Unnamed: 0
int64
0
389k
code
stringlengths
26
79.6k
docstring
stringlengths
1
46.9k
26,400
def list_all_quantities(self, include_native=False, with_info=False): q = set(self._quantity_modifiers) if include_native: q.update(self._native_quantities) return {k: self.get_quantity_info(k) for k in q} if with_info else list(q)
Return a list of all available quantities in this catalog. If *include_native* is `True`, includes native quantities. If *with_info* is `True`, return a dict with quantity info. See also: list_all_native_quantities
26,401
def find_config(config_path: str) -> str: if path.isdir(config_path): config_path = path.join(config_path, CXF_CONFIG_FILE) assert path.exists(config_path), .format(config_path) return config_path
Derive configuration file path from the given path and check its existence. The given path is expected to be either 1. path to the file 2. path to a dir, in such case the path is joined with ``CXF_CONFIG_FILE`` :param config_path: path to the configuration file or its parent directory :return: validated configuration file path
26,402
def create_essay_set(text, score, prompt_string, generate_additional=True): x = EssaySet() for i in xrange(0, len(text)): x.add_essay(text[i], score[i]) if score[i] == min(score) and generate_additional == True: x.generate_additional_essays(x._clean_text[len(x._clean_text) - 1], score[i]) x.update_prompt(prompt_string) return x
Creates an essay set from given data. Text should be a list of strings corresponding to essay text. Score should be a list of scores where score[n] corresponds to text[n] Prompt string is just a string containing the essay prompt. Generate_additional indicates whether to generate additional essays at the minimum score point or not.
26,403
def fetch(self, end=values.unset, start=values.unset): return self._proxy.fetch(end=end, start=start, )
Fetch a UsageInstance :param unicode end: The end :param unicode start: The start :returns: Fetched UsageInstance :rtype: twilio.rest.preview.wireless.sim.usage.UsageInstance
26,404
def adjust_frame(proc_obj, name, pos, absolute_pos): if not proc_obj.curframe: proc_obj.errmsg("No stack.") return if absolute_pos: if pos >= 0: pos = frame_num(proc_obj, pos) else: pos = -pos - 1 pass else: pos += proc_obj.curindex pass if pos < 0: proc_obj.errmsg("Adjusting would put us beyond the oldest frame.") return elif pos >= len(proc_obj.stack): proc_obj.errmsg("Adjusting would put us beyond the newest frame.") return proc_obj.curindex = pos proc_obj.curframe = proc_obj.stack[proc_obj.curindex][0] proc_obj.location() proc_obj.list_lineno = None proc_obj.list_offset = proc_obj.curframe.f_lasti proc_obj.list_object = proc_obj.curframe proc_obj.list_filename = proc_obj.curframe.f_code.co_filename return
Adjust stack frame by pos positions. If absolute_pos then pos is an absolute number. Otherwise it is a relative number. A negative number indexes from the other end.
26,405
def update_team(self, slug): if self._org: if not self._org.has_team(slug): return self._org.update() return self._org.update_team(slug) return False
Trigger update and cache invalidation for the team identified by the given `slug`, if any. Returns `True` if the update was successful, `False` otherwise. :param slug: GitHub 'slug' name for the team to be updated.
26,406
def day_night_duration( self, daybreak: datetime.time = datetime.time(NORMAL_DAY_START_H), nightfall: datetime.time = datetime.time(NORMAL_DAY_END_H)) \ -> Tuple[datetime.timedelta, datetime.timedelta]: daytotal = datetime.timedelta() nighttotal = datetime.timedelta() startdate = self.start.date() enddate = self.end.date() ndays = (enddate - startdate).days + 1 for i in range(ndays): date = startdate + datetime.timedelta(days=i) component = self.component_on_date(date) day = Interval.daytime(date, daybreak, nightfall) daypart = component.intersection(day) if daypart is not None: daytotal += daypart.duration() nighttotal += component.duration() - daypart.duration() else: nighttotal += component.duration() return daytotal, nighttotal
Returns a ``(day, night)`` tuple of ``datetime.timedelta`` objects giving the duration of this interval that falls into day and night respectively.
26,407
def hdr_vals_for_overscan(root): with fits.open(root + ) as hdu: spthdr = hdu[0].header with fits.open(root + ) as hdu: prihdr = hdu[0].header xstart = spthdr[] ystart = spthdr[] xsize = spthdr[] ysize = spthdr[] ccdamp = prihdr[] return ccdamp, xstart, ystart, xsize, ysize
Retrieve header keyword values from RAW and SPT FITS files to pass on to :func:`check_oscntab` and :func:`check_overscan`. Parameters ---------- root : str Rootname of the observation. Can be relative path to the file excluding the type of FITS file and extension, e.g., '/my/path/jxxxxxxxq'. Returns ------- ccdamp : str Amplifiers used to read out the CCDs. xstart : int Starting column of the readout in detector coordinates. ystart : int Starting row of the readout in detector coordinates. xsize : int Number of columns in the readout. ysize : int Number of rows in the readout.
26,408
def send_execute_request(self, socket, code, silent=True, subheader=None, ident=None): if self._closed: raise RuntimeError("Client cannot be used after its sockets have been closed") subheader = subheader if subheader is not None else {} if not isinstance(code, basestring): raise TypeError("code must be text, not %s" % type(code)) if not isinstance(subheader, dict): raise TypeError("subheader must be dict, not %s" % type(subheader)) content = dict(code=code, silent=bool(silent), user_variables=[], user_expressions={}) msg = self.session.send(socket, "execute_request", content=content, ident=ident, subheader=subheader) msg_id = msg[][] self.outstanding.add(msg_id) if ident: if isinstance(ident, list): ident = ident[-1] if ident in self._engines.values(): self._outstanding_dict[ident].add(msg_id) self.history.append(msg_id) self.metadata[msg_id][] = datetime.now() return msg
construct and send an execute request via a socket.
26,409
def sort_header(header_text): lines = header_text.rstrip().split("\n") rlens = {} for ln in lines: m = re.match(,ln) if m: rlens[m.group(1)] = m.group(2) output = done_lens = False for ln in lines: if re.match(,ln): if not done_lens: done_lens = True for chr in sorted(rlens.keys()): output += "@SQ\tSN:"+chr+"\tLN:"+str(rlens[chr])+"\n" else: output += ln.rstrip("\n")+"\n" return output
sort the chromosomes in a header text
26,410
def logs_for_job(self, job_name, wait=False, poll=10): description = self.sagemaker_client.describe_training_job(TrainingJobName=job_name) print(secondary_training_status_message(description, None), end=) instance_count = description[][] status = description[] stream_names = [] positions = {} last_describe_job_call = time.time() last_description = description while True: if len(stream_names) < instance_count: try: streams = client.describe_log_streams(logGroupName=log_group, logStreamNamePrefix=job_name + , orderBy=, limit=instance_count) stream_names = [s[] for s in streams[]] positions.update([(s, sagemaker.logs.Position(timestamp=0, skip=0)) for s in stream_names if s not in positions]) except ClientError as e:
Display the logs for a given training job, optionally tailing them until the job is complete. If the output is a tty or a Jupyter cell, it will be color-coded based on which instance the log entry is from. Args: job_name (str): Name of the training job to display the logs for. wait (bool): Whether to keep looking for new log entries until the job completes (default: False). poll (int): The interval in seconds between polling for new log entries and job completion (default: 5). Raises: ValueError: If waiting and the training job fails.
26,411
def deploy_docker(self, dockerfile_path, virtualbox_name=): title = % self.__class__.__name__ input_fields = { : dockerfile_path, : virtualbox_name } for key, value in input_fields.items(): object_title = % (title, key, str(value)) self.fields.validate(value, % key, object_title) if not self.subdomain: raise Exception( % self.__class__.__name__) from os import path from labpack.platforms.docker import dockerClient dockerClient(virtualbox_name, self.verbose) if not path.exists(dockerfile_path): raise Exception( % dockerfile_path) dockerfile_root, dockerfile_node = path.split(dockerfile_path) if dockerfile_node != : raise Exception() from os import devnull from subprocess import check_output self.printer(, flush=True) sys_command = heroku_plugins = check_output(sys_command, shell=True, stderr=open(devnull, )).decode() if heroku_plugins.find() == -1 and heroku_plugins.find() == -1: sys_command = heroku_plugins = check_output(sys_command, shell=True, stderr=open(devnull, )).decode() if heroku_plugins.find() == -1 and heroku_plugins.find() == -1: self.printer() raise Exception( ) self.printer() self.printer(, flush=True) sys_command = self._handle_command(sys_command) self.printer() self.printer() sys_command = % (dockerfile_root, self.subdomain) self._handle_command(sys_command, print_pipe=True) sys_command = % (dockerfile_root, self.subdomain) self._handle_command(sys_command, print_pipe=True) self.printer() return True
a method to deploy app to heroku using docker
26,412
def add_ruleclause_name(self, ns_name, rid) -> bool: ns_name.parser_tree = parsing.Rule(self.value(rid)) return True
Create a tree.Rule
26,413
def to_comm(self, light_request=False): data = None if not light_request: data = read_as_base64(self.file_pointer) return Publication( title=self.title, author=self.author, pub_year=self.pub_year, isbn=self.isbn, urnnbn=self.urnnbn, uuid=self.uuid, aleph_id=self.aleph_id, producent_id=self.producent_id, is_public=self.is_public, filename=self.filename, is_periodical=self.is_periodical, path=self.path, b64_data=data, url=self.url, file_pointer=self.file_pointer, )
Convert `self` to :class:`.Publication`. Returns: obj: :class:`.Publication` instance.
26,414
def h2z(text, ignore=, kana=True, ascii=False, digit=False): def _conv_dakuten(text): text = text.replace("ガ", "ガ").replace("ギ", "ギ") text = text.replace("グ", "グ").replace("ゲ", "ゲ") text = text.replace("ゴ", "ゴ").replace("ザ", "ザ") text = text.replace("ジ", "ジ").replace("ズ", "ズ") text = text.replace("ゼ", "ゼ").replace("ゾ", "ゾ") text = text.replace("ダ", "ダ").replace("ヂ", "ヂ") text = text.replace("ヅ", "ヅ").replace("デ", "デ") text = text.replace("ド", "ド").replace("バ", "バ") text = text.replace("ビ", "ビ").replace("ブ", "ブ") text = text.replace("ベ", "ベ").replace("ボ", "ボ") text = text.replace("パ", "パ").replace("ピ", "ピ") text = text.replace("プ", "プ").replace("ペ", "ペ") return text.replace("ポ", "ポ").replace("ヴ", "ヴ") if ascii: if digit: if kana: h2z_map = H2Z_ALL else: h2z_map = H2Z_AD elif kana: h2z_map = H2Z_AK else: h2z_map = H2Z_A elif digit: if kana: h2z_map = H2Z_DK else: h2z_map = H2Z_D else: h2z_map = H2Z_K if kana: text = _conv_dakuten(text) if ignore: h2z_map = _exclude_ignorechar(ignore, h2z_map.copy()) return _convert(text, h2z_map)
Convert Half-width (Hankaku) Katakana to Full-width (Zenkaku) Katakana Parameters ---------- text : str Half-width Katakana string. ignore : str Characters to be ignored in converting. kana : bool Either converting Kana or not. ascii : bool Either converting ascii or not. digit : bool Either converting digit or not. Return ------ str Full-width Katakana string. Examples -------- >>> print(jaconv.h2z('ティロフィナーレ')) ティロフィナーレ >>> print(jaconv.h2z('ティロフィナーレ', ignore='ィ')) ティロフィナーレ >>> print(jaconv.h2z('abcd', ascii=True)) ABCD >>> print(jaconv.h2z('1234', digit=True)) 1234
26,415
def get(ctx): user, project_name, _job = get_job_or_local(ctx.obj.get(), ctx.obj.get()) try: response = PolyaxonClient().job.get_job(user, project_name, _job) cache.cache(config_manager=JobManager, response=response) except (PolyaxonHTTPError, PolyaxonShouldExitError, PolyaxonClientException) as e: Printer.print_error(.format(_job)) Printer.print_error(.format(e)) sys.exit(1) get_job_details(response)
Get job. Uses [Caching](/references/polyaxon-cli/#caching) Examples: \b ```bash $ polyaxon job --job=1 get ``` \b ```bash $ polyaxon job --job=1 --project=project_name get ```
26,416
def is_prime( n ): global miller_rabin_test_count miller_rabin_test_count = 0 if n <= smallprimes[-1]: if n in smallprimes: return True else: return False if gcd( n, 2*3*5*7*11 ) != 1: return False t = 40 n_bits = 1 + int( math.log( n, 2 ) ) for k, tt in ( ( 100, 27 ), ( 150, 18 ), ( 200, 15 ), ( 250, 12 ), ( 300, 9 ), ( 350, 8 ), ( 400, 7 ), ( 450, 6 ), ( 550, 5 ), ( 650, 4 ), ( 850, 3 ), ( 1300, 2 ), ): if n_bits < k: break t = tt s = 0 r = n - 1 while ( r % 2 ) == 0: s = s + 1 r = r // 2 for i in range( t ): a = smallprimes[ i ] y = modular_exp( a, r, n ) if y != 1 and y != n-1: j = 1 while j <= s - 1 and y != n - 1: y = modular_exp( y, 2, n ) if y == 1: miller_rabin_test_count = i + 1 return False j = j + 1 if y != n-1: miller_rabin_test_count = i + 1 return False return True
Return True if x is prime, False otherwise. We use the Miller-Rabin test, as given in Menezes et al. p. 138. This test is not exact: there are composite values n for which it returns True. In testing the odd numbers from 10000001 to 19999999, about 66 composites got past the first test, 5 got past the second test, and none got past the third. Since factors of 2, 3, 5, 7, and 11 were detected during preliminary screening, the number of numbers tested by Miller-Rabin was (19999999 - 10000001)*(2/3)*(4/5)*(6/7) = 4.57 million.
26,417
def expand_tile(units, axis): assert axis in (1, 2) n_time_steps = K.int_shape(units)[1] repetitions = [1, 1, 1, 1] repetitions[axis] = n_time_steps if axis == 1: expanded = Reshape(target_shape=( (1,) + K.int_shape(units)[1:] ))(units) else: expanded = Reshape(target_shape=(K.int_shape(units)[1:2] + (1,) + K.int_shape(units)[2:]))(units) return K.tile(expanded, repetitions)
Expand and tile tensor along given axis Args: units: tf tensor with dimensions [batch_size, time_steps, n_input_features] axis: axis along which expand and tile. Must be 1 or 2
26,418
def _join_summary_file(data, summary_filename="msd_summary_file.h5"): msd = h5py.File(summary_filename) track_lookup = dict((t.encode("utf8"), i) for i, t in enumerate(data[].cat.categories)) track_info = np.empty(shape=(len(track_lookup), 4), dtype=np.object) with tqdm.tqdm(total=len(track_info)) as progress: for song in msd[][]: trackid = song[17] if trackid in track_lookup: pos = track_lookup[trackid] track_info[pos] = [x.decode("utf8") for x in (trackid, song[9], song[14], song[18])] progress.update(1) return track_info
Gets the trackinfo array by joining taste profile to the track summary file
26,419
def get_code_indices(s: Union[str, ]) -> Dict[int, str]: indices = {} i = 0 codes = get_codes(s) for code in codes: codeindex = s.index(code) realindex = i + codeindex indices[realindex] = code codelen = len(code) i = realindex + codelen s = s[codeindex + codelen:] return indices
Retrieve a dict of {index: escape_code} for a given string. If no escape codes are found, an empty dict is returned.
26,420
def decode(self, file_name): try: file_tag = self._filename_decoder_new.decode(file_name) except: try: file_tag = self._filename_decoder_old.decode(file_name) except: file_tag = FileTag(0, 0, , , ) return file_tag
Parses the filename, creating a FileTag from it. It will try both the old and the new conventions, if the filename does not conform any of them, then an empty FileTag will be returned. :param file_name: filename to parse :return: a FileTag instance
26,421
def route_present(name, address_prefix, next_hop_type, route_table, resource_group, next_hop_ip_address=None, connection_auth=None, **kwargs): VirtualNetworkGatewayVnetLocalInternetVirtualApplianceNoneVirtualAppliance192.168.0.0/16 ret = { : name, : False, : , : {} } if not isinstance(connection_auth, dict): ret[] = return ret route = __salt__[]( name, route_table, resource_group, azurearm_log_level=, **connection_auth ) if not in route: if address_prefix != route.get(): ret[][] = { : route.get(), : address_prefix } if next_hop_type.lower() != route.get(, ).lower(): ret[][] = { : route.get(), : next_hop_type } if next_hop_type.lower() == and next_hop_ip_address != route.get(): ret[][] = { : route.get(), : next_hop_ip_address } if not ret[]: ret[] = True ret[] = .format(name) return ret if __opts__[]: ret[] = None ret[] = .format(name) return ret else: ret[] = { : {}, : { : name, : address_prefix, : next_hop_type, : next_hop_ip_address } } if __opts__[]: ret[] = .format(name) ret[] = None return ret route_kwargs = kwargs.copy() route_kwargs.update(connection_auth) route = __salt__[]( name=name, route_table=route_table, resource_group=resource_group, address_prefix=address_prefix, next_hop_type=next_hop_type, next_hop_ip_address=next_hop_ip_address, **route_kwargs ) if not in route: ret[] = True ret[] = .format(name) return ret ret[] = .format(name, route.get()) return ret
.. versionadded:: 2019.2.0 Ensure a route exists within a route table. :param name: Name of the route. :param address_prefix: The destination CIDR to which the route applies. :param next_hop_type: The type of Azure hop the packet should be sent to. Possible values are: 'VirtualNetworkGateway', 'VnetLocal', 'Internet', 'VirtualAppliance', and 'None'. :param next_hop_ip_address: The IP address packets should be forwarded to. Next hop values are only allowed in routes where the next hop type is 'VirtualAppliance'. :param route_table: The name of the existing route table which will contain the route. :param resource_group: The resource group assigned to the route table. :param connection_auth: A dict with subscription and authentication parameters to be used in connecting to the Azure Resource Manager API. Example usage: .. code-block:: yaml Ensure route exists: azurearm_network.route_present: - name: rt1_route2 - route_table: rt1 - resource_group: group1 - address_prefix: '192.168.0.0/16' - next_hop_type: vnetlocal - connection_auth: {{ profile }} - require: - azurearm_network: Ensure route table exists
26,422
def _create(archive, compression, cmd, format, verbosity, filenames): if len(filenames) > 1: raise util.PatoolError() try: with lzma.LZMAFile(archive, mode=, **_get_lzma_options(format, preset=9)) as lzmafile: filename = filenames[0] with open(filename, ) as srcfile: data = srcfile.read(READ_SIZE_BYTES) while data: lzmafile.write(data) data = srcfile.read(READ_SIZE_BYTES) except Exception as err: msg = "error creating %s: %s" % (archive, err) raise util.PatoolError(msg) return None
Create an LZMA or XZ archive with the lzma Python module.
26,423
def example_bigbeds(): hits = [] d = data_dir() for fn in os.listdir(d): fn = os.path.join(d, fn) if os.path.splitext(fn)[-1] == : hits.append(os.path.abspath(fn)) return hits
Returns list of example bigBed files
26,424
def iterable_source(iterable, target): it = iter(iterable) for item in it: try: target.send(item) except StopIteration: return prepend(item, it) return empty_iter()
Convert an iterable into a stream of events. Args: iterable: A series of items which will be sent to the target one by one. target: The target coroutine or sink. Returns: An iterator over any remaining items.
26,425
def send(vm, target, key=): vm** ret = {} if key not in [, , ]: ret[] = return ret if not os.path.isdir(target): ret[] = return ret vm = lookup(.format(key, vm), one=True) if in vm: return vm cmd = .format( uuid=vm, target=os.path.join(target, .format(vm)) ) res = __salt__[](cmd, python_shell=True) retcode = res[] if retcode != 0: ret[] = res[] if in res else _exit_status(retcode) return ret vmobj = get(vm) if not in vmobj: return True log.warning() log.warning() for dataset in vmobj[]: name = dataset.split() name = name[-1] cmd = .format( dataset=dataset, target=os.path.join(target, .format(vm, name)) ) res = __salt__[](cmd, python_shell=True) retcode = res[] if retcode != 0: ret[] = res[] if in res else _exit_status(retcode) return ret return True
Send a vm to a directory vm : string vm to be sent target : string target directory key : string [uuid|alias|hostname] value type of 'vm' parameter CLI Example: .. code-block:: bash salt '*' vmadm.send 186da9ab-7392-4f55-91a5-b8f1fe770543 /opt/backups salt '*' vmadm.send vm=nacl target=/opt/backups key=alias
26,426
def urls(model,form_class=None,fields=None,redirect=None,object_list=None,fail_if_empty=True): if form_class is None and fields is None: raise ImproperlyConfigured("Must define either `form_class` or `fields`.") if object_list is None and redirect is None: raise ImproperlyConfigured("Must define `redirect` when `object_list` is missing.") prefix = model.__name__.lower() if redirect is None: redirect = reverse_lazy(prefix + ) urlpatterns = patterns(, url( + prefix + , CreateView.as_view(model=model,form_class=form_class,fields=fields,success_url=redirect), name = prefix + ), url( + prefix + , UpdateView.as_view(model=model,form_class=form_class,fields=fields,success_url=redirect), name = prefix + ), url( + prefix + , DeleteView.as_view(model=model,success_url=redirect), name = prefix + ), ) if object_list: urlpatterns += patterns(, url( + prefix + , ListView.as_view(model=model,object_list=object_list,fail_if_empty=fail_if_empty), name = prefix + ), url( + prefix + , FormsetView.as_view(model=model,form_class=form_class,fields=fields,object_list=object_list,fail_if_empty=fail_if_empty), name = prefix + ), ) return urlpatterns
Returns URL patterns for creating, updating and deleting models. Supports lists and formsets as well model Model class form_class Form class for use in create, update and formset views (default is None) fields Required if form_class is not provided redirect Redirection URL for create, update and delete views object_list Queryset for list and formset. If absent, these views are not created fail_if_empty Raise ImproperlyConfigured exception in formset and list views when object_list is empty
26,427
def _get_fuzzy_padding(self, lean): result = relativedelta(0) if self.year_ua: result += appsettings.PADDING_YEAR_PRECISION * self.year_ua._get_multiplier() if self.month_ua: result += appsettings.PADDING_MONTH_PRECISION * self.month_ua._get_multiplier() if self.day_ua: result += appsettings.PADDING_DAY_PRECISION * self.day_ua._get_multiplier() if self.year_month_ua: result += appsettings.PADDING_YEAR_PRECISION * self.year_month_ua._get_multiplier() result += appsettings.PADDING_MONTH_PRECISION * self.year_month_ua._get_multiplier() if self.month_day_ua: result += appsettings.PADDING_DAY_PRECISION * self.month_day_ua._get_multiplier() result += appsettings.PADDING_MONTH_PRECISION * self.month_day_ua._get_multiplier() if self.season_ua: result += appsettings.PADDING_SEASON_PRECISION * self.season_ua._get_multiplier() if self.all_ua: multiplier = self.all_ua._get_multiplier() if self.precision == PRECISION_DAY: result += multiplier * appsettings.PADDING_DAY_PRECISION result += multiplier * appsettings.PADDING_MONTH_PRECISION result += multiplier * appsettings.PADDING_YEAR_PRECISION elif self.precision == PRECISION_MONTH: result += multiplier * appsettings.PADDING_MONTH_PRECISION result += multiplier * appsettings.PADDING_YEAR_PRECISION elif self.precision == PRECISION_YEAR: result += multiplier * appsettings.PADDING_YEAR_PRECISION return result
This is not a perfect interpretation as fuzziness is introduced for redundant uncertainly modifiers e.g. (2006~)~ will get two sets of fuzziness.
26,428
def getExpectedValue(distribution): k = np.array(distribution.possibleValues) return np.sum(k * distribution.pmf(k))
Calculates E[X] where X is a distribution.
26,429
def migrate(config): webapp = WebApp(config.web_host, config.web_port, custom_maintenance_file=config.web_custom_html) webserver = WebServer(webapp) webserver.daemon = True webserver.start() migration_parser = YamlParser.parse_from_file(config.migration_file) migration = migration_parser.parse() database = Database(config) with database.connect() as lock_connection: application_lock = ApplicationLock(lock_connection) application_lock.start() while not application_lock.acquired: time.sleep(0.5) else: if application_lock.replica: application_lock.stop = True application_lock.join() try: table = MigrationTable(database) runner = Runner(config, migration, database, table) runner.perform() finally: application_lock.stop = True application_lock.join()
Perform a migration according to config. :param config: The configuration to be applied :type config: Config
26,430
def handle_termination(cls, pid, is_cancel=True): s cancel_flag. ' try: main_proc = psutil.Process(pid=pid) child_procs = main_proc.children(recursive=True) for child_proc in child_procs: try: os.kill(child_proc.pid, signal.SIGKILL) except (TypeError, OSError): pass os.kill(main_proc.pid, signal.SIGKILL) except (TypeError, psutil.Error, OSError): try: os.kill(pid, signal.SIGKILL) except (OSError): pass
Internal method to terminate a subprocess spawned by `pexpect` representing an invocation of runner. :param pid: the process id of the running the job. :param is_cancel: flag showing whether this termination is caused by instance's cancel_flag.
26,431
def recover_and_supervise(recovery_file): try: logging.info("Attempting to recover Supervisor data from " + recovery_file) with open(recovery_file) as rf: recovery_data = json.load(rf) monitor_data = recovery_data[] dependencies = recovery_data[] args = recovery_data[] except: logging.error("Could not recover monitor data, exiting...") return 1 logging.info("Data successfully loaded, resuming Supervisor") supervise_until_complete(monitor_data, dependencies, args, recovery_file)
Retrieve monitor data from recovery_file and resume monitoring
26,432
def qrcode(self, data, **kwargs): barcode.validate_qrcode_args(**kwargs) return self._qrcode_impl(data, **kwargs)
Render given ``data`` as `QRCode <http://www.qrcode.com/en/>`_.
26,433
async def pack_message(wallet_handle: int, message: str, recipient_verkeys: list, sender_verkey: Optional[str]) -> bytes: logger = logging.getLogger(__name__) logger.debug("pack_message: >>> wallet_handle: %r, message: %r, recipient_verkeys: %r, sender_verkey: %r", wallet_handle, message, recipient_verkeys, sender_verkey) def transform_cb(arr_ptr: POINTER(c_uint8), arr_len: c_uint32): return bytes(arr_ptr[:arr_len]), if not hasattr(pack_message, "cb"): logger.debug("pack_message: Creating callback") pack_message.cb = create_cb(CFUNCTYPE(None, c_int32, c_int32, POINTER(c_uint8), c_uint32), transform_cb) c_wallet_handle = c_int32(wallet_handle) msg_bytes = message.encode("utf-8") c_msg_len = c_uint32(len(msg_bytes)) c_recipient_verkeys = c_char_p(json.dumps(recipient_verkeys).encode()) c_sender_vk = c_char_p(sender_verkey.encode()) if sender_verkey is not None else None res = await do_call(, c_wallet_handle, msg_bytes, c_msg_len, c_recipient_verkeys, c_sender_vk, pack_message.cb) logger.debug("pack_message: <<< res: %r", res) return res
Packs a message by encrypting the message and serializes it in a JWE-like format (Experimental) Note to use DID keys with this function you can call did.key_for_did to get key id (verkey) for specific DID. #Params command_handle: command handle to map callback to user context. wallet_handle: wallet handler (created by open_wallet) message: the message being sent as a string. If it's JSON formatted it should be converted to a string recipient_verkeys: a list of Strings which are recipient verkeys sender_verkey: the sender's verkey as a string. -> When None is passed in this parameter, anoncrypt mode is used returns an Agent Wire Message format as a byte array. See HIPE 0028 for detailed formats
26,434
def from_series(self, series, add_index_column=True): if series.name: self.headers = [series.name] else: self.headers = ["value"] self.type_hints = [self.__get_typehint_from_dtype(series.dtype)] if add_index_column: self.headers = [""] + self.headers if self.type_hints: self.type_hints = [None] + self.type_hints self.value_matrix = [ [index] + [value] for index, value in zip(series.index.tolist(), series.tolist()) ] else: self.value_matrix = [[value] for value in series.tolist()]
Set tabular attributes to the writer from :py:class:`pandas.Series`. Following attributes are set by the method: - :py:attr:`~.headers` - :py:attr:`~.value_matrix` - :py:attr:`~.type_hints` Args: series(pandas.Series): Input pandas.Series object. add_index_column(bool, optional): If |True|, add a column of ``index`` of the ``series``. Defaults to |True|.
26,435
def extended_stats(G, connectivity=False, anc=False, ecc=False, bc=False, cc=False): stats = {} full_start_time = time.time() G_dir = nx.DiGraph(G) G_undir = nx.Graph(G) G_strong = get_largest_component(G, strongly=True) avg_neighbor_degree = nx.average_neighbor_degree(G) stats[] = avg_neighbor_degree stats[] = sum(avg_neighbor_degree.values())/len(avg_neighbor_degree) avg_weighted_neighbor_degree = nx.average_neighbor_degree(G, weight=) stats[] = avg_weighted_neighbor_degree stats[] = sum(avg_weighted_neighbor_degree.values())/len(avg_weighted_neighbor_degree) degree_centrality = nx.degree_centrality(G) stats[] = degree_centrality stats[] = sum(degree_centrality.values())/len(degree_centrality) stats[] = nx.clustering(G_undir) stats[] = nx.average_clustering(G_undir) stats[] = nx.clustering(G_undir, weight=) stats[] = nx.average_clustering(G_undir, weight=) pagerank = nx.pagerank(G_dir, weight=) stats[] = pagerank pagerank_max_node = max(pagerank, key=lambda x: pagerank[x]) stats[] = pagerank_max_node stats[] = pagerank[pagerank_max_node] pagerank_min_node = min(pagerank, key=lambda x: pagerank[x]) stats[] = pagerank_min_node stats[] = pagerank[pagerank_min_node] if connectivity: start_time = time.time() stats[] = nx.node_connectivity(G_strong) stats[] = nx.edge_connectivity(G_strong) log(.format(time.time() - start_time)) if anc: start_time = time.time() stats[] = nx.average_node_connectivity(G) log(.format(time.time() - start_time)) if ecc: start_time = time.time() sp = {source:dict(nx.single_source_dijkstra_path_length(G_strong, source, weight=)) for source in G_strong.nodes()} log(.format(time.time() - start_time)) eccentricity = nx.eccentricity(G_strong, sp=sp) stats[] = eccentricity diameter = nx.diameter(G_strong, e=eccentricity) stats[] = diameter radius = nx.radius(G_strong, e=eccentricity) stats[] = radius center = nx.center(G_strong, e=eccentricity) stats[] = center periphery = nx.periphery(G_strong, e=eccentricity) stats[] = periphery if cc: start_time = time.time() closeness_centrality = nx.closeness_centrality(G, distance=) stats[] = closeness_centrality stats[] = sum(closeness_centrality.values())/len(closeness_centrality) log(.format(time.time() - start_time)) if bc: start_time = time.time() betweenness_centrality = nx.betweenness_centrality(G, weight=) stats[] = betweenness_centrality stats[] = sum(betweenness_centrality.values())/len(betweenness_centrality) log(.format(time.time() - start_time)) log(.format(time.time()-full_start_time)) return stats
Calculate extended topological stats and metrics for a graph. Many of these algorithms have an inherently high time complexity. Global topological analysis of large complex networks is extremely time consuming and may exhaust computer memory. Consider using function arguments to not run metrics that require computation of a full matrix of paths if they will not be needed. Parameters ---------- G : networkx multidigraph connectivity : bool if True, calculate node and edge connectivity anc : bool if True, calculate average node connectivity ecc : bool if True, calculate shortest paths, eccentricity, and topological metrics that use eccentricity bc : bool if True, calculate node betweenness centrality cc : bool if True, calculate node closeness centrality Returns ------- stats : dict dictionary of network measures containing the following elements (some only calculated/returned optionally, based on passed parameters): - avg_neighbor_degree - avg_neighbor_degree_avg - avg_weighted_neighbor_degree - avg_weighted_neighbor_degree_avg - degree_centrality - degree_centrality_avg - clustering_coefficient - clustering_coefficient_avg - clustering_coefficient_weighted - clustering_coefficient_weighted_avg - pagerank - pagerank_max_node - pagerank_max - pagerank_min_node - pagerank_min - node_connectivity - node_connectivity_avg - edge_connectivity - eccentricity - diameter - radius - center - periphery - closeness_centrality - closeness_centrality_avg - betweenness_centrality - betweenness_centrality_avg
26,436
def get(self, entity_id: EntityId, load: bool = False) -> Entity: try: entity = self.identity_map[entity_id] except KeyError: entity = Entity(entity_id, self) self.identity_map[entity_id] = entity if load: entity.load() return entity
Get a Wikidata entity by its :class:`~.entity.EntityId`. :param entity_id: The :attr:`~.entity.Entity.id` of the :class:`~.entity.Entity` to find. :type eneity_id: :class:`~.entity.EntityId` :param load: Eager loading on :const:`True`. Lazy loading (:const:`False`) by default. :type load: :class:`bool` :return: The found entity. :rtype: :class:`~.entity.Entity` .. versionadded:: 0.3.0 The ``load`` option.
26,437
def connect(self): try: self.telnet = Telnet(self.host, self.port) time.sleep(1) self.get() self.get() self.update() except socket.gaierror: self.telnet = None LOGGER.error("Cannot connect to %s (%d)", self.host, self.retries)
Simple connect
26,438
def diff_result_to_cell(item): state = item[] if state == : new_cell = item[].data old_cell = item[].data new_cell[][] = state new_cell[][] = old_cell cell = new_cell else: cell = item[].data cell[][] = state return cell
diff.diff returns a dictionary with all the information we need, but we want to extract the cell and change its metadata.
26,439
def _get_node_text(self, goid, goobj): txt = [] txt.append(self.pltvars.fmthdr.format( GO=goobj.id.replace("GO:", "GO"), level=goobj.level, depth=goobj.depth)) name = goobj.name.replace(",", "\n") txt.append(name) study_txt = self._get_study_txt(goid) if study_txt is not None: txt.append(study_txt) return "\n".join(txt)
Return a string to be printed in a GO term box.
26,440
def write_to(self, f): f.write(self.version + "\r\n") for name, value in self.items(): name = name.title() name = name.replace("Warc-", "WARC-").replace("-Ip-", "-IP-").replace("-Id", "-ID").replace("-Uri", "-URI") f.write(name) f.write(": ") f.write(value) f.write("\r\n") f.write("\r\n")
Writes this header to a file, in the format specified by WARC.
26,441
def list_all_products(cls, **kwargs): kwargs[] = True if kwargs.get(): return cls._list_all_products_with_http_info(**kwargs) else: (data) = cls._list_all_products_with_http_info(**kwargs) return data
List Products Return a list of Products This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async=True >>> thread = api.list_all_products(async=True) >>> result = thread.get() :param async bool :param int page: page number :param int size: page size :param str sort: page order :return: page[Product] If the method is called asynchronously, returns the request thread.
26,442
def map(self, func): if self._train_set: self._train_set = map(func, self._train_set) if self._valid_set: self._valid_set = map(func, self._valid_set) if self._test_set: self._test_set = map(func, self._test_set)
Process all data with given function. The scheme of function should be x,y -> x,y.
26,443
def add_entry(self, row): var_call = VCFEntry(self.individuals) var_call.parse_entry( row ) self.entries[(var_call.chrom, var_call.pos)] = var_call return var_call
This will parse the VCF entry and also store it within the VCFFile. It will also return the VCFEntry as well.
26,444
def weekly_plots( df, variable, renormalize = True, plot = True, scatter = False, linestyle = "-", linewidth = 1, s = 1 ): if not "days_through_week" in df.columns: log.error("field days_through_week not found in DataFrame") return False weeks = [] for group in df.groupby(df.index.week): weeks.append(group[1]) scaler = MinMaxScaler() plt.ylabel(variable); for week in weeks: if renormalize: values = scaler.fit_transform(week[[variable]]) else: values = week[variable] if plot: plt.plot(week["days_through_week"], values, linestyle = linestyle, linewidth = linewidth) if scatter: plt.scatter(week["days_through_week"], values, s = s) plt.xticks( [ 0.5, 1.5, 2.5, 3.5, 4.5, 5.5, 6.5], ["Monday", "Tuesday", "Wednesday", "Thursday", "Friday", "Saturday", "Sunday"] )
Create weekly plots of a variable in a DataFrame, optionally renormalized. It is assumed that the variable `days_through_week` exists.
26,445
def fetch(self): params = values.of({}) payload = self._version.fetch( , self._uri, params=params, ) return AddOnResultInstance( self._version, payload, account_sid=self._solution[], reference_sid=self._solution[], sid=self._solution[], )
Fetch a AddOnResultInstance :returns: Fetched AddOnResultInstance :rtype: twilio.rest.api.v2010.account.recording.add_on_result.AddOnResultInstance
26,446
def cancel(self): LOG.debug(, self) self._cancelled = True self.clear_callbacks() while True: try: self._waitables.get_nowait().put_nowait(self.sentinel) except queue.Empty: break
Cancels the observer No more notifications will be passed on
26,447
def ensure_sphinx_astropy_installed(): if LooseVersion(sys.version) < LooseVersion(): dist.fetch_build_eggs() eggs = dist.fetch_build_eggs() if eggs is not None: for egg in eggs: if egg.project_name == : sphinx_astropy_version = egg.parsed_version.public break eggs_path = os.path.abspath() for egg in glob.glob(os.path.join(eggs_path, )): sys_path_inserts.append(egg) return sphinx_astropy_version, sys_path_inserts
Make sure that sphinx-astropy is available, installing it temporarily if not. This returns the available version of sphinx-astropy as well as any paths that should be added to sys.path for sphinx-astropy to be available.
26,448
def _delete_extraneous_files(self): if not self._spec.options.delete_extraneous_destination: return checked = set() deleted = 0 for sa, container, vpath, dpath in self._get_destination_paths(): key = .join((sa.name, sa.endpoint, str(dpath))) if key in checked: continue logger.debug( .format( key)) if (self._spec.options.mode == blobxfer.models.azure.StorageModes.File): files = blobxfer.operations.azure.file.list_all_files( sa.file_client, container) for file in files: try: pathlib.Path(file).relative_to(vpath) except ValueError: continue id = blobxfer.operations.upload.Uploader.\ create_destination_id(sa.file_client, container, file) if id not in self._delete_exclude: if self._general_options.dry_run: logger.info(.format( file)) else: if self._general_options.verbose: logger.debug(.format(file)) blobxfer.operations.azure.file.delete_file( sa.file_client, container, file) deleted += 1 else: blobs = blobxfer.operations.azure.blob.list_all_blobs( sa.block_blob_client, container) for blob in blobs: try: pathlib.Path(blob.name).relative_to(vpath) except ValueError: continue id = blobxfer.operations.upload.Uploader.\ create_destination_id( sa.block_blob_client, container, blob.name) if id not in self._delete_exclude: if self._general_options.dry_run: logger.info(.format( blob.name)) else: if self._general_options.verbose: logger.debug(.format( blob.name)) blobxfer.operations.azure.blob.delete_blob( sa.block_blob_client, container, blob.name) deleted += 1 checked.add(key) logger.info(.format(deleted))
Delete extraneous files on the remote :param Uploader self: this
26,449
def get_instance_field(self, field_name): try: field = super(ModelWithDynamicFieldMixin, self).get_instance_field(field_name) except AttributeError: dynamic_field = self._get_dynamic_field_for(field_name) dynamic_field = self.get_field(dynamic_field.name) field = self._add_dynamic_field_to_instance(dynamic_field, field_name) return field
Add management of dynamic fields: if a normal field cannot be retrieved, check if it can be a dynamic field and in this case, create a copy with the given name and associate it to the instance.
26,450
def to_dict(self): result = { key[1:]: getattr(self, key) for key in self.__slots__ if key[0] == and hasattr(self, key) } try: colour = result.pop() except KeyError: pass else: if colour: result[] = colour.value try: timestamp = result.pop() except KeyError: pass else: if timestamp: result[] = timestamp.isoformat() if self.type: result[] = self.type if self.description: result[] = self.description if self.url: result[] = self.url if self.title: result[] = self.title return result
Converts this embed object into a dict.
26,451
def sg_summary_audio(tensor, sample_rate=16000, prefix=None, name=None): r prefix = if prefix is None else prefix + name = prefix + _pretty_name(tensor) if name is None else prefix + name if not tf.get_variable_scope().reuse: tf.summary.audio(name + , tensor, sample_rate)
r"""Register `tensor` to summary report as audio Args: tensor: A `Tensor` to log as audio sample_rate : An int. Sample rate to report. Default is 16000. prefix: A `string`. A prefix to display in the tensor board web UI. name: A `string`. A name to display in the tensor board web UI. Returns: None
26,452
def _proc_uri(self, request, result): if result: return for prefix, version in self.uris: if (request.path_info == prefix or request.path_info.startswith(prefix + )): result.set_version(version) request.script_name += prefix request.path_info = request.path_info[len(prefix):] if not request.path_info: request.path_info = break for format, ctype in self.formats.items(): if request.path_info.endswith(format): result.set_ctype(ctype) request.path_info = request.path_info[:-len(format)] break
Process the URI rules for the request. Both the desired API version and desired content type can be determined from those rules. :param request: The Request object provided by WebOb. :param result: The Result object to store the results in.
26,453
def with_continuations(**c): if len(c): keys, k = zip(*c.items()) else: keys, k = tuple([]), tuple([]) def d(f): return C( lambda kself, *conts: lambda *args: f(*args, self=kself, **dict(zip(keys, conts)))) (*k) return d
A decorator for defining tail-call optimized functions. Example ------- @with_continuations() def factorial(n, k, self=None): return self(n-1, k*n) if n > 1 else k @with_continuations() def identity(x, self=None): return x @with_continuations(out=identity) def factorial2(n, k, self=None, out=None): return self(n-1, k*n) if n > 1 else out(k) print(factorial(7,1)) print(factorial2(7,1))
26,454
def f_lock_parameters(self): for par in self._parameters.values(): if not par.f_is_empty(): par.f_lock()
Locks all non-empty parameters
26,455
def generate_rss(self, path=, only_excerpt=True, https=False): feed = russell.feed.get_rss_feed(self, only_excerpt=only_excerpt, https=https) feed.rss_file(self._get_dist_path(path))
Generate the RSS feed. Args: path (str): Where to save the RSS file. Make sure that your jinja templates refer to the same path using <link>. only_excerpt (bool): If True (the default), don't include the full body of posts in the RSS. Instead, include the first paragraph and a "read more" link to your website. https (bool): If True, links inside the RSS with relative scheme (e.g. //example.com/something) will be set to HTTPS. If False (the default), they will be set to plain HTTP.
26,456
def instance_present(name, instance_name=None, instance_id=None, image_id=None, image_name=None, tags=None, key_name=None, security_groups=None, user_data=None, instance_type=None, placement=None, kernel_id=None, ramdisk_id=None, vpc_id=None, vpc_name=None, monitoring_enabled=None, subnet_id=None, subnet_name=None, private_ip_address=None, block_device_map=None, disable_api_termination=None, instance_initiated_shutdown_behavior=None, placement_group=None, client_token=None, security_group_ids=None, security_group_names=None, additional_info=None, tenancy=None, instance_profile_arn=None, instance_profile_name=None, ebs_optimized=None, network_interfaces=None, network_interface_name=None, network_interface_id=None, attributes=None, target_state=None, public_ip=None, allocation_id=None, allocate_eip=False, region=None, key=None, keyid=None, profile=None): instance_idinstance_namestopterminatell want to releaase this address when terminating the instance, either manually or via the flag to . region (string) - Region to connect to. key (string) - Secret key to be used. keyid (string) - Access key to be used. profile (variable) - A dict with region, key and keyid, or a pillar key (string) that contains a dict with region, key and keyid. .. versionadded:: 2016.3.0 nameresultcommentchangespendingrebootingrunningstoppingstoppedExactly one of image_id OR image_name must be provided.At most one of public_ip, allocation_id OR allocate_eip may be provided.boto_ec2.existsboto_ec2.find_instancesMultiple instances matching criteria found - cannot determine a singular instance-idll just have to bail later.... else: instance_id = instances[0] if _create: if __opts__[]: ret[] = .format(name) ret[] = None return ret if image_name: args = {: image_name, : region, : key, : keyid, : profile} image_ids = __salt__[](**args) if image_ids: image_id = image_ids[0] else: image_id = image_name r = __salt__[](image_id, instance_name if instance_name else name, tags=tags, key_name=key_name, security_groups=security_groups, user_data=user_data, instance_type=instance_type, placement=placement, kernel_id=kernel_id, ramdisk_id=ramdisk_id, vpc_id=vpc_id, vpc_name=vpc_name, monitoring_enabled=monitoring_enabled, subnet_id=subnet_id, subnet_name=subnet_name, private_ip_address=private_ip_address, block_device_map=block_device_map, disable_api_termination=disable_api_termination, instance_initiated_shutdown_behavior=instance_initiated_shutdown_behavior, placement_group=placement_group, client_token=client_token, security_group_ids=security_group_ids, security_group_names=security_group_names, additional_info=additional_info, tenancy=tenancy, instance_profile_arn=instance_profile_arn, instance_profile_name=instance_profile_name, ebs_optimized=ebs_optimized, network_interfaces=network_interfaces, network_interface_name=network_interface_name, network_interface_id=network_interface_id, region=region, key=key, keyid=keyid, profile=profile) if not r or not in r: ret[] = False ret[] = .format(instance_name if instance_name else name) return ret instance_id = r[] ret[] = {: {}, : {}} ret[][][] = None ret[][][] = instance_id if allocate_eip: if __opts__[]: ret[] = ret[] = None return ret domain = if vpc_id or vpc_name else None r = __salt__[]( domain=domain, region=region, key=key, keyid=keyid, profile=profile) if not r: ret[] = False ret[] = return ret allocation_id = r[] log.info("New EIP with address %s allocated.", r[]) else: log.info("EIP not requested.") if public_ip or allocation_id: tries = 10 secs = 3 for t in range(tries): r = __salt__[]( addresses=public_ip, allocation_ids=allocation_id, region=region, key=key, keyid=keyid, profile=profile) if r: break else: log.info( , tries * secs, public_ip or allocation_id ) time.sleep(secs) if not r: ret[] = False ret[] = .format(public_ip or allocation_id) return ret ip = r[0][] if r[0].get(): if r[0][] != instance_id: ret[] = False ret[] = ( .format(public_ip if public_ip else allocation_id, r[0][])) return ret else: if __opts__[]: ret[] = .format(name) ret[] = None return ret r = __salt__[]( instance_id=instance_id, public_ip=public_ip, allocation_id=allocation_id, region=region, key=key, keyid=keyid, profile=profile) if r: if not in ret[]: ret[][] = {} ret[][][] = ip else: ret[] = False ret[] = .format( instance_name if instance_name else name) return ret if attributes: for k, v in six.iteritems(attributes): curr = __salt__[](k, instance_id=instance_id, region=region, key=key, keyid=keyid, profile=profile) curr = {} if not isinstance(curr, dict) else curr if curr.get(k) == v: continue else: if __opts__[]: changed_attrs[k] = {1}\{2}\.format( k, curr.get(k), v) continue try: r = __salt__[](attribute=k, attribute_value=v, instance_id=instance_id, region=region, key=key, keyid=keyid, profile=profile) except SaltInvocationError as e: ret[] = False ret[] = .format(k, v, instance_name) return ret ret[] = ret[] if ret[] else {: {}, : {}} ret[][][k] = curr.get(k) ret[][][k] = v if __opts__[]: if changed_attrs: ret[][] = changed_attrs ret[] = None else: ret[] = .format(instance_name if instance_name else name) ret[] = True if tags and instance_id is not None: tags = dict(tags) curr_tags = dict(__salt__[](filters={: instance_id}, region=region, key=key, keyid=keyid, profile=profile).get(instance_id, {})) current = set(curr_tags.keys()) desired = set(tags.keys()) remove = list(current - desired) return ret
Ensure an EC2 instance is running with the given attributes and state. name (string) - The name of the state definition. Recommended that this match the instance_name attribute (generally the FQDN of the instance). instance_name (string) - The name of the instance, generally its FQDN. Exclusive with 'instance_id'. instance_id (string) - The ID of the instance (if known). Exclusive with 'instance_name'. image_id (string) – The ID of the AMI image to run. image_name (string) – The name of the AMI image to run. tags (dict) - Tags to apply to the instance. key_name (string) – The name of the key pair with which to launch instances. security_groups (list of strings) – The names of the EC2 classic security groups with which to associate instances user_data (string) – The Base64-encoded MIME user data to be made available to the instance(s) in this reservation. instance_type (string) – The EC2 instance size/type. Note that only certain types are compatible with HVM based AMIs. placement (string) – The Availability Zone to launch the instance into. kernel_id (string) – The ID of the kernel with which to launch the instances. ramdisk_id (string) – The ID of the RAM disk with which to launch the instances. vpc_id (string) - The ID of a VPC to attach the instance to. vpc_name (string) - The name of a VPC to attach the instance to. monitoring_enabled (bool) – Enable detailed CloudWatch monitoring on the instance. subnet_id (string) – The ID of the subnet within which to launch the instances for VPC. subnet_name (string) – The name of the subnet within which to launch the instances for VPC. private_ip_address (string) – If you’re using VPC, you can optionally use this parameter to assign the instance a specific available IP address from the subnet (e.g., 10.0.0.25). block_device_map (boto.ec2.blockdevicemapping.BlockDeviceMapping) – A BlockDeviceMapping data structure describing the EBS volumes associated with the Image. disable_api_termination (bool) – If True, the instances will be locked and will not be able to be terminated via the API. instance_initiated_shutdown_behavior (string) – Specifies whether the instance stops or terminates on instance-initiated shutdown. Valid values are: - 'stop' - 'terminate' placement_group (string) – If specified, this is the name of the placement group in which the instance(s) will be launched. client_token (string) – Unique, case-sensitive identifier you provide to ensure idempotency of the request. Maximum 64 ASCII characters. security_group_ids (list of strings) – The IDs of the VPC security groups with which to associate instances. security_group_names (list of strings) – The names of the VPC security groups with which to associate instances. additional_info (string) – Specifies additional information to make available to the instance(s). tenancy (string) – The tenancy of the instance you want to launch. An instance with a tenancy of ‘dedicated’ runs on single-tenant hardware and can only be launched into a VPC. Valid values are:”default” or “dedicated”. NOTE: To use dedicated tenancy you MUST specify a VPC subnet-ID as well. instance_profile_arn (string) – The Amazon resource name (ARN) of the IAM Instance Profile (IIP) to associate with the instances. instance_profile_name (string) – The name of the IAM Instance Profile (IIP) to associate with the instances. ebs_optimized (bool) – Whether the instance is optimized for EBS I/O. This optimization provides dedicated throughput to Amazon EBS and a tuned configuration stack to provide optimal EBS I/O performance. This optimization isn’t available with all instance types. network_interfaces (boto.ec2.networkinterface.NetworkInterfaceCollection) – A NetworkInterfaceCollection data structure containing the ENI specifications for the instance. network_interface_name (string) - The name of Elastic Network Interface to attach .. versionadded:: 2016.11.0 network_interface_id (string) - The id of Elastic Network Interface to attach .. versionadded:: 2016.11.0 attributes (dict) - Instance attributes and value to be applied to the instance. Available options are: - instanceType - A valid instance type (m1.small) - kernel - Kernel ID (None) - ramdisk - Ramdisk ID (None) - userData - Base64 encoded String (None) - disableApiTermination - Boolean (true) - instanceInitiatedShutdownBehavior - stop|terminate - blockDeviceMapping - List of strings - ie: [‘/dev/sda=false’] - sourceDestCheck - Boolean (true) - groupSet - Set of Security Groups or IDs - ebsOptimized - Boolean (false) - sriovNetSupport - String - ie: ‘simple’ target_state (string) - The desired target state of the instance. Available options are: - running - stopped Note that this option is currently UNIMPLEMENTED. public_ip: (string) - The IP of a previously allocated EIP address, which will be attached to the instance. EC2 Classic instances ONLY - for VCP pass in an allocation_id instead. allocation_id: (string) - The ID of a previously allocated EIP address, which will be attached to the instance. VPC instances ONLY - for Classic pass in a public_ip instead. allocate_eip: (bool) - Allocate and attach an EIP on-the-fly for this instance. Note you'll want to releaase this address when terminating the instance, either manually or via the 'release_eip' flag to 'instance_absent'. region (string) - Region to connect to. key (string) - Secret key to be used. keyid (string) - Access key to be used. profile (variable) - A dict with region, key and keyid, or a pillar key (string) that contains a dict with region, key and keyid. .. versionadded:: 2016.3.0
26,457
def status_for_all_orders(self): url_fragment = .format( venue=self.venue, account=self.account, ) url = urljoin(self.base_url, url_fragment) return self.session.get(url).json()
Status for all orders https://starfighter.readme.io/docs/status-for-all-orders
26,458
def with_path(self, path, *, encoded=False): if not encoded: path = self._PATH_QUOTER(path) if self.is_absolute(): path = self._normalize_path(path) if len(path) > 0 and path[0] != "/": path = "/" + path return URL(self._val._replace(path=path, query="", fragment=""), encoded=True)
Return a new URL with path replaced.
26,459
def eventFilter( self, object, event ): if ( event.type() != event.Resize ): return False size = event.size() w = size.width() h = size.height() hpolicy = Qt.ScrollBarAlwaysOff vpolicy = Qt.ScrollBarAlwaysOff if ( self._minimumHeight != -1 and h < self._minimumHeight ): h = self._minimumHeight vpolicy = Qt.ScrollBarAsNeeded if ( self._maximumHeight != -1 and self._maximumHeight < h ): h = self._maximumHeight vpolicy = Qt.ScrollBarAsNeeded if ( self._minimumWidth != -1 and w < self._minimumWidth ): w = self._minimumWidth hpolicy = Qt.ScrollBarAsNeeded if ( self._maximumWidth != -1 and self._maximumWidth < w ): w = self._maximumWidth hpolicy = Qt.ScrollBarAsNeeded hruler = self.horizontalRuler() vruler = self.verticalRuler() hlen = hruler.minLength(Qt.Horizontal) vlen = hruler.minLength(Qt.Vertical) offset_w = 0 offset_h = 0 self.setSceneRect(0, 0, w - offset_w, h - offset_h) object.setVerticalScrollBarPolicy(vpolicy) object.setHorizontalScrollBarPolicy(hpolicy) return False
Filters the chart widget for the resize event to modify this scenes rect. :param object | <QObject> event | <QEvent>
26,460
def dropHistoricalTable(apps, schema_editor): table_name = if table_name in connection.introspection.table_names(): migrations.DeleteModel( name=table_name, )
Drops the historical sap_success_factors table named herein.
26,461
def update_os_image_from_image_reference(self, image_name, os_image): _validate_not_none(, image_name) _validate_not_none(, os_image) return self._perform_put(self._get_image_path(image_name), _XmlSerializer.update_os_image_to_xml(os_image), as_async=True )
Updates metadata elements from a given OS image reference. image_name: The name of the image to update. os_image: An instance of OSImage class. os_image.label: Optional. Specifies an identifier for the image. os_image.description: Optional. Specifies the description of the image. os_image.language: Optional. Specifies the language of the image. os_image.image_family: Optional. Specifies a value that can be used to group VM Images. os_image.recommended_vm_size: Optional. Specifies the size to use for the Virtual Machine that is created from the VM Image. os_image.eula: Optional. Specifies the End User License Agreement that is associated with the image. The value for this element is a string, but it is recommended that the value be a URL that points to a EULA. os_image.icon_uri: Optional. Specifies the URI to the icon that is displayed for the image in the Management Portal. os_image.small_icon_uri: Optional. Specifies the URI to the small icon that is displayed for the image in the Management Portal. os_image.privacy_uri: Optional. Specifies the URI that points to a document that contains the privacy policy related to the image. os_image.published_date: Optional. Specifies the date when the image was added to the image repository. os.image.media_link: Required: Specifies the location of the blob in Windows Azure blob store where the media for the image is located. The blob location must belong to a storage account in the subscription specified by the <subscription-id> value in the operation call. Example: http://example.blob.core.windows.net/disks/mydisk.vhd os_image.name: Specifies a name for the OS image that Windows Azure uses to identify the image when creating one or more VM Roles. os_image.os: The operating system type of the OS image. Possible values are: Linux, Windows
26,462
def _get_asset(self, asset_uid): uri = self.uri + + asset_uid headers = self._get_headers() return self.service._get(uri, headers=headers)
Returns raw response for an given asset by its unique id.
26,463
def is_type(self): if self.__is_type_result is not None: return self.__is_type_result self.__is_type_result = self.__is_type() return self.__is_type_result
:return: :rtype: bool
26,464
def update_rejection_permissions(portal): updated = update_rejection_permissions_for(portal, "bika_ar_workflow", "Reject Analysis Request") if updated: brains = api.search(dict(portal_type="AnalysisRequest"), CATALOG_ANALYSIS_REQUEST_LISTING) update_rolemappings_for(brains, "bika_ar_workflow") updated = update_rejection_permissions_for(portal, "bika_sample_workflow", "Reject Sample") if updated: brains = api.search(dict(portal_type="Sample"), "bika_catalog") update_rolemappings_for(brains, "bika_sample_workflow")
Adds the permission 'Reject Analysis Request' and update the permission mappings accordingly
26,465
def pos_development_directory(templates, inventory, context, topics, user, item): replacement_fields = replacement_fields_from_context(context) binding = binding_from_item(inventory, item) pattern = pattern_from_template(templates, binding) positional_arguments = find_positional_arguments(pattern) highest_argument = find_highest_position(positional_arguments) highest_available = len(topics) - 1 if highest_available < highest_argument: echo("Template for \"%s\" requires at least %i arguments" % ( item, highest_argument + 1)) sys.exit(USER_ERROR) try: return pattern.format(*topics, **replacement_fields).replace("\\", "/") except KeyError as exc: echo("TEMPLATE ERROR: %s is not an available key\n" % exc) echo("Available tokens:") for key in replacement_fields: echo("\n- %s" % key) sys.exit(TEMPLATE_ERROR)
Return absolute path to development directory Arguments: templates (dict): templates.yaml inventory (dict): inventory.yaml context (dict): The be context, from context() topics (list): Arguments to `in` user (str): Current `be` user item (str): Item from template-binding address
26,466
def detect_images_and_galleries(generators): for generator in generators: if isinstance(generator, ArticlesGenerator): for article in itertools.chain(generator.articles, generator.translations, generator.drafts): detect_image(generator, article) detect_gallery(generator, article) elif isinstance(generator, PagesGenerator): for page in itertools.chain(generator.pages, generator.translations, generator.hidden_pages): detect_image(generator, page) detect_gallery(generator, page)
Runs generator on both pages and articles.
26,467
def invert(self): result = defaultdict(set) for k, val in self.items(): result[val].add(k) return MultiDict(dict(result))
Invert by swapping each value with its key. Returns ------- MultiDict Inverted multi-dict. Examples -------- >>> MultiDict({1: {1}, 2: {1,2,3}}, 4: {}).invert() MultiDict({1: {1,2}, 2: {2}, 3: {2}})
26,468
def select(self, template_name): return [t for t in self.templates if t.name == template_name][0]
Select a particular template from the tribe. :type template_name: str :param template_name: Template name to look-up :return: Template .. rubric:: Example >>> tribe = Tribe(templates=[Template(name='c'), Template(name='b'), ... Template(name='a')]) >>> tribe.select('b') # doctest: +NORMALIZE_WHITESPACE Template b: 0 channels; lowcut: None Hz; highcut: None Hz; sampling rate None Hz; filter order: None; process length: None s
26,469
def applies(self, src, dst): if self._src_pattern and (src is None or re.search(self._src_pattern, src) is None): return False elif self._dst_pattern and (dst is None or re.search(self._dst_pattern, dst) is None): return False return True
Checks if this rule applies to the given src and dst paths, based on the src pattern and dst pattern given in the constructor. If src pattern was None, this rule will apply to any given src path (same for dst).
26,470
def get_account(self): api = self._get_api(iam.DeveloperApi) return Account(api.get_my_account_info(include="limits, policies"))
Get details of the current account. :returns: an account object. :rtype: Account
26,471
def container_query(self, query, quiet=False): results = self._list_containers() matches = [] for result in results: for key,val in result.metadata.items(): if query in val and result not in matches: matches.append(result) if not quiet: bot.info("[gs://%s] Found %s containers" %(self._bucket_name,len(matches))) for image in matches: size = round(image.size / (1024*1024.0)) bot.custom(prefix=image.name, color="CYAN") bot.custom(prefix=, message=image.id) bot.custom(prefix=, message=image.metadata[]) bot.custom(prefix=, message=image.updated) bot.custom(prefix=, message= %(size)) bot.custom(prefix=, message=image.md5_hash) if "public_url" in image.metadata: public_url = image.metadata[] bot.custom(prefix=, message=public_url) bot.newline() return matches
search for a specific container. This function would likely be similar to the above, but have different filter criteria from the user (based on the query)
26,472
def _classic_get_grouped_dicoms(dicom_input): if [d for d in dicom_input if in d]: dicoms = sorted(dicom_input, key=lambda x: x.InstanceNumber) else: dicoms = common.sort_dicoms(dicom_input) grouped_dicoms = [] stack_position_tag = Tag(0x0020, 0x0012) for index in range(0, len(dicoms)): dicom_ = dicoms[index] if stack_position_tag not in dicom_: stack_index = 0 else: stack_index = dicom_[stack_position_tag].value - 1 while len(grouped_dicoms) <= stack_index: grouped_dicoms.append([]) grouped_dicoms[stack_index].append(dicom_) return grouped_dicoms
Search all dicoms in the dicom directory, sort and validate them fast_read = True will only read the headers not the data
26,473
def stage(self, name, pipeline_counter=None): return Stage( self.server, pipeline_name=self.name, stage_name=name, pipeline_counter=pipeline_counter, )
Helper to instantiate a :class:`gocd.api.stage.Stage` object Args: name: The name of the stage pipeline_counter: Returns:
26,474
def watch_docs(ctx): try: import sphinx_autobuild except ImportError: print() print() print() sys.exit(1) docs(ctx) ctx.run(.format(docs_dir, build_dir), pty=True)
Run build the docs when a file changes.
26,475
def format_time(time): h, r = divmod(time / 1000, 3600) m, s = divmod(r, 60) return "%02d:%02d:%02d" % (h, m, s)
Formats the given time into HH:MM:SS
26,476
def _show_notification(self, event, summary, message, icon, *actions): notification = self._notify(summary, message, icon) timeout = self._get_timeout(event) if timeout != -1: notification.set_timeout(int(timeout * 1000)) for action in actions: if action and self._action_enabled(event, action[0]): self._add_action(notification, *action) try: notification.show() except GLib.GError as exc: self._log.error(_("Failed to show notification: {0}", exc_message(exc))) self._log.debug(format_exc())
Show a notification. :param str event: event name :param str summary: notification title :param str message: notification body :param str icon: icon name :param actions: each item is a tuple with parameters for _add_action
26,477
def register_app(self, app): app.route(self.uri, methods=self.methods)(self.callable_obj) return self
Register the route object to a `bottle.Bottle` app instance. Args: app (instance): Returns: Route instance (for chaining purposes)
26,478
def add_scalar(self, name, value, step): self.writer.add_scalar(name, value, step)
Log a scalar variable.
26,479
def timezone(client, location, timestamp=None, language=None): params = { "location": convert.latlng(location), "timestamp": convert.time(timestamp or datetime.utcnow()) } if language: params["language"] = language return client._request( "/maps/api/timezone/json", params)
Get time zone for a location on the earth, as well as that location's time offset from UTC. :param location: The latitude/longitude value representing the location to look up. :type location: string, dict, list, or tuple :param timestamp: Timestamp specifies the desired time as seconds since midnight, January 1, 1970 UTC. The Time Zone API uses the timestamp to determine whether or not Daylight Savings should be applied. Times before 1970 can be expressed as negative values. Optional. Defaults to ``datetime.utcnow()``. :type timestamp: int or datetime.datetime :param language: The language in which to return results. :type language: string :rtype: dict
26,480
def qtrim_front(self, name, size=1): size = get_positive_integer("size", size) return self.execute_command(, name, size)
Sets the list element at ``index`` to ``value``. An error is returned for out of range indexes. :param string name: the queue name :param int size: the max length of removed elements :return: the length of removed elements :rtype: int
26,481
def expand(self, v): if not is_measure(v) or v[] not in [, , ]: raise TypeError("Can only expand baselines, positions, or uvw") vw = v.copy() vw[] = "uvw" vw[] = "J2000" outm = _measures.expand(self, vw) outm[] = dq.quantity(outm[]) outm[][] = v[] outm[][] = v[] return outm
Calculates the differences between a series of given measure values: it calculates baseline values from position values. :params v: a measure (of type 'baseline', 'position' or 'uvw') :returns: a `dict` with the value for key `measures` being a measure and the value for key `xyz` a quantity containing the differences. Example:: >>> from casacore.quanta import quantity >>> x = quantity([10,50],'m') >>> y = quantity([20,100],'m') >>> z = quantity([30,150],'m') >>> sb = dm.baseline('itrf', x, y, z) >>> out = dm.expand(sb) >>> print out['xyz'] [40.000000000000014, 80.0, 120.0] m
26,482
def volatility(tnet, distance_func_name=, calc=, communities=None, event_displacement=None): r tnet, netinfo = process_input(tnet, [, , ]) distance_func_name = check_distance_funciton_input( distance_func_name, netinfo) if not isinstance(distance_func_name, str): raise ValueError() if netinfo[][1] == : ind = np.triu_indices(tnet.shape[0], k=-tnet.shape[0]) elif netinfo[][1] == : ind = np.triu_indices(tnet.shape[0], k=1) if calc == : communities = np.array(communities) if len(communities) != netinfo[][0]: raise ValueError( ) if communities.min() < 0: raise ValueError( ) distance_func = getDistanceFunction(distance_func_name) if calc == : vol = np.mean([distance_func(tnet[ind[0], ind[1], t], tnet[ind[0], ind[1], t + 1]) for t in range(0, tnet.shape[-1] - 1)]) elif calc == : vol = [distance_func(tnet[ind[0], ind[1], t], tnet[ind[0], ind[1], t + 1]) for t in range(0, tnet.shape[-1] - 1)] elif calc == : vol = [distance_func(tnet[ind[0], ind[1], event_displacement], tnet[ind[0], ind[1], t]) for t in range(0, tnet.shape[-1])] elif calc == or calc == : vol = np.zeros([tnet.shape[0], tnet.shape[1]]) for i in ind[0]: for j in ind[1]: vol[i, j] = np.mean([distance_func( tnet[i, j, t], tnet[i, j, t + 1]) for t in range(0, tnet.shape[-1] - 1)]) if netinfo[][1] == : vol = vol + np.transpose(vol) if calc == : vol = np.mean(vol, axis=1) elif calc == : net_id = set(communities) vol = np.zeros([max(net_id) + 1, max(net_id) + 1, netinfo[][-1] - 1]) for net1 in net_id: for net2 in net_id: if net1 != net2: vol[net1, net2, :] = [distance_func(tnet[communities == net1][:, communities == net2, t].flatten(), tnet[communities == net1][:, communities == net2, t + 1].flatten()) for t in range(0, tnet.shape[-1] - 1)] else: nettmp = tnet[communities == net1][:, communities == net2, :] triu = np.triu_indices(nettmp.shape[0], k=1) nettmp = nettmp[triu[0], triu[1], :] vol[net1, net2, :] = [distance_func(nettmp[:, t].flatten( ), nettmp[:, t + 1].flatten()) for t in range(0, tnet.shape[-1] - 1)] elif calc == : withi = np.array([[ind[0][n], ind[1][n]] for n in range( 0, len(ind[0])) if communities[ind[0][n]] == communities[ind[1][n]]]) vol = [distance_func(tnet[withi[:, 0], withi[:, 1], t], tnet[withi[:, 0], withi[:, 1], t + 1]) for t in range(0, tnet.shape[-1] - 1)] elif calc == : beti = np.array([[ind[0][n], ind[1][n]] for n in range( 0, len(ind[0])) if communities[ind[0][n]] != communities[ind[1][n]]]) vol = [distance_func(tnet[beti[:, 0], beti[:, 1], t], tnet[beti[:, 0], beti[:, 1], t + 1]) for t in range(0, tnet.shape[-1] - 1)] return vol
r""" Volatility of temporal networks. Volatility is the average distance between consecutive time points of graphlets (difference is caclualted either globally or per edge). Parameters ---------- tnet : array or dict temporal network input (graphlet or contact). Nettype: 'bu','bd','wu','wd' D : str Distance function. Following options available: 'default', 'hamming', 'euclidean'. (Default implies hamming for binary networks, euclidean for weighted). calc : str Version of volaitility to caclulate. Possibilities include: 'global' - (default): the average distance of all nodes for each consecutive time point). 'edge' - average distance between consecutive time points for each edge). Takes considerably longer 'node' - (i.e. returns the average per node output when calculating volatility per 'edge'). 'time' - returns volatility per time point 'communities' - returns volatility per communitieswork id (see communities). Also is returned per time-point and this may be changed in the future (with additional options) 'event_displacement' - calculates the volatility from a specified point. Returns time-series. communities : array Array of indicies for community (eiter (node) or (node,time) dimensions). event_displacement : int if calc = event_displacement specify the temporal index where all other time-points are calculated in relation too. Notes ----- Volatility calculates the difference between network snapshots. .. math:: V_t = D(G_t,G_{t+1}) Where D is some distance function (e.g. Hamming distance for binary matrices). V can be calculated for the entire network (global), but can also be calculated for individual edges, nodes or given a community vector. Index of communities are returned "as is" with a shape of [max(communities)+1,max(communities)+1]. So if the indexes used are [1,2,3,5], V.shape==(6,6). The returning V[1,2] will correspond indexes 1 and 2. And missing index (e.g. here 0 and 4 will be NANs in rows and columns). If this behaviour is unwanted, call clean_communitiesdexes first. This will probably change. Examples -------- Import everything needed. >>> import teneto >>> import numpy >>> np.random.seed(1) >>> tnet = teneto.TemporalNetwork(nettype='bu') Here we generate a binary network where edges have a 0.5 change of going "on", and once on a 0.2 change to go "off" >>> tnet.generatenetwork('rand_binomial', size=(3,10), prob=(0.5,0.2)) Calculate the volatility >>> tnet.calc_networkmeasure('volatility', distance_func_name='hamming') 0.5555555555555556 If we change the probabilities to instead be certain edges disapeared the time-point after the appeared: >>> tnet.generatenetwork('rand_binomial', size=(3,10), prob=(0.5,1)) This will make a more volatile network >>> tnet.calc_networkmeasure('volatility', distance_func_name='hamming') 0.1111111111111111 We can calculate the volatility per time instead >>> vol_time = tnet.calc_networkmeasure('volatility', calc='time', distance_func_name='hamming') >>> len(vol_time) 9 >>> vol_time[0] 0.3333333333333333 Or per node: >>> vol_node = tnet.calc_networkmeasure('volatility', calc='node', distance_func_name='hamming') >>> vol_node array([0.07407407, 0.07407407, 0.07407407]) Here we see the volatility for each node was the same. It is also possible to pass a community vector and the function will return volatility both within and between each community. So the following has two communities: >>> vol_com = tnet.calc_networkmeasure('volatility', calc='communities', communities=[0,1,1], distance_func_name='hamming') >>> vol_com.shape (2, 2, 9) >>> vol_com[:,:,0] array([[nan, 0.5], [0.5, 0. ]]) And we see that, at time-point 0, there is some volatility between community 0 and 1 but no volatility within community 1. The reason for nan appearing is due to there only being 1 node in community 0. Output ------ vol : array
26,483
def getPointOnLine(x1, y1, x2, y2, n): x = ((x2 - x1) * n) + x1 y = ((y2 - y1) * n) + y1 return (x, y)
Returns the (x, y) tuple of the point that has progressed a proportion n along the line defined by the two x, y coordinates. Copied from pytweening module.
26,484
def checkBim(fileName, minNumber, chromosome): nbMarkers = 0 with open(fileName, ) as inputFile: for line in inputFile: row = line.rstrip("\r\n").split("\t") if row[0] == chromosome: nbMarkers += 1 if nbMarkers < minNumber: return False return True
Checks the BIM file for chrN markers. :param fileName: :param minNumber: :param chromosome: :type fileName: str :type minNumber: int :type chromosome: str :returns: ``True`` if there are at least ``minNumber`` markers on chromosome ``chromosome``, ``False`` otherwise.
26,485
def can_take(attrs_to_freeze=(), defaults=None, source_attr=, instance_property_name=, inner_class_name=): def wrapper(klass): Snapshot = namedtuple(inner_class_name, tuple(attrs_to_freeze) + (source_attr,)) doc = % (.join(attrs_to_freeze), source_attr) def instance_method(self): return Snapshot(**dict({ k: (getattr(self, k, defaults(k)) if callable(defaults) else getattr(self, k)) for k in attrs_to_freeze }, **{source_attr: self})) instance_method.__doc__ = doc setattr(klass, instance_property_name, property(instance_method)) setattr(klass, inner_class_name, Snapshot) return klass return wrapper
Decorator to make a class allow their instances to generate snapshot of themselves. Decorates the class by allowing it to have: * A custom class to serve each snapshot. Such class will have a subset of attributes to serve from the object, and a special designed attribute ('source', by default) to serve the originating object. Such class will be stored under custom name under the generating (decorated) class. * An instance method (actually: property) which will yield the snapshot for the instance.
26,486
def show_warning(self, index): try: val_size = index.model().sizes[index.row()] val_type = index.model().types[index.row()] except: return False if val_type in [, , , ] and \ int(val_size) > 1e5: return True else: return False
Decide if showing a warning when the user is trying to view a big variable associated to a Tablemodel index This avoids getting the variables' value to know its size and type, using instead those already computed by the TableModel. The problem is when a variable is too big, it can take a lot of time just to get its value
26,487
def add_group(self, number, name, led_type): group = group_factory(self, number, name, led_type) self.groups.append(group) return group
Add a group. :param number: Group number (1-4). :param name: Group name. :param led_type: Either `RGBW`, `WRGB`, `RGBWW`, `WHITE`, `DIMMER` or `BRIDGE_LED`. :returns: Added group.
26,488
def __parse(value): match_result = _RE_DATETIME.match(value) if match_result is None: raise ValueError("date data has invalid format " % (value,)) date = _date_from_match(match_result) time, round_up = _time_from_match(match_result) tzinfo = _tzinfo_from_match(match_result) value = datetime.datetime.combine(date, time) value = value.replace(tzinfo=tzinfo) if round_up: value += datetime.timedelta(microseconds=1) return value
Parse the string datetime. Supports the subset of ISO8601 used by xsd:dateTime, but is lenient with what is accepted, handling most reasonable syntax. Subsecond information is rounded to microseconds due to a restriction in the python datetime.datetime/time implementation. @param value: A datetime string. @type value: str @return: A datetime object. @rtype: B{datetime}.I{datetime}
26,489
def get_instance(self, payload): return SipInstance(self._version, payload, account_sid=self._solution[], )
Build an instance of SipInstance :param dict payload: Payload response from the API :returns: twilio.rest.api.v2010.account.sip.SipInstance :rtype: twilio.rest.api.v2010.account.sip.SipInstance
26,490
def _initialize_installation(self): private_key_client = security.generate_rsa_private_key() installation = core.Installation.create( self, security.public_key_to_string(private_key_client.publickey()) ).value token = installation.token.token public_key_server_string = \ installation.server_public_key.server_public_key public_key_server = RSA.import_key(public_key_server_string) self._installation_context = InstallationContext( token, private_key_client, public_key_server )
:rtype: None
26,491
def initialize(self, **kwargs): if not set(kwargs.keys()).issuperset(self.init_keys): raise Exception("TransferFn needs to be initialized with %s" % .join(repr(el) for el in self.init_keys))
Transfer functions may need additional information before the supplied numpy array can be modified in place. For instance, transfer functions may have state which needs to be allocated in memory with a certain size. In other cases, the transfer function may need to know about the coordinate system associated with the input data.
26,492
def _run_coro(self, value): if self._options.mode is MODE.LAST_DISTINCT and \ value == self._last_emit: self._future = None return self._last_emit = value self.scheduled.notify(value) values = value if self._options.unpack else (value,) coro = self._options.coro(*values, *self._options.args, **self._options.kwargs) self._future = asyncio.ensure_future(coro) self._future.add_done_callback(self._future_done)
Start the coroutine as task
26,493
def update(self, story, params={}, **options): path = "/stories/%s" % (story) return self.client.put(path, params, **options)
Updates the story and returns the full record for the updated story. Only comment stories can have their text updated, and only comment stories and attachment stories can be pinned. Only one of `text` and `html_text` can be specified. Parameters ---------- story : {Id} Globally unique identifier for the story. [data] : {Object} Data for the request - [text] : {String} The plain text with which to update the comment. - [html_text] : {String} The rich text with which to update the comment. - [is_pinned] : {Boolean} Whether the story should be pinned on the resource.
26,494
def set_interval(self, start, end, value, compact=False): for i, (s, e, v) in enumerate(self.iterperiods(start, end)): if i == 0: self.set(s, value, compact) else: del self[s] self.set(end, v, compact)
Set the value for the time series on an interval. If compact is True, only set the value if it's different from what it would be anyway.
26,495
def filesampler(files, testsetsize = 0.1, devsetsize = 0, trainsetsize = 0, outputdir = , encoding=): if not isinstance(files, list): files = list(files) total = 0 for filename in files: f = io.open(filename,, encoding=encoding) count = 0 for line in f: count += 1 f.close() if total == 0: total = count elif total != count: raise Exception("Size mismatch, when multiple files are specified they must contain the exact same amount of lines! (" +str(count) + " vs " + str(total) +")") if testsetsize < 1: testsetsize = int(total * testsetsize) if devsetsize < 1 and devsetsize > 0: devsetsize = int(total * devsetsize) if testsetsize >= total or devsetsize >= total or testsetsize + devsetsize >= total: raise Exception("Test set and/or development set too large! No samples left for training set!") trainset = {} testset = {} devset = {} for i in range(1,total+1): trainset[i] = True for i in random.sample(trainset.keys(), int(testsetsize)): testset[i] = True del trainset[i] if devsetsize > 0: for i in random.sample(trainset.keys(), int(devsetsize)): devset[i] = True del trainset[i] if trainsetsize > 0: newtrainset = {} for i in random.sample(trainset.keys(), int(trainsetsize)): newtrainset[i] = True trainset = newtrainset for filename in files: if not outputdir: ftrain = io.open(filename + ,,encoding=encoding) else: ftrain = io.open(outputdir + + os.path.basename(filename) + ,,encoding=encoding) if not outputdir: ftest = io.open(filename + ,,encoding=encoding) else: ftest = io.open(outputdir + + os.path.basename(filename) + ,,encoding=encoding) if devsetsize > 0: if not outputdir: fdev = io.open(filename + ,,encoding=encoding) else: fdev = io.open(outputdir + + os.path.basename(filename) + ,,encoding=encoding) f = io.open(filename,,encoding=encoding) for linenum, line in enumerate(f): if linenum+1 in trainset: ftrain.write(line) elif linenum+1 in testset: ftest.write(line) elif devsetsize > 0 and linenum+1 in devset: fdev.write(line) f.close() ftrain.close() ftest.close() if devsetsize > 0: fdev.close()
Extract a training set, test set and optimally a development set from one file, or multiple *interdependent* files (such as a parallel corpus). It is assumed each line contains one instance (such as a word or sentence for example).
26,496
def get_changes(self, dest_attr, new_name=None, resources=None, task_handle=taskhandle.NullTaskHandle()): changes = ChangeSet( % self.method_name) if resources is None: resources = self.project.get_python_files() if new_name is None: new_name = self.get_method_name() resource1, start1, end1, new_content1 = \ self._get_changes_made_by_old_class(dest_attr, new_name) collector1 = codeanalyze.ChangeCollector(resource1.read()) collector1.add_change(start1, end1, new_content1) resource2, start2, end2, new_content2 = \ self._get_changes_made_by_new_class(dest_attr, new_name) if resource1 == resource2: collector1.add_change(start2, end2, new_content2) else: collector2 = codeanalyze.ChangeCollector(resource2.read()) collector2.add_change(start2, end2, new_content2) result = collector2.get_changed() import_tools = importutils.ImportTools(self.project) new_imports = self._get_used_imports(import_tools) if new_imports: goal_pymodule = libutils.get_string_module( self.project, result, resource2) result = _add_imports_to_module( import_tools, goal_pymodule, new_imports) if resource2 in resources: changes.add_change(ChangeContents(resource2, result)) if resource1 in resources: changes.add_change(ChangeContents(resource1, collector1.get_changed())) return changes
Return the changes needed for this refactoring Parameters: - `dest_attr`: the name of the destination attribute - `new_name`: the name of the new method; if `None` uses the old name - `resources` can be a list of `rope.base.resources.File`\s to apply this refactoring on. If `None`, the restructuring will be applied to all python files.
26,497
def _set_child(self, name, child): if not isinstance(child, Parentable): raise ValueError(.format(child=child)) child._set_parent(self) self._store_child(name, child)
Set child. :param name: Child name. :param child: Parentable object.
26,498
def _ParseVSSProcessingOptions(self, options): vss_only = False vss_stores = None self._process_vss = not getattr(options, , False) if self._process_vss: vss_only = getattr(options, , False) vss_stores = getattr(options, , None) if vss_stores: try: self._ParseVolumeIdentifiersString(vss_stores, prefix=) except ValueError: raise errors.BadConfigOption() self._vss_only = vss_only self._vss_stores = vss_stores
Parses the VSS processing options. Args: options (argparse.Namespace): command line arguments. Raises: BadConfigOption: if the options are invalid.
26,499
def macro_list(self, args: argparse.Namespace) -> None: if args.name: for cur_name in utils.remove_duplicates(args.name): if cur_name in self.macros: self.poutput("macro create {} {}".format(cur_name, self.macros[cur_name].value)) else: self.perror("Macro not found".format(cur_name), traceback_war=False) else: sorted_macros = utils.alphabetical_sort(self.macros) for cur_macro in sorted_macros: self.poutput("macro create {} {}".format(cur_macro, self.macros[cur_macro].value))
List some or all macros