: mut_name = mut_name.split("-")[0] + "- Frame restored" mis_matches += [[mut, codon_no_indel, seq_pos, indel, mut_name, sbjct_rf_indel, qry_rf_indel, aa_ref, aa_alt]] no_of_indels = len(re.findall("\-\w", sbjct_rf_indel)) + len(re.findall("\-\w", qry_rf_indel)) if no_of_indels > 1: for j in range(indel_no, indel_no + no_of_indels - 1): try: indel_data = indels[j] except IndexError: sys.exit("indel_data list is out of range, bug!") mut = indel_data[0] codon_no_indel = indel_data[1] seq_pos = indel_data[2] + sbjct_start - 1 indel = indel_data[3] indel_no +=1 mis_matches += [[mut, codon_no_indel, seq_pos, indel, mut_name, sbjct_rf_indel, qry_rf_indel, aa_ref, aa_alt]] if mut == "del": codon_no += int((len(sbjct_rf_indel) - 3)/3) elif sbjct_rf_indel.count("-") == len(sbjct_rf_indel): codon_no -= 1 else: mut = "sub" aa_ref = aa(sbjct_codon) aa_alt = aa(qry_codon) if aa_ref != aa_alt: mut_name = "p." + aa_ref + str(codon_no) + aa_alt mis_matches += [[mut, codon_no, codon_no, aa_alt, mut_name, sbjct_codon, qry_codon, aa_ref, aa_alt]] try: if mis_matches[-1][-1] == "*": mut_name += " - Premature stop codon" mis_matches[-1][4] = mis_matches[-1][4].split("-")[0] + " - Premature stop codon" break except IndexError: pass mis_matches = sorted(mis_matches, key = lambda x:x[1]) return mis_matches
This function takes two alligned sequence (subject and query), and the position on the subject where the alignment starts. The sequences are compared codon by codon. If a mis matches is found it is saved in 'mis_matches'. If a gap is found the function get_inframe_gap is used to find the indel sequence and keep the sequence in the correct reading frame. The function translate_indel is used to name indel mutations and translate the indels to amino acids The function returns a list of tuples containing all needed informations about the mutation in order to look it up in the database dict known mutation and the with the output files the the user.
25,194
def _group_groups(perm_list): perm_list = sorted(perm_list, key=lambda tup: tup[0]) grouped_perms = [] for key, group in groupby(perm_list, lambda tup: (tup[0], tup[1])): grouped_perms.append((key[0], key[1], [g[2] for g in group])) return grouped_perms
Group permissions by group. Input is list of tuples of length 3, where each tuple is in following format:: (<group_id>, <group_name>, <single_permission>) Permissions are regrouped and returned in such way that there is only one tuple for each group:: (<group_id>, <group_name>, [<first_permission>, <second_permission>,...]) :param list perm_list: list of touples of length 3 :return: list tuples with grouped permissions :rtype: list
25,195
def CreateVertices(self, points): gr = digraph() for z, x, Q in points: node = (z, x, Q) gr.add_nodes([node]) return gr
Returns a dictionary object with keys that are 2tuples represnting a point.
25,196
def intermediate_fluents(self) -> Dict[str, PVariable]: return { str(pvar): pvar for pvar in self.pvariables if pvar.is_intermediate_fluent() }
Returns interm-fluent pvariables.
25,197
def query_string(context, key, value): try: request = context[] args = request.GET.copy() except KeyError: args = QueryDict().copy() args[key] = value return args.urlencode()
For adding/replacing a key=value pair to the GET string for a URL. eg, if we're viewing ?p=3 and we do {% query_string order 'taken' %} then this returns "p=3&order=taken" And, if we're viewing ?p=3&order=uploaded and we do the same thing, we get the same result (ie, the existing "order=uploaded" is replaced). Expects the request object in context to do the above; otherwise it will just return a query string with the supplied key=value pair.
25,198
def progress(params, rep): name = params[] fullpath = os.path.join(params[], params[]) logname = os.path.join(fullpath, %rep) if os.path.exists(logname): logfile = open(logname, ) lines = logfile.readlines() logfile.close() return int(100 * len(lines) / params[]) else: return 0
Helper function to calculate the progress made on one experiment.
25,199
def LoadFromStorage(cls, path=None): if path is None: path = os.path.join(os.path.expanduser(), ) return cls(**googleads.common.LoadFromStorage( path, cls._YAML_KEY, cls._REQUIRED_INIT_VALUES, cls._OPTIONAL_INIT_VALUES))
Creates an AdWordsClient with information stored in a yaml file. Args: [optional] path: The path string to the file containing cached AdWords data. Returns: An AdWordsClient initialized with the values cached in the file. Raises: A GoogleAdsValueError if the given yaml file does not contain the information necessary to instantiate a client object - either a required key was missing or an OAuth2 key was missing.