Unnamed: 0
int64 0
389k
| code
stringlengths 26
79.6k
| docstring
stringlengths 1
46.9k
|
---|---|---|
28,200 |
def delete_permanent(self, list_id, subscriber_hash):
subscriber_hash = check_subscriber_hash(subscriber_hash)
self.list_id = list_id
self.subscriber_hash = subscriber_hash
return self._mc_client._post(url=self._build_path(list_id, , subscriber_hash, , ))
|
Delete permanently a member from a list.
:param list_id: The unique id for the list.
:type list_id: :py:class:`str`
:param subscriber_hash: The MD5 hash of the lowercase version of the
list member’s email address.
:type subscriber_hash: :py:class:`str`
|
28,201 |
def rdf_suffix(fmt: str) -> str:
for k, v in SUFFIX_FORMAT_MAP.items():
if fmt == v:
return k
return
|
Map the RDF format to the approproate suffix
|
28,202 |
def prepare_token_revocation_request(self, revocation_url, token,
token_type_hint="access_token", body=, callback=None, **kwargs):
if not is_secure_transport(revocation_url):
raise InsecureTransportError()
return prepare_token_revocation_request(revocation_url, token,
token_type_hint=token_type_hint, body=body, callback=callback,
**kwargs)
|
Prepare a token revocation request.
:param revocation_url: Provider token revocation endpoint URL.
:param token: The access or refresh token to be revoked (string).
:param token_type_hint: ``"access_token"`` (default) or
``"refresh_token"``. This is optional and if you wish to not pass it you
must provide ``token_type_hint=None``.
:param body:
:param callback: A jsonp callback such as ``package.callback`` to be invoked
upon receiving the response. Not that it should not include a () suffix.
:param kwargs: Additional parameters to included in the request.
:returns: The prepared request tuple with (url, headers, body).
Note that JSONP request may use GET requests as the parameters will
be added to the request URL query as opposed to the request body.
An example of a revocation request
.. code-block: http
POST /revoke HTTP/1.1
Host: server.example.com
Content-Type: application/x-www-form-urlencoded
Authorization: Basic czZCaGRSa3F0MzpnWDFmQmF0M2JW
token=45ghiukldjahdnhzdauz&token_type_hint=refresh_token
An example of a jsonp revocation request
.. code-block: http
GET /revoke?token=agabcdefddddafdd&callback=package.myCallback HTTP/1.1
Host: server.example.com
Content-Type: application/x-www-form-urlencoded
Authorization: Basic czZCaGRSa3F0MzpnWDFmQmF0M2JW
and an error response
.. code-block: http
package.myCallback({"error":"unsupported_token_type"});
Note that these requests usually require client credentials, client_id in
the case for public clients and provider specific authentication
credentials for confidential clients.
|
28,203 |
def create_pipeline_stage(self, pipeline_key, name, **kwargs):
if not (pipeline_key and name):
return requests.codes.bad_request, None
uri = .join([
self.api_uri,
self.pipelines_suffix,
pipeline_key,
self.stages_suffix])
kwargs.update({:name})
new_box = StreakStage(**kwargs)
code, data = self._req(, uri, new_box.to_dict(rw = True))
return code, data
|
Creates a pipeline stage with the provided attributes.
Args:
name required name string
kwargs {..} see StreakStage object for details
return (status code, stage dict)
|
28,204 |
def remove(self, auto_confirm=False):
if not self._can_uninstall():
return
if not self.paths:
logger.info(
"Can%sUninstalling %s-%s:yProceed (y/n)? ynNot removing or modifying (outside of prefix):y-uninstallpip-Removing file or directory %sSuccessfully uninstalled %s-%s',
self.dist.project_name, self.dist.version
)
|
Remove paths in ``self.paths`` with confirmation (unless
``auto_confirm`` is True).
|
28,205 |
def key_changed(self):
if self.key_name.get() and self.key_val.get():
self.button_key_add.state(["!disabled"])
else:
self.button_key_add.state(["disabled"])
|
Checks if the key name and value fields have been set, and updates the add key button
|
28,206 |
def is_valid_resource_name(rname, exception_type=None):
match = _ARMNAME_RE.match(rname)
if match:
return True
if exception_type:
raise exception_type()
return False
|
Validates the given resource name to ARM guidelines, individual services may be more restrictive.
:param rname: The resource name being validated.
:type rname: str
:param exception_type: Raises this Exception if invalid.
:type exception_type: :class:`Exception`
:returns: A boolean describing whether the name is valid.
:rtype: bool
|
28,207 |
def user_list(self, params=None):
uri =
if params:
uri += % urllib.urlencode(params)
resp, body = self.get(uri)
self.expected_success(200, resp.status)
body = json.loads(body)
return rest_client.ResponseBody(resp, body)
|
Lists all users within the tenant.
|
28,208 |
def ipaddr(value, options=None):
ipv4_obj = ipv4(value, options=options)
ipv6_obj = ipv6(value, options=options)
if ipv4_obj is None or ipv6_obj is None:
return ipv4_obj or ipv6_obj
else:
return ipv4_obj + ipv6_obj
|
Filters and returns only valid IP objects.
|
28,209 |
def _check_for_dictionary_key(self, logical_id, dictionary, keys):
for key in keys:
if key not in dictionary:
raise InvalidResourceException(logical_id,
.format(key))
|
Checks a dictionary to make sure it has a specific key. If it does not, an
InvalidResourceException is thrown.
:param string logical_id: logical id of this resource
:param dict dictionary: the dictionary to check
:param list keys: list of keys that should exist in the dictionary
|
28,210 |
def modify(self, management_address=None, username=None, password=None,
connection_type=None):
req_body = self._cli.make_body(
managementAddress=management_address, username=username,
password=password, connectionType=connection_type)
resp = self.action(, **req_body)
resp.raise_if_err()
return resp
|
Modifies a remote system for remote replication.
:param management_address: same as the one in `create` method.
:param username: username for accessing the remote system.
:param password: password for accessing the remote system.
:param connection_type: same as the one in `create` method.
|
28,211 |
def load(store):
store = normalize_store_arg(store)
if contains_array(store, path=None):
return Array(store=store, path=None)[...]
elif contains_group(store, path=None):
grp = Group(store=store, path=None)
return LazyLoader(grp)
|
Load data from an array or group into memory.
Parameters
----------
store : MutableMapping or string
Store or path to directory in file system or name of zip file.
Returns
-------
out
If the store contains an array, out will be a numpy array. If the store contains
a group, out will be a dict-like object where keys are array names and values
are numpy arrays.
See Also
--------
save, savez
Notes
-----
If loading data from a group of arrays, data will not be immediately loaded into
memory. Rather, arrays will be loaded into memory as they are requested.
|
28,212 |
def process_requests(self, requests, **context):
ds = self._data_serializer
responses = []
for method, params, request_id, error in requests:
if error:
if error.request_id:
request_id=request_id,
message=ex.message
)
))
return responses
|
Turns a list of request objects into a list of
response objects.
:param requests: A list of tuples describing the RPC call
:type requests: list[list[callable,object,object,list]]
:param context:
A dict with additional parameters passed to handle_request_string and process_requests
Allows wrapping code to pass additional parameters deep into parsing stack, override this
method and fold the parameters as needed into tha method call.
Imagine capturing authentication / permissions data from headers, converting them into
actionable / flag objects and putting them into **context.
Then override this method and fold the arguments into the call
(which may be a decorated function, where decorator unfolds the params and calls the actual method)
By default, context is not passed to method call below.
|
28,213 |
def send_zone_event(self, zone_id, event_name, *args):
cmd = "EVENT %s!%s %s" % (
zone_id.device_str(), event_name,
" ".join(str(x) for x in args))
return (yield from self._send_cmd(cmd))
|
Send an event to a zone.
|
28,214 |
def unzip_file_to_dir(path_to_zip, output_directory):
z = ZipFile(path_to_zip, )
z.extractall(output_directory)
z.close()
|
Extract a ZIP archive to a directory
|
28,215 |
def naturalize_string(key):
return [int(text) if text.isdigit() else text.lower()
for text in re.split(numregex, key)]
|
Analyzes string in a human way to enable natural sort
:param nodename: The node name to analyze
:returns: A structure that can be consumed by 'sorted'
|
28,216 |
def bookDF(symbol, token=, version=):
x = book(symbol, token, version)
df = _bookToDF(x)
return df
|
Book data
https://iextrading.com/developer/docs/#book
realtime during Investors Exchange market hours
Args:
symbol (string); Ticker to request
token (string); Access token
version (string); API version
Returns:
DataFrame: result
|
28,217 |
def apply(self, func, shortcut=False, args=(), **kwargs):
if shortcut:
grouped = self._iter_grouped_shortcut()
else:
grouped = self._iter_grouped()
applied = (maybe_wrap_array(arr, func(arr, *args, **kwargs))
for arr in grouped)
return self._combine(applied, shortcut=shortcut)
|
Apply a function over each array in the group and concatenate them
together into a new array.
`func` is called like `func(ar, *args, **kwargs)` for each array `ar`
in this group.
Apply uses heuristics (like `pandas.GroupBy.apply`) to figure out how
to stack together the array. The rule is:
1. If the dimension along which the group coordinate is defined is
still in the first grouped array after applying `func`, then stack
over this dimension.
2. Otherwise, stack over the new dimension given by name of this
grouping (the argument to the `groupby` function).
Parameters
----------
func : function
Callable to apply to each array.
shortcut : bool, optional
Whether or not to shortcut evaluation under the assumptions that:
(1) The action of `func` does not depend on any of the array
metadata (attributes or coordinates) but only on the data and
dimensions.
(2) The action of `func` creates arrays with homogeneous metadata,
that is, with the same dimensions and attributes.
If these conditions are satisfied `shortcut` provides significant
speedup. This should be the case for many common groupby operations
(e.g., applying numpy ufuncs).
args : tuple, optional
Positional arguments passed to `func`.
**kwargs
Used to call `func(ar, **kwargs)` for each array `ar`.
Returns
-------
applied : DataArray or DataArray
The result of splitting, applying and combining this array.
|
28,218 |
def Main(url):
web_scrape = WebScraping()
document = web_scrape.scrape(url)
nlp_base = NlpBase()
nlp_base.tokenizable_doc = MeCabTokenizer()
sentence_list = nlp_base.listup_sentence(document)
batch_size = 10
if len(sentence_list) < batch_size:
raise ValueError("The number of extracted sentences is insufficient.")
all_token_list = []
for i in range(len(sentence_list)):
nlp_base.tokenize(sentence_list[i])
all_token_list.extend(nlp_base.token)
sentence_list[i] = nlp_base.token
vectorlizable_sentence = LSTMRTRBM()
vectorlizable_sentence.learn(
sentence_list=sentence_list,
token_master_list=list(set(all_token_list)),
hidden_neuron_count=1000,
batch_size=batch_size,
learning_rate=1e-03,
seq_len=5
)
test_list = sentence_list[:batch_size]
feature_points_arr = vectorlizable_sentence.vectorize(test_list)
print("Feature points (Top 5 sentences):")
print(feature_points_arr)
|
Entry Point.
Args:
url: target url.
|
28,219 |
def _load_wurlitzer(self):
if not os.name == :
from IPython.core.getipython import get_ipython
try:
get_ipython().run_line_magic(, )
except Exception:
pass
|
Load wurlitzer extension.
|
28,220 |
def _op_generic_HAdd(self, args):
components = []
for a, b in self.vector_args(args):
if self.is_signed:
a = a.sign_extend(self._vector_size)
b = b.sign_extend(self._vector_size)
else:
a = a.zero_extend(self._vector_size)
b = b.zero_extend(self._vector_size)
components.append((a + b)[self._vector_size:1])
return claripy.Concat(*components)
|
Halving add, for some ARM NEON instructions.
|
28,221 |
def send(scope, data):
conn = scope.get()
for line in data:
conn.send(line)
return True
|
Like exec(), but does not wait for a response of the remote host after
sending the command.
:type data: string
:param data: The data that is sent.
|
28,222 |
def get_date_type(calendar):
try:
import cftime
except ImportError:
raise ImportError(
)
else:
calendars = {
: cftime.DatetimeNoLeap,
: cftime.Datetime360Day,
: cftime.DatetimeNoLeap,
: cftime.DatetimeAllLeap,
: cftime.DatetimeGregorian,
: cftime.DatetimeProlepticGregorian,
: cftime.DatetimeJulian,
: cftime.DatetimeAllLeap,
: cftime.DatetimeGregorian
}
return calendars[calendar]
|
Return the cftime date type for a given calendar name.
|
28,223 |
def get_network(ipv4addr=None, network=None, return_fields=None, **api_opts):
infoblox = _get_infoblox(**api_opts)
return infoblox.get_network(ipv4addr=ipv4addr, network=network, return_fields=return_fields)
|
Get list of all networks. This is helpful when looking up subnets to use
with func:nextavailableip
This call is offen slow and not cached!
some return_fields
comment,network,network_view,ddns_domainname,disable,enable_ddns
CLI Example:
.. code-block:: bash
salt-call infoblox.get_network
|
28,224 |
def requestSubsystem(self, subsystem):
data = common.NS(subsystem)
return self.sendRequest(, data, wantReply=True)
|
Request a subsystem and return a deferred reply.
|
28,225 |
def drop_dose(self):
doses = np.array(self.individual_doses)
responses = np.array(self.responses)
mask = doses != doses.max()
self.individual_doses = doses[mask].tolist()
self.responses = responses[mask].tolist()
self.set_summary_data()
self._validate()
|
Drop the maximum dose and related response values.
|
28,226 |
def DbExportDevice(self, argin):
self._log.debug("In DbExportDevice()")
if len(argin) < 5:
self.warn_stream("DataBase::DbExportDevice(): insufficient export info for device ")
th_exc(DB_IncorrectArguments,
"insufficient export info for device",
"DataBase::ExportDevice()")
dev_name, IOR, host, pid, version = argin[:5]
dev_name = dev_name.lower()
if pid.lower() == :
pid = "-1"
self.db.export_device(dev_name, IOR, host, pid, version)
|
Export a device to the database
:param argin: Str[0] = Device name
Str[1] = CORBA IOR
Str[2] = Device server process host name
Str[3] = Device server process PID or string ``null``
Str[4] = Device server process version
:type: tango.DevVarStringArray
:return:
:rtype: tango.DevVoid
|
28,227 |
def feed(f, limit=25):
if not in f:
raise ValueError(
)
user, f = f.split()
return Feed().show(user, f, limit=limit)
|
Pull a feed
:param f: feed name (eg: csirtgadgetes/correlated)
:param limit: return value limit (default 25)
:return: Feed dict
|
28,228 |
def is_identifier(s):
ensure_string(s)
if not IDENTIFIER_FORM_RE.match(s):
return False
if is_keyword(s):
return False
if s == and not IS_PY3:
return False
return True
|
Check whether given string is a valid Python identifier.
Note that this excludes language keywords, even though they exhibit
a general form of an identifier. See also :func:`has_identifier_form`.
:param s: String to check
:return: Whether ``s`` is a valid Python identifier
|
28,229 |
def detect_loud_glitches(strain, psd_duration=4., psd_stride=2.,
psd_avg_method=, low_freq_cutoff=30.,
threshold=50., cluster_window=5., corrupt_time=4.,
high_freq_cutoff=None, output_intermediates=False):
logging.info()
taper_length = int(corrupt_time * strain.sample_rate)
w = numpy.arange(taper_length) / float(taper_length)
strain[0:taper_length] *= pycbc.types.Array(w, dtype=strain.dtype)
strain[(len(strain)-taper_length):] *= pycbc.types.Array(w[::-1],
dtype=strain.dtype)
indices = numpy.where(mag > threshold)[0]
cluster_idx = pycbc.events.findchirp_cluster_over_window(
indices, numpy.array(mag[indices]),
int(cluster_window*strain.sample_rate))
times = [idx * strain.delta_t + strain.start_time \
for idx in indices[cluster_idx]]
return times
|
Automatic identification of loud transients for gating purposes.
This function first estimates the PSD of the input time series using the
FindChirp Welch method. Then it whitens the time series using that
estimate. Finally, it computes the magnitude of the whitened series,
thresholds it and applies the FindChirp clustering over time to the
surviving samples.
Parameters
----------
strain : TimeSeries
Input strain time series to detect glitches over.
psd_duration : {float, 4}
Duration of the segments for PSD estimation in seconds.
psd_stride : {float, 2}
Separation between PSD estimation segments in seconds.
psd_avg_method : {string, 'median'}
Method for averaging PSD estimation segments.
low_freq_cutoff : {float, 30}
Minimum frequency to include in the whitened strain.
threshold : {float, 50}
Minimum magnitude of whitened strain for considering a transient to
be present.
cluster_window : {float, 5}
Length of time window to cluster surviving samples over, in seconds.
corrupt_time : {float, 4}
Amount of time to be discarded at the beginning and end of the input
time series.
high_frequency_cutoff : {float, None}
Maximum frequency to include in the whitened strain. If given, the
input series is downsampled accordingly. If omitted, the Nyquist
frequency is used.
output_intermediates : {bool, False}
Save intermediate time series for debugging.
|
28,230 |
def get_mnist_iter(args, kv):
(train_lbl, train_img) = read_data(
, )
(val_lbl, val_img) = read_data(
, )
train = mx.io.NDArrayIter(
to4d(train_img), train_lbl, args.batch_size, shuffle=True)
val = mx.io.NDArrayIter(
to4d(val_img), val_lbl, args.batch_size)
return (train, val)
|
create data iterator with NDArrayIter
|
28,231 |
def search_meta(self, attr, value=None, stronly=False):
if stronly:
qry = self.ses.query(Symbol.name).join(SymbolMeta)
else:
qry = self.ses.query(Symbol).join(SymbolMeta)
crits = []
if value is None:
crits.append(SymbolMeta.attr == attr)
else:
if isinstance(value, str):
values = [value]
elif isinstance(value, (tuple, list)):
values = value
for v in values:
crits.append(and_(SymbolMeta.attr == attr, SymbolMeta.value.like(value)))
if len(crits):
qry = qry.filter(or_(*crits))
qry = qry.order_by(Symbol.name)
if stronly:
return [sym[0] for sym in qry.distinct()]
else:
return [sym for sym in qry.distinct()]
|
Get a list of Symbols by searching a specific meta
attribute, and optionally the value.
Parameters
----------
attr : str
The meta attribute to query.
value : None, str or list
The meta attribute to query. If you pass a float, or an int,
it'll be converted to a string, prior to searching.
stronly : bool, optional, default True
Return only a list of symbol names, as opposed
to the (entire) Symbol objects.
Returns
-------
List of Symbols or empty list
|
28,232 |
def request_pdu(self):
if None in [self.address, self.value]:
raise Exception
return struct.pack(, self.function_code, self.address,
self._value)
|
Build request PDU to write single coil.
:return: Byte array of 5 bytes with PDU.
|
28,233 |
def atleast(cls, lits, bound=1, top_id=None, encoding=EncType.seqcounter):
if encoding < 0 or encoding > 9:
raise(NoSuchEncodingError(encoding))
if not top_id:
top_id = max(map(lambda x: abs(x), lits))
ret = CNFPlus()
if encoding == 9:
ret.atmosts, ret.nv = [([-l for l in lits], len(lits) - bound)], top_id
return ret
def_sigint_handler = signal.signal(signal.SIGINT, signal.SIG_DFL)
res = pycard.encode_atleast(lits, bound, top_id, encoding)
def_sigint_handler = signal.signal(signal.SIGINT, def_sigint_handler)
if res:
ret.clauses, ret.nv = res
return ret
|
This method can be used for creating a CNF encoding of an AtLeastK
constraint, i.e. of :math:`\sum_{i=1}^{n}{x_i}\geq k`. The method
takes 1 mandatory argument ``lits`` and 3 default arguments can be
specified: ``bound``, ``top_id``, and ``encoding``.
:param lits: a list of literals in the sum.
:param bound: the value of bound :math:`k`.
:param top_id: top variable identifier used so far.
:param encoding: identifier of the encoding to use.
:type lits: iterable(int)
:type bound: int
:type top_id: integer or None
:type encoding: integer
Parameter ``top_id`` serves to increase integer identifiers of
auxiliary variables introduced during the encoding process. This is
helpful when augmenting an existing CNF formula with the new
cardinality encoding to make sure there is no collision between
identifiers of the variables. If specified the identifiers of the
first auxiliary variable will be ``top_id+1``.
The default value of ``encoding`` is :attr:`Enctype.seqcounter`.
The method *translates* the AtLeast constraint into an AtMost
constraint by *negating* the literals of ``lits``, creating a new
bound :math:`n-k` and invoking :meth:`CardEnc.atmost` with the
modified list of literals and the new bound.
:raises CardEnc.NoSuchEncodingError: if encoding does not exist.
:rtype: a :class:`.CNFPlus` object where the new \
clauses (or the new native atmost constraint) are stored.
|
28,234 |
def export_file(self, data_object, destination_directory=None,
destination_filename=None, retry=False,
export_metadata=False, export_raw_file=True):
if not destination_directory:
destination_directory = os.getcwd()
if not destination_filename:
destination_filename = data_object[][]
destination_file_url = os.path.join(destination_directory,
destination_filename)
logger.info( % (
data_object[][],
data_object[]))
if export_raw_file:
destination = File(
destination_file_url, self.storage_settings, retry=retry)
if destination.exists():
raise FileAlreadyExistsError(
% destination_file_url)
logger.info( % (
destination.get_url()))
file_resource = data_object.get()
md5 = file_resource.get()
source_url = data_object[][]
File(source_url, self.storage_settings, retry=retry).copy_to(
destination, expected_md5=md5)
data_object[] = self._create_new_file_resource(
data_object[], destination.get_url())
else:
logger.info()
if export_metadata:
data_object[].pop(, None)
data_object[].pop(, None)
destination_metadata_url = os.path.join(
destination_file_url + )
logger.info( % destination_metadata_url)
metadata = yaml.safe_dump(data_object, default_flow_style=False)
metadata_file = File(destination_metadata_url,
self.storage_settings, retry=retry)
metadata_file.write(metadata)
else:
logger.info()
logger.info()
|
Export a file from Loom to some file storage location.
Default destination_directory is cwd. Default destination_filename is the
filename from the file data object associated with the given file_id.
|
28,235 |
def flip(self, axis=HORIZONTAL):
if axis == HORIZONTAL:
self.img = self.img.transpose(Image.FLIP_LEFT_RIGHT)
if axis == VERTICAL:
self.img = self.img.transpose(Image.FLIP_TOP_BOTTOM)
|
Flips the layer, either HORIZONTAL or VERTICAL.
|
28,236 |
def _add_meta_info(self, eopatch, request_params, service_type):
for param, eoparam in zip([, , ], [, , ]):
if eoparam not in eopatch.meta_info:
eopatch.meta_info[eoparam] = request_params[param]
if not in eopatch.meta_info:
eopatch.meta_info[] = service_type.value
for param in [, ]:
if param not in eopatch.meta_info:
eopatch.meta_info[param] = getattr(self, param)
if eopatch.bbox is None:
eopatch.bbox = request_params[]
|
Adds any missing metadata info to EOPatch
|
28,237 |
def get_gitlab_project(self):
self.server = gitlab.Gitlab(GIT_URL, private_token=GITLAB_TOKEN, api_version=4)
project = self.server.projects.get(self.git_short)
if not project:
raise GitLabApiError(.format(self.git_short))
self.project = project
return self.project
|
Get numerical GitLab Project ID.
Returns:
int: Project ID number.
Raises:
foremast.exceptions.GitLabApiError: GitLab responded with bad status
code.
|
28,238 |
def _load(self, scale=0.001):
ncf = Dataset(self.path, )
bandnum = OLCI_BAND_NAMES.index(self.bandname)
resp = ncf.variables[
][bandnum, :]
wvl = ncf.variables[
][bandnum, :] * scale
self.rsr = {: wvl, : resp}
|
Load the OLCI relative spectral responses
|
28,239 |
def MakeClass(descriptor):
if descriptor in MESSAGE_CLASS_CACHE:
return MESSAGE_CLASS_CACHE[descriptor]
attributes = {}
for name, nested_type in descriptor.nested_types_by_name.items():
attributes[name] = MakeClass(nested_type)
attributes[GeneratedProtocolMessageType._DESCRIPTOR_KEY] = descriptor
result = GeneratedProtocolMessageType(
str(descriptor.name), (message.Message,), attributes)
MESSAGE_CLASS_CACHE[descriptor] = result
return result
|
Construct a class object for a protobuf described by descriptor.
Composite descriptors are handled by defining the new class as a member of the
parent class, recursing as deep as necessary.
This is the dynamic equivalent to:
class Parent(message.Message):
__metaclass__ = GeneratedProtocolMessageType
DESCRIPTOR = descriptor
class Child(message.Message):
__metaclass__ = GeneratedProtocolMessageType
DESCRIPTOR = descriptor.nested_types[0]
Sample usage:
file_descriptor = descriptor_pb2.FileDescriptorProto()
file_descriptor.ParseFromString(proto2_string)
msg_descriptor = descriptor.MakeDescriptor(file_descriptor.message_type[0])
msg_class = reflection.MakeClass(msg_descriptor)
msg = msg_class()
Args:
descriptor: A descriptor.Descriptor object describing the protobuf.
Returns:
The Message class object described by the descriptor.
|
28,240 |
def one_hot2indices(one_hots):
indices = []
for one_hot in one_hots:
indices.append(argmax(one_hot))
return indices
|
Convert an iterable of one-hot encoded targets to a list of indices.
Parameters
----------
one_hot : list
Returns
-------
indices : list
Examples
--------
>>> one_hot2indices([[1, 0, 0], [0, 1, 0], [0, 0, 1]])
[0, 1, 2]
>>> one_hot2indices([[1, 0], [1, 0], [0, 1]])
[0, 0, 1]
|
28,241 |
def IsDir(directory):
s doc for performance issues information
ftp':
from ._exceptions import NotImplementedProtocol
raise NotImplementedProtocol(target_url.scheme)
else:
from ._exceptions import NotImplementedProtocol
raise NotImplementedProtocol(directory_url.scheme)
|
:param unicode directory:
A path
:rtype: bool
:returns:
Returns whether the given path points to an existent directory.
:raises NotImplementedProtocol:
If the path protocol is not local or ftp
.. seealso:: FTP LIMITATIONS at this module's doc for performance issues information
|
28,242 |
async def clean_up_clients_async(self):
if self.partition_receiver:
if self.eh_client:
await self.eh_client.stop_async()
self.partition_receiver = None
self.partition_receive_handler = None
self.eh_client = None
|
Resets the pump swallows all exceptions.
|
28,243 |
def display(obj, detail=):
try:
return obj.display(detail=detail)
except AttributeError:
return str(obj)
|
Friendly string for volume, using sink paths.
|
28,244 |
def errors(self):
errors = []
for meta in self:
errors.extend(meta.errors)
return errors
|
get all the errors
>>> gres = PlayMeta("operation")
>>> res_plus = BasicPlayMeta(Composable(name="plus"))
>>> gres.append(res_plus)
>>> res_plus.add_error(ValueError("invalid data"))
>>> res_moins = BasicPlayMeta(Composable(name="moins"))
>>> gres.append(res_moins)
>>> res_plus.add_error(RuntimeError("server not anwsering"))
>>> gres.errors
[ValueError('invalid data',), RuntimeError('server not anwsering',)]
|
28,245 |
def apply_op(input_layer, operation, *op_args, **op_kwargs):
return input_layer.with_tensor(
operation(input_layer.tensor, *op_args, **op_kwargs))
|
Applies the given operation to this before without adding any summaries.
Args:
input_layer: The input layer for this op.
operation: An operation that takes a tensor and the supplied args.
*op_args: Extra arguments for operation.
**op_kwargs: Keyword arguments for the operation.
Returns:
A new layer with operation applied.
|
28,246 |
def _enforce_txt_record_maxlen(key, value):
=...
if len(key) + len(value) + 1 > 255:
return value[:251 - len(key)] +
return value
|
Enforces the TXT record maximum length of 255 characters.
TXT record length includes key, value, and '='.
:param str key: Key of the TXT record
:param str value: Value of the TXT record
:rtype: str
:return: The value of the TXT record. It may be truncated if it exceeds
the maximum permitted length. In case of truncation, '...' is
appended to indicate that the entire value is not present.
|
28,247 |
def parse_homer_findpeaks(self):
self.homer_findpeaks = dict()
for f in self.find_log_files(, filehandles=True):
self.parse_findPeaks(f)
self.homer_findpeaks = self.ignore_samples(self.homer_findpeaks)
if len(self.homer_findpeaks) > 0:
self.write_data_file(self.homer_findpeaks, )
stats_headers = OrderedDict()
stats_headers[] = {
: ,
: ,
: 0,
: 100,
: ,
:
}
stats_headers[] = {
: ,
: 0,
: ,
:
}
stats_headers[] = {
: ,
: ,
: 0,
: ,
:
}
self.general_stats_addcols(self.homer_findpeaks, stats_headers, )
return len(self.homer_findpeaks)
|
Find HOMER findpeaks logs and parse their data
|
28,248 |
def seek_previous_line(self):
where = self.file.tell()
offset = 0
while True:
if offset == where:
break
read_size = self.read_size if self.read_size <= where else where
self.file.seek(where - offset - read_size, SEEK_SET)
data_len, data = self.read(read_size)
if b in self.LINE_TERMINATORS and data[0] == b[0]:
terminator_where = self.file.tell()
if terminator_where > data_len + 1:
self.file.seek(where - offset - data_len - 1, SEEK_SET)
terminator_len, terminator_data = self.read(1)
if terminator_data[0] == b[0]:
data_len += 1
data = b + data
self.file.seek(terminator_where)
data_where = data_len
while data_where > 0:
terminator = self.suffix_line_terminator(data[:data_where])
if terminator and offset == 0 and data_where == data_len:
data_where -= len(terminator)
elif terminator:
self.file.seek(where - offset - (data_len - data_where))
return self.file.tell()
else:
data_where -= 1
offset += data_len
if where == 0:
return -1
else:
self.file.seek(0)
return 0
|
Seek previous line relative to the current file position.
:return: Position of the line or -1 if previous line was not found.
|
28,249 |
def is_active(self):
start = self.start_date()
return not self.is_completed() and (not start or start <= date.today())
|
Returns True when the start date is today or in the past and the
task has not yet been completed.
|
28,250 |
def _generate_soma(self):
radius = self._obj.soma.radius
return _square_segment(radius, (0., -radius))
|
soma
|
28,251 |
def _on_message(channel, method, header, body):
print "Message:"
print "\t%r" % method
print "\t%r" % header
print "\t%r" % body
channel.basic_ack(method.delivery_tag)
channel.stop_consuming()
|
Invoked by pika when a message is delivered from RabbitMQ. The
channel is passed for your convenience. The basic_deliver object that
is passed in carries the exchange, routing key, delivery tag and
a redelivered flag for the message. The properties passed in is an
instance of BasicProperties with the message properties and the body
is the message that was sent.
:param pika.channel.Channel channel: The channel object
:param pika.Spec.Basic.Deliver method: The Deliver method
:param pika.Spec.BasicProperties properties: The client properties
:param str|unicode body: The message body
|
28,252 |
def tail_disconnect(self, index):
try:
for device in self.devices[index + 1:]:
device.connected = False
except IndexError:
pass
|
Mark all devices disconnected except target in the chain.
|
28,253 |
def parseUrl(url):
scheme, netloc, url, params, query, fragment = urllib.parse.urlparse(url)
query_dict = {
k: sorted(v) if len(v) > 1 else v[0]
for k, v in list(urllib.parse.parse_qs(query).items())
}
return {
: scheme,
: netloc,
: url,
: params,
: query_dict,
: fragment,
}
|
Return a dict containing scheme, netloc, url, params, query, fragment keys.
query is a dict where the values are always lists. If the query key appears only
once in the URL, the list will have a single value.
|
28,254 |
def do_repository_work(self,
repo_name,
repo_tag=None,
docker_executable=,
password=None,
force=None,
loglevel=logging.DEBUG,
note=None,
tag=None,
push=None,
export=None,
save=None):
shutit_global.shutit_global_object.yield_to_draw()
self.handle_note(note)
shutit_pexpect_session = self.get_current_shutit_pexpect_session()
if tag is None:
tag = self.repository[]
if push is None:
push = self.repository[]
if export is None:
export = self.repository[]
if save is None:
save = self.repository[]
if not (push or export or save or tag):
self.push_repository(repository, docker_executable=docker_executable, expect=expect, shutit_pexpect_child=shutit_pexpect_child)
self.build[] = (self.build[] + + repository)
self.handle_note_after(note)
return True
|
Commit, tag, push, tar a docker container based on the configuration we have.
@param repo_name: Name of the repository.
@param docker_executable: Defaults to 'docker'
@param password:
@param force:
@type repo_name: string
@type docker_executable: string
@type password: string
@type force: boolean
|
28,255 |
def trigger(self, identifier, force=True):
self.debug(identifier)
url = "{base}/{identifier}".format(
base=self.local_base_url,
identifier=identifier
)
param = {}
if force:
param[] = force
encode = urllib.urlencode(param)
if encode:
url += "?"
url += encode
return self.core.update(url, {})
|
Trigger an upgrade task.
|
28,256 |
def set_slippage(self, us_equities=None, us_futures=None):
if self.initialized:
raise SetSlippagePostInit()
if us_equities is not None:
if Equity not in us_equities.allowed_asset_types:
raise IncompatibleSlippageModel(
asset_type=,
given_model=us_equities,
supported_asset_types=us_equities.allowed_asset_types,
)
self.blotter.slippage_models[Equity] = us_equities
if us_futures is not None:
if Future not in us_futures.allowed_asset_types:
raise IncompatibleSlippageModel(
asset_type=,
given_model=us_futures,
supported_asset_types=us_futures.allowed_asset_types,
)
self.blotter.slippage_models[Future] = us_futures
|
Set the slippage models for the simulation.
Parameters
----------
us_equities : EquitySlippageModel
The slippage model to use for trading US equities.
us_futures : FutureSlippageModel
The slippage model to use for trading US futures.
See Also
--------
:class:`zipline.finance.slippage.SlippageModel`
|
28,257 |
def clean_up_datetime(obj_map):
clean_map = {}
for key, value in obj_map.items():
if isinstance(value, datetime.datetime):
clean_map[key] = {
: value.year,
: value.month,
: value.day,
: value.hour,
: value.minute,
: value.second,
: value.microsecond,
: value.tzinfo
}
elif isinstance(value, dict):
clean_map[key] = clean_up_datetime(value)
elif isinstance(value, list):
if key not in clean_map:
clean_map[key] = []
if len(value) > 0:
for index, list_value in enumerate(value):
if isinstance(list_value, dict):
clean_map[key].append(clean_up_datetime(list_value))
else:
clean_map[key].append(list_value)
else:
clean_map[key] = value
else:
clean_map[key] = value
return clean_map
|
convert datetime objects to dictionaries for storage
|
28,258 |
def parse_0134_013b(v):
try:
trim_val = trim_obd_value(v)
val_ab = int(trim_val[0:2], 16)
val_cd = int(trim_val[2:4], 16)
return (2 / 65536) * val_ab, val_cd - 128
except ValueError:
return None, None
|
Parses the O2 Sensor Value (0134 - 013B) and returns two values parsed from it:
1. Fuel-Air Equivalence [Ratio] as a float from 0 - 2
2. Current in [mA] as a float from -128 - 128
:param str v:
:return tuple of float, float:
|
28,259 |
def set_base_prompt(
self, pri_prompt_terminator=":", alt_prompt_terminator=">", delay_factor=2
):
super(CoriantSSH, self).set_base_prompt(
pri_prompt_terminator=pri_prompt_terminator,
alt_prompt_terminator=alt_prompt_terminator,
delay_factor=delay_factor,
)
return self.base_prompt
|
Sets self.base_prompt: used as delimiter for stripping of trailing prompt in output.
|
28,260 |
def apply_chords(im, spacing=1, axis=0, trim_edges=True, label=False):
r
if im.ndim != im.squeeze().ndim:
warnings.warn( + str(im.shape) +
+
)
if spacing < 0:
raise Exception()
if spacing == 0:
label = True
result = sp.zeros(im.shape, dtype=int)
slxyz = [slice(None, None, spacing*(axis != i) + 1) for i in [0, 1, 2]]
slices = tuple(slxyz[:im.ndim])
s = [[0, 1, 0], [0, 1, 0], [0, 1, 0]]
if im.ndim == 3:
s = sp.pad(sp.atleast_3d(s), pad_width=((0, 0), (0, 0), (1, 1)),
mode=, constant_values=0)
im = im[slices]
s = sp.swapaxes(s, 0, axis)
chords = spim.label(im, structure=s)[0]
if trim_edges:
chords = clear_border(chords)
result[slices] = chords
if label is False:
result = result > 0
return result
|
r"""
Adds chords to the void space in the specified direction. The chords are
separated by 1 voxel plus the provided spacing.
Parameters
----------
im : ND-array
An image of the porous material with void marked as ``True``.
spacing : int
Separation between chords. The default is 1 voxel. This can be
decreased to 0, meaning that the chords all touch each other, which
automatically sets to the ``label`` argument to ``True``.
axis : int (default = 0)
The axis along which the chords are drawn.
trim_edges : bool (default = ``True``)
Whether or not to remove chords that touch the edges of the image.
These chords are artifically shortened, so skew the chord length
distribution.
label : bool (default is ``False``)
If ``True`` the chords in the returned image are each given a unique
label, such that all voxels lying on the same chord have the same
value. This is automatically set to ``True`` if spacing is 0, but is
``False`` otherwise.
Returns
-------
image : ND-array
A copy of ``im`` with non-zero values indicating the chords.
See Also
--------
apply_chords_3D
|
28,261 |
def parse_error(text: str) -> Any:
try:
data = json.loads(text)
jsonschema.validate(data, ERROR_SCHEMA)
except (TypeError, json.decoder.JSONDecodeError) as e:
raise jsonschema.ValidationError("Could not parse json : {0}".format(str(e)))
return data
|
Validate and parse the BMA answer from websocket
:param text: the bma error
:return: the json data
|
28,262 |
def login(self, email, password):
payload = {
: email,
: password
}
code, msg, rv = self.request(
,
payload
)
if code == :
accessToken = rv[][][]
self.set_access_token(accessToken)
return rv
|
:password: user password md5 digest
|
28,263 |
def clear_worker_output(self):
print
all_c = self.database.collection_names()
for collection in all_c:
self.database.drop_collection(collection)
|
Drops all of the worker output collections
|
28,264 |
def multi_packages(self, logins=None, platform=None, package_type=None,
type_=None, access=None):
logger.debug()
method = self._multi_packages
new_client = True
try:
self._anaconda_client_api.user_packages(access=)
except Exception:
new_client = False
return self._create_worker(method, logins=logins,
platform=platform,
package_type=package_type,
type_=type_, access=access,
new_client=new_client)
|
Return the private packages for a given set of usernames/logins.
|
28,265 |
def _to_ned(self):
if self.ref_frame is :
return utils.use_to_ned(self.tensor), \
utils.use_to_ned(self.tensor_sigma)
elif self.ref_frame is :
return self.tensor, self.tensor_sigma
else:
raise ValueError(
% self.ref_frame)
|
Switches the reference frame to NED
|
28,266 |
def find_numeration(line):
patterns = (
re_numeration_vol_page_yr,
re_numeration_vol_nucphys_page_yr,
re_numeration_nucphys_vol_page_yr,
re_numeration_vol_subvol_nucphys_yr_page,
re_numeration_vol_nucphys_yr_subvol_page,
re_numeration_vol_yr_page,
re_numeration_nucphys_vol_yr_page,
re_numeration_vol_nucphys_series_yr_page,
re_numeration_vol_series_nucphys_page_yr,
re_numeration_vol_nucphys_series_page_yr,
re_numeration_yr_vol_page,
)
for pattern in patterns:
match = pattern.match(line)
if match:
info = match.groupdict()
series = info.get(, None)
if not series:
series = extract_series_from_volume(info[])
if not info[]:
info[] = info[]
if not info[]:
info[] = info[]
return {: info.get(, None),
: series,
: info[],
: info[] or info[],
: info[],
: match.end()}
return None
|
Given a reference line, attempt to locate instances of citation
'numeration' in the line.
@param line: (string) the reference line.
@return: (string) the reference line after numeration has been checked
and possibly recognized/marked-up.
|
28,267 |
def _shape_union(shapes):
return Shape(sorted(list(set(sum([s.dims for s in shapes], [])))))
|
A shape containing the union of all dimensions in the input shapes.
Args:
shapes: a list of Shapes
Returns:
a Shape
|
28,268 |
def group(self, labels):
unique_labels, groupxs = self.group_indicies(labels)
groups = [self.take(idxs) for idxs in groupxs]
return unique_labels, groups
|
group as list
|
28,269 |
def create(self, obj, ref=None):
if isinstance(ref, Variable):
ref = ref.name
elif isinstance(ref, string_types) and ref.startswith():
ref = ref[3:].lower()
if hasattr(obj, ):
obj = obj._shader_object()
if isinstance(obj, ShaderObject):
if isinstance(obj, Variable) and obj.name is None:
obj.name = ref
elif isinstance(obj, string_types):
obj = TextExpression(obj)
else:
obj = Variable(ref, obj)
if obj.vtype and obj.vtype[0] in :
obj.name = obj.vtype[0] + + obj.name
return obj
|
Convert *obj* to a new ShaderObject. If the output is a Variable
with no name, then set its name using *ref*.
|
28,270 |
def reloading_meta_metaclass_factory(BASE_TYPE=type):
class ReloadingMetaclass2(BASE_TYPE):
def __init__(metaself, name, bases, dct):
super(ReloadingMetaclass2, metaself).__init__(name, bases, dct)
metaself.rrr = reload_class
return ReloadingMetaclass2
|
hack for pyqt
|
28,271 |
def add_remote_subnet(self, context_id, subnet_id):
return self.context.addCustomerSubnetToNetworkTunnel(subnet_id,
id=context_id)
|
Adds a remote subnet to a tunnel context.
:param int context_id: The id-value representing the context instance.
:param int subnet_id: The id-value representing the remote subnet.
:return bool: True if remote subnet addition was successful.
|
28,272 |
def config_create(self, kernel=None, label=None, devices=[], disks=[],
volumes=[], **kwargs):
from .volume import Volume
hypervisor_prefix = if self.hypervisor == else
device_names = [hypervisor_prefix + string.ascii_lowercase[i] for i in range(0, 8)]
device_map = {device_names[i]: None for i in range(0, len(device_names))}
if devices and (disks or volumes):
raise ValueError(
)
if not devices:
if not isinstance(disks, list):
disks = [disks]
if not isinstance(volumes, list):
volumes = [volumes]
devices = []
for d in disks:
if d is None:
devices.append(None)
elif isinstance(d, Disk):
devices.append(d)
else:
devices.append(Disk(self._client, int(d), self.id))
for v in volumes:
if v is None:
devices.append(None)
elif isinstance(v, Volume):
devices.append(v)
else:
devices.append(Volume(self._client, int(v)))
if not devices:
raise ValueError()
for i, d in enumerate(devices):
if d is None:
pass
elif isinstance(d, Disk):
device_map[device_names[i]] = {: d.id }
elif isinstance(d, Volume):
device_map[device_names[i]] = {: d.id }
else:
raise TypeError()
params = {
: kernel.id if issubclass(type(kernel), Base) else kernel,
: label if label else "{}_config_{}".format(self.label, len(self.configs)),
: device_map,
}
params.update(kwargs)
result = self._client.post("{}/configs".format(Instance.api_endpoint), model=self, data=params)
self.invalidate()
if not in result:
raise UnexpectedResponseError(, json=result)
c = Config(self._client, result[], self.id, result)
return c
|
Creates a Linode Config with the given attributes.
:param kernel: The kernel to boot with.
:param label: The config label
:param disks: The list of disks, starting at sda, to map to this config.
:param volumes: The volumes, starting after the last disk, to map to this
config
:param devices: A list of devices to assign to this config, in device
index order. Values must be of type Disk or Volume. If this is
given, you may not include disks or volumes.
:param **kwargs: Any other arguments accepted by the api.
:returns: A new Linode Config
|
28,273 |
def get_content_type(obj, field_name=False):
content_type = ContentType.objects.get_for_model(obj)
if field_name:
return getattr(content_type, field_name, )
return content_type
|
Returns the content type of an object.
:param obj: A model instance.
:param field_name: Field of the object to return.
|
28,274 |
def compile_file(env, src_path, dst_path, encoding=, base_dir=):
src_file = file(src_path, )
source = src_file.read().decode(encoding)
name = src_path.replace(base_dir, )
raw = env.compile(source, name=name, filename=name, raw=True)
src_file.close()
dst_file = open(dst_path, )
dst_file.write(raw)
dst_file.close()
|
Compiles a Jinja2 template to python code.
:param env: a Jinja2 Environment instance.
:param src_path: path to the source file.
:param dst_path: path to the destination file.
:param encoding: template encoding.
:param base_dir: the base path to be removed from the compiled template filename.
|
28,275 |
def _parse_labels(self, labels, element):
r
if labels is None:
raise Exception()
if type(labels) is str:
labels = [labels]
parsed_labels = []
for label in labels:
if element in label:
label = label.split()[-1]
if in label:
Ls = [L.split()[-1] for L in self.labels(element=element)]
if label.startswith():
temp = [L for L in Ls if L.endswith(label.strip())]
if label.endswith():
temp = [L for L in Ls if L.startswith(label.strip())]
temp = [element++L for L in temp]
elif element++label in self.keys():
temp = [element++label]
else:
temp = [element++label]
parsed_labels.extend(temp)
[parsed_labels.remove(L) for L in parsed_labels
if parsed_labels.count(L) > 1]
return parsed_labels
|
r"""
This private method is used for converting \'labels\' to a proper
format, including dealing with wildcards (\*).
Parameters
----------
labels : string or list of strings
The label or list of labels to be parsed. Note that the \* can be
used as a wildcard.
Returns
-------
A list of label strings, with all wildcard matches included if
applicable.
|
28,276 |
def check_directory_path(self, path):
if os.path.isdir(path) is not True:
msg = "Directory Does Not Exist {}".format(path)
raise OSError(msg)
|
Ensure directory exists at the provided path
:type path: string
:param path: path to directory to check
|
28,277 |
def _fastfood_list(args):
template_pack = pack.TemplatePack(args.template_pack)
if args.stencil_set:
stencil_set = template_pack.load_stencil_set(args.stencil_set)
print("Available Stencils for %s:" % args.stencil_set)
for stencil in stencil_set.stencils:
print(" %s" % stencil)
else:
print()
for name, vals in template_pack.stencil_sets.items():
print(" %12s - %12s" % (name, vals[]))
|
Run on `fastfood list`.
|
28,278 |
def get_section_header(self, section):
self._ensure_section_headers_loaded()
if type(section) is int:
return self._section_headers_by_index[section]
else:
return self._section_headers_by_name[section]
|
Get a specific section header by index or name.
Args:
section(int or str): The index or name of the section header to return.
Returns:
:class:`~ELF.SectionHeader`: The section header.
Raises:
KeyError: The requested section header does not exist.
|
28,279 |
def upload(identifier, files,
metadata=None,
headers=None,
access_key=None,
secret_key=None,
queue_derive=None,
verbose=None,
verify=None,
checksum=None,
delete=None,
retries=None,
retries_sleep=None,
debug=None,
request_kwargs=None,
**get_item_kwargs):
item = get_item(identifier, **get_item_kwargs)
return item.upload(files,
metadata=metadata,
headers=headers,
access_key=access_key,
secret_key=secret_key,
queue_derive=queue_derive,
verbose=verbose,
verify=verify,
checksum=checksum,
delete=delete,
retries=retries,
retries_sleep=retries_sleep,
debug=debug,
request_kwargs=request_kwargs)
|
Upload files to an item. The item will be created if it does not exist.
:type identifier: str
:param identifier: The globally unique Archive.org identifier for a given item.
:param files: The filepaths or file-like objects to upload. This value can be an
iterable or a single file-like object or string.
:type metadata: dict
:param metadata: (optional) Metadata used to create a new item. If the item already
exists, the metadata will not be updated -- use ``modify_metadata``.
:type headers: dict
:param headers: (optional) Add additional HTTP headers to the request.
:type access_key: str
:param access_key: (optional) IA-S3 access_key to use when making the given request.
:type secret_key: str
:param secret_key: (optional) IA-S3 secret_key to use when making the given request.
:type queue_derive: bool
:param queue_derive: (optional) Set to False to prevent an item from being derived
after upload.
:type verbose: bool
:param verbose: (optional) Display upload progress.
:type verify: bool
:param verify: (optional) Verify local MD5 checksum matches the MD5 checksum of the
file received by IAS3.
:type checksum: bool
:param checksum: (optional) Skip uploading files based on checksum.
:type delete: bool
:param delete: (optional) Delete local file after the upload has been successfully
verified.
:type retries: int
:param retries: (optional) Number of times to retry the given request if S3 returns a
503 SlowDown error.
:type retries_sleep: int
:param retries_sleep: (optional) Amount of time to sleep between ``retries``.
:type debug: bool
:param debug: (optional) Set to True to print headers to stdout, and exit without
sending the upload request.
:param \*\*kwargs: Optional arguments that ``get_item`` takes.
:returns: A list of :py:class:`requests.Response` objects.
|
28,280 |
def register_service_agreement_consumer(storage_path, publisher_address, agreement_id, did,
service_agreement, service_definition_id, price,
encrypted_files, consumer_account, condition_ids,
consume_callback=None, start_time=None):
if start_time is None:
start_time = int(datetime.now().timestamp())
record_service_agreement(
storage_path, agreement_id, did, service_definition_id, price, encrypted_files, start_time)
process_agreement_events_consumer(
publisher_address, agreement_id, did, service_agreement,
price, consumer_account, condition_ids,
consume_callback
)
|
Registers the given service agreement in the local storage.
Subscribes to the service agreement events.
:param storage_path: storage path for the internal db, str
:param publisher_address: ethereum account address of publisher, hex str
:param agreement_id: id of the agreement, hex str
:param did: DID, str
:param service_agreement: ServiceAgreement instance
:param service_definition_id: identifier of the service inside the asset DDO, str
:param price: Asset price, int
:param encrypted_files: resutl of the files encrypted by the secret store, hex str
:param consumer_account: Account instance of the consumer
:param condition_ids: is a list of bytes32 content-addressed Condition IDs, bytes32
:param consume_callback:
:param start_time: start time, int
|
28,281 |
def do_delete(endpoint, access_token):
headers = {"Authorization": + access_token}
headers[] = get_user_agent()
return requests.delete(endpoint, headers=headers)
|
Do an HTTP GET request and return JSON.
Args:
endpoint (str): Azure Resource Manager management endpoint.
access_token (str): A valid Azure authentication token.
Returns:
HTTP response.
|
28,282 |
def process_rawq(self):
buf = b
try:
while self.rawq:
char = self.rawq_getchar()
if char != IAC:
buf = buf + char
continue
command = self.rawq_getchar()
if command == theNULL:
self.msg()
continue
elif command == IAC:
self.msg()
buf = buf + command
continue
elif command == DO:
opt = self.rawq_getchar()
self.msg(, ord(opt))
if opt == TTYPE:
self.sock.send(IAC+WILL+opt)
elif opt == NAWS:
self.sock.send(IAC+WILL+opt)
self.can_naws = True
if self.window_size:
self.set_window_size(*self.window_size)
else:
self.sock.send(IAC+WONT+opt)
self.msg(
, ord(iac), ord(end))
self.msg()
ttype = self.termtype.encode()
self.msg(, ttype)
self.sock.send(IAC+SB+TTYPE+theNULL+ttype+IAC+SE)
elif command in (WILL, WONT):
opt = self.rawq_getchar()
self.msg(,
command == WILL and or , ord(opt))
if opt == ECHO:
self.sock.send(IAC+DO+opt)
else:
self.sock.send(IAC+DONT+opt)
else:
self.msg( % ord(command))
except EOFError:
pass
buf = buf.decode(self.encoding)
self.cookedq.write(buf)
if self.data_callback is not None:
self.data_callback(buf, **self.data_callback_kwargs)
|
Transfer from raw queue to cooked queue.
Set self.eof when connection is closed. Don't block unless in
the midst of an IAC sequence.
|
28,283 |
def refresh(self):
for cbar in self.colorbars:
cbar.draw_all()
self.canvas.draw()
|
Refresh the current figure
|
28,284 |
def parse_python_file(filepath):
with _AST_CACHE_LOCK:
if filepath not in _AST_CACHE:
source = read_file(filepath)
_AST_CACHE[filepath] = ast.parse(source, filename=filepath)
return _AST_CACHE[filepath]
|
Retrieves the AST of the specified file.
This function performs simple caching so that the same file isn't read or
parsed more than once per process.
:param filepath: the file to parse
:type filepath: str
:returns: ast.AST
|
28,285 |
def make_translations(unique_name, node):
introspectable = not node.attrib.get() ==
if node.tag == core_ns():
__TRANSLATED_NAMES[][unique_name] = unique_name
if introspectable:
components = get_gi_name_components(node)
components[-1] = components[-1].upper()
gi_name = .join(components)
__TRANSLATED_NAMES[][unique_name] = gi_name
__TRANSLATED_NAMES[][unique_name] = gi_name
elif c_ns() in node.attrib:
__TRANSLATED_NAMES[][unique_name] = unique_name
if introspectable:
components = get_gi_name_components(node)
gi_name = .join(components)
__TRANSLATED_NAMES[][unique_name] = gi_name
components[-1] = % components[-1]
__TRANSLATED_NAMES[][unique_name] = .join(components)
elif c_ns() in node.attrib:
components = get_gi_name_components(node)
gi_name = .join(components)
__TRANSLATED_NAMES[][unique_name] = unique_name
if introspectable:
__TRANSLATED_NAMES[][unique_name] = gi_name
__TRANSLATED_NAMES[][unique_name] = gi_name
elif node.tag == core_ns():
components = []
get_field_c_name_components(node, components)
display_name = .join(components[1:])
__TRANSLATED_NAMES[][unique_name] = display_name
if introspectable:
__TRANSLATED_NAMES[][unique_name] = display_name
__TRANSLATED_NAMES[][unique_name] = display_name
elif node.tag == core_ns():
display_name = node.attrib[]
__TRANSLATED_NAMES[][unique_name] = display_name
if introspectable:
__TRANSLATED_NAMES[][unique_name] = % display_name
__TRANSLATED_NAMES[][unique_name] = % display_name
elif node.tag == core_ns():
display_name = node.attrib[]
__TRANSLATED_NAMES[][unique_name] = display_name
if introspectable:
__TRANSLATED_NAMES[][unique_name] = display_name
__TRANSLATED_NAMES[][unique_name] = display_name.replace(, )
else:
__TRANSLATED_NAMES[][unique_name] = node.attrib.get()
if introspectable:
__TRANSLATED_NAMES[][unique_name] = node.attrib.get()
__TRANSLATED_NAMES[][unique_name] = node.attrib.get()
|
Compute and store the title that should be displayed
when linking to a given unique_name, eg in python
when linking to test_greeter_greet() we want to display
Test.Greeter.greet
|
28,286 |
def get(self, identity):
return SyncMapPermissionContext(
self._version,
service_sid=self._solution[],
map_sid=self._solution[],
identity=identity,
)
|
Constructs a SyncMapPermissionContext
:param identity: Identity of the user to whom the Sync Map Permission applies.
:returns: twilio.rest.sync.v1.service.sync_map.sync_map_permission.SyncMapPermissionContext
:rtype: twilio.rest.sync.v1.service.sync_map.sync_map_permission.SyncMapPermissionContext
|
28,287 |
def read( handle, id=None ):
from Bio.PDB import PDBParser
if not id:
id = os.path.basename(handle).split()[0]
p = PDBParser()
s = p.get_structure(id, handle)
return s
|
Reads a structure via PDBParser.
Simplifies life..
|
28,288 |
def spell_check(T, w):
assert T is not None
dist = 0
while True:
u = search(T, dist, w)
if u is not None:
return u
dist += 1
|
Spellchecker
:param T: trie encoding the dictionary
:param w: given word
:returns: a closest word from the dictionary
:complexity: linear if distance was constant
|
28,289 |
def feature(self,feat=None,searchforit=False,init=None):
if feat==None:
return self.feats
if not init:
init=self
init.tick=0
init._matches=[]
feat=feat.strip()
if feat.startswith("+"):
init._eval=True
feat=feat[1:]
elif feat.startswith("-"):
init._eval=False
feat=feat[1:]
else:
init._eval=None
if (hasattr(self,)) and (feat in self.feats):
if type(self.feats[feat]) == type([]):
if len(self.feats[feat]) > 1:
return self.feats[feat]
else:
return self.feats[feat][0]
else:
return self.feats[feat]
else:
if searchforit:
for child in self.descendants():
init.tick+=1
x=child.feature(feat,searchforit,init)
if x==None: continue
init._matches.append ( (child,x) )
else:
return None
if self==init:
if init._eval==None:
return init._matches
else:
return [ x for (x,y) in init._matches if bool(y)==init._eval ]
|
Returns value of self.feats[feat].
If searchforit==True, will search in this object's children recursively.
If not found, returns None.
|
28,290 |
def do_fontsave(self, arg):
from os import path
import json
fullpath = path.expanduser(arg)
data = {
"fonts": self.curargs["fonts"],
"ticks": self.curargs["ticks"]
}
with open(fullpath, ) as f:
json.dump(data, f)
msg.okay("Saved current font settings to {}".format(fullpath))
|
Saves the session variables to a file so that the same analysis can be continued later.
|
28,291 |
def dumps(self):
def _is_initial(author_name):
return len(author_name) == 1 or u in author_name
def _ensure_dotted_initials(author_name):
if _is_initial(author_name) \
and u not in author_name:
seq = (author_name, u)
author_name = u.join(seq)
return author_name
def _ensure_dotted_suffixes(author_suffix):
if u not in author_suffix:
seq = (author_suffix, u)
author_suffix = u.join(seq)
return author_suffix
def _is_roman_numeral(suffix):
valid_roman_numerals = [u, u, u, u, u,
u, u, u, u]
return all(letters in valid_roman_numerals
for letters in suffix.upper())
first_and_middle_names = iter(_ensure_dotted_initials(name) for name in self.first_list)
try:
prev = next(first_and_middle_names)
except StopIteration:
LOGGER.warning(u"Cannot process %s properly",
self._parsed_name.original)
prev = self._parsed_name.original
names_with_spaces = [prev]
for name in first_and_middle_names:
if not _is_initial(name) or not _is_initial(prev):
names_with_spaces.append()
prev = name
names_with_spaces.append(prev)
normalized_names = u.join(names_with_spaces)
if _is_roman_numeral(self.suffix):
suffix = self.suffix.upper()
else:
suffix = _ensure_dotted_suffixes(self.suffix)
final_name = u.join(
part for part in (self.last, normalized_names.strip(), suffix)
if part)
final_name = final_name.replace(u, ')
return final_name
|
Dump the name to string, after normalizing it.
|
28,292 |
def AnalizarXml(self, xml=""):
"Analiza un mensaje XML (por defecto la respuesta)"
try:
if not xml:
xml = self.XmlResponse
self.xml = SimpleXMLElement(xml)
return True
except Exception, e:
self.Excepcion = u"%s" % (e)
return False
|
Analiza un mensaje XML (por defecto la respuesta)
|
28,293 |
def diag_jacobian(xs,
ys=None,
sample_shape=None,
fn=None,
parallel_iterations=10,
name=None):
with tf.compat.v1.name_scope(name, , [xs, ys]):
if sample_shape is None:
sample_shape = [1]
jacobians_diag_res = []
xs = list(xs) if _is_list_like(xs) else [xs]
xs = [tf.convert_to_tensor(value=x) for x in xs]
if not tf.executing_eagerly():
if ys is None:
if fn is None:
raise ValueError()
else:
ys = fn(*xs)
ys = list(ys) if _is_list_like(ys) else [ys]
if len(xs) != len(ys):
raise ValueError()
for y, x in zip(ys, xs):
y_ = y + tf.zeros_like(x)
y_ = tf.reshape(y, tf.concat([sample_shape, [-1]], -1))
n = tf.size(input=x) / tf.cast(
tf.reduce_prod(input_tensor=sample_shape), dtype=tf.int32)
n = tf.cast(n, dtype=tf.int32)
loop_vars = [
0,
tf.TensorArray(x.dtype, n)
]
def loop_body(j):
res = tf.gradients(ys=y_[..., j], xs=x)[0]
if res is None:
res = tf.zeros(tf.concat([sample_shape, [1]], -1),
dtype=x.dtype)
else:
res = tf.reshape(res, tf.concat([sample_shape, [-1]], -1))
res = tf.expand_dims(res, 0)
res = res[..., j]
return res
_, jacobian_diag_res = tf.while_loop(
cond=lambda j, _: j < n,
body=lambda j, result: (j + 1, result.write(j, loop_body(j))),
loop_vars=loop_vars,
parallel_iterations=parallel_iterations)
shape_x = tf.shape(input=x)
reshaped_jacobian_diag = tf.transpose(a=jacobian_diag_res.stack())
reshaped_jacobian_diag = tf.reshape(reshaped_jacobian_diag, shape_x)
jacobians_diag_res.append(reshaped_jacobian_diag)
else:
if fn is None:
raise ValueError(
)
if ys is None:
ys = fn(*xs)
def fn_slice(i, j):
def fn_broadcast(*state):
res = fn(*state)
res = list(res) if _is_list_like(res) else [res]
if len(res) != len(state):
res *= len(state)
res = [tf.reshape(r + tf.zeros_like(s),
tf.concat([sample_shape, [-1]], -1))
for r, s in zip(res, state)]
return res
return lambda *state: tf.expand_dims(fn_broadcast(*state)[i], 0)[..., j]
def make_loop_body(i, x):
def _fn(j, result):
res = value_and_gradient(fn_slice(i, j), xs)[1][i]
if res is None:
res = tf.zeros(tf.concat([sample_shape, [1]], -1), dtype=x.dtype)
else:
res = tf.reshape(res, tf.concat([sample_shape, [-1]], -1))
res = res[..., j]
return j + 1, result.write(j, res)
return _fn
for i, x in enumerate(xs):
n = tf.size(input=x) / tf.cast(
tf.reduce_prod(input_tensor=sample_shape), dtype=tf.int32)
n = tf.cast(n, dtype=tf.int32)
loop_vars = [
0,
tf.TensorArray(x.dtype, n)
]
_, jacobian_diag_res = tf.while_loop(
cond=lambda j, _: j < n,
body=make_loop_body(i, x),
loop_vars=loop_vars,
parallel_iterations=parallel_iterations)
shape_x = tf.shape(input=x)
reshaped_jacobian_diag = tf.transpose(a=jacobian_diag_res.stack())
reshaped_jacobian_diag = tf.reshape(reshaped_jacobian_diag, shape_x)
jacobians_diag_res.append(reshaped_jacobian_diag)
return ys, jacobians_diag_res
|
Computes diagonal of the Jacobian matrix of `ys=fn(xs)` wrt `xs`.
If `ys` is a tensor or a list of tensors of the form `(ys_1, .., ys_n)` and
`xs` is of the form `(xs_1, .., xs_n)`, the function `jacobians_diag`
computes the diagonal of the Jacobian matrix, i.e., the partial derivatives
`(dys_1/dxs_1,.., dys_n/dxs_n`). For definition details, see
https://en.wikipedia.org/wiki/Jacobian_matrix_and_determinant
#### Example
##### Diagonal Hessian of the log-density of a 3D Gaussian distribution
In this example we sample from a standard univariate normal
distribution using MALA with `step_size` equal to 0.75.
```python
import tensorflow as tf
import tensorflow_probability as tfp
import numpy as np
tfd = tfp.distributions
dtype = np.float32
with tf.Session(graph=tf.Graph()) as sess:
true_mean = dtype([0, 0, 0])
true_cov = dtype([[1, 0.25, 0.25], [0.25, 2, 0.25], [0.25, 0.25, 3]])
chol = tf.linalg.cholesky(true_cov)
target = tfd.MultivariateNormalTriL(loc=true_mean, scale_tril=chol)
# Assume that the state is passed as a list of tensors `x` and `y`.
# Then the target function is defined as follows:
def target_fn(x, y):
# Stack the input tensors together
z = tf.concat([x, y], axis=-1) - true_mean
return target.log_prob(z)
sample_shape = [3, 5]
state = [tf.ones(sample_shape + [2], dtype=dtype),
tf.ones(sample_shape + [1], dtype=dtype)]
fn_val, grads = tfp.math.value_and_gradient(target_fn, state)
# We can either pass the `sample_shape` of the `state` or not, which impacts
# computational speed of `diag_jacobian`
_, diag_jacobian_shape_passed = diag_jacobian(
xs=state, ys=grads, sample_shape=tf.shape(fn_val))
_, diag_jacobian_shape_none = diag_jacobian(
xs=state, ys=grads)
diag_jacobian_shape_passed_ = sess.run(diag_jacobian_shape_passed)
diag_jacobian_shape_none_ = sess.run(diag_jacobian_shape_none)
print('hessian computed through `diag_jacobian`, sample_shape passed: ',
np.concatenate(diag_jacobian_shape_passed_, -1))
print('hessian computed through `diag_jacobian`, sample_shape skipped',
np.concatenate(diag_jacobian_shape_none_, -1))
```
Args:
xs: `Tensor` or a python `list` of `Tensors` of real-like dtypes and shapes
`sample_shape` + `event_shape_i`, where `event_shape_i` can be different
for different tensors.
ys: `Tensor` or a python `list` of `Tensors` of the same dtype as `xs`. Must
broadcast with the shape of `xs`. Can be omitted if `fn` is provided.
sample_shape: A common `sample_shape` of the input tensors of `xs`. If not,
provided, assumed to be `[1]`, which may result in a slow performance of
`jacobians_diag`.
fn: Python callable that takes `xs` as an argument (or `*xs`, if it is a
list) and returns `ys`. Might be skipped if `ys` is provided and
`tf.enable_eager_execution()` is disabled.
parallel_iterations: `int` that specifies the allowed number of coordinates
of the input tensor `xs`, for which the partial derivatives `dys_i/dxs_i`
can be computed in parallel.
name: Python `str` name prefixed to `Ops` created by this function.
Default value: `None` (i.e., "diag_jacobian").
Returns:
ys: a list, which coincides with the input `ys`, when provided.
If the input `ys` is None, `fn(*xs)` gets computed and returned as a list.
jacobians_diag_res: a `Tensor` or a Python list of `Tensor`s of the same
dtypes and shapes as the input `xs`. This is the diagonal of the Jacobian
of ys wrt xs.
Raises:
ValueError: if lists `xs` and `ys` have different length or both `ys` and
`fn` are `None`, or `fn` is None in the eager execution mode.
|
28,294 |
def _requirements_sanitize(req_list):
filtered_req_list = (
_requirement_find_lowest_possible(req) for req in
(pkg_resources.Requirement.parse(s) for s in req_list)
if _requirement_filter_by_marker(req)
)
return [" ".join(req) for req in filtered_req_list]
|
Cleanup a list of requirement strings (e.g. from requirements.txt) to only
contain entries valid for this platform and with the lowest required version
only.
Example
-------
>>> from sys import version_info
>>> _requirements_sanitize([
... 'foo>=3.0',
... "monotonic>=1.0,>0.1;python_version=='2.4'",
... "bar>1.0;python_version=='{}.{}'".format(version_info[0], version_info[1])
... ])
['foo >= 3.0', 'bar > 1.0']
|
28,295 |
def parse(inp, format=None, encoding=, force_types=True):
proper_inp = inp
if hasattr(inp, ):
proper_inp = inp.read()
if isinstance(proper_inp, six.text_type):
proper_inp = proper_inp.encode(encoding)
fname = None
if hasattr(inp, ):
fname = inp.name
fmt = _get_format(format, fname, proper_inp)
proper_inp = six.BytesIO(proper_inp)
try:
res = _do_parse(proper_inp, fmt, encoding, force_types)
except Exception as e:
raise AnyMarkupError(e, traceback.format_exc())
if res is None:
res = {}
return res
|
Parse input from file-like object, unicode string or byte string.
Args:
inp: file-like object, unicode string or byte string with the markup
format: explicitly override the guessed `inp` markup format
encoding: `inp` encoding, defaults to utf-8
force_types:
if `True`, integers, floats, booleans and none/null
are recognized and returned as proper types instead of strings;
if `False`, everything is converted to strings
if `None`, backend return value is used
Returns:
parsed input (dict or list) containing unicode values
Raises:
AnyMarkupError if a problem occurs while parsing or inp
|
28,296 |
def pkcs12_kdf(hash_algorithm, password, salt, iterations, key_length, id_):
if not isinstance(password, byte_cls):
raise TypeError(pretty_message(
,
type_name(password)
))
if not isinstance(salt, byte_cls):
raise TypeError(pretty_message(
,
type_name(salt)
))
if not isinstance(iterations, int_types):
raise TypeError(pretty_message(
,
type_name(iterations)
))
if iterations < 1:
raise ValueError(pretty_message(
,
repr(iterations)
))
if not isinstance(key_length, int_types):
raise TypeError(pretty_message(
,
type_name(key_length)
))
if key_length < 1:
raise ValueError(pretty_message(
,
repr(key_length)
))
if hash_algorithm not in set([, , , , , ]):
raise ValueError(pretty_message(
,
repr(hash_algorithm)
))
if id_ not in set([1, 2, 3]):
raise ValueError(pretty_message(
,
repr(id_)
))
utf16_password = password.decode().encode() + b
algo = getattr(hashlib, hash_algorithm)
u = {
: 16,
: 20,
: 28,
: 32,
: 48,
: 64
}[hash_algorithm]
if hash_algorithm in [, ]:
v = 128
else:
v = 64
d = chr_cls(id_) * v
s = b
if salt != b:
s_len = v * int(math.ceil(float(len(salt)) / v))
while len(s) < s_len:
s += salt
s = s[0:s_len]
p = b
if utf16_password != b:
p_len = v * int(math.ceil(float(len(utf16_password)) / v))
while len(p) < p_len:
p += utf16_password
p = p[0:p_len]
i = s + p
c = int(math.ceil(float(key_length) / u))
a = b * (c * u)
for num in range(1, c + 1):
a2 = algo(d + i).digest()
for _ in range(2, iterations + 1):
a2 = algo(a2).digest()
if num < c:
b = b
while len(b) < v:
b += a2
b = int_from_bytes(b[0:v]) + 1
for num2 in range(0, len(i) // v):
start = num2 * v
end = (num2 + 1) * v
i_num2 = i[start:end]
i_num2 = int_to_bytes(int_from_bytes(i_num2) + b)
i_num2_l = len(i_num2)
if i_num2_l > v:
i_num2 = i_num2[i_num2_l - v:]
i = i[0:start] + i_num2 + i[end:]
begin = (num - 1) * u
to_copy = min(key_length, u)
a = a[0:begin] + a2[0:to_copy] + a[begin + to_copy:]
return a[0:key_length]
|
KDF from RFC7292 appendix b.2 - https://tools.ietf.org/html/rfc7292#page-19
:param hash_algorithm:
The string name of the hash algorithm to use: "md5", "sha1", "sha224",
"sha256", "sha384", "sha512"
:param password:
A byte string of the password to use an input to the KDF
:param salt:
A cryptographic random byte string
:param iterations:
The numbers of iterations to use when deriving the key
:param key_length:
The length of the desired key in bytes
:param id_:
The ID of the usage - 1 for key, 2 for iv, 3 for mac
:return:
The derived key as a byte string
|
28,297 |
def get_or_create(self, defaults=None, **kwargs):
try:
return self.get(**kwargs), False
except ObjectDoesNotExist:
pass
data = defaults or {}
data.update(kwargs)
return self._model_class(**data).blocking_save(), True
|
Looks up an object with the given kwargs, creating a new one if necessary.
Args:
defaults (dict): Used when we create a new object. Must map to fields
of the model.
\*\*kwargs: Used both for filtering and new object creation.
Returns:
A tuple of (object, created), where created is a boolean variable
specifies whether the object was newly created or not.
Example:
In the following example, *code* and *name* fields are used to query the DB.
.. code-block:: python
obj, is_new = Permission.objects.get_or_create({'description': desc},
code=code, name=name)
{description: desc} dict is just for new creations. If we can't find any
records by filtering on *code* and *name*, then we create a new object by
using all of the inputs.
|
28,298 |
def density_2d(self, x, y, rho0, Rs, center_x=0, center_y=0):
x_ = x - center_x
y_ = y - center_y
r = np.sqrt(x_**2 + y_**2)
X = r/Rs
sigma0 = self.rho2sigma(rho0, Rs)
if isinstance(X, int) or isinstance(X, float):
if X == 1:
X = 1.000001
else:
X[X == 1] = 1.000001
sigma = sigma0 / (X**2-1)**2 * (-3 + (2+X**2)*self._F(X))
return sigma
|
projected density
:param x:
:param y:
:param rho0:
:param a:
:param s:
:param center_x:
:param center_y:
:return:
|
28,299 |
def cmd_cminv(self, ch=None):
viewer = self.get_viewer(ch)
if viewer is None:
self.log("No current viewer/channel.")
return
viewer.invert_cmap()
|
cminv ch=chname
Invert the color map in the channel/viewer
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.