Unnamed: 0
int64
0
389k
code
stringlengths
26
79.6k
docstring
stringlengths
1
46.9k
27,900
def _maybe_pandas_data(data, feature_names, feature_types): if not isinstance(data, DataFrame): return data, feature_names, feature_types data_dtypes = data.dtypes if not all(dtype.name in PANDAS_DTYPE_MAPPER for dtype in data_dtypes): bad_fields = [data.columns[i] for i, dtype in enumerate(data_dtypes) if dtype.name not in PANDAS_DTYPE_MAPPER] msg = raise ValueError(msg + .join(bad_fields)) if feature_names is None: if isinstance(data.columns, MultiIndex): feature_names = [ .join([str(x) for x in i]) for i in data.columns ] else: feature_names = data.columns.format() if feature_types is None: feature_types = [PANDAS_DTYPE_MAPPER[dtype.name] for dtype in data_dtypes] data = data.values.astype() return data, feature_names, feature_types
Extract internal data from pd.DataFrame for DMatrix data
27,901
def _next_token(self, skipws=True): self._token = next(self._tokens).group(0) return self._next_token() if skipws and self._token.isspace() else self._token
Increment _token to the next token and return it.
27,902
def list(cls, state=None, page=None, per_page=None): conn = Qubole.agent() params = {} if page: params[] = page if per_page: params[] = per_page if (params.get() or params.get()) and Qubole.version == : log.warn("Pagination is not supported with API v1.2. Fetching all clusters.") params = None if not params else params cluster_list = conn.get(cls.rest_entity_path, params=params) if state is None: return cluster_list elif state is not None: result = [] if Qubole.version == : for cluster in cluster_list: if state.lower() == cluster[][].lower(): result.append(cluster) elif Qubole.version == : cluster_list = cluster_list[] for cluster in cluster_list: if state.lower() == cluster[].lower(): result.append(cluster) return result
List existing clusters present in your account. Kwargs: `state`: list only those clusters which are in this state Returns: List of clusters satisfying the given criteria
27,903
def _import(func): func_name = func.__name__ if func_name in globals(): return func_name module_name = func.__module__ submodules = module_name.split() if submodules[0] in globals(): return module_name + + func_name for i in range(len(submodules)): m = submodules[i] if m in globals(): return .join(submodules[i:]) + + func_name module_ref = sys.modules[func.__module__] all_globals = globals() for n in all_globals: if all_globals[n] == module_ref: return n + + func_name return func_name
Return the namespace path to the function
27,904
def search(self, index, query, **params): if index is None: index = options = {} if in params: op = params.pop() options[] = op options.update(params) url = self.solr_select_path(index, query, **options) status, headers, data = self._request(, url) self.check_http_code(status, [200]) if in headers[]: results = json.loads(bytes_to_str(data)) return self._normalize_json_search_response(results) elif in headers[]: return self._normalize_xml_search_response(data) else: raise ValueError("Could not decode search response")
Performs a search query.
27,905
def event_types(self): try: events = self.rater.find() except AttributeError: raise IndexError() return [x.get() for x in events]
Raises ------ IndexError When there is no selected rater
27,906
def insert_paraphrase_information(germanet_db, wiktionary_files): num_paraphrases = 0 lexunits = {} for filename in wiktionary_files: paraphrases = read_paraphrase_file(filename) num_paraphrases += len(paraphrases) for paraphrase in paraphrases: if paraphrase[] not in lexunits: lexunits[paraphrase[]] = \ germanet_db.lexunits.find_one( {: paraphrase[]}) lexunit = lexunits[paraphrase[]] if not in lexunit: lexunit[] = [] lexunit[].append(paraphrase) for lexunit in lexunits.values(): germanet_db.lexunits.save(lexunit) print(.format(num_paraphrases))
Reads in the given GermaNet relation file and inserts its contents into the given MongoDB database. Arguments: - `germanet_db`: a pymongo.database.Database object - `wiktionary_files`:
27,907
def feed(self, can): if not isinstance(can, CAN): raise Scapy_Exception("argument is not a CAN frame") identifier = can.identifier data = bytes(can.data) if len(data) > 1 and self.use_ext_addr is not True: self._try_feed(identifier, None, data) if len(data) > 2 and self.use_ext_addr is not False: ea = six.indexbytes(data, 0) self._try_feed(identifier, ea, data[1:])
Attempt to feed an incoming CAN frame into the state machine
27,908
def create(self): client = self._instance._client cluster_pb = self._to_pb() return client.instance_admin_client.create_cluster( self._instance.name, self.cluster_id, cluster_pb )
Create this cluster. For example: .. literalinclude:: snippets.py :start-after: [START bigtable_create_cluster] :end-before: [END bigtable_create_cluster] .. note:: Uses the ``project``, ``instance`` and ``cluster_id`` on the current :class:`Cluster` in addition to the ``serve_nodes``. To change them before creating, reset the values via .. code:: python cluster.serve_nodes = 8 cluster.cluster_id = 'i-changed-my-mind' before calling :meth:`create`. :rtype: :class:`~google.api_core.operation.Operation` :returns: The long-running operation corresponding to the create operation.
27,909
def delete(self, kwargs): self._to_delete.append(kwargs) if self.should_flush(): self.flush()
Delete an item Parameters ---------- kwargs : dict The primary key of the item to delete
27,910
def confidence(self): choices = self.choices if len(choices) >= 2: csq = chi_squared(*choices) confident = is_confident(csq, len(choices)) if len(choices) <= 10 else None else: csq = None confident = False return (csq, confident)
Returns a tuple (chi squared, confident) of the experiment. Confident is simply a boolean specifying whether we're > 95%% sure that the results are statistically significant.
27,911
def add_triple(self, subj, pred, obj): subj_data, pred_data, obj_data = self.are_ilx([subj, pred, obj]) if subj_data.get() and pred_data.get() and obj_data.get(): if pred_data[] != : return self.test_check() return self.add_relationship(term1=subj_data, relationship=pred_data, term2=obj_data) elif subj_data.get() and pred_data.get(): if pred_data[] != : return self.test_check() return self.add_annotation(entity=subj_data, annotation=pred_data, value=obj) elif subj_data.get(): data = subj_data _pred = self.ttl2sci_map.get(pred) if not _pred: error = pred + " doesnt not have correct RDF format or It is not an option" return self.test_check(error) data = self.custom_update(data, _pred, obj) if data == : return data data = superclasses_bug_fix(data) url_base = self.base_path + url = url_base.format(id=data[]) return self.post(url, data) else: return self.test_check()
Adds an entity property to an existing entity
27,912
def set(self, key, val): data = self.get_data(True) if data is not None: data[key] = val else: raise RuntimeError("No task is currently running")
Set value stored for current running task.
27,913
def retrieve_layers(self, *args, **options): queryset = Q() if len(args) < 1: all_layers = Layer.objects.published().external() if options[]: exclude_list = options[].replace(, ).split() return all_layers.exclude(slug__in=exclude_list) else: self.verbose() return all_layers for layer_slug in args: queryset = queryset | Q(slug=layer_slug) try: layer = Layer.objects.get(slug=layer_slug) if not layer.is_external: raise CommandError( % layer_slug) if not layer.is_published: raise CommandError( % layer_slug) return Layer.objects.published().external().select_related().filter(queryset)
Retrieve specified layers or all external layers if no layer specified.
27,914
def _initialize_tableaux_ig(X, Y, tableaux, bases): m = X.shape[0] min_ = np.zeros(m) for i in range(m): for j in range(2*m): if j == i or j == i + m: tableaux[0][i, j] = 1 else: tableaux[0][i, j] = 0 tableaux[0][i, 2*m] = 1 for i in range(m): for j in range(m): if j == i: tableaux[1][i, j] = 1 else: tableaux[1][i, j] = 0 for j in range(m): d = X[i] - Y[j] tableaux[1][i, m+j] = _square_sum(d) * (-1) if tableaux[1][i, m+j] < min_[j]: min_[j] = tableaux[1][i, m+j] tableaux[1][i, 2*m] = 1 for i in range(m): for j in range(m): tableaux[1][i, m+j] -= min_[j] tableaux[1][i, m+j] += 1 for pl, start in enumerate([m, 0]): for i in range(m): bases[pl][i] = start + i return tableaux, bases
Given sequences `X` and `Y` of ndarrays, initialize the tableau and basis arrays in place for the "geometric" imitation game as defined in McLennan and Tourky (2006), to be passed to `_lemke_howson_tbl`. Parameters ---------- X, Y : ndarray(float) Arrays of the same shape (m, n). tableaux : tuple(ndarray(float, ndim=2)) Tuple of two arrays to be used to store the tableaux, of shape (2m, 2m). Modified in place. bases : tuple(ndarray(int, ndim=1)) Tuple of two arrays to be used to store the bases, of shape (m,). Modified in place. Returns ------- tableaux : tuple(ndarray(float, ndim=2)) View to `tableaux`. bases : tuple(ndarray(int, ndim=1)) View to `bases`.
27,915
def get_statements(self): stmt_lists = [v for k, v in self.stmts.items()] stmts = [] for s in stmt_lists: stmts += s return stmts
Return a list of all Statements in a single list. Returns ------- stmts : list[indra.statements.Statement] A list of all the INDRA Statements in the model.
27,916
def build(self, build_dir, **kwargs): del kwargs args = ["cmake", "--build", build_dir] args.extend(self._get_build_flags()) return [{"args": args}]
This function builds the cmake build command.
27,917
def write_to_file(self, output_file_path, intervals, template): msg = [template % (interval) for interval in intervals] if output_file_path is None: self.print_info(u"Intervals detected:") for line in msg: self.print_generic(line) else: with io.open(output_file_path, "w", encoding="utf-8") as output_file: output_file.write(u"\n".join(msg)) self.print_success(u"Created file " % output_file_path)
Write intervals to file. :param output_file_path: path of the output file to be written; if ``None``, print to stdout :type output_file_path: string (path) :param intervals: a list of tuples, each representing an interval :type intervals: list of tuples
27,918
def from_api_repr(cls, resource): config = cls() config._properties = copy.deepcopy(resource) return config
Factory: construct a job configuration given its API representation :type resource: dict :param resource: An extract job configuration in the same representation as is returned from the API. :rtype: :class:`google.cloud.bigquery.job._JobConfig` :returns: Configuration parsed from ``resource``.
27,919
def _find_intervals(bundles, duration, step): segments = [] for bund in bundles: beg, end = bund[][0][0], bund[][-1][1] if end - beg >= duration: new_begs = arange(beg, end - duration, step) for t in new_begs: seg = bund.copy() seg[] = [(t, t + duration)] segments.append(seg) return segments
Divide bundles into segments of a certain duration and a certain step, discarding any remainder.
27,920
def set_default_moe_hparams(hparams): hparams.moe_num_experts = 16 hparams.moe_loss_coef = 1e-2 hparams.add_hparam("moe_gating", "top_2") hparams.add_hparam("moe_capacity_factor_train", 1.25) hparams.add_hparam("moe_capacity_factor_eval", 2.0) hparams.add_hparam("moe_capacity_factor_second_level", 1.0) hparams.add_hparam("moe_hidden_size", 4096) hparams.add_hparam("moe_group_size", 1024) hparams.add_hparam("moe_use_second_place_loss", 0) hparams.add_hparam("moe_second_policy_train", "random") hparams.add_hparam("moe_second_policy_eval", "random") hparams.add_hparam("moe_second_threshold_train", 0.2) hparams.add_hparam("moe_second_threshold_eval", 0.2)
Add necessary hyperparameters for mixture-of-experts.
27,921
def _get_forecast(api_result: dict) -> List[SmhiForecast]: forecasts = [] forecasts_ordered = OrderedDict() forecasts_ordered = _get_all_forecast_from_api(api_result) day_nr = 1 for day in forecasts_ordered: forecasts_day = forecasts_ordered[day] if day_nr == 1: forecasts.append(copy.deepcopy(forecasts_day[0])) total_precipitation = float(0.0) forecast_temp_max = -100.0 forecast_temp_min = 100.0 forecast = None for forcast_day in forecasts_day: temperature = forcast_day.temperature if forecast_temp_min > temperature: forecast_temp_min = temperature if forecast_temp_max < temperature: forecast_temp_max = temperature if forcast_day.valid_time.hour == 12: forecast = copy.deepcopy(forcast_day) total_precipitation = total_precipitation + \ forcast_day._total_precipitation if forecast is None: forecast = forecasts_day[0] forecast._temperature_max = forecast_temp_max forecast._temperature_min = forecast_temp_min forecast._total_precipitation = total_precipitation forecast._mean_precipitation = total_precipitation/24 forecasts.append(forecast) day_nr = day_nr + 1 return forecasts
Converts results fråm API to SmhiForeCast list
27,922
def find_gromacs_command(commands): commands = utilities.asiterable(commands) for command in commands: try: driver, name = command.split() except ValueError: driver, name = None, command executable = driver if driver else name if utilities.which(executable): break else: raise OSError(errno.ENOENT, "No Gromacs executable found in", ", ".join(commands)) return driver, name
Return *driver* and *name* of the first command that can be found on :envvar:`PATH`
27,923
def manhattan(src, tar, qval=2, normalized=False, alphabet=None): return Manhattan().dist_abs(src, tar, qval, normalized, alphabet)
Return the Manhattan distance between two strings. This is a wrapper for :py:meth:`Manhattan.dist_abs`. Parameters ---------- src : str Source string (or QGrams/Counter objects) for comparison tar : str Target string (or QGrams/Counter objects) for comparison qval : int The length of each q-gram; 0 for non-q-gram version normalized : bool Normalizes to [0, 1] if True alphabet : collection or int The values or size of the alphabet Returns ------- float The Manhattan distance Examples -------- >>> manhattan('cat', 'hat') 4.0 >>> manhattan('Niall', 'Neil') 7.0 >>> manhattan('Colin', 'Cuilen') 9.0 >>> manhattan('ATCG', 'TAGC') 10.0
27,924
def find_files(data_path, brokers, minutes, start_time, end_time): command = find_files_cmd(data_path, minutes, start_time, end_time) pool = Pool(len(brokers)) result = pool.map( partial(get_output_lines_from_command, command=command), [host for broker, host in brokers]) return [(broker, host, files) for (broker, host), files in zip(brokers, result)]
Find all the Kafka log files on the broker that have been modified in the speficied time range. start_time and end_time should be in the format specified by TIME_FORMAT_REGEX. :param data_path: the path to the lof files on the broker :type data_path: str :param brokers: the brokers :type brokers: list of (broker_id, host) pairs :param minutes: check the files modified in the last N minutes :type minutes: int :param start_time: check the files modified after start_time :type start_time: str :param end_time: check the files modified before end_time :type end_time: str :returns: the files :rtype: list of (broker, host, file_path) tuples
27,925
def _errmsg(self, error: "Err", tb: bool=False, i: int=None, msgformat: str="terminal") -> str: if msgformat == "terminal": msg = self._headline(error, i) if error.ex is not None: msg += "\n" + "line " + colors.bold(str(error.line)) msg += ": " + colors.yellow(error.code) msg += "\n" + str(error.file) if self.errs_traceback is True or tb is True: if error.tb is not None: msg += "\n" + error.tb elif msgformat == "csv": sep = "," msg = error.msg + sep msg += str(error.line) + sep + error.code + sep msg += str(error.file) elif msgformat == "text": sep = "," msg = error.msg if error.ex is not None: msg += sep + str(error.line) + sep + error.code + sep msg += str(error.file) + sep if self.errs_traceback is True or tb is True: if error.tb is not None: msg += sep + error.tb elif msgformat == "dict": msg = {"date": datetime.now()} if error.ex is not None: msg["msg"] = error.msg msg["line"] = error.line msg["code"] = error.code msg["file"] = error.file if self.errs_traceback is True or tb is True: if error.tb is not None: msg["traceback"] = error.tb return msg
Get the error message
27,926
def _merge_two_dicts(x, y): z = x.copy() z.update(y) return z
Given two dicts, merge them into a new dict as a shallow copy. Once Python 3.6+ only is supported, replace method with ``z = {**x, **y}``
27,927
def addAggregators(cols, aggrnames): for aggrname in aggrnames: aggrs = aggregators.get(aggrname) aggrs = aggrs if isinstance(aggrs, list) else [aggrs] for aggr in aggrs: for c in cols: if not hasattr(c, ): c.aggregators = [] if aggr and aggr not in c.aggregators: c.aggregators += [aggr]
add aggregator for each aggrname to each of cols
27,928
def pack_into(self, buf, offset, *args, **kwargs): if len(args) < self._number_of_arguments: raise Error( "pack expected {} item(s) for packing (got {})".format( self._number_of_arguments, len(args))) self.pack_into_any(buf, offset, args, **kwargs)
See :func:`~bitstruct.pack_into()`.
27,929
def _generate_examples(self, archive, validation_labels=None): if validation_labels: for example in self._generate_examples_validation(archive, validation_labels): yield example for fname, fobj in archive: label = fname[:-4] }
Yields examples.
27,930
def change_directory(self, path, *args, **kwargs): previous_path = self.session_path() self.session_path(path) if os.path.isdir(self.full_path()) is False: self.session_path(previous_path) raise ValueError()
:meth:`.WNetworkClientProto.change_directory` method implementation
27,931
def get_all_lines(self): output = [] line = [] lineno = 1 for char in self.string: line.append(char) if char == : output.append(SourceLine(.join(line), lineno)) line = [] lineno += 1 if line: output.append(SourceLine(.join(line), lineno)) return output
Return all lines of the SourceString as a list of SourceLine's.
27,932
def on_key_pressed(self, event): return if event.keysym == "Up": self.manager.set_joystick(0.0, -1.0, 0) elif event.keysym == "Down": self.manager.set_joystick(0.0, 1.0, 0) elif event.keysym == "Left": self.manager.set_joystick(-1.0, 0.0, 0) elif event.keysym == "Right": self.manager.set_joystick(1.0, 0.0, 0) elif event.char == " ": mode = self.manager.get_mode() if mode == self.manager.MODE_DISABLED: self.manager.set_mode(self.manager.MODE_OPERATOR_CONTROL) else: self.manager.set_mode(self.manager.MODE_DISABLED)
likely to take in a set of parameters to treat as up, down, left, right, likely to actually be based on a joystick event... not sure yet
27,933
def setVisible( self, state ): super(XWizardBrowserDialog, self).setVisible(state) if ( state ): mwidth = self.uiPluginTREE.minimumWidth() self.uiMainSPLT.setSizes([mwidth, self.uiMainSPLT.width() - mwidth])
Overloads the setVisible method for the dialog to resize the contents \ of the splitter properly. :param state | <bool>
27,934
def check(cls, status): assert cls.trigger is not None, assert cls.error is not None, if status == cls.trigger: raise cls.error()
Checks if a status enum matches the trigger originally set, and if so, raises the appropriate error. Args: status (int, enum): A protobuf enum response status to check. Raises: AssertionError: If trigger or error were not set. _ApiError: If the statuses don't match. Do not catch. Will be caught automatically and sent back to the client.
27,935
def _list_files(path, suffix=""): if os.path.isdir(path): incomplete = os.listdir(path) complete = [os.path.join(path, entry) for entry in incomplete] lists = [_list_files(subpath, suffix) for subpath in complete] flattened = [] for one_list in lists: for elem in one_list: flattened.append(elem) return flattened else: assert os.path.exists(path), "couldn%s'" % path if path.endswith(suffix): return [path] return []
Returns a list of all files ending in `suffix` contained within `path`. Parameters ---------- path : str a filepath suffix : str Returns ------- l : list A list of all files ending in `suffix` contained within `path`. (If `path` is a file rather than a directory, it is considered to "contain" itself)
27,936
def send_keys(self, keyserver, *keyids): result = self._result_map[](self) log.debug(, keyids) data = _util._make_binary_stream("", self._encoding) args = [, keyserver, ] args.extend(keyids) self._handle_io(args, data, result, binary=True) log.debug(, result.__dict__) data.close() return result
Send keys to a keyserver.
27,937
def generate(self): logger.info() self._generate_graph( , , self._stats.per_version_data, ) self._generate_graph( , , self._stats.per_file_type_data, ) self._generate_graph( , , self._stats.per_installer_data, ) self._generate_graph( , , self._stats.per_implementation_data, ) self._generate_graph( , , self._stats.per_system_data, ) self._generate_graph( , , self._stats.per_country_data, ) self._generate_graph( , , self._stats.per_distro_data, ) self._generate_badges() logger.info() html = self._generate_html() html_path = os.path.join(self.output_dir, ) with open(html_path, ) as fh: fh.write(html.encode()) logger.info(, html_path) logger.info() for name, svg in self._badges.items(): path = os.path.join(self.output_dir, % name) with open(path, ) as fh: fh.write(svg) logger.info(, name, path)
Generate all output types and write to disk.
27,938
def reset_network(roles, extra_vars=None): logger.debug() if not extra_vars: extra_vars = {} tmpdir = os.path.join(os.getcwd(), TMP_DIRNAME) _check_tmpdir(tmpdir) utils_playbook = os.path.join(ANSIBLE_DIR, ) options = {: , : tmpdir} options.update(extra_vars) run_ansible([utils_playbook], roles=roles, extra_vars=options)
Reset the network constraints (latency, bandwidth ...) Remove any filter that have been applied to shape the traffic. Args: roles (dict): role->hosts mapping as returned by :py:meth:`enoslib.infra.provider.Provider.init` inventory (str): path to the inventory
27,939
def psturng(q, r, v): if all(map(_isfloat, [q, r, v])): return _psturng(q, r, v) return _vpsturng(q, r, v)
Evaluates the probability from 0 to q for a studentized range having v degrees of freedom and r samples. Parameters ---------- q : (scalar, array_like) quantile value of Studentized Range q >= 0. r : (scalar, array_like) The number of samples r >= 2 and r <= 200 (values over 200 are permitted but not recommended) v : (scalar, array_like) The sample degrees of freedom if p >= .9: v >=1 and v >= inf else: v >=2 and v >= inf Returns ------- p : (scalar, array_like) 1. - area from zero to q under the Studentized Range distribution. When v == 1, p is bound between .001 and .1, when v > 1, p is bound between .001 and .9. Values between .5 and .9 are 1st order appoximations.
27,940
def _match(self, query): response = self._match_dialog(query) if response is not None: return response response = self._match_getters(query) if response is not None: return response response = self._match_registers(query) if response is not None: return response response = self._match_errors_queues(query) if response is not None: return response response = self._match_setters(query) if response is not None: return response if response is None: for channel in self._channels.values(): response = channel.match(query) if response: return response return None
Tries to match in dialogues, getters and setters and subcomponents :param query: message tuple :type query: Tuple[bytes] :return: response if found or None :rtype: Tuple[bytes] | None
27,941
def set_rf_samples(n): forest._generate_sample_indices = (lambda rs, n_samples: forest.check_random_state(rs).randint(0, n_samples, n))
Changes Scikit learn's random forests to give each tree a random sample of n random rows.
27,942
def get_labels(cls, path=None): if path is None: path = _get_config_file_path( cls._xdg_config_dir, cls._xdg_config_file ) with open(path) as config_file: return tuple(json.load(config_file).keys())
Get all server configuration labels. :param path: A string. The configuration file to be manipulated. Defaults to what is returned by :func:`nailgun.config._get_config_file_path`. :returns: Server configuration labels, where each label is a string.
27,943
def transform_non_affine(self, values): scale = self.scale or 1 epoch = self.epoch or 0 values = numpy.asarray(values) if self._parents or ( epoch == 0 and scale == 1 ): return self._transform(values, float(epoch), float(scale)) flat = values.flatten() def _trans(x): return self._transform_decimal(x, epoch, scale) return numpy.asarray(list(map(_trans, flat))).reshape(values.shape)
Transform an array of GPS times. This method is designed to filter out transformations that will generate text elements that require exact precision, and use `Decimal` objects to do the transformation, and simple `float` otherwise.
27,944
def djfrontend_twbs_css(version=None): if version is None: if not getattr(settings, , False): version = getattr(settings, , DJFRONTEND_TWBS_VERSION_DEFAULT) else: version = getattr(settings, , DJFRONTEND_TWBS_VERSION_DEFAULT) return format_html( , static=_static_url, v=version, min=_min)
Returns Twitter Bootstrap CSS file. TEMPLATE_DEBUG returns full file, otherwise returns minified file.
27,945
def profile_prior_model_dict(self): return {key: value for key, value in filter(lambda t: isinstance(t[1], pm.PriorModel) and is_profile_class(t[1].cls), self.__dict__.items())}
Returns ------- profile_prior_model_dict: {str: PriorModel} A dictionary mapping_matrix instance variable names to variable profiles.
27,946
def reduce_sum(x, disable_positional_args=None, output_shape=None, reduced_dim=None, name=None): output_shape = convert_to_shape(output_shape) reduced_dim = convert_to_dimension(reduced_dim) assert disable_positional_args is None output_shape = _reduction_output_shape(x, output_shape, reduced_dim) if output_shape == x.shape: return x return ReduceOperation(x, output_shape, "SUM", name=name).outputs[0]
Reduction on 1 or more axes. If reduced_dim is present, then only that dimension is reduced out. Alternatively, specify output_shape. Do not specify both reduced_dim and output_shape. If neither is specified, then all dimensions are reduced out. Args: x: a Tensor disable_positional_args: None output_shape: an optional Shape. Must be a subsequence of x.shape. reduced_dim: a mtf.Dimension name: an optional string Returns: a Tensor
27,947
def prefix_all(self, prefix=, *lines): for line in lines: if isinstance(line, (tuple, list)): self.prefix(prefix, *line) elif line: self.prefix(prefix, line) else: self.blank()
Same as :func:`~prefix`, for multiple lines. :param prefix: Dockerfile command to use, e.g. ``ENV`` or ``RUN``. :type prefix: unicode | str :param lines: Lines with arguments to be prefixed. :type lines: collections.Iterable[unicode | str]
27,948
def get_last_date(self, field, filters_=[]): last_date = self.get_last_item_field(field, filters_=filters_) return last_date
:field: field with the data :filters_: additional filters to find the date
27,949
def _items_to_es(self, json_items): if len(json_items) == 0: return logger.info("Adding items to Ocean for %s (%i items)" % (self, len(json_items))) field_id = self.get_field_unique_id() inserted = self.elastic.bulk_upload(json_items, field_id) if len(json_items) != inserted: missing = len(json_items) - inserted info = json_items[0] name = info[] version = info[] origin = info[] logger.warning("%s/%s missing JSON items for backend %s [ver. %s], origin %s", str(missing), str(len(json_items)), name, version, origin) return inserted
Append items JSON to ES (data source state)
27,950
def get_fullname(module): bits = [str(module.name)] while module.parent: bits.append(str(module.parent.name)) module = module.parent return .join(reversed(bits))
Reconstruct a Module's canonical path by recursing through its parents.
27,951
def new_file(self, vd, length, isoname, parent, seqnum, rock_ridge, rr_name, xa, file_mode): if self._initialized: raise pycdlibexception.PyCdlibInternalError() self._new(vd, isoname, parent, seqnum, False, length, xa) if rock_ridge: self._rr_new(rock_ridge, rr_name, b, False, False, False, file_mode)
Create a new file Directory Record. Parameters: vd - The Volume Descriptor this record is part of. length - The length of the data. isoname - The name for this directory record. parent - The parent of this directory record. seqnum - The sequence number for this directory record. rock_ridge - Whether to make this a Rock Ridge directory record. rr_name - The Rock Ridge name for this directory record. xa - True if this is an Extended Attribute record. file_mode - The POSIX file mode for this entry. Returns: Nothing.
27,952
def _select_broker_pair(self, rg_destination, victim_partition): broker_source = self._elect_source_broker(victim_partition) broker_destination = rg_destination._elect_dest_broker(victim_partition) return broker_source, broker_destination
Select best-fit source and destination brokers based on partition count and presence of partition over the broker. * Get overloaded and underloaded brokers Best-fit Selection Criteria: Source broker: Select broker containing the victim-partition with maximum partitions. Destination broker: NOT containing the victim-partition with minimum partitions. If no such broker found, return first broker. This helps in ensuring:- * Topic-partitions are distributed across brokers. * Partition-count is balanced across replication-groups.
27,953
def preserve_attr_data(A, B): for attr, B_data in B.items(): if getattr(B_data, , True): continue if attr in A: A_data = A[attr] for _attr in getattr(A_data, , []): if hasattr(A_data, _attr): if getattr(B_data, _attr, None) is not None: if _attr in getattr(B_data, , []): setattr(B_data, _attr, getattr(A_data, _attr)) else: setattr(B_data, _attr, getattr(A_data, _attr))
Preserve attr data for combining B into A.
27,954
def xml(self, attribs = None,elements = None, skipchildren = False): if not attribs: attribs = {} if self.idref: attribs[] = self.idref return super(AbstractTextMarkup,self).xml(attribs,elements, skipchildren)
See :meth:`AbstractElement.xml`
27,955
def _trimSegmentsInCell(self, colIdx, cellIdx, segList, minPermanence, minNumSyns): if minPermanence is None: minPermanence = self.connectedPerm if minNumSyns is None: minNumSyns = self.activationThreshold nSegsRemoved, nSynsRemoved = 0, 0 segsToDel = [] for segment in segList: synsToDel = [syn for syn in segment.syns if syn[2] < minPermanence] if len(synsToDel) == len(segment.syns): segsToDel.append(segment) else: if len(synsToDel) > 0: for syn in synsToDel: segment.syns.remove(syn) nSynsRemoved += 1 if len(segment.syns) < minNumSyns: segsToDel.append(segment) nSegsRemoved += len(segsToDel) for seg in segsToDel: self._cleanUpdatesList(colIdx, cellIdx, seg) self.cells[colIdx][cellIdx].remove(seg) nSynsRemoved += len(seg.syns) return nSegsRemoved, nSynsRemoved
This method goes through a list of segments for a given cell and deletes all synapses whose permanence is less than minPermanence and deletes any segments that have less than minNumSyns synapses remaining. :param colIdx Column index :param cellIdx Cell index within the column :param segList List of segment references :param minPermanence Any syn whose permamence is 0 or < minPermanence will be deleted. :param minNumSyns Any segment with less than minNumSyns synapses remaining in it will be deleted. :returns: tuple (numSegsRemoved, numSynsRemoved)
27,956
def make_temp_path(path, new_ext=None): root, ext = os.path.splitext(path) if new_ext is None: new_ext = ext temp_path = root + TEMP_EXTENSION + new_ext return temp_path
Arguments: new_ext: the new file extension, including the leading dot. Defaults to preserving the existing file extension.
27,957
def determine_output_name(self, sources): assert is_iterable_typed(sources, virtual_target.VirtualTarget) name = os.path.splitext(sources[0].name())[0] for s in sources[1:]: n2 = os.path.splitext(s.name()) if n2 != name: get_manager().errors()( "%s: source targets have different names: cannot determine target name" % (self.id_)) return self.determine_target_name(sources[0].name())
Determine the name of the produced target from the names of the sources.
27,958
def device_info(self): resp = self._session.get_software_information(format=) hostname = resp.xpath()[0].text model = resp.xpath()[0].text version = if resp.xpath(): try: version = resp.xpath()[0].text except IndexError: pass elif resp.xpath("//package-information[name = ]"): try: version = (resp.xpath( "//package-information[name = ]/comment" )[0].text).split()[1] except IndexError: pass else: try: version = ((resp.xpath( )[0].text.split()[1].split()[0])) except IndexError: pass resp = self._session.get_system_uptime_information(format=) try: current_time = resp.xpath()[0].text except IndexError: current_time = try: uptime = resp.xpath()[0].text except IndexError: uptime = show_hardware = self._session.get_chassis_inventory(format=) (hostname, model, version, serial_num, current_time, uptime))
Pull basic device information. Purpose: This function grabs the hostname, model, running version, and | serial number of the device. @returns: The output that should be shown to the user. @rtype: str
27,959
def tarball_files(tar_name, file_paths, output_dir=, prefix=): with tarfile.open(os.path.join(output_dir, tar_name), ) as f_out: for file_path in file_paths: if not file_path.startswith(): raise ValueError() arcname = prefix + os.path.basename(file_path) f_out.add(file_path, arcname=arcname)
Creates a tarball from a group of files :param str tar_name: Name of tarball :param list[str] file_paths: Absolute file paths to include in the tarball :param str output_dir: Output destination for tarball :param str prefix: Optional prefix for files in tarball
27,960
def stochrsi(data, period): rsi = relative_strength_index(data, period)[period:] stochrsi = [100 * ((rsi[idx] - np.min(rsi[idx+1-period:idx+1])) / (np.max(rsi[idx+1-period:idx+1]) - np.min(rsi[idx+1-period:idx+1]))) for idx in range(period-1, len(rsi))] stochrsi = fill_for_noncomputable_vals(data, stochrsi) return stochrsi
StochRSI. Formula: SRSI = ((RSIt - RSI LOW) / (RSI HIGH - LOW RSI)) * 100
27,961
def basen_to_integer(self, X, cols, base): out_cols = X.columns.values.tolist() for col in cols: col_list = [col0 for col0 in out_cols if str(col0).startswith(str(col))] insert_at = out_cols.index(col_list[0]) if base == 1: value_array = np.array([int(col0.split()[-1]) for col0 in col_list]) else: len0 = len(col_list) value_array = np.array([base ** (len0 - 1 - i) for i in range(len0)]) X.insert(insert_at, col, np.dot(X[col_list].values, value_array.T)) X.drop(col_list, axis=1, inplace=True) out_cols = X.columns.values.tolist() return X
Convert basen code as integers. Parameters ---------- X : DataFrame encoded data cols : list-like Column names in the DataFrame that be encoded base : int The base of transform Returns ------- numerical: DataFrame
27,962
def field_dict_from_row(row, model, field_names=None, ignore_fields=(, ), strip=True, blank_none=True, ignore_related=True, ignore_values=(None,), ignore_errors=True, verbosity=0): errors = collections.Counter() if not field_names: field_classes = [f for f in model._meta._fields() if (not ignore_fields or (f.name not in ignore_fields))] field_names = [f.name for f in field_classes] else: field_classes = [f for f in model._meta._fields() if (f.name in field_names and (not ignore_fields or (f.name not in ignore_fields)))] field_dict = {} if isinstance(row, collections.Mapping): row = [row.get(field_name, None) for field_name in field_names] elif sum(hasattr(row, field_name) for field_name in field_names) / (len(field_names) / 2. + 1): row = [getattr(row, field_name, None) for field_name in field_names] for field_name, field_class, value in zip(field_names, field_classes, row): clean_value = None if verbosity >= 3: print field_name, field_class, value if isinstance(field_class, related.RelatedField): if not ignore_related: try: clean_value = field_class.related.parent_model.objects.get(value) except: try: clean_value = field_class.related.parent_model.objects.get_by_natural_key(value) except: errors += collections.Counter([]) if verbosity > 1: print % (field_class, value) if isinstance(value, basestring) and not value: if verbosity >= 3: print % (field_class, value) value = None if blank_none and ( not isinstance(field_class, related.RelatedField) or field_class.blank or not field_class.null): try: if isinstance(field_class.to_python(), basestring): value = else: value = None except: value = None else: value = None if not clean_value: try: clean_value = field_class.to_python(value) except: try: clean_value = str(field_class.to_python(util.clean_wiki_datetime(value))) except: try: clean_value = field_class.to_python(util.make_float(value)) except: try: clean_value = field_class.to_python(value) except: if verbosity > 0: print print "The row below has a value (%r) that cannum_uncoerciblet forget to decode the utf8 before doing a max_length truncation! clean_value = clean_utf8(clean_value, verbosity=verbosity).decode() max_length = getattr(field_class, ) if max_length: try: assert(len(clean_value) <= field_class.max_length) except: if verbosity > 0: print print "The row below has a string (%r) that is too long (> %d):" % (clean_value, max_length) print row print_exc() errors += collections.Counter([]) clean_value = clean_value[:max_length] if not ignore_errors: raise if not ignore_values or clean_value not in ignore_values: field_dict[field_name] = clean_value return field_dict, errors
Construct a Mapping (dict) from field names to values from a row of data Args: row (list or dict): Data (values) to be assigned to field_names in the dict. If `row` is a list, then the column names (header row) can be provided in `field_names`. If `row` is a list and no field_names are provided, then `field_names` will be taken from the Django model class field names, in the order they appear within the class definition. model (django.db.models.Model): The model class to be constructed with data from `row` field_names (list or tuple of str): The field names to place the row values in. Defaults to the keys of the dict of `row` (if `row` is a `dict`) or the names of the fields in the Django model being constructed. ignore_fields (list or tuple of str): The field names to ignore if place the row values in. Returns: dict: Mapping from fields to values compatible with a Django model constructor kwargs, `model(**kwargs)`
27,963
async def del_aldb(self, addr, mem_addr: int): dev_addr = Address(addr) device = self.plm.devices[dev_addr.id] if device: _LOGGING.debug() device.del_aldb(mem_addr) await asyncio.sleep(1, loop=self.loop) while device.aldb.status == ALDBStatus.LOADING: await asyncio.sleep(1, loop=self.loop) self.print_device_aldb(addr)
Write a device All-Link record.
27,964
def reencrypt_single_user(engine, user_id, old_crypto, new_crypto, logger): crypto = FallbackCrypto([new_crypto, old_crypto]) reencrypt_user_content( engine=engine, user_id=user_id, old_decrypt_func=crypto.decrypt, new_encrypt_func=crypto.encrypt, logger=logger, )
Re-encrypt all files and checkpoints for a single user.
27,965
def _parse_response(self, result_page): resultline = result_page.splitlines()[0] if resultline.startswith(): raise Exception(resultline.replace(, )) patt = re.compile(r, re.IGNORECASE) m = patt.match(resultline) if m: return (m.group(1), m.group(2), m.group(3)) return None
Takes a result page of sending the sms, returns an extracted tuple: ('numeric_err_code', '<sent_queued_message_id>', '<smsglobalmsgid>') Returns None if unable to extract info from result_page, it should be safe to assume that it was either a failed result or worse, the interface contract has changed.
27,966
def _lookup(cls: str) -> LdapObjectClass: if isinstance(cls, str): module_name, _, name = cls.rpartition(".") module = importlib.import_module(module_name) try: cls = getattr(module, name) except AttributeError: raise AttributeError("%s reference cannot be found" % cls) return cls
Lookup module.class.
27,967
def parse_date(value): match = Definitions.DATE_RE.match(value) if value else None if not match: return None if len(year) == 2: if int(year) < 70: year = "20" + year else: year = "19" + year year = int(year) data[] = max(1900, min(year, 9999)) for field in [, , , ]: if data[field] is None: data[field] = 0 data[field] = int(data[field]) data[] = Definitions.month_numbers[data[].lower()] return datetime.datetime(**data)
Parse an RFC 1123 or asctime-like format date string to produce a Python datetime object (without a timezone).
27,968
def reset_all_metadata(self): self.topics_to_brokers.clear() self.topic_partitions.clear() self.topic_errors.clear() self.consumer_group_to_brokers.clear()
Clear all cached metadata Metadata will be re-fetched as required to satisfy requests.
27,969
def get_rr_queue(self): return Queue(self.inbox_rr.name + , self.inbox_rr, auto_delete=True)
Returns a :class: `kombu.Queue` instance for receiving round-robin commands for this actor type.
27,970
def parse_and_normalize_url_date(date_str): if date_str is None: return None try: return d1_common.date_time.dt_from_iso8601_str(date_str) except d1_common.date_time.iso8601.ParseError as e: raise d1_common.types.exceptions.InvalidRequest( 0, .format( date_str, str(e) ), )
Parse a ISO 8601 date-time with optional timezone. - Return as datetime with timezone adjusted to UTC. - Return naive date-time set to UTC.
27,971
def _get_schema(self): d={} layout_kwargs=dict((_,) for _ in get_layout_kwargs()) for _ in (,,,): d[_]={} for __ in eval(.format(_.upper())): layout_kwargs.pop(__,None) d[_][__]=None d[].update(annotations=dict(values=[], params=utils.make_dict_from_list(get_annotation_kwargs()))) d[].update(shapes=utils.make_dict_from_list(get_shapes_kwargs())) [layout_kwargs.pop(_,None) for _ in get_annotation_kwargs()+get_shapes_kwargs()] d[].update(**layout_kwargs) return d
Returns a dictionary with the schema for a QuantFigure
27,972
def attach_subdivision(times): t = timer() if not isinstance(times, Times): raise TypeError("Expected Times object for param .") assert times.total > 0., "Attached subdivision has total time 0, appears empty." name = times.name f.r.self_agg += times.self_agg if name not in f.t.subdvsn_awaiting: times_copy = copy.deepcopy(times) times_copy.parent = f.r f.t.subdvsn_awaiting[name] = times_copy else: merge.merge_times(f.t.subdvsn_awaiting[name], times) f.t.self_cut += timer() - t
Manual assignment of a (stopped) times object as a subdivision of running timer. Use cases are expected to be very limited (mainly provided as a one-Times variant of attach_par_subdivision). Notes: As with any subdivision, the interval in the receiving timer is assumed to totally subsume the time accumulated within the attached object--the total in the receiver is not adjusted! Args: times (Times): Individual Times data object. Raises: TypeError: If times not a Times data object.
27,973
def open_mask(fn:PathOrStr, div=False, convert_mode=, after_open:Callable=None)->ImageSegment: "Return `ImageSegment` object create from mask in file `fn`. If `div`, divides pixel values by 255." return open_image(fn, div=div, convert_mode=convert_mode, cls=ImageSegment, after_open=after_open)
Return `ImageSegment` object create from mask in file `fn`. If `div`, divides pixel values by 255.
27,974
def user_view_events(self) -> List[str]: return [event_type for event_type, event in self.items if event.get_event_action() == event_actions.VIEWED]
Return event types where use viewed a main object.
27,975
def ancestors(self, full_table_name): nodes = self.subgraph( nx.algorithms.dag.ancestors(self, full_table_name)) return [full_table_name] + list(reversed(list( nx.algorithms.dag.topological_sort(nodes))))
:param full_table_name: In form `schema`.`table_name` :return: all dependent tables sorted in topological order. Self is included.
27,976
def restore(self): if os.path.exists(self.backup_path): for file in glob.glob(self.backup_path + "/*"): shutil.copy(file, self.path)
Copy files from the backup folder to the sym-linked optimizer folder.
27,977
def resolve(hostname, family=AF_UNSPEC): af_ok = (AF_INET, AF_INET6) if family != AF_UNSPEC and family not in af_ok: raise ValueError("Invalid family " % family) ips = () try: addrinfo = socket.getaddrinfo(hostname, None, family) except socket.gaierror as exc: if exc.errno not in (socket.EAI_NODATA, socket.EAI_NONAME): LOG.debug("socket.getaddrinfo() raised an exception", exc_info=exc) else: if family == AF_UNSPEC: ips = tuple({item[4][0] for item in addrinfo if item[0] in af_ok}) else: ips = tuple({item[4][0] for item in addrinfo}) return ips
Resolve hostname to one or more IP addresses through the operating system. Resolution is carried out for the given address family. If no address family is specified, only IPv4 and IPv6 addresses are returned. If multiple IP addresses are found, all are returned. :param family: AF_INET or AF_INET6 or AF_UNSPEC (default) :return: tuple of unique IP addresses
27,978
def compile(code: list, consts: list, names: list, varnames: list, func_name: str = "<unknown, compiled>", arg_count: int = 0, kwarg_defaults: Tuple[Any] = (), use_safety_wrapper: bool = True): varnames = tuple(varnames) consts = tuple(consts) names = tuple(names) code = util.flatten(code) if arg_count > len(varnames): raise CompileError("arg_count > len(varnames)") if len(kwarg_defaults) > len(varnames): raise CompileError("len(kwarg_defaults) > len(varnames)") bc = compile_bytecode(code) dis.dis(bc) if PY36: pass else: if bc[-1] != tokens.RETURN_VALUE: raise CompileError( "No default RETURN_VALUE. Add a `pyte.tokens.RETURN_VALUE` to the end of your " "bytecode if you dont use these. ) f_globals = frame_data[0].f_globals f = types.FunctionType(obb, f_globals) f.__name__ = func_name f.__defaults__ = kwarg_defaults if use_safety_wrapper: def __safety_wrapper(*args, **kwargs): try: return f(*args, **kwargs) except SystemError as e: if not in .join(e.args): raise msg = "Bytecode exception!" \ "\nFunction {} returned an invalid opcode." \ "\nFunction dissection:\n\n".format(f.__name__) file = io.StringIO() with contextlib.redirect_stdout(file): dis.dis(f) msg += file.getvalue() raise SystemError(msg) from e returned_func = __safety_wrapper returned_func.wrapped = f else: returned_func = f return returned_func
Compiles a set of bytecode instructions into a working function, using Python's bytecode compiler. :param code: A list of bytecode instructions. :param consts: A list of constants to compile into the function. :param names: A list of names to compile into the function. :param varnames: A list of ``varnames`` to compile into the function. :param func_name: The name of the function to use. :param arg_count: The number of arguments this function takes. Must be ``<= len(varnames)``. :param kwarg_defaults: A tuple of defaults for kwargs. :param use_safety_wrapper: Use the safety wrapper? This hijacks SystemError to print better \ stack traces.
27,979
def gen_challenge(self, state): state.checksig(self.key) if (state.index >= state.n): raise HeartbeatError("Out of challenges.") state.seed = MerkleHelper.get_next_seed(self.key, state.seed) chal = Challenge(state.seed, state.index) state.index += 1 state.sign(self.key) return chal
returns the next challenge and increments the seed and index in the state. :param state: the state to use for generating the challenge. will verify the integrity of the state object before using it to generate a challenge. it will then modify the state by incrementing the seed and index and resign the state for passing back to the server for storage
27,980
async def CharmArchiveSha256(self, urls): _params = dict() msg = dict(type=, request=, version=5, params=_params) _params[] = urls reply = await self.rpc(msg) return reply
urls : typing.Sequence[~CharmURL] Returns -> typing.Sequence[~StringResult]
27,981
def split_unescaped(char, string, include_empty_strings=False): \\ words = [] pos = len(string) lastpos = pos while pos >= 0: pos = get_last_pos_of_char(char, string[:lastpos]) if pos >= 0: if pos + 1 != lastpos or include_empty_strings: words.append(string[pos + 1: lastpos]) lastpos = pos if lastpos != 0 or include_empty_strings: words.append(string[:lastpos]) words.reverse() return words
:param char: The character on which to split the string :type char: string :param string: The string to split :type string: string :returns: List of substrings of *string* :rtype: list of strings Splits *string* whenever *char* appears without an odd number of backslashes ('\\') preceding it, discarding any empty string elements.
27,982
def do_rotation(self, mirror, rot): if (mirror): raise IIIFError(code=501, parameter="rotation", text="Null manipulator does not support mirroring.") if (rot != 0.0): raise IIIFError(code=501, parameter="rotation", text="Null manipulator supports only rotation=(0|360).")
Null implementation of rotate and/or mirror.
27,983
def list_distributions(region=None, key=None, keyid=None, profile=None): retries = 10 sleep = 6 conn = _get_conn(region=region, key=key, keyid=keyid, profile=profile) Items = [] while retries: try: log.debug() Marker = while Marker is not None: ret = conn.list_distributions(Marker=Marker) Items += ret.get(, {}).get(, []) Marker = ret.get(, {}).get() return Items except botocore.exceptions.ParamValidationError as err: raise SaltInvocationError(str(err)) except botocore.exceptions.ClientError as err: if retries and err.response.get(, {}).get() == : retries -= 1 log.debug(, sleep) time.sleep(sleep) continue log.error(, err.message) return None
List, with moderate information, all CloudFront distributions in the bound account. region Region to connect to. key Secret key to use. keyid Access key to use. profile Dict, or pillar key pointing to a dict, containing AWS region/key/keyid. CLI Example: .. code-block:: bash salt myminion boto_cloudfront.list_distributions
27,984
def start_time(self): resource_list = self.traffic_incident() start_time = namedtuple(, ) if len(resource_list) == 1 and resource_list[0] is None: return None else: try: return [start_time(resource[]) for resource in resource_list] except (KeyError, TypeError): return [start_time(resource[]) for resource in resource_list]
Retrieves the start time of the incident/incidents from the output response Returns: start_time(namedtuple): List of named tuples of start time of the incident/incidents
27,985
def nl_error_handler_verbose(_, err, arg): ofd = arg or _LOGGER.debug ofd( + strerror(-err.error)) ofd( + print_header_content(err.msg)) return -nl_syserr2nlerr(err.error)
https://github.com/thom311/libnl/blob/libnl3_2_25/lib/handlers.c#L78.
27,986
def _curvature_range(self): self._curv_win = tf.get_variable("curv_win", dtype=tf.float32, trainable=False, shape=[self.curvature_window_width,], initializer=tf.zeros_initializer) self._curv_win = tf.scatter_update(self._curv_win, self._step % self.curvature_window_width, tf.log(self._grad_norm_squared)) valid_window = tf.slice(self._curv_win, tf.constant([0,]), tf.expand_dims( tf.minimum( tf.constant(self.curvature_window_width), self._step + 1), dim=0)) self._h_min_t = tf.reduce_min(valid_window) self._h_max_t = tf.reduce_max(valid_window) curv_range_ops = [] with tf.control_dependencies([self._h_min_t, self._h_max_t]): avg_op = self._moving_averager.apply([self._h_min_t, self._h_max_t]) with tf.control_dependencies([avg_op]): self._h_min = tf.exp( tf.identity(self._moving_averager.average(self._h_min_t))) self._h_max = tf.exp( tf.identity(self._moving_averager.average(self._h_max_t))) if self._sparsity_debias: self._h_min *= self._sparsity_avg self._h_max *= self._sparsity_avg curv_range_ops.append(avg_op) return curv_range_ops
Curvature range. Returns: h_max_t, h_min_t ops
27,987
def airborne_position_with_ref(msg, lat_ref, lon_ref): mb = common.hex2bin(msg)[32:] cprlat = common.bin2int(mb[22:39]) / 131072.0 cprlon = common.bin2int(mb[39:56]) / 131072.0 i = int(mb[21]) d_lat = 360.0/59 if i else 360.0/60 j = common.floor(lat_ref / d_lat) \ + common.floor(0.5 + ((lat_ref % d_lat) / d_lat) - cprlat) lat = d_lat * (j + cprlat) ni = common.cprNL(lat) - i if ni > 0: d_lon = 360.0 / ni else: d_lon = 360.0 m = common.floor(lon_ref / d_lon) \ + common.floor(0.5 + ((lon_ref % d_lon) / d_lon) - cprlon) lon = d_lon * (m + cprlon) return round(lat, 5), round(lon, 5)
Decode airborne position with only one message, knowing reference nearby location, such as previously calculated location, ground station, or airport location, etc. The reference position shall be with in 180NM of the true position. Args: msg (string): even message (28 bytes hexadecimal string) lat_ref: previous known latitude lon_ref: previous known longitude Returns: (float, float): (latitude, longitude) of the aircraft
27,988
def HandleVersion(self, payload): self.Version = IOHelper.AsSerializableWithType(payload, "neo.Network.Payloads.VersionPayload.VersionPayload") if not self.Version: return if self.incoming_client: if self.Version.Nonce == self.nodeid: self.Disconnect() self.SendVerack() else: self.nodeid = self.Version.Nonce self.SendVersion()
Process the response of `self.RequestVersion`.
27,989
def metric(self): if self._metric is None: errMsg = "The metric eigenvectors have not been set in the " errMsg += "metricParameters instance." raise ValueError(errMsg) return self._metric
The metric of the parameter space. This is a Dictionary of numpy.matrix Each entry in the dictionary is as described under evals. Each numpy.matrix contains the metric of the parameter space in the Lambda_i coordinate system.
27,990
def _convert_odict_to_classes(self, data, clean=False, merge=True, pop_schema=True, compare_to_existing=True, filter_on={}): self._log.debug("_convert_odict_to_classes(): {}".format(self.name())) self._log.debug("This should be a temporary fix. Dont be lazy.") fkeys = list(filter_on.keys()) name_key = self._KEYS.NAME if name_key in data: self[name_key] = data.pop(name_key) schema_key = self._KEYS.SCHEMA if schema_key in data: if pop_schema: data.pop(schema_key) else: self[schema_key] = data.pop(schema_key) if clean: data = self.clean_internal(data) src_key = self._KEYS.SOURCES if src_key in data: sources = data.pop(src_key) self._log.debug("Found {} entries".format( len(sources), src_key)) self._log.debug("{}: {}".format(src_key, sources)) for src in sources: self.add_source(allow_alias=True, **src) photo_key = self._KEYS.PHOTOMETRY if photo_key in data: photoms = data.pop(photo_key) self._log.debug("Found {} entries".format( len(photoms), photo_key)) phcount = 0 for photo in photoms: skip = False for fkey in fkeys: if fkey in photo and photo[fkey] not in filter_on[fkey]: skip = True if skip: continue self._add_cat_dict( Photometry, self._KEYS.PHOTOMETRY, compare_to_existing=compare_to_existing, **photo) phcount += 1 self._log.debug("Added {} entries".format( phcount, photo_key)) spec_key = self._KEYS.SPECTRA if spec_key in data: model = data.pop(model_key) self._log.debug("Found {} entries".format( len(model), model_key)) for mod in model: self._add_cat_dict( Model, self._KEYS.MODELS, compare_to_existing=compare_to_existing, **mod) if len(data): self._log.debug("{} remaining entries, assuming `Quantity`".format( len(data))) for key in list(data.keys()): vals = data.pop(key) if not isinstance(vals, list): vals = [vals] self._log.debug("{}: {}".format(key, vals)) for vv in vals: self._add_cat_dict( Quantity, key, check_for_dupes=merge, compare_to_existing=compare_to_existing, **vv) if merge and self.dupe_of: self.merge_dupes() return
Convert `OrderedDict` into `Entry` or its derivative classes.
27,991
def rmdir(path): logger.debug("DEBUG** Window rmdir sys.platform: {}".format(sys.platform)) if sys.platform == : onerror = _windows_rmdir_readonly else: onerror = None return shutil.rmtree(path, onerror=onerror)
Recursively deletes a directory. Includes an error handler to retry with different permissions on Windows. Otherwise, removing directories (eg. cloned via git) can cause rmtree to throw a PermissionError exception
27,992
def add_column_healpix(self, name="healpix", longitude="ra", latitude="dec", degrees=True, healpix_order=12, nest=True): import healpy as hp if degrees: scale = "*pi/180" else: scale = "" phi = self.evaluate("(%s)%s" % (longitude, scale)) theta = self.evaluate("pi/2-(%s)%s" % (latitude, scale)) hp_index = hp.ang2pix(hp.order2nside(healpix_order), theta, phi, nest=nest) self.add_column("healpix", hp_index)
Add a healpix (in memory) column based on a longitude and latitude :param name: Name of column :param longitude: longitude expression :param latitude: latitude expression (astronomical convenction latitude=90 is north pole) :param degrees: If lon/lat are in degrees (default) or radians. :param healpix_order: healpix order, >= 0 :param nest: Nested healpix (default) or ring.
27,993
def restrict_to_version(self, version): cairo.cairo_svg_surface_restrict_to_version(self._pointer, version) self._check_status()
Restricts the generated SVG file to :obj:`version`. See :meth:`get_versions` for a list of available version values that can be used here. This method should only be called before any drawing operations have been performed on the given surface. The simplest way to do this is to call this method immediately after creating the surface. :param version: A :ref:`SVG_VERSION` string.
27,994
def generate_grid_coords(gx, gy): r return np.vstack([gx.ravel(), gy.ravel()]).T
r"""Calculate x,y coordinates of each grid cell. Parameters ---------- gx: numeric x coordinates in meshgrid gy: numeric y coordinates in meshgrid Returns ------- (X, Y) ndarray List of coordinates in meshgrid
27,995
def nl_list_entry(ptr, type_, member): if ptr.container_of: return ptr.container_of null_data = type_() setattr(null_data, member, ptr) return null_data
https://github.com/thom311/libnl/blob/libnl3_2_25/include/netlink/list.h#L64.
27,996
def get_qout_index(self, river_index_array=None, date_search_start=None, date_search_end=None, time_index_start=None, time_index_end=None, time_index=None, time_index_array=None, daily=False, pd_filter=None, filter_mode="mean", as_dataframe=False): if river_index_array is not None: if hasattr(river_index_array, "__len__"): if len(river_index_array) == 1: river_index_array = river_index_array[0] if time_index_array is None: time_index_array = self.get_time_index_range(date_search_start, date_search_end, time_index_start, time_index_end, time_index) qout_variable = self.qout_nc.variables[self.q_var_name] qout_dimensions = qout_variable.dimensions if qout_dimensions[0].lower() == and \ qout_dimensions[1].lower() == self.river_id_dimension.lower(): if time_index_array is not None and river_index_array is not None: streamflow_array = qout_variable[time_index_array, river_index_array].transpose() elif time_index_array is not None: streamflow_array = qout_variable[time_index_array, :] \ .transpose() elif river_index_array is not None: streamflow_array = qout_variable[:, river_index_array] \ .transpose() else: streamflow_array = qout_variable[:].transpose() elif qout_dimensions[1].lower() == and \ qout_dimensions[0].lower() == self.river_id_dimension.lower(): if time_index_array is not None and river_index_array is not None: streamflow_array = qout_variable[river_index_array, time_index_array] elif time_index_array is not None: streamflow_array = qout_variable[:, time_index_array] elif river_index_array is not None: streamflow_array = qout_variable[river_index_array, :] else: streamflow_array = qout_variable[:] else: raise Exception("Invalid RAPID Qout file dimensions ...") if daily: pd_filter = "D" if pd_filter is not None or as_dataframe: time_array = self.get_time_array(return_datetime=True, time_index_array=time_index_array) qout_df = pd.DataFrame(streamflow_array.T, index=time_array) if pd_filter is not None: qout_df = qout_df.resample(pd_filter) if filter_mode == "mean": qout_df = qout_df.mean() elif filter_mode == "max": qout_df = qout_df.max() else: raise Exception("Invalid filter_mode ...") if as_dataframe: return qout_df streamflow_array = qout_df.as_matrix().T if streamflow_array.ndim > 0 and streamflow_array.shape[0] == 1: streamflow_array = streamflow_array[0] return streamflow_array
This method extracts streamflow data by river index. It allows for extracting single or multiple river streamflow arrays It has options to extract by date or by date index. See: :meth:`RAPIDpy.RAPIDDataset.get_qout`
27,997
def from_csv(self, csv_source, delimiter=","): import pytablereader as ptr loader = ptr.CsvTableTextLoader(csv_source, quoting_flags=self._quoting_flags) loader.delimiter = delimiter try: for table_data in loader.load(): self.from_tabledata(table_data, is_overwrite_table_name=False) return except ptr.DataError: pass loader = ptr.CsvTableFileLoader(csv_source, quoting_flags=self._quoting_flags) loader.delimiter = delimiter for table_data in loader.load(): self.from_tabledata(table_data)
Set tabular attributes to the writer from a character-separated values (CSV) data source. Following attributes are set to the writer by the method: - :py:attr:`~.headers`. - :py:attr:`~.value_matrix`. :py:attr:`~.table_name` also be set if the CSV data source is a file. In that case, :py:attr:`~.table_name` is as same as the filename. :param str csv_source: Input CSV data source either can be designated CSV text or CSV file path. :Examples: :ref:`example-from-csv` :Dependency Packages: - `pytablereader <https://github.com/thombashi/pytablereader>`__
27,998
def form(**kwargs: Question): return Form(*(FormField(k, q) for k, q in kwargs.items()))
Create a form with multiple questions. The parameter name of a question will be the key for the answer in the returned dict.
27,999
def subscribe_sqs_queue(self, topic, queue): t = queue.id.split() q_arn = % (queue.connection.region.name, t[1], t[2]) resp = self.subscribe(topic, , q_arn) policy = queue.get_attributes() if not in policy: policy[] = if not in policy: policy[] = [] statement = { : , : , : { : }, : q_arn, : str(uuid.uuid4()), : { : { : topic}}} policy[].append(statement) queue.set_attribute(, json.dumps(policy)) return resp
Subscribe an SQS queue to a topic. This is convenience method that handles most of the complexity involved in using ans SQS queue as an endpoint for an SNS topic. To achieve this the following operations are performed: * The correct ARN is constructed for the SQS queue and that ARN is then subscribed to the topic. * A JSON policy document is contructed that grants permission to the SNS topic to send messages to the SQS queue. * This JSON policy is then associated with the SQS queue using the queue's set_attribute method. If the queue already has a policy associated with it, this process will add a Statement to that policy. If no policy exists, a new policy will be created. :type topic: string :param topic: The name of the new topic. :type queue: A boto Queue object :param queue: The queue you wish to subscribe to the SNS Topic.