Unnamed: 0
int64
0
389k
code
stringlengths
26
79.6k
docstring
stringlengths
1
46.9k
25,600
def unicode2encode(text, charmap): if isinstance(text, (list, tuple)): unitxt = for line in text: for val,key in charmap.items(): if key in line: line = line.replace(key, val) unitxt += line return unitxt elif isinstance(text, str): for val,key in charmap.items(): if key in text: text = text.replace(key, val) return text
charmap : dictionary which has both encode as key, unicode as value
25,601
def set(self, name: str, value: Union[str, List[str]]) -> None: self._headers[name] = value
设置 header
25,602
def radiance_to_bt(arr, wc_, a__, b__): return a__ + b__ * (C2 * wc_ / (da.log(1 + (C1 * (wc_ ** 3) / arr))))
Convert to BT.
25,603
def detach(self): log.debug("Removing %s from server sockets" % self) if self.sessid in self.server.sockets: self.server.sockets.pop(self.sessid)
Detach this socket from the server. This should be done in conjunction with kill(), once all the jobs are dead, detach the socket for garbage collection.
25,604
def function(self, x, y, theta_E, gamma, e1, e2, center_x=0, center_y=0): phi_G, q = param_util.ellipticity2phi_q(e1, e2) gamma, q = self._param_bounds(gamma, q) theta_E *= q x_shift = x - center_x y_shift = y - center_y E = theta_E / (((3 - gamma) / 2.) ** (1. / (1 - gamma)) * np.sqrt(q)) eta = -gamma+3 xt1 = np.cos(phi_G)*x_shift+np.sin(phi_G)*y_shift xt2 = -np.sin(phi_G)*x_shift+np.cos(phi_G)*y_shift p2 = xt1**2+xt2**2/q**2 s2 = 0. return 2 * E**2/eta**2 * ((p2 + s2)/E**2)**(eta/2)
:param x: set of x-coordinates :type x: array of size (n) :param theta_E: Einstein radius of lense :type theta_E: float. :param gamma: power law slope of mass profifle :type gamma: <2 float :param q: Axis ratio :type q: 0<q<1 :param phi_G: position angel of SES :type q: 0<phi_G<pi/2 :returns: function :raises: AttributeError, KeyError
25,605
def match(self, pattern, context=None): matches = [] regex = pattern if regex == : regex = regex = re.compile(regex) for choice in self.choices(context): if regex.search(choice): matches.append(choice) return matches
This method returns a (possibly empty) list of strings that match the regular expression ``pattern`` provided. You can also provide a ``context`` as described above. This method calls ``choices`` to get a list of all possible choices and then filters the list by performing a regular expression search on each choice using the supplied ``pattern``.
25,606
def strip_prefix(s, prefix, strict=False): if s.startswith(prefix): return s[len(prefix) :] elif strict: raise WimpyError("string doesn't start with prefix") return s
Removes the prefix, if it's there, otherwise returns input string unchanged. If strict is True, also ensures the prefix was present
25,607
def _encode_bool(name, value, dummy0, dummy1): return b"\x08" + name + (value and b"\x01" or b"\x00")
Encode a python boolean (True/False).
25,608
def print_param_defaults(self_): cls = self_.cls for key,val in cls.__dict__.items(): if isinstance(val,Parameter): print(cls.__name__++key+ + repr(val.default))
Print the default values of all cls's Parameters.
25,609
def ephem(self, *args, **kwargs): return self.__class__(self.ephemeris(*args, **kwargs))
Create an Ephem object which is a subset of this one Take the same keyword arguments as :py:meth:`ephemeris` Return: Ephem:
25,610
def _attach_original_exception(self, exc): original_exception = sys.exc_info() if original_exception[0] is not None: exc.original_exception = original_exception
Often, a retry will be raised inside an "except" block. This Keep track of the first exception for debugging purposes
25,611
def register_target(self, target: Target): if target.name in self.targets: first = self.targets[target.name] raise NameError( .format( target, split_build_module(target.name), first, split_build_module(first.name))) self.targets[target.name] = target self.targets_by_module[split_build_module(target.name)].add( target.name)
Register a `target` instance in this build context. A registered target is saved in the `targets` map and in the `targets_by_module` map, but is not added to the target graph until target extraction is completed (thread safety considerations).
25,612
def score_samples(self, X, lengths=None): check_is_fitted(self, "startprob_") self._check() X = check_array(X) n_samples = X.shape[0] logprob = 0 posteriors = np.zeros((n_samples, self.n_components)) for i, j in iter_from_X_lengths(X, lengths): framelogprob = self._compute_log_likelihood(X[i:j]) logprobij, fwdlattice = self._do_forward_pass(framelogprob) logprob += logprobij bwdlattice = self._do_backward_pass(framelogprob) posteriors[i:j] = self._compute_posteriors(fwdlattice, bwdlattice) return logprob, posteriors
Compute the log probability under the model and compute posteriors. Parameters ---------- X : array-like, shape (n_samples, n_features) Feature matrix of individual samples. lengths : array-like of integers, shape (n_sequences, ), optional Lengths of the individual sequences in ``X``. The sum of these should be ``n_samples``. Returns ------- logprob : float Log likelihood of ``X``. posteriors : array, shape (n_samples, n_components) State-membership probabilities for each sample in ``X``. See Also -------- score : Compute the log probability under the model. decode : Find most likely state sequence corresponding to ``X``.
25,613
def getPrevUrl(self, url, data): prevUrl = None if self.prevSearch: try: prevUrl = self.fetchUrl(url, data, self.prevSearch) except ValueError as msg: out.warn(u"%s Assuming no previous comic strips exist." % msg) else: prevUrl = self.prevUrlModifier(prevUrl) out.debug(u"Found previous URL %s" % prevUrl) getHandler().comicPageLink(self.getName(), url, prevUrl) return prevUrl
Find previous URL.
25,614
def get_diskinfo(opts, show_all=False, local_only=False): disks = [] outunit = opts.outunit label_map = get_label_map(opts) try: with open(mntfname) as infile: lines = infile.readlines() lines.sort() except IOError: return None for i, line in enumerate(lines): device, mntp, fmt, mntops, *_ = line.split() if device in (,): continue disk = DiskInfo() dev = basename(device) disk.isnet = in device if local_only and disk.isnet: continue disk.isimg = is_img = dev.startswith() is_tmpfs = (device == ) for selector in selectors: if selector in device: if show_all: if is_tmpfs: disk.isram = True else: if (is_img or is_tmpfs or mntp == ): continue break else: continue disk.dev = dev disk.fmt = fmt disk.mntp = mntp = decode_mntp(mntp) if in mntp else mntp disk.ismntd = bool(mntp) disk.isopt = check_optical(disk) if device[0] == : disk.isrem = check_removable(dev, opts) disk.label = label_map.get(device) stat = os.statvfs(mntp) disk.ocap = stat.f_frsize * stat.f_blocks disk.cap = disk.ocap / outunit disk.free = stat.f_frsize * stat.f_bavail / outunit disk.oused = stat.f_frsize * (stat.f_blocks - stat.f_bfree) disk.used = disk.oused / outunit disk.pcnt = disk.oused / disk.ocap * 100 if mntops.startswith(): disk.rw = True elif mntops.startswith(): disk.rw = False else: disk.rw = not bool(stat.f_flag & os.ST_RDONLY) disks.append(disk) if show_all: for devname in label_map: dev = basename(devname) exists = [ disk for disk in disks if disk.dev == dev ] if not exists: disk = DiskInfo( cap=0, free=0, ocap=0, pcnt=0, used=0, dev = dev, ismntd = False, mntp = , isnet = False, isopt = check_optical(DiskInfo(dev=dev, fmt=None)), isram = False, isrem = check_removable(dev, opts), label = label_map[devname], rw = None, ) disks.append(disk) disks.sort(key=lambda disk: disk.dev) if opts.debug: print() for disk in disks: print(disk.dev, disk) print() return disks
Returns a list holding the current disk info. Stats are divided by the outputunit.
25,615
def unpack_unordered_pairs(self, pairs): items = [(False, k, v) for k, v in pairs] result = [] max_loop = 2 while items and max_loop: next_items = [] for key_unpacked, key_data, value_data in items: if key_unpacked: key = key_data else: blob = self._begin() try: key = self.unpack_data(key_data) self._commit(blob) except DelayPacking: self._rollback(blob) next_items.append((False, key_data, value_data)) continue blob = self._begin() try: value = self.unpack_data(value_data) self._commit(blob) except DelayPacking: self._rollback(blob) next_items.append((True, key, value_data)) continue result.append((key, value)) items = next_items max_loop -= 1 if items: raise DelayPacking() return result
Unpack an unordered list of value pairs taking DelayPacking exceptions into account to resolve circular references . Used to unpack dictionary items when the order is not guarennteed by the serializer. When item order change between packing and unpacking, references are not guaranteed to appear before dereferences anymore. So if unpacking an item fail because of unknown dereference, we must keep it aside, continue unpacking the other items and continue later.
25,616
def relcurveto(self, h1x, h1y, h2x, h2y, x, y): if self._path is None: raise ShoebotError(_("No current path. Use beginpath() first.")) self._path.relcurveto(h1x, h1y, h2x, h2y, x, y)
Draws a curve relatively to the last point.
25,617
def next_doc_with_tag(self, doc_tag): while True: try: doc = next(self) if doc.tag == doc_tag: return doc except StopIteration: raise
Returns the next document with the specified tag. Empty string is no doc is found.
25,618
def surrounding_nodes(self, position): n_node_index, n_node_position, n_node_error = self.nearest_node(position) if n_node_error == 0.0: index_mod = [] for i in range(len(n_node_index)): new_point = np.asarray(n_node_position) new_point[i] += 1.e-5*np.abs(new_point[i]) try: self.nearest_node(tuple(new_point)) index_mod.append(-1) except ValueError: index_mod.append(1) else: index_mod = [] for i in range(len(n_node_index)): if n_node_position[i] > position[i]: index_mod.append(-1) else: index_mod.append(1) return tuple(n_node_index), tuple(index_mod)
Returns nearest node indices and direction of opposite node. :param position: Position inside the mesh to search nearest node for as (x,y,z) :return: Nearest node indices and direction of opposite node.
25,619
def get_maxloss_rupture(dstore, loss_type): lti = dstore[].lti[loss_type] ridx = dstore.get_attr(, )[lti] [rgetter] = gen_rupture_getters(dstore, slice(ridx, ridx + 1)) [ebr] = rgetter.get_ruptures() return ebr
:param dstore: a DataStore instance :param loss_type: a loss type string :returns: EBRupture instance corresponding to the maximum loss for the given loss type
25,620
def bit_reversal(qubits: List[int]) -> Program: p = Program() n = len(qubits) for i in range(int(n / 2)): p.inst(SWAP(qubits[i], qubits[-i - 1])) return p
Generate a circuit to do bit reversal. :param qubits: Qubits to do bit reversal with. :return: A program to do bit reversal.
25,621
def tangent_bundle(self): if self.ndim == 0: return ProductSpace(field=self.field) else: return ProductSpace(self, self.ndim)
The tangent bundle associated with `domain` using `partition`. The tangent bundle of a space ``X`` of functions ``R^d --> F`` can be interpreted as the space of vector-valued functions ``R^d --> F^d``. This space can be identified with the power space ``X^d`` as used in this implementation.
25,622
def temporary(self, path): if path is None: raise ValueError() prior = self._root_dir self._root_dir = path try: yield finally: self._root_dir = prior
Establishes a temporary build root, restoring the prior build root on exit.
25,623
def copy_non_ecf(props, target): target.update( {key: value for key, value in props.items() if key not in ECFPROPNAMES} ) return target
Copies non-ECF properties from ``props`` to ``target`` :param props: An input dictionary :param target: The dictionary to copy non-ECF properties to :return: The ``target`` dictionary
25,624
def derive_fields(self): if self.fields: return self.fields else: fields = [] for field in self.object_list.model._meta.fields: if field.name != : fields.append(field.name) return fields
Derives our fields.
25,625
def get_contigs(self): contigs = {} pyfastaq.tasks.file_to_dict(self.contigs_fasta, contigs) return contigs
Returns a dictionary of contig_name -> pyfastaq.Sequences.Fasta object
25,626
def cleanup(self): for key in self._find_keys(identity=): image_file = self._get(key) if image_file and not image_file.exists(): self.delete(image_file) for key in self._find_keys(identity=): image_file = self._get(key) if image_file: thumbnail_keys = self._get(key, identity=) or [] thumbnail_keys_set = set(thumbnail_keys) for thumbnail_key in thumbnail_keys: if not self._get(thumbnail_key): thumbnail_keys_set.remove(thumbnail_key) thumbnail_keys = list(thumbnail_keys_set) if thumbnail_keys: self._set(key, thumbnail_keys, identity=) continue
Cleans up the key value store. In detail: 1. Deletes all key store references for image_files that do not exist and all key references for its thumbnails *and* their image_files. 2. Deletes or updates all invalid thumbnail keys
25,627
def check_index(i): i = asarray(i) if (i.ndim > 1) or (size(i) < 1): raise Exception("Index must be one-dimensional and non-singleton") return i
Checks and parses an index spec, must be a one-dimensional array [i0, i1, ...]
25,628
def _get(self, operation, field): self._check_exists() query = {Mark.FLD_OP: operation.name, Mark.FLD_MARK + "." + field: {"$exists": True}} return self._track.find_one(query)
Get tracked position for a given operation and field.
25,629
def read_data(self, scaling_factor=1E-9, strain_headers=None): if strain_headers: self.strain.data_variables = strain_headers else: self.strain.data_variables = STRAIN_VARIABLES datafile = open(self.filename, ) reader = csv.DictReader(datafile) self.strain.data = dict([(name, []) for name in reader.fieldnames]) for row in reader: for name in row.keys(): if in name.lower(): self.strain.data[name].append(row[name]) elif name in self.strain.data_variables: self.strain.data[name].append( scaling_factor * float(row[name])) else: self.strain.data[name].append(float(row[name])) for key in self.strain.data.keys(): if in key: self.strain.data[key] = np.array(self.strain.data[key], dtype=) else: self.strain.data[key] = np.array(self.strain.data[key]) self._check_invalid_longitudes() if not in self.strain.data: print() self.strain.data_variables = self.strain.data.keys() self.strain.get_secondary_strain_data() return self.strain
Reads the data from the csv file :param float scaling_factor: Scaling factor used for all strain values (default 1E-9 for nanostrain) :param list strain_headers: List of the variables in the file that correspond to strain parameters :returns: strain - Strain model as an instance of the :class: openquake.hmtk.strain.geodetic_strain.GeodeticStrain
25,630
def from_stream(cls, stream, marker_code, offset): if JPEG_MARKER_CODE.is_standalone(marker_code): segment_length = 0 else: segment_length = stream.read_short(offset) return cls(marker_code, offset, segment_length)
Return a generic |_Marker| instance for the marker at *offset* in *stream* having *marker_code*.
25,631
def get_call_repr(func, *args, **kwargs): if ismethod(func) or isfunction(func) or isbuiltin(func): func_repr = .format(func.__module__, func.__qualname__) elif not isclass(func) and hasattr(func, ): func_repr = .format(func.__module__, func.__class__.__name__) else: func_repr = repr(func) args_reprs = [repr(arg) for arg in args] kwargs_reprs = [k + + repr(v) for k, v in sorted(kwargs.items())] return .format(func_repr, .join(args_reprs + kwargs_reprs))
Return the string representation of the function call. :param func: A callable (e.g. function, method). :type func: callable :param args: Positional arguments for the callable. :param kwargs: Keyword arguments for the callable. :return: String representation of the function call. :rtype: str
25,632
def transition(self): instruction = self.program[self.program_counter] if isinstance(instruction, Gate): if instruction.name in self.defined_gates: self.wf_simulator.do_gate_matrix(matrix=self.defined_gates[instruction.name], qubits=[q.index for q in instruction.qubits]) else: self.wf_simulator.do_gate(gate=instruction) for noise_type, noise_prob in self.post_gate_noise_probabilities.items(): self.wf_simulator.do_post_gate_noise(noise_type, noise_prob, qubits=[q.index for q in instruction.qubits]) self.program_counter += 1 elif isinstance(instruction, Measurement): measured_val = self.wf_simulator.do_measurement(qubit=instruction.qubit.index) x = instruction.classical_reg self.ram[x.name][x.offset] = measured_val self.program_counter += 1 elif isinstance(instruction, Declare): if instruction.shared_region is not None: raise NotImplementedError("SHARING is not (yet) implemented.") self.ram[instruction.name] = np.zeros(instruction.memory_size, dtype=QUIL_TO_NUMPY_DTYPE[ instruction.memory_type]) self.program_counter += 1 elif isinstance(instruction, Pragma): self.program_counter += 1 elif isinstance(instruction, Jump): self.program_counter = self.find_label(instruction.target) elif isinstance(instruction, JumpTarget): self.program_counter += 1 elif isinstance(instruction, JumpConditional): x = instruction.condition cond = self.ram[x.name][x.offset] if not isinstance(cond, (bool, np.bool, np.int8)): raise ValueError("{} requires a data type of BIT; not {}" .format(instruction.op, type(cond))) dest_index = self.find_label(instruction.target) if isinstance(instruction, JumpWhen): jump_if_cond = True elif isinstance(instruction, JumpUnless): jump_if_cond = False else: raise TypeError("Invalid JumpConditional") if not (cond ^ jump_if_cond): self.program_counter = dest_index else: self.program_counter += 1 elif isinstance(instruction, UnaryClassicalInstruction): target = instruction.target old = self.ram[target.name][target.offset] if isinstance(instruction, ClassicalNeg): if not isinstance(old, (int, float, np.int, np.float)): raise ValueError("NEG requires a data type of REAL or INTEGER; not {}" .format(type(old))) self.ram[target.name][target.offset] *= -1 elif isinstance(instruction, ClassicalNot): if not isinstance(old, (bool, np.bool)): raise ValueError("NOT requires a data type of BIT; not {}" .format(type(old))) self.ram[target.name][target.offset] = not old else: raise TypeError("Invalid UnaryClassicalInstruction") self.program_counter += 1 elif isinstance(instruction, (LogicalBinaryOp, ArithmeticBinaryOp, ClassicalMove)): left_ind = instruction.left left_val = self.ram[left_ind.name][left_ind.offset] if isinstance(instruction.right, MemoryReference): right_ind = instruction.right right_val = self.ram[right_ind.name][right_ind.offset] else: right_val = instruction.right if isinstance(instruction, ClassicalAnd): new_val = left_val & right_val elif isinstance(instruction, ClassicalInclusiveOr): new_val = left_val | right_val elif isinstance(instruction, ClassicalExclusiveOr): new_val = left_val ^ right_val elif isinstance(instruction, ClassicalAdd): new_val = left_val + right_val elif isinstance(instruction, ClassicalSub): new_val = left_val - right_val elif isinstance(instruction, ClassicalMul): new_val = left_val * right_val elif isinstance(instruction, ClassicalDiv): new_val = left_val / right_val elif isinstance(instruction, ClassicalMove): new_val = right_val else: raise ValueError("Unknown BinaryOp {}".format(type(instruction))) self.ram[left_ind.name][left_ind.offset] = new_val self.program_counter += 1 elif isinstance(instruction, ClassicalExchange): left_ind = instruction.left right_ind = instruction.right tmp = self.ram[left_ind.name][left_ind.offset] self.ram[left_ind.name][left_ind.offset] = self.ram[right_ind.name][right_ind.offset] self.ram[right_ind.name][right_ind.offset] = tmp self.program_counter += 1 elif isinstance(instruction, Reset): self.wf_simulator.reset() self.program_counter += 1 elif isinstance(instruction, ResetQubit): raise NotImplementedError("Need to implement in wf simulator") self.program_counter += 1 elif isinstance(instruction, Wait): warnings.warn("WAIT does nothing for a noiseless simulator") self.program_counter += 1 elif isinstance(instruction, Nop): self.program_counter += 1 elif isinstance(instruction, DefGate): if instruction.parameters is not None and len(instruction.parameters) > 0: raise NotImplementedError("PyQVM does not support parameterized DEFGATEs") self.defined_gates[instruction.name] = instruction.name self.program_counter += 1 elif isinstance(instruction, RawInstr): raise NotImplementedError("PyQVM does not support raw instructions. " "Parse your program") elif isinstance(instruction, Halt): return True else: raise ValueError("Unsupported instruction type: {}".format(instruction)) return self.program_counter == len(self.program)
Implements a QAM-like transition. This function assumes ``program`` and ``program_counter`` instance variables are set appropriately, and that the wavefunction simulator and classical memory ``ram`` instance variables are in the desired QAM input state. :return: whether the QAM should halt after this transition.
25,633
def _merge_args(qCmd, parsed_args, _extra_values, value_specs): temp_values = _extra_values.copy() for key, value in six.iteritems(temp_values): if hasattr(parsed_args, key): arg_value = getattr(parsed_args, key) if arg_value is not None and value is not None: if isinstance(arg_value, list): if value and isinstance(value, list): if (not arg_value or isinstance(arg_value[0], type(value[0]))): arg_value.extend(value) _extra_values.pop(key)
Merge arguments from _extra_values into parsed_args. If an argument value are provided in both and it is a list, the values in _extra_values will be merged into parsed_args. @param parsed_args: the parsed args from known options @param _extra_values: the other parsed arguments in unknown parts @param values_specs: the unparsed unknown parts
25,634
def data(ctx, path): _rws = partial(rws_call, ctx) if len(path) == 0: _rws(ClinicalStudiesRequest(), default_attr=) elif len(path) == 1: _rws(StudySubjectsRequest(path[0], ), default_attr=) elif len(path) == 2: _rws(StudySubjectsRequest(path[0], path[1]), default_attr=) elif len(path) == 3: try: click.echo(get_data(ctx, path[0], path[1], path[2])) except RWSException as e: click.echo(str(e)) except requests.exceptions.HTTPError as e: click.echo(str(e)) else: click.echo()
List EDC data for [STUDY] [ENV] [SUBJECT]
25,635
def find_window_id(pattern, method=, error=): import utool as ut winid_candidates = XCtrl.findall_window_ids(pattern) if len(winid_candidates) == 0: if error == : available_windows = ut.cmd2()[] msg = % (pattern,) msg += % (available_windows,) print(msg) raise Exception(msg) win_id = None elif len(winid_candidates) == 1: win_id = winid_candidates[0] else: win_id = XCtrl.sort_window_ids(winid_candidates, method)[0] return win_id
xprop -id 0x00a00007 | grep "WM_CLASS(STRING)"
25,636
def classify(label_dict,image_fname=None,image_label=None): anatomySPGRMPRAGEanatanatomydtiDTIfield_mapfieldmapTE7B0 min_acceptable_match = 80 if image_fname: label_info = info_for_tags(image_fname,[(0x8,0x103e)]) image_label = label_info[(0x8,0x103e)] flat_dict = [i for j in [[(b,x) for x in label_dict[b]] for b in label_dict] for i in j] best_match = process.extractOne(image_label,[x[1] for x in flat_dict]) if best_match[1]<min_acceptable_match: return None else: return [x[0] for x in flat_dict if x[1]==best_match[0]][0]
tries to classify a DICOM image based on known string patterns (with fuzzy matching) Takes the label from the DICOM header and compares to the entries in ``label_dict``. If it finds something close it will return the image type, otherwise it will return ``None``. Alternatively, you can supply your own string, ``image_label``, and it will try to match that. ``label_dict`` is a dictionary where the keys are dataset types and the values are lists of strings that match that type. For example:: { 'anatomy': ['SPGR','MPRAGE','anat','anatomy'], 'dti': ['DTI'], 'field_map': ['fieldmap','TE7','B0'] }
25,637
def diff_encode(line, transform): coords = [transform(x, y) for (x, y) in line.coords] pairs = zip(coords[:], coords[1:]) diffs = [(x2 - x1, y2 - y1) for ((x1, y1), (x2, y2)) in pairs] return coords[:1] + [(x, y) for (x, y) in diffs if (x, y) != (0, 0)]
Differentially encode a shapely linestring or ring.
25,638
def set_board_options(self, options, team_context, id): project = None team = None if team_context is not None: if team_context.project_id: project = team_context.project_id else: project = team_context.project if team_context.team_id: team = team_context.team_id else: team = team_context.team route_values = {} if project is not None: route_values[] = self._serialize.url(, project, ) if team is not None: route_values[] = self._serialize.url(, team, ) if id is not None: route_values[] = self._serialize.url(, id, ) content = self._serialize.body(options, ) response = self._send(http_method=, location_id=, version=, route_values=route_values, content=content) return self._deserialize(, self._unwrap_collection(response))
SetBoardOptions. Update board options :param {str} options: options to updated :param :class:`<TeamContext> <azure.devops.v5_0.work.models.TeamContext>` team_context: The team context for the operation :param str id: identifier for board, either category plural name (Eg:"Stories") or guid :rtype: {str}
25,639
async def remove_all_pumps_async(self, reason): pump_tasks = [self.remove_pump_async(p_id, reason) for p_id in self.partition_pumps] await asyncio.gather(*pump_tasks) return True
Stops all partition pumps (Note this might be wrong and need to await all tasks before returning done). :param reason: A reason for closing. :type reason: str :rtype: bool
25,640
def parse_info(raw_info, apply_tag=None): parse_releases(raw_info) parse_packages(raw_info, apply_tag=apply_tag) return raw_info
Parse raw rdoinfo metadata inplace. :param raw_info: raw info to parse :param apply_tag: tag to apply :returns: dictionary containing all packages in rdoinfo
25,641
def action(self, *args, **kwargs): try: return self._action(*args, **kwargs) except KeyError, x: self.config.logger.debug( , to_str(self.__class__), x, ) except Exception, x: self.config.logger.debug( , to_str(self.__class__), x, exc_info=True ) return False
the default action for Support Classifiers invokes any derivied _action function, trapping any exceptions raised in the process. We are obligated to catch these exceptions to give subsequent rules the opportunity to act and perhaps mitigate the error. An error during the action application is a failure of the rule, not a failure of the classification system itself.
25,642
def _aggregate_on_chunks(x, f_agg, chunk_len): return [getattr(x[i * chunk_len: (i + 1) * chunk_len], f_agg)() for i in range(int(np.ceil(len(x) / chunk_len)))]
Takes the time series x and constructs a lower sampled version of it by applying the aggregation function f_agg on consecutive chunks of length chunk_len :param x: the time series to calculate the aggregation of :type x: numpy.ndarray :param f_agg: The name of the aggregation function that should be an attribute of the pandas.Series :type f_agg: str :param chunk_len: The size of the chunks where to aggregate the time series :type chunk_len: int :return: A list of the aggregation function over the chunks :return type: list
25,643
def get_parent_data(tree, node, current): if not current: current = [] parent = tree.parent(node.identifier) if parent.is_root(): return current current.insert(0, (parent.tag, parent.data)) return PlateManager.get_parent_data(tree, parent, current)
Recurse up the tree getting parent data :param tree: The tree :param node: The current node :param current: The current list :return: The hierarchical dictionary
25,644
def gradient_rgb( self, text=None, fore=None, back=None, style=None, start=None, stop=None, step=1, linemode=True, movefactor=0): gradargs = { : step, : fore, : back, : style, } start = start or (0, 0, 0) stop = stop or (255, 255, 255) if linemode: method = self._gradient_rgb_lines gradargs[] = movefactor else: method = self._gradient_rgb_line if text: return self.__class__( .join(( self.data or , method( text, start, stop, **gradargs ), )) ) return self.__class__( method( self.stripped(), start, stop, **gradargs ) )
Return a black and white gradient. Arguments: text : String to colorize. fore : Foreground color, background will be gradient. back : Background color, foreground will be gradient. style : Name of style to use for the gradient. start : Starting rgb value. stop : Stopping rgb value. step : Number of characters to colorize per color. This allows a "wider" gradient. This will always be greater than 0. linemode : Colorize each line in the input. Default: True movefactor : Amount to shift gradient for each line when `linemode` is set.
25,645
def read_backend(self, client=None): session = self.session if session: return session.model(self).read_backend
The read :class:`stdnet.BackendDatServer` for this instance. It can be ``None``.
25,646
def average_over_area(q, x, y): area = (np.max(x) - np.min(x))*(np.max(y) - np.min(y)) integral = np.trapz(np.trapz(q, y, axis=0), x) return integral/area
Averages a quantity `q` over a rectangular area given a 2D array and the x and y vectors for sample locations, using the trapezoidal rule
25,647
def create_api_vlan(self): return ApiVlan( self.networkapi_url, self.user, self.password, self.user_ldap)
Get an instance of Api Vlan services facade.
25,648
def get_valid_filename(s, max_length=FILENAME_MAX_LENGTH): s = str(s).strip().replace(, ) s = re.sub(r, , s).strip() return s[:max_length]
Returns the given string converted to a string that can be used for a clean filename. Removes leading and trailing spaces; converts anything that is not an alphanumeric, dash or underscore to underscore; converts behave examples separator ` -- @` to underscore. It also cuts the resulting name to `max_length`. @see https://github.com/django/django/blob/master/django/utils/text.py
25,649
def get_absolute_url_link(self, text=None, cls=None, icon_class=None, **attrs): if text is None: text = self.get_link_text() return build_link(href=self.get_absolute_url(), text=text, cls=cls, icon_class=icon_class, **attrs)
Gets the html link for the object.
25,650
def FanOut(self, obj, parent=None): if parent and obj == parent: results = [utils.SmartUnicode(obj).strip()] elif isinstance(obj, (string_types, rdf_structs.EnumNamedValue)): results = [utils.SmartUnicode(obj).strip()] elif isinstance(obj, rdf_protodict.DataBlob): results = self.FanOut(obj.GetValue()) elif isinstance(obj, (collections.Mapping, rdf_protodict.Dict)): results = [] for k, v in iteritems(obj): expanded_v = [utils.SmartUnicode(r) for r in self.FanOut(v)] results.append("%s:%s" % (utils.SmartUnicode(k), ",".join(expanded_v))) elif isinstance(obj, (collections.Iterable, rdf_structs.RepeatedFieldHelper)): results = [] for rslt in [self.FanOut(o, obj) for o in obj]: results.extend(rslt) else: results = [utils.SmartUnicode(obj).strip()] return results
Expand values from various attribute types. Strings are returned as is. Dictionaries are returned with a key string, and an expanded set of values. Other iterables are expanded until they flatten out. Other items are returned in string format. Args: obj: The object to expand out. parent: The parent object: Used to short-circuit infinite recursion. Returns: a list of expanded values as strings.
25,651
def get_old_filename(diff_part): regexps = ( r, r, ) for regexp in regexps: r = re.compile(regexp, re.MULTILINE) match = r.search(diff_part) if match is not None: return match.groups()[0] raise MalformedGitDiff("No old filename in diff part found. " "Examined diff part: {}".format(diff_part))
Returns the filename for the original file that was changed in a diff part.
25,652
def multi_zset(self, name, **kvs): for k,v in kvs.items(): kvs[k] = get_integer(k, int(v)) return self.execute_command(, name, *dict_to_list(kvs))
Return a dictionary mapping key/value by ``keys`` from zset ``names`` :param string name: the zset name :param list keys: a list of keys :return: the number of successful creation :rtype: int >>> ssdb.multi_zset('zset_4', a=100, b=80, c=90, d=70) 4 >>> ssdb.multi_zset('zset_4', a=100, b=80, c=90, d=70) 0 >>> ssdb.multi_zset('zset_4', a=100, b=80, c=90, d=70, e=60) 1
25,653
def load_learner(path:PathOrStr, file:PathLikeOrBinaryStream=, test:ItemList=None, **db_kwargs): "Load a `Learner` object saved with `export_state` in `path/file` with empty data, optionally add `test` and load on `cpu`. `file` can be file-like (file or buffer)" source = Path(path)/file if is_pathlike(file) else file state = torch.load(source, map_location=) if defaults.device == torch.device() else torch.load(source) model = state.pop() src = LabelLists.load_state(path, state.pop()) if test is not None: src.add_test(test) data = src.databunch(**db_kwargs) cb_state = state.pop() clas_func = state.pop() res = clas_func(data, model, **state) res.callback_fns = state[] res.callbacks = [load_callback(c,s, res) for c,s in cb_state.items()] return res
Load a `Learner` object saved with `export_state` in `path/file` with empty data, optionally add `test` and load on `cpu`. `file` can be file-like (file or buffer)
25,654
def verify_signature(args): key_data = args.keyfile.read() if b"-BEGIN EC PRIVATE KEY" in key_data: sk = ecdsa.SigningKey.from_pem(key_data) vk = sk.get_verifying_key() elif b"-BEGIN PUBLIC KEY" in key_data: vk = ecdsa.VerifyingKey.from_pem(key_data) elif len(key_data) == 64: vk = ecdsa.VerifyingKey.from_string(key_data, curve=ecdsa.NIST256p) else: raise esptool.FatalError("Verification key does not appear to be an EC key in PEM format or binary EC public key data. Unsupported") if vk.curve != ecdsa.NIST256p: raise esptool.FatalError("Public key uses incorrect curve. ESP32 Secure Boot only supports NIST256p (openssl calls this curve 'prime256v1") binary_content = args.datafile.read() data = binary_content[0:-68] sig_version, signature = struct.unpack("I64s", binary_content[-68:]) if sig_version != 0: raise esptool.FatalError("Signature block has version %d. This version of espsecure only supports version 0." % sig_version) print("Verifying %d bytes of data" % len(data)) try: if vk.verify(signature, data, hashlib.sha256): print("Signature is valid") else: raise esptool.FatalError("Signature is not valid") except ecdsa.keys.BadSignatureError: raise esptool.FatalError("Signature is not valid")
Verify a previously signed binary image, using the ECDSA public key
25,655
def parse_model_file(path): context = FilePathContext(path) format = resolve_format(None, context.filepath) if format == : logger.debug(.format(context.filepath)) with context.open() as f: for reaction_id in parse_model_table_file(context, f): yield reaction_id elif format == : logger.debug(.format(context.filepath)) with context.open() as f: for reaction_id in parse_model_yaml_file(context, f): yield reaction_id
Parse a file as a list of model reactions The file format is detected and the file is parsed accordinly. The file is specified as a file path that will be opened for reading. Path can be given as a string or a context.
25,656
def _busy_wait_ms(self, ms): start = time.time() delta = ms/1000.0 while (time.time() - start) <= delta: pass
Busy wait for the specified number of milliseconds.
25,657
def open_recruitment(self, n=1): logger.info("Opening HotAir recruitment for {} participants".format(n)) recruitments = self.recruit(n) message = "Recruitment requests will open browser windows automatically." return {"items": recruitments, "message": message}
Return initial experiment URL list, plus instructions for finding subsequent recruitment events in experiemnt logs.
25,658
def AddOperands(self, lhs, rhs): if isinstance(lhs, Expression) and isinstance(rhs, Expression): self.args = [lhs, rhs] else: raise errors.ParseError( .format( lhs, self.operator, rhs))
Add an operand.
25,659
def get_batch_unlock_gain( channel_state: NettingChannelState, ) -> UnlockGain: gain_from_partner_locks = TokenAmount(sum( unlock.lock.amount for unlock in channel_state.partner_state.secrethashes_to_onchain_unlockedlocks.values() )) our_locked_locks_amount = sum( lock.amount for lock in channel_state.our_state.secrethashes_to_lockedlocks.values() ) our_unclaimed_locks_amount = sum( lock.amount for lock in channel_state.our_state.secrethashes_to_unlockedlocks.values() ) gain_from_our_locks = TokenAmount(our_locked_locks_amount + our_unclaimed_locks_amount) return UnlockGain( from_partner_locks=gain_from_partner_locks, from_our_locks=gain_from_our_locks, )
Collect amounts for unlocked/unclaimed locks and onchain unlocked locks. Note: this function does not check expiry, so the values make only sense during settlement. Returns: gain_from_partner_locks: locks amount received and unlocked on-chain gain_from_our_locks: locks amount which are unlocked or unclaimed
25,660
def copy_contents(self, fileinstance, progress_callback=None, chunk_size=None, **kwargs): if not fileinstance.readable: raise ValueError() if not self.size == 0: raise ValueError() self.set_uri( *self.storage(**kwargs).copy( fileinstance.storage(**kwargs), chunk_size=chunk_size, progress_callback=progress_callback))
Copy this file instance into another file instance.
25,661
def _item_sources(self): return [self.data_vars, self.coords, {d: self[d] for d in self.dims}, LevelCoordinatesSource(self)]
List of places to look-up items for key-completion
25,662
def evaluate(self, dataset, metric=, missing_value_action=): _raise_error_evaluation_metric_is_valid( metric, [, , ]) return super(RandomForestRegression, self).evaluate(dataset, missing_value_action=missing_value_action, metric=metric)
Evaluate the model on the given dataset. Parameters ---------- dataset : SFrame Dataset in the same format used for training. The columns names and types of the dataset must be the same as that used in training. metric : str, optional Name of the evaluation metric. Possible values are: 'auto' : Compute all metrics. 'rmse' : Rooted mean squared error. 'max_error' : Maximum error. missing_value_action : str, optional Action to perform when missing values are encountered. Can be one of: - 'auto': By default the model will treat missing value as is. - 'impute': Proceed with evaluation by filling in the missing values with the mean of the training data. Missing values are also imputed if an entire column of data is missing during evaluation. - 'error': Do not proceed with evaluation and terminate with an error message. Returns ------- out : dict A dictionary containing the evaluation result. See Also -------- create, predict Examples -------- .. sourcecode:: python >>> results = model.evaluate(test_data, 'rmse')
25,663
def _index2word(self): compute_index2word = lambda: self.keys() try: self._index2word_cache except AttributeError: self._index2word_cache = compute_index2word() if len(self._index2word_cache) != len(self): self._index2word_cache = compute_index2word() return self._index2word_cache
Mapping from indices to words. WARNING: this may go out-of-date, because it is a copy, not a view into the Vocab. :return: a list of strings
25,664
def is_likely_link(text): text = text.lower() if ( text.startswith() or text.startswith() or text.startswith() or text.startswith() or text.startswith() or text.endswith() or text.startswith() ): return True dummy, dot, file_extension = text.rpartition() if dot and file_extension and len(file_extension) <= 4: file_extension_set = frozenset(file_extension) if file_extension_set \ and file_extension_set <= ALPHANUMERIC_CHARS \ and not file_extension_set <= NUMERIC_CHARS: if file_extension in COMMON_TLD: return False file_type = mimetypes.guess_type(text, strict=False)[0] if file_type: return True else: return False
Return whether the text is likely to be a link. This function assumes that leading/trailing whitespace has already been removed. Returns: bool
25,665
def forward(self, agent_qs, states): bs = agent_qs.size(0) states = states.reshape(-1, self.state_dim) agent_qs = agent_qs.view(-1, 1, self.n_agents) w1 = th.abs(self.hyper_w_1(states)) b1 = self.hyper_b_1(states) w1 = w1.view(-1, self.n_agents, self.embed_dim) b1 = b1.view(-1, 1, self.embed_dim) hidden = F.elu(th.bmm(agent_qs, w1) + b1) w_final = th.abs(self.hyper_w_final(states)) w_final = w_final.view(-1, self.embed_dim, 1) v = self.V(states).view(-1, 1, 1) y = th.bmm(hidden, w_final) + v q_tot = y.view(bs, -1, 1) return q_tot
Forward pass for the mixer. Arguments: agent_qs: Tensor of shape [B, T, n_agents, n_actions] states: Tensor of shape [B, T, state_dim]
25,666
def _get_table_info(self): self.fields = [] self.field_info = {} self.cursor.execute( %self.name) for field_info in self.cursor.fetchall(): fname = field_info[1].encode() self.fields.append(fname) ftype = field_info[2].encode() info = {:ftype} info[] = field_info[3] != 0 default = field_info[4] if isinstance(default,unicode): default = guess_default_fmt(default) info[] = default self.field_info[fname] = info
Inspect the base to get field names
25,667
def requirements(collector): out = sys.stdout artifact = collector.configuration[].artifact if artifact not in (None, "", NotSpecified): if isinstance(artifact, six.string_types): out = open(artifact, ) else: out = artifact for active in collector.configuration[].values(): for requirement in active.requirements(): out.write("{0}\n".format(requirement))
Just print out the requirements
25,668
async def create( cls, node: Union[Node, str], interface_type: InterfaceType = InterfaceType.PHYSICAL, *, name: str = None, mac_address: str = None, tags: Iterable[str] = None, vlan: Union[Vlan, int] = None, parent: Union[Interface, int] = None, parents: Iterable[Union[Interface, int]] = None, mtu: int = None, accept_ra: bool = None, autoconf: bool = None, bond_mode: str = None, bond_miimon: int = None, bond_downdelay: int = None, bond_updelay: int = None, bond_lacp_rate: str = None, bond_xmit_hash_policy: str = None, bridge_stp: bool = None, bridge_fd: int = None): params = {} if isinstance(node, str): params[] = node elif isinstance(node, Node): params[] = node.system_id else: raise TypeError( % ( type(node).__name__)) if name is not None: params[] = name if tags is not None: params[] = tags if mtu is not None: params[] = mtu if vlan is not None: if isinstance(vlan, Vlan): params[] = vlan.id elif isinstance(vlan, int): params[] = vlan else: raise TypeError( % ( type(vlan).__name__)) if accept_ra is not None: params[] = accept_ra if autoconf is not None: params[] = autoconf handler = None if not isinstance(interface_type, InterfaceType): raise TypeError( % ( type(interface_type).__name__)) if interface_type == InterfaceType.PHYSICAL: handler = cls._handler.create_physical if mac_address: params[] = mac_address else: raise ValueError( ) elif interface_type == InterfaceType.BOND: handler = cls._handler.create_bond if parent is not None: raise ValueError("use parents not parent for bond interface") if not isinstance(parents, Iterable): raise TypeError( % ( type(parents).__name__)) if len(parents) == 0: raise ValueError( ) params[] = list(gen_parents(parents)) if not name: raise ValueError() if mac_address is not None: params[] = mac_address if bond_mode is not None: params[] = bond_mode if bond_miimon is not None: params[] = bond_miimon if bond_downdelay is not None: params[] = bond_downdelay if bond_updelay is not None: params[] = bond_updelay if bond_lacp_rate is not None: params[] = bond_lacp_rate if bond_xmit_hash_policy is not None: params[] = bond_xmit_hash_policy elif interface_type == InterfaceType.VLAN: handler = cls._handler.create_vlan if parents is not None: raise ValueError("use parent not parents for VLAN interface") if parent is None: raise ValueError("parent is required for VLAN interface") params[] = get_parent(parent) if vlan is None: raise ValueError("vlan is required for VLAN interface") elif interface_type == InterfaceType.BRIDGE: handler = cls._handler.create_bridge if parents is not None: raise ValueError("use parent not parents for bridge interface") if parent is None: raise ValueError("parent is required for bridge interface") params[] = get_parent(parent) if not name: raise ValueError() if mac_address is not None: params[] = mac_address if bridge_stp is not None: params[] = bridge_stp if bridge_fd is not None: params[] = bridge_fd else: raise ValueError( "cannot create an interface of type: %s" % interface_type) return cls._object(await handler(**params))
Create a `Interface` in MAAS. :param node: Node to create the interface on. :type node: `Node` or `str` :param interface_type: Type of interface to create (optional). :type interface_type: `InterfaceType` :param name: The name for the interface (optional). :type name: `str` :param tags: List of tags to add to the interface. :type tags: sequence of `str` :param mtu: The MTU for the interface (optional). :type mtu: `int` :param vlan: VLAN the interface is connected to (optional). :type vlan: `Vlan` or `int` :param accept_ra: True if the interface should accepted router advertisements. (optional) :type accept_ra: `bool` :param autoconf: True if the interface should auto configure. :type autoconf: `bool` Following parameters specific to physical interface. :param mac_address: The MAC address for the interface. :type mac_address: `str` Following parameters specific to a bond interface. :param parents: Parent interfaces that make up the bond. :type parents: sequence of `Interface` or `int` :param mac_address: MAC address to use for the bond (optional). :type mac_address: `str` :param bond_mode: The operating mode of the bond (optional). :type bond_mode: `str` :param bond_miimon: The link monitoring freqeuncy in milliseconds (optional). :type bond_miimon: `int` :param bond_downdelay: Specifies the time, in milliseconds, to wait before disabling a slave after a link failure has been detected (optional). :type bond_downdelay: `int` :param bond_updelay: Specifies the time, in milliseconds, to wait before enabling a slave after a link recovery has been detected. :type bond_updelay: `int` :param bond_lacp_rate: Option specifying the rate in which we'll ask our link partner to transmit LACPDU packets in 802.3ad mode (optional). :type bond_lacp_rate: `str` :param bond_xmit_hash_policy: The transmit hash policy to use for slave selection in balance-xor, 802.3ad, and tlb modes(optional). :type bond_xmit_hash_policy: `str` Following parameters specific to a VLAN interface. :param parent: Parent interface for this VLAN interface. :type parent: `Interface` or `int` Following parameters specific to a Bridge interface. :param parent: Parent interface for this bridge interface. :type parent: `Interface` or `int` :param mac_address: The MAC address for the interface (optional). :type mac_address: `str` :param bridge_stp: Turn spanning tree protocol on or off (optional). :type bridge_stp: `bool` :param bridge_fd: Set bridge forward delay to time seconds (optional). :type bridge_fd: `int` :returns: The created Interface. :rtype: `Interface`
25,669
def format_help(help): help = help.replace("Options:", str(crayons.normal("Options:", bold=True))) help = help.replace( "Usage: pipenv", str("Usage: {0}".format(crayons.normal("pipenv", bold=True))) ) help = help.replace(" check", str(crayons.red(" check", bold=True))) help = help.replace(" clean", str(crayons.red(" clean", bold=True))) help = help.replace(" graph", str(crayons.red(" graph", bold=True))) help = help.replace(" install", str(crayons.magenta(" install", bold=True))) help = help.replace(" lock", str(crayons.green(" lock", bold=True))) help = help.replace(" open", str(crayons.red(" open", bold=True))) help = help.replace(" run", str(crayons.yellow(" run", bold=True))) help = help.replace(" shell", str(crayons.yellow(" shell", bold=True))) help = help.replace(" sync", str(crayons.green(" sync", bold=True))) help = help.replace(" uninstall", str(crayons.magenta(" uninstall", bold=True))) help = help.replace(" update", str(crayons.green(" update", bold=True))) additional_help = .format( crayons.red("pipenv --three"), crayons.red("pipenv --python 3.7"), crayons.red("pipenv install --dev"), crayons.red("pipenv lock"), crayons.red("pipenv graph"), crayons.red("pipenv install -e ."), crayons.red("pipenv lock --pre"), crayons.red("pipenv check"), crayons.red("pipenv run pip freeze"), crayons.red("pipenv --rm"), ) help = help.replace("Commands:", additional_help) return help
Formats the help string.
25,670
def __if_not_basestring(text_object): converted_str = text_object if not isinstance(text_object, str): converted_str = str(text_object) return converted_str
Convert to str
25,671
def _ReadMemberFooter(self, file_object): file_offset = file_object.get_offset() member_footer = self._ReadStructure( file_object, file_offset, self._MEMBER_FOOTER_SIZE, self._MEMBER_FOOTER, ) self.uncompressed_data_size = member_footer.uncompressed_data_size
Reads a member footer. Args: file_object (FileIO): file-like object to read from. Raises: FileFormatError: if the member footer cannot be read.
25,672
def characters (self, data): data = data.encode(self.encoding, "ignore") self.fd.write(data)
Print characters. @param data: the character data @type data: string @return: None
25,673
def load_modes(self, input_modes=None): _modes = [ GameMode( mode="normal", priority=2, digits=4, digit_type=DigitWord.DIGIT, guesses_allowed=10 ), GameMode( mode="easy", priority=1, digits=3, digit_type=DigitWord.DIGIT, guesses_allowed=6 ), GameMode( mode="hard", priority=3, digits=6, digit_type=DigitWord.DIGIT, guesses_allowed=6 ), GameMode( mode="hex", priority=4, digits=4, digit_type=DigitWord.HEXDIGIT, guesses_allowed=10 ) ] if input_modes is not None: if not isinstance(input_modes, list): raise TypeError("Expected list of input_modes") for mode in input_modes: if not isinstance(mode, GameMode): raise TypeError("Expected list to contain only GameMode objects") _modes.append(mode) self._game_modes = copy.deepcopy(_modes)
Loads modes (GameMode objects) to be supported by the game object. Four default modes are provided (normal, easy, hard, and hex) but others could be provided either by calling load_modes directly or passing a list of GameMode objects to the instantiation call. :param input_modes: A list of GameMode objects; nb: even if only one new GameMode object is provided, it MUST be passed as a list - for example, passing GameMode gm1 would require passing [gm1] NOT gm1. :return: A list of GameMode objects (both defaults and any added).
25,674
def multi_subplots_time(DataArray, SubSampleN=1, units=, xlim=None, ylim=None, LabelArray=[], show_fig=True): unit_prefix = units[:-1] NumDataSets = len(DataArray) if LabelArray == []: LabelArray = ["DataSet {}".format(i) for i in _np.arange(0, len(DataArray), 1)] fig, axs = _plt.subplots(NumDataSets, 1) for i, data in enumerate(DataArray): axs[i].plot(unit_conversion(data.time.get_array()[::SubSampleN], unit_prefix), data.voltage[::SubSampleN], alpha=0.8, label=LabelArray[i]) axs[i].set_xlabel("time ({})".format(units)) axs[i].grid(which="major") axs[i].legend(loc="best") axs[i].set_ylabel("voltage (V)") if xlim != None: axs[i].set_xlim(xlim) if ylim != None: axs[i].set_ylim(ylim) if show_fig == True: _plt.show() return fig, axs
plot the time trace on multiple axes Parameters ---------- DataArray : array-like array of DataObject instances for which to plot the PSDs SubSampleN : int, optional Number of intervals between points to remove (to sub-sample data so that you effectively have lower sample rate to make plotting easier and quicker. xlim : array-like, optional 2 element array specifying the lower and upper x limit for which to plot the time signal LabelArray : array-like, optional array of labels for each data-set to be plotted show_fig : bool, optional If True runs plt.show() before returning figure if False it just returns the figure object. (the default is True, it shows the figure) Returns ------- fig : matplotlib.figure.Figure object The figure object created axs : list of matplotlib.axes.Axes objects The list of axes object created
25,675
def logout(self): try: self.browser.quit() except Exception: raise exceptions.BrowserException(self.brow_name, "not started") return False self.vbro.stop() logger.info("logged out") return True
logout func (quit browser)
25,676
def auth_user(self, username, password): password_hash = hashlib.sha512(password.encode("utf-8")).hexdigest() user = self._database.users.find_one( {"username": username, "password": password_hash, "activate": {"$exists": False}}) return user if user is not None and self.connect_user(username, user["realname"], user["email"], user["language"]) else None
Authenticate the user in database :param username: Username/Login :param password: User password :return: Returns a dict represrnting the user
25,677
def make_source_mask(data, snr, npixels, mask=None, mask_value=None, filter_fwhm=None, filter_size=3, filter_kernel=None, sigclip_sigma=3.0, sigclip_iters=5, dilate_size=11): from scipy import ndimage threshold = detect_threshold(data, snr, background=None, error=None, mask=mask, mask_value=None, sigclip_sigma=sigclip_sigma, sigclip_iters=sigclip_iters) kernel = None if filter_kernel is not None: kernel = filter_kernel if filter_fwhm is not None: sigma = filter_fwhm * gaussian_fwhm_to_sigma kernel = Gaussian2DKernel(sigma, x_size=filter_size, y_size=filter_size) if kernel is not None: kernel.normalize() segm = detect_sources(data, threshold, npixels, filter_kernel=kernel) selem = np.ones((dilate_size, dilate_size)) return ndimage.binary_dilation(segm.data.astype(np.bool), selem)
Make a source mask using source segmentation and binary dilation. Parameters ---------- data : array_like The 2D array of the image. snr : float The signal-to-noise ratio per pixel above the ``background`` for which to consider a pixel as possibly being part of a source. npixels : int The number of connected pixels, each greater than ``threshold``, that an object must have to be detected. ``npixels`` must be a positive integer. mask : array_like, bool, optional A boolean mask with the same shape as ``data``, where a `True` value indicates the corresponding element of ``data`` is masked. Masked pixels are ignored when computing the image background statistics. mask_value : float, optional An image data value (e.g., ``0.0``) that is ignored when computing the image background statistics. ``mask_value`` will be ignored if ``mask`` is input. filter_fwhm : float, optional The full-width at half-maximum (FWHM) of the Gaussian kernel to filter the image before thresholding. ``filter_fwhm`` and ``filter_size`` are ignored if ``filter_kernel`` is defined. filter_size : float, optional The size of the square Gaussian kernel image. Used only if ``filter_fwhm`` is defined. ``filter_fwhm`` and ``filter_size`` are ignored if ``filter_kernel`` is defined. filter_kernel : array-like (2D) or `~astropy.convolution.Kernel2D`, optional The 2D array of the kernel used to filter the image before thresholding. Filtering the image will smooth the noise and maximize detectability of objects with a shape similar to the kernel. ``filter_kernel`` overrides ``filter_fwhm`` and ``filter_size``. sigclip_sigma : float, optional The number of standard deviations to use as the clipping limit when calculating the image background statistics. sigclip_iters : int, optional The number of iterations to perform sigma clipping, or `None` to clip until convergence is achieved (i.e., continue until the last iteration clips nothing) when calculating the image background statistics. dilate_size : int, optional The size of the square array used to dilate the segmentation image. Returns ------- mask : 2D `~numpy.ndarray`, bool A 2D boolean image containing the source mask.
25,678
def start_drag(self, sprite, cursor_x = None, cursor_y = None): cursor_x, cursor_y = cursor_x or sprite.x, cursor_y or sprite.y self._mouse_down_sprite = self._drag_sprite = sprite sprite.drag_x, sprite.drag_y = self._drag_sprite.x, self._drag_sprite.y self.__drag_start_x, self.__drag_start_y = cursor_x, cursor_y self.__drag_started = True
start dragging given sprite
25,679
def stellar_luminosity2(self, steps=10000): msg = ": ADW 2017-09-20"%self.__class__.__name__ DeprecationWarning(msg) mass_init, mass_pdf, mass_act, mag_1, mag_2 = self.sample(mass_steps=steps) luminosity_interpolation = scipy.interpolate.interp1d(self.mass_init, self.luminosity,fill_value=0,bounds_error=False) luminosity = luminosity_interpolation(mass_init) return np.sum(luminosity * mass_pdf)
DEPRECATED: ADW 2017-09-20 Compute the stellar luminosity (L_Sol; average per star). Uses "sample" to generate mass sample and pdf. The range of integration only covers the input isochrone data (no extrapolation used), but this seems like a sub-percent effect if the isochrone goes to 0.15 Msun for the old and metal-poor stellar populations of interest. Note that the stellar luminosity is very sensitive to the post-AGB population.
25,680
def design(self, max_stimuli=-1, max_inhibitors=-1, max_experiments=10, relax=False, configure=None): self.designs = [] args = [ % max_stimuli, % max_inhibitors, ] clingo = gringo.Control(args) clingo.conf.solve.opt_mode = if configure is not None: configure(clingo.conf) clingo.add("base", [], self.instance) clingo.load(self.encodings[]) clingo.ground([("base", [])]) if relax: parts = [("step", [step]) for step in xrange(1, max_experiments+1)] parts.append(("diff", [max_experiments + 1])) clingo.ground(parts) ret = clingo.solve(on_model=self.__save__) else: step, ret = 0, gringo.SolveResult.UNKNOWN while step <= max_experiments and ret != gringo.SolveResult.SAT: parts = [] parts.append(("check", [step])) if step > 0: clingo.release_external(gringo.Fun("query", [step-1])) parts.append(("step", [step])) clingo.cleanup_domains() clingo.ground(parts) clingo.assign_external(gringo.Fun("query", [step]), True) ret, step = clingo.solve(on_model=self.__save__), step + 1 self.stats[] = clingo.stats[] self.stats[] = clingo.stats[] self._logger.info("%s optimal experimental designs found in %.4fs", len(self.designs), self.stats[])
Finds all optimal experimental designs using up to :attr:`max_experiments` experiments, such that each experiment has up to :attr:`max_stimuli` stimuli and :attr:`max_inhibitors` inhibitors. Each optimal experimental design is appended in the attribute :attr:`designs` as an instance of :class:`caspo.core.clamping.ClampingList`. Example:: >>> from caspo import core, design >>> networks = core.LogicalNetworkList.from_csv('behaviors.csv') >>> setup = core.Setup.from_json('setup.json') >>> designer = design.Designer(networks, setup) >>> designer.design(3, 2) >>> for i,d in enumerate(designer.designs): ... f = 'design-%s' % i ... d.to_csv(f, stimuli=self.setup.stimuli, inhibitors=self.setup.inhibitors) Parameters ---------- max_stimuli : int Maximum number of stimuli per experiment max_inhibitors : int Maximum number of inhibitors per experiment max_experiments : int Maximum number of experiments per design relax : boolean Whether to relax the full-pairwise networks discrimination (True) or not (False). If relax equals True, the number of experiments per design is fixed to :attr:`max_experiments` configure : callable Callable object responsible of setting clingo configuration
25,681
def getAsKmlGridAnimation(self, tableName, timeStampedRasters=[], rasterIdFieldName=, rasterFieldName=, documentName=, alpha=1.0, noDataValue=0, discreet=False): if not (alpha >= 0 and alpha <= 1.0): raise ValueError("RASTER CONVERSION ERROR: alpha must be between 0.0 and 1.0.") rasterIds = [] for timeStampedRaster in timeStampedRasters: if not in timeStampedRaster: raise ValueError() elif not in timeStampedRaster: raise ValueError() rasterIds.append(str(timeStampedRaster[])) minValue, maxValue = self.getMinMaxOfRasters(session=self._session, table=tableName, rasterIds=rasterIds, rasterIdField=rasterIdFieldName, rasterField=rasterFieldName, noDataValue=noDataValue) mappedColorRamp = ColorRampGenerator.mapColorRampToValues(colorRamp=self._colorRamp, minValue=minValue, maxValue=maxValue, alpha=alpha) deltaTime = None time1 = timeStampedRasters[0][] if len(timeStampedRasters) >= 2: time2 = timeStampedRasters[1][] deltaTime = time2 - time1 kml = ET.Element(, xmlns=) document = ET.SubElement(kml, ) docName = ET.SubElement(document, ) docName.text = documentName if not discreet: document.append(ET.fromstring(mappedColorRamp.getColorMapAsContinuousSLD())) else: values = [] document.append(ET.fromstring(mappedColorRamp.getColorMapAsDiscreetSLD(values))) style = ET.SubElement(document, , id=) listStyle = ET.SubElement(style, ) listItemType = ET.SubElement(listStyle, ) listItemType.text = styleUrl = ET.SubElement(document, ) styleUrl.text = uniqueValues = [] for timeStampedRaster in timeStampedRasters: rasterId = timeStampedRaster[] if deltaTime: dateTime = timeStampedRaster[] prevDateTime = dateTime - deltaTime statement = .format(rasterFieldName, tableName, rasterIdFieldName, rasterId) result = self._session.execute(statement) groupValue = -9999999.0 for row in result: if row.val: value = float(row.val) else: value = None polygonString = row.polygon i = int(row.x) j = int(row.y) if value: if value not in uniqueValues: uniqueValues.append(value) if value != groupValue: placemark = ET.SubElement(document, ) placemarkName = ET.SubElement(placemark, ) placemarkName.text = str(value) style = ET.SubElement(placemark, ) lineStyle = ET.SubElement(style, ) lineColor = ET.SubElement(lineStyle, ) lineColor.text = self.LINE_COLOR lineWidth = ET.SubElement(lineStyle, ) lineWidth.text = str(self.LINE_WIDTH) polyStyle = ET.SubElement(style, ) polyColor = ET.SubElement(polyStyle, ) integerAlpha = mappedColorRamp.getAlphaAsInteger() integerRGB = mappedColorRamp.getColorForValue(value) hexABGR = % (integerAlpha, integerRGB[mappedColorRamp.B], integerRGB[mappedColorRamp.G], integerRGB[mappedColorRamp.R]) polyColor.text = hexABGR if deltaTime: timeSpan = ET.SubElement(placemark, ) begin = ET.SubElement(timeSpan, ) begin.text = prevDateTime.strftime() end = ET.SubElement(timeSpan, ) end.text = dateTime.strftime() multigeometry = ET.SubElement(placemark, ) extendedData = ET.SubElement(placemark, ) valueData = ET.SubElement(extendedData, , name=) valueValue = ET.SubElement(valueData, ) valueValue.text = str(value) iData = ET.SubElement(extendedData, , name=) valueI = ET.SubElement(iData, ) valueI.text = str(i) jData = ET.SubElement(extendedData, , name=) valueJ = ET.SubElement(jData, ) valueJ.text = str(j) if deltaTime: tData = ET.SubElement(extendedData, , name=) valueT = ET.SubElement(tData, ) valueT.text = dateTime.strftime() groupValue = value polygon = ET.fromstring(polygonString) multigeometry.append(polygon) if not discreet: document.append(ET.fromstring(mappedColorRamp.getColorMapAsContinuousSLD())) else: uniqueValues.sort() document.append(ET.fromstring(mappedColorRamp.getColorMapAsDiscreetSLD(uniqueValues))) return ET.tostring(kml)
Return a sequence of rasters with timestamps as a kml with time markers for animation. :param tableName: Name of the table to extract rasters from :param timeStampedRasters: List of dictionaries with keys: rasterId, dateTime rasterId = a unique integer identifier used to locate the raster (usually value of primary key column) dateTime = a datetime object representing the time the raster occurs e.g: timeStampedRasters = [{ 'rasterId': 1, 'dateTime': datetime(1970, 1, 1)}, { 'rasterId': 2, 'dateTime': datetime(1970, 1, 2)}, { 'rasterId': 3, 'dateTime': datetime(1970, 1, 3)}] :param rasterIdFieldName: Name of the id field for rasters (usually the primary key field) :param rasterFieldName: Name of the field where rasters are stored (of type raster) :param documentName: The name to give to the KML document (will be listed in legend under this name) :param alpha: The transparency to apply to each raster cell :param noDataValue: The value to be used as the no data value (default is 0) :rtype : string
25,682
def _evolve(self, state, qargs=None): if qargs is not None: return SuperOp(self)._evolve(state, qargs) state = self._format_state(state) if state.shape[0] != self._input_dim: raise QiskitError( "QuantumChannel input dimension is not equal to state dimension." ) if state.ndim == 1 and self._data[1] is None and len( self._data[0]) == 1: return np.dot(self._data[0][0], state) state = self._format_state(state, density_matrix=True) kraus_l, kraus_r = self._data if kraus_r is None: kraus_r = kraus_l return np.einsum(, kraus_l, state, np.conjugate(kraus_r))
Evolve a quantum state by the QuantumChannel. Args: state (QuantumState): The input statevector or density matrix. qargs (list): a list of QuantumState subsystem positions to apply the operator on. Returns: QuantumState: the output quantum state. Raises: QiskitError: if the operator dimension does not match the specified QuantumState subsystem dimensions.
25,683
def Run(self): if data_store.RelationalDBEnabled(): data_store.REL_DB.RegisterMessageHandler( self._ProcessMessageHandlerRequests, self.well_known_flow_lease_time, limit=100) data_store.REL_DB.RegisterFlowProcessingHandler(self.ProcessFlow) try: while 1: processed = self.RunOnce() if processed == 0: if time.time() - self.last_active > self.SHORT_POLL_TIME: interval = self.POLLING_INTERVAL else: interval = self.SHORT_POLLING_INTERVAL time.sleep(interval) else: self.last_active = time.time() except KeyboardInterrupt: logging.info("Caught interrupt, exiting.") self.thread_pool.Join()
Event loop.
25,684
def update_headers(self, headers: Optional[LooseHeaders]) -> None: self.headers = CIMultiDict() netloc = cast(str, self.url.raw_host) if helpers.is_ipv6_address(netloc): netloc = .format(netloc) if not self.url.is_default_port(): netloc += + str(self.url.port) self.headers[hdrs.HOST] = netloc if headers: if isinstance(headers, (dict, MultiDictProxy, MultiDict)): headers = headers.items() for key, value in headers: if key.lower() == : self.headers[key] = value else: self.headers.add(key, value)
Update request headers.
25,685
def get_bucket_website_config(self, bucket): details = self._details( method=b"GET", url_context=self._url_context(bucket=bucket, object_name=), ) d = self._submit(self._query_factory(details)) d.addCallback(self._parse_website_config) return d
Get the website configuration of a bucket. @param bucket: The name of the bucket. @return: A C{Deferred} that will fire with the bucket's website configuration.
25,686
def modify(self, modification, parameters): if modification not in self.MODIFICATIONS: raise ValueError( % (modification, type(self).__name__)) meth = getattr(self, % modification) meth(**parameters) self.check_constraints()
Apply a single modification to an MFD parameters. Reflects the modification method and calls it passing ``parameters`` as keyword arguments. See also :attr:`MODIFICATIONS`. Modifications can be applied one on top of another. The logic of stacking modifications is up to a specific MFD implementation. :param modification: String name representing the type of modification. :param parameters: Dictionary of parameters needed for modification. :raises ValueError: If ``modification`` is missing from :attr:`MODIFICATIONS`.
25,687
def show_lbaas_pool(self, lbaas_pool, **_params): return self.get(self.lbaas_pool_path % (lbaas_pool), params=_params)
Fetches information for a lbaas_pool.
25,688
def tagsInString_process(self, d_DICOM, astr, *args, **kwargs): b_tagsFound = False str_replace = l_tags = [] l_tagsToSub = [] l_funcTag = [] l_args = [] func = tag = chars = if in astr: l_tags = astr.split()[1:] l_tagsToSub = [i for i in d_DICOM[] if any(i in b for b in l_tags)] l_tagsToSubSort = sorted( l_tagsToSub, key = lambda x: [i for i, s in enumerate(l_tags) if x in s][0] ) for tag, func in zip(l_tagsToSubSort, l_tags): b_tagsFound = True str_replace = d_DICOM[][tag] if in func: str_replace = hashlib.md5(str_replace.encode()).hexdigest() l_funcTag = func.split()[1:] func = l_funcTag[0] l_args = func.split() if len(l_args) > 1: chars = l_args[1] str_replace = str_replace[0:int(chars)] astr = astr.replace( % func, ) if in func: l_funcTag = func.split()[1:] func = l_funcTag[0] str_msk = func.split()[1] l_n = [] for i, j in zip(list(str_replace), list(str_msk)): if j == : l_n.append(i) else: l_n.append(j) str_replace = .join(l_n) astr = astr.replace( % func, ) if in func: l_funcTag = func.split()[1:] func = l_funcTag[0] l_args = func.split() str_char = if len(l_args) > 1: str_char = l_args[1] str_replace = re.sub(r, , str_replace) str_replace = str_char.join(str_replace.split()) astr = astr.replace( % func, ) astr = astr.replace( + tag, str_replace) return { : True, : b_tagsFound, : astr }
This method substitutes DICOM tags that are '%'-tagged in a string template with the actual tag lookup. For example, an output filename that is specified as the following string: %PatientAge-%PatientID-output.txt will be parsed to 006Y-4412364-ouptut.txt It is also possible to apply certain permutations/functions to a tag. For example, a function is identified by an underscore prefixed and suffixed string as part of the DICOM tag. If found, this function is applied to the tag value. For example, %PatientAge-%_md5|4_PatientID-output.txt will apply an md5 hash to the PatientID and use the first 4 characters: 006Y-7f38-output.txt
25,689
def add_clause(self, clause): if clause.query_loc == MongoClause.LOC_MAIN: self._main.append(clause) elif clause.query_loc == MongoClause.LOC_MAIN2: self._main2.append(clause) elif clause.query_loc == MongoClause.LOC_WHERE: self._where.append(clause) else: raise RuntimeError(.format(clause.query_loc))
Add a new clause to the existing query. :param clause: The clause to add :type clause: MongoClause :return: None
25,690
def inspect_file(self, commit, path): req = proto.InspectFileRequest(file=proto.File(commit=commit_from(commit), path=path)) res = self.stub.InspectFile(req, metadata=self.metadata) return res
Returns info about a specific file. Params: * commit: A tuple, string, or Commit object representing the commit. * path: Path to file.
25,691
def create_marginalized_hist(ax, values, label, percentiles=None, color=, fillcolor=, linecolor=, linestyle=, title=True, expected_value=None, expected_color=, rotated=False, plot_min=None, plot_max=None): if fillcolor is None: htype = else: htype = if rotated: orientation = else: orientation = ax.hist(values, bins=50, histtype=htype, orientation=orientation, facecolor=fillcolor, edgecolor=color, ls=linestyle, lw=2, density=True) if percentiles is None: percentiles = [5., 50., 95.] if len(percentiles) > 0: plotp = numpy.percentile(values, percentiles) else: plotp = [] for val in plotp: if rotated: ax.axhline(y=val, ls=, color=linecolor, lw=2, zorder=3) else: ax.axvline(x=val, ls=, color=linecolor, lw=2, zorder=3) if expected_value is not None: if rotated: ax.axhline(expected_value, color=expected_color, lw=1.5, zorder=2) else: ax.axvline(expected_value, color=expected_color, lw=1.5, zorder=2) if title: if len(percentiles) > 0: minp = min(percentiles) maxp = max(percentiles) medp = (maxp + minp) / 2. else: minp = 5 medp = 50 maxp = 95 values_min = numpy.percentile(values, minp) values_med = numpy.percentile(values, medp) values_max = numpy.percentile(values, maxp) negerror = values_med - values_min poserror = values_max - values_med fmt = .format(str_utils.format_value( values_med, negerror, plus_error=poserror)) if rotated: ax.yaxis.set_label_position("right") set_marginal_histogram_title(ax, fmt, color, label=label, rotated=rotated) ax.set_xticks([]) ax.set_xlabel() ymin, ymax = ax.get_ylim() if plot_min is not None: ymin = plot_min if plot_max is not None: ymax = plot_max ax.set_ylim(ymin, ymax) else: set_marginal_histogram_title(ax, fmt, color, label=label) ax.set_yticks([]) ax.set_ylabel() xmin, xmax = ax.get_xlim() if plot_min is not None: xmin = plot_min if plot_max is not None: xmax = plot_max ax.set_xlim(xmin, xmax)
Plots a 1D marginalized histogram of the given param from the given samples. Parameters ---------- ax : pyplot.Axes The axes on which to draw the plot. values : array The parameter values to plot. label : str A label to use for the title. percentiles : {None, float or array} What percentiles to draw lines at. If None, will draw lines at `[5, 50, 95]` (i.e., the bounds on the upper 90th percentile and the median). color : {'k', string} What color to make the histogram; default is black. fillcolor : {'gray', string, or None} What color to fill the histogram with. Set to None to not fill the histogram. Default is 'gray'. linestyle : str, optional What line style to use for the histogram. Default is '-'. linecolor : {'navy', string} What color to use for the percentile lines. Default is 'navy'. title : bool, optional Add a title with a estimated value +/- uncertainty. The estimated value is the pecentile halfway between the max/min of ``percentiles``, while the uncertainty is given by the max/min of the ``percentiles``. If no percentiles are specified, defaults to quoting the median +/- 95/5 percentiles. rotated : {False, bool} Plot the histogram on the y-axis instead of the x. Default is False. plot_min : {None, float} The minimum value to plot. If None, will default to whatever `pyplot` creates. plot_max : {None, float} The maximum value to plot. If None, will default to whatever `pyplot` creates. scalefac : {1., float} Factor to scale the default font sizes by. Default is 1 (no scaling).
25,692
def _calculate_num_queries(self): request_totals = self._totals("request") response_totals = self._totals("response") return request_totals[2] + response_totals[2]
Calculate the total number of request and response queries. Used for count header and count table.
25,693
def admin_url_params(request, params=None): params = params or {} if popup_status(request): params[IS_POPUP_VAR] = pick_type = popup_pick_type(request) if pick_type: params[] = pick_type return params
given a request, looks at GET and POST values to determine which params should be added. Is used to keep the context of popup and picker mode.
25,694
async def on_raw_762(self, message): if not self._metadata_queue: return nickname = self._metadata_queue.pop() future = self._pending[].pop(nickname) future.set_result(self._metadata_info.pop(nickname))
End of metadata.
25,695
def config_generator(search_space, max_search, rng, shuffle=True): def dict_product(d): keys = d.keys() for element in product(*d.values()): yield dict(zip(keys, element)) def range_param_func(v): scale = v.get("scale", "linear") mini = min(v["range"]) maxi = max(v["range"]) if scale == "linear": func = lambda rand: mini + (maxi - mini) * rand elif scale == "log": mini = np.log(mini) maxi = np.log(maxi) func = lambda rand: np.exp(mini + (maxi - mini) * rand) else: raise ValueError(f"Unrecognized scale for " "parameter {k}") return func discretes = {} ranges = {} for k, v in search_space.items(): if isinstance(v, dict): ranges[k] = range_param_func(v) elif isinstance(v, list): discretes[k] = v else: discretes[k] = [v] discrete_configs = list(dict_product(discretes)) if shuffle: rng.shuffle(discrete_configs) if ranges and max_search: discrete_configs = cycle(discrete_configs) for i, config in enumerate(discrete_configs): config = config.copy() if max_search and i == max_search: break for k, v in ranges.items(): config[k] = float(v(rng.random())) yield config
Generates config dicts from the given search space Args: search_space: (dict) A dictionary of parameters to search over. See note below for more details. max_search: (int) The maximum number of configurations to search. If max_search is None, do a full grid search of all discrete parameters, filling in range parameters as needed. Otherwise, do a full grid search of all discrete parameters and then cycle through again filling in new range parameters values; if there are no range parameters, stop after yielding the full cross product of parameters once. shuffle: (bool) If True, shuffle the order of generated configs Yields: configs: each config is a dict of parameter values based on the provided search space The search_space dictionary may consist of two types of parameters: --discrete: a discrete parameter is either a single value or a list of values. Use single values, for example, to override a default model parameter or set a flag such as 'verbose'=True. --range: a range parameter is a dict of the form: {'range': [<min>, <max>], 'scale': <scale>} where <min> and <max> are the min/max values to search between and scale is one of ['linear', 'log'] (defaulting to 'linear') representing the scale to use when searching the given range Example: search_space = { 'verbose': True, # discrete 'n_epochs': 100, # discrete 'momentum': [0.0, 0.9, 0.99], # discrete 'l2': {'range': [0.0001, 10]} # linear range 'lr': {'range': [0.001, 1], 'scale': 'log'}, # log range } If max_search is None, this will return 3 configurations (enough to just cover the full cross-product of discrete values, filled in with sampled range values) Otherewise, this will return max_search configurations (cycling through the discrete value combinations multiple time if necessary)
25,696
def message_loop(self, t_q, r_q): t_msg = {} while t_msg.get("state", "") != "__DIE__": try: t_msg = t_q.get(True, self.cycle_sleep) self.task = t_msg.get("task", "") if self.task != "": self.task.task_start = time.time() self.r_q_send( {"w_id": self.w_id, "task": self.task, "state": "__ACK__"} ) self.cycle_sleep = self.task.worker_loop_delay self.task.result = self.task.run() self.task.task_stop = time.time() self.r_q_send( {"w_id": self.w_id, "task": self.task, "state": "__FINISHED__"} ) self.task = None except Empty: pass except Full: time.sleep(0.1) except: if self.task is not None: self.task.task_stop = time.time() tb_str = "".join(tb.format_exception(*(sys.exc_info()))) self.r_q_send( { "w_id": self.w_id, "task": self.task, "error": tb_str, "state": "__ERROR__", } ) return
Loop through messages and execute tasks
25,697
def _interpolate_doy_calendar(source, doy_max): if not in source.coords.keys(): raise AttributeError("source should have dayofyear coordinates.") doy_max_source = source.dayofyear.max() tmp = source.interpolate_na(dim=) tmp.coords[] = np.linspace(start=1, stop=doy_max, num=doy_max_source) return tmp.interp(dayofyear=range(1, doy_max + 1))
Interpolate from one set of dayofyear range to another Interpolate an array defined over a `dayofyear` range (say 1 to 360) to another `dayofyear` range (say 1 to 365). Parameters ---------- source : xarray.DataArray Array with `dayofyear` coordinates. doy_max : int Largest day of the year allowed by calendar. Returns ------- xarray.DataArray Interpolated source array over coordinates spanning the target `dayofyear` range.
25,698
def get_discovery_doc(self, services, hostname=None): if not isinstance(services, (tuple, list)): services = [services] util.check_list_type(services, remote._ServiceClass, , allow_none=False) return self.__discovery_doc_descriptor(services, hostname=hostname)
JSON dict description of a protorpc.remote.Service in discovery format. Args: services: Either a single protorpc.remote.Service or a list of them that implements an api/version. hostname: string, Hostname of the API, to override the value set on the current service. Defaults to None. Returns: dict, The discovery document as a JSON dict.
25,699
def deepest_common_ancestor(goterms, godag): return max(common_parent_go_ids(goterms, godag), key=lambda t: godag[t].depth)
This function gets the nearest common ancestor using the above function. Only returns single most specific - assumes unique exists.