Unnamed: 0
int64
0
389k
code
stringlengths
26
79.6k
docstring
stringlengths
1
46.9k
3,000
def list_taxa(pdb_list, sleep_time=.1): crisprThermus thermophilusSulfolobus solfataricus P2Hyperthermus butylicus DSM 5456unidentified phageSulfolobus solfataricus P2Pseudomonas aeruginosa UCBPP-PA14Pseudomonas aeruginosa UCBPP-PA14Pseudomonas aeruginosa UCBPP-PA14Sulfolobus solfataricusThermus thermophilus HB8 if len(pdb_list)*sleep_time > 30: warnings.warn("Because of API limitations, this function\ will take at least " + str(len(pdb_list)*sleep_time) + " seconds to return results.\ If you need greater speed, try modifying the optional argument sleep_time=.1, (although \ this may cause the search to time out)" ) taxa = [] for pdb_id in pdb_list: all_info = get_all_info(pdb_id) species_results = walk_nested_dict(all_info, , maxdepth=25,outputs=[]) first_result = walk_nested_dict(species_results,,outputs=[]) if first_result: taxa.append(first_result[-1]) else: taxa.append() time.sleep(sleep_time) return taxa
Given a list of PDB IDs, look up their associated species This function digs through the search results returned by the get_all_info() function and returns any information on taxonomy included within the description. The PDB website description of each entry includes the name of the species (and sometimes details of organ or body part) for each protein structure sample. Parameters ---------- pdb_list : list of str List of PDB IDs sleep_time : float Time (in seconds) to wait between requests. If this number is too small the API will stop working, but it appears to vary among different systems Returns ------- taxa : list of str A list of the names or classifictions of species associated with entries Examples -------- >>> crispr_query = make_query('crispr') >>> crispr_results = do_search(crispr_query) >>> print(list_taxa(crispr_results[:10])) ['Thermus thermophilus', 'Sulfolobus solfataricus P2', 'Hyperthermus butylicus DSM 5456', 'unidentified phage', 'Sulfolobus solfataricus P2', 'Pseudomonas aeruginosa UCBPP-PA14', 'Pseudomonas aeruginosa UCBPP-PA14', 'Pseudomonas aeruginosa UCBPP-PA14', 'Sulfolobus solfataricus', 'Thermus thermophilus HB8']
3,001
def _get_tmp_gcs_bucket(cls, writer_spec): if cls.TMP_BUCKET_NAME_PARAM in writer_spec: return writer_spec[cls.TMP_BUCKET_NAME_PARAM] return cls._get_gcs_bucket(writer_spec)
Returns bucket used for writing tmp files.
3,002
def pow(base, exp): if isinstance(base, Symbol) and isinstance(exp, Symbol): return _internal._Power(base, exp) if isinstance(base, Symbol) and isinstance(exp, Number): return _internal._PowerScalar(base, scalar=exp) if isinstance(base, Number) and isinstance(exp, Symbol): return _internal._RPowerScalar(exp, scalar=base) if isinstance(base, Number) and isinstance(exp, Number): return base**exp else: raise TypeError( % (str(type(base)), str(type(exp))))
Returns element-wise result of base element raised to powers from exp element. Both inputs can be Symbol or scalar number. Broadcasting is not supported. Use `broadcast_pow` instead. `sym.pow` is being deprecated, please use `sym.power` instead. Parameters --------- base : Symbol or scalar The base symbol exp : Symbol or scalar The exponent symbol Returns ------- Symbol or scalar The bases in x raised to the exponents in y. Examples -------- >>> mx.sym.pow(2, 3) 8 >>> x = mx.sym.Variable('x') >>> y = mx.sym.Variable('y') >>> z = mx.sym.pow(x, 2) >>> z.eval(x=mx.nd.array([1,2]))[0].asnumpy() array([ 1., 4.], dtype=float32) >>> z = mx.sym.pow(3, y) >>> z.eval(y=mx.nd.array([2,3]))[0].asnumpy() array([ 9., 27.], dtype=float32) >>> z = mx.sym.pow(x, y) >>> z.eval(x=mx.nd.array([3,4]), y=mx.nd.array([2,3]))[0].asnumpy() array([ 9., 64.], dtype=float32)
3,003
def dropEvent(self, event): data = event.mimeData() if data.hasFormat() and \ data.hasFormat(): tableName = self.tableTypeName() if nstr(data.data()) == tableName: data = nstr(data.data()) query = Q.fromXmlString(data) self.setQuery(query) return elif self.tableType() and data.hasFormat(): from projexui.widgets.xorbtreewidget import XOrbTreeWidget records = XOrbTreeWidget.dataRestoreRecords(data) for record in records: if isinstance(record, self.tableType()): self.setCurrentRecord(record) return super(XOrbRecordBox, self).dropEvent(event)
Listens for query's being dragged and dropped onto this tree. :param event | <QDropEvent>
3,004
def describe_numeric_1d(series, **kwargs): _percentile_format = "{:.0%}" stats = dict() stats[] = base.TYPE_NUM stats[] = series.mean() stats[] = series.std() stats[] = series.var() stats[] = series.min() stats[] = series.max() stats[] = stats[] - stats[] _series_no_na = series.dropna() for percentile in np.array([0.05, 0.25, 0.5, 0.75, 0.95]): stats[_percentile_format.format(percentile)] = _series_no_na.quantile(percentile) stats[] = stats[] - stats[] stats[] = series.kurt() stats[] = series.skew() stats[] = series.sum() stats[] = series.mad() stats[] = stats[] / stats[] if stats[] else np.NaN stats[] = (len(series) - np.count_nonzero(series)) stats[] = stats[] * 1.0 / len(series) stats[] = histogram(series, **kwargs) stats[] = mini_histogram(series, **kwargs) return pd.Series(stats, name=series.name)
Compute summary statistics of a numerical (`TYPE_NUM`) variable (a Series). Also create histograms (mini an full) of its distribution. Parameters ---------- series : Series The variable to describe. Returns ------- Series The description of the variable as a Series with index being stats keys.
3,005
def to_dict(self): list_data = [] for key, value in list(self.data.items()): row = list(key) row.append(value) list_data.append(row) return { : self.groups, : list_data }
Return common list python object. :returns: Dictionary of groups and data :rtype: dict
3,006
def mptt_before_update(mapper, connection, instance): node_id = getattr(instance, instance.get_pk_name()) table = _get_tree_table(mapper) db_pk = instance.get_pk_column() default_level = instance.get_default_level() table_pk = getattr(table.c, db_pk.name) mptt_move_inside = None left_sibling = None left_sibling_tree_id = None if hasattr(instance, ): mptt_move_inside = instance.mptt_move_inside if hasattr(instance, ): ( right_sibling_left, right_sibling_right, right_sibling_parent, right_sibling_level, right_sibling_tree_id ) = connection.execute( select( [ table.c.lft, table.c.rgt, table.c.parent_id, table.c.level, table.c.tree_id ] ).where( table_pk == instance.mptt_move_before ) ).fetchone() current_lvl_nodes = connection.execute( select( [ table.c.lft, table.c.rgt, table.c.parent_id, table.c.tree_id ] ).where( and_( table.c.level == right_sibling_level, table.c.tree_id == right_sibling_tree_id, table.c.lft < right_sibling_left ) ) ).fetchall() if current_lvl_nodes: ( left_sibling_left, left_sibling_right, left_sibling_parent, left_sibling_tree_id ) = current_lvl_nodes[-1] instance.parent_id = left_sibling_parent left_sibling = { : left_sibling_left, : left_sibling_right, : False } elif not right_sibling_parent: left_sibling_tree_id = right_sibling_tree_id - 1 if hasattr(instance, ): ( left_sibling_left, left_sibling_right, left_sibling_parent, left_sibling_tree_id ) = connection.execute( select( [ table.c.lft, table.c.rgt, table.c.parent_id, table.c.tree_id ] ).where( table_pk == instance.mptt_move_after ) ).fetchone() instance.parent_id = left_sibling_parent left_sibling = { : left_sibling_left, : left_sibling_right, : False } subtree = connection.execute( select([table_pk]) .where( and_( table.c.lft >= instance.left, table.c.rgt <= instance.right, table.c.tree_id == instance.tree_id ) ).order_by( table.c.lft ) ).fetchall() subtree = [x[0] for x in subtree] ( node_pos_left, node_pos_right, node_tree_id, node_parent_id, node_level ) = connection.execute( select( [ table.c.lft, table.c.rgt, table.c.tree_id, table.c.parent_id, table.c.level ] ).where( table_pk == node_id ) ).fetchone() if not left_sibling \ and str(node_parent_id) == str(instance.parent_id) \ and not mptt_move_inside: if left_sibling_tree_id is None: return if instance.parent_id is not None: ( parent_id, parent_pos_right, parent_pos_left, parent_tree_id, parent_level ) = connection.execute( select( [ table_pk, table.c.rgt, table.c.lft, table.c.tree_id, table.c.level ] ).where( table_pk == instance.parent_id ) ).fetchone() if node_parent_id is None and node_tree_id == parent_tree_id: instance.parent_id = None return mptt_before_delete(mapper, connection, instance, False) if instance.parent_id is not None: ( parent_id, parent_pos_right, parent_pos_left, parent_tree_id, parent_level ) = connection.execute( select( [ table_pk, table.c.rgt, table.c.lft, table.c.tree_id, table.c.level ] ).where( table_pk == instance.parent_id ) ).fetchone() } instance.tree_id = parent_tree_id _insert_subtree( table, connection, node_size, node_pos_left, node_pos_right, parent_pos_left, parent_pos_right, subtree, parent_tree_id, parent_level, node_level, left_sibling, table_pk ) else: if left_sibling_tree_id or left_sibling_tree_id == 0: tree_id = left_sibling_tree_id + 1 connection.execute( table.update( table.c.tree_id > left_sibling_tree_id ).values( tree_id=table.c.tree_id + 1 ) ) else: tree_id = connection.scalar( select( [ func.max(table.c.tree_id) + 1 ] ) ) connection.execute( table.update( table_pk.in_( subtree ) ).values( lft=table.c.lft - node_pos_left + 1, rgt=table.c.rgt - node_pos_left + 1, level=table.c.level - node_level + default_level, tree_id=tree_id ) )
Based on this example: http://stackoverflow.com/questions/889527/move-node-in-nested-set
3,007
def pad_sequence_to_length(sequence: List, desired_length: int, default_value: Callable[[], Any] = lambda: 0, padding_on_right: bool = True) -> List: if padding_on_right: padded_sequence = sequence[:desired_length] else: padded_sequence = sequence[-desired_length:] for _ in range(desired_length - len(padded_sequence)): if padding_on_right: padded_sequence.append(default_value()) else: padded_sequence.insert(0, default_value()) return padded_sequence
Take a list of objects and pads it to the desired length, returning the padded list. The original list is not modified. Parameters ---------- sequence : List A list of objects to be padded. desired_length : int Maximum length of each sequence. Longer sequences are truncated to this length, and shorter ones are padded to it. default_value: Callable, default=lambda: 0 Callable that outputs a default value (of any type) to use as padding values. This is a lambda to avoid using the same object when the default value is more complex, like a list. padding_on_right : bool, default=True When we add padding tokens (or truncate the sequence), should we do it on the right or the left? Returns ------- padded_sequence : List
3,008
def _add_devices_from_config(args): config = _parse_config(args.config) for device in config[]: if args.default: if device == "default": raise ValueError() if config[][device][] == args.default: raise ValueError() add(device, config[][device][], config[][device].get(, ), config[][device].get(, ), config[][device].get(, 5037))
Add devices from config.
3,009
def get_time(self): if isinstance(self.path, pathlib.Path): thetime = self.path.stat().st_mtime else: thetime = np.nan return thetime
Time of the TIFF file Currently, only the file modification time is supported. Note that the modification time of the TIFF file is dependent on the file system and may have temporal resolution as low as 3 seconds.
3,010
def where(self, where: str) -> : sd = SASdata(self.sas, self.libref, self.table, dsopts=dict(self.dsopts)) sd.HTML = self.HTML sd.dsopts[] = where return sd
This method returns a clone of the SASdata object, with the where attribute set. The original SASdata object is not affected. :param where: the where clause to apply :return: SAS data object
3,011
def reassign(self, user_ids, requester): path = .format(self.collection.name) assignments = [] if not user_ids: raise Error() for user_id in user_ids: ref = { "assignee": { "id": user_id, "type": "user_reference" } } assignments.append(ref) data = { "incidents": [ { "id": self.id, "type": "incident_reference", "assignments": assignments } ] } extra_headers = {"From": requester} return self.pagerduty.request(, path, data=_json_dumper(data), extra_headers=extra_headers)
Reassign this incident to a user or list of users :param user_ids: A non-empty list of user ids :param requester: The email address of individual requesting reassign
3,012
def Ctrl_c(self, dl = 0): self.Delay(dl) self.keyboard.press_key(self.keyboard.control_key) self.keyboard.tap_key("c") self.keyboard.release_key(self.keyboard.control_key)
Ctrl + c 复制
3,013
def API_GET(self, courseid=None): output = [] if courseid is None: courses = self.course_factory.get_all_courses() else: try: courses = {courseid: self.course_factory.get_course(courseid)} except: raise APINotFound("Course not found") username = self.user_manager.session_username() user_info = self.database.users.find_one({"username": username}) for courseid, course in courses.items(): if self.user_manager.course_is_open_to_user(course, username, False) or course.is_registration_possible(user_info): data = { "id": courseid, "name": course.get_name(self.user_manager.session_language()), "require_password": course.is_password_needed_for_registration(), "is_registered": self.user_manager.course_is_open_to_user(course, username, False) } if self.user_manager.course_is_open_to_user(course, username, False): data["tasks"] = {taskid: task.get_name(self.user_manager.session_language()) for taskid, task in course.get_tasks().items()} data["grade"] = self.user_manager.get_course_cache(username, course)["grade"] output.append(data) return 200, output
List courses available to the connected client. Returns a dict in the form :: { "courseid1": { "name": "Name of the course", #the name of the course "require_password": False, #indicates if this course requires a password or not "is_registered": False, #indicates if the user is registered to this course or not "tasks": #only appears if is_registered is True { "taskid1": "name of task1", "taskid2": "name of task2" #... }, "grade": 0.0 #the current grade in the course. Only appears if is_registered is True } #... } If you use the endpoint /api/v0/courses/the_course_id, this dict will contain one entry or the page will return 404 Not Found.
3,014
def get_path(self, temp_ver): if temp_ver not in self: raise RuntimeError( .format(temp_ver.name) ) return self._prefixed(temp_ver.name)
Get the path of the given version in this store Args: temp_ver TemplateVersion: version to look for Returns: str: The path to the template version inside the store Raises: RuntimeError: if the template is not in the store
3,015
def get_current_qualification_score(self, name, worker_id): qtype = self.get_qualification_type_by_name(name) if qtype is None: raise QualificationNotFoundException( .format(name) ) try: score = self.get_qualification_score(qtype["id"], worker_id) except (WorkerLacksQualification, RevokedQualification): score = None return {"qtype": qtype, "score": score}
Return the current score for a worker, on a qualification with the provided name.
3,016
def _is_prime(bit_size, n): r = 0 s = n - 1 while s % 2 == 0: r += 1 s //= 2 if bit_size >= 1300: k = 2 elif bit_size >= 850: k = 3 elif bit_size >= 650: k = 4 elif bit_size >= 550: k = 5 elif bit_size >= 450: k = 6 for _ in range(k): a = random.randrange(2, n - 1) x = pow(a, s, n) if x == 1 or x == n - 1: continue for _ in range(r - 1): x = pow(x, 2, n) if x == n - 1: break else: return False return True
An implementation of Miller–Rabin for checking if a number is prime. :param bit_size: An integer of the number of bits in the prime number :param n: An integer, the prime number :return: A boolean
3,017
def remove_gaps(A, B): a_seq, b_seq = [], [] for a, b in zip(list(A), list(B)): if a == or a == or b == or b == : continue a_seq.append(a) b_seq.append(b) return .join(a_seq), .join(b_seq)
skip column if either is a gap
3,018
def get_table_cache_key(db_alias, table): cache_key = % (db_alias, table) return sha1(cache_key.encode()).hexdigest()
Generates a cache key from a SQL table. :arg db_alias: Alias of the used database :type db_alias: str or unicode :arg table: Name of the SQL table :type table: str or unicode :return: A cache key :rtype: int
3,019
def domain_search(auth=None, **kwargs): ** cloud = get_operator_cloud(auth) kwargs = _clean_kwargs(**kwargs) return cloud.search_domains(**kwargs)
Search domains CLI Example: .. code-block:: bash salt '*' keystoneng.domain_search salt '*' keystoneng.domain_search name=domain1
3,020
def add_update_user(self, user, capacity=None): if isinstance(user, str): user = hdx.data.user.User.read_from_hdx(user, configuration=self.configuration) elif isinstance(user, dict): user = hdx.data.user.User(user, configuration=self.configuration) if isinstance(user, hdx.data.user.User): users = self.data.get() if users is None: users = list() self.data[] = users if capacity is not None: user[] = capacity self._addupdate_hdxobject(users, , user) return raise HDXError( % type(user).__name__)
Add new or update existing user in organization with new metadata. Capacity eg. member, admin must be supplied either within the User object or dictionary or using the capacity argument (which takes precedence). Args: user (Union[User,Dict,str]): Either a user id or user metadata either from a User object or a dictionary capacity (Optional[str]): Capacity of user eg. member, admin. Defaults to None. Returns: None
3,021
def scale_vmss(access_token, subscription_id, resource_group, vmss_name, capacity): endpoint = .join([get_rm_endpoint(), , subscription_id, , resource_group, , vmss_name, , COMP_API]) body = + str(capacity) + return do_patch(endpoint, body, access_token)
Change the instance count of an existing VM Scale Set. Args: access_token (str): A valid Azure authentication token. subscription_id (str): Azure subscription id. resource_group (str): Azure resource group name. vmss_name (str): Name of the virtual machine scale set. capacity (int): New number of VMs. Returns: HTTP response.
3,022
def parse_env(envlist): if not isinstance(envlist, list): envlist = [envlist] exports = [] for env in envlist: pieces = re.split("( |\\\".*?\\\"|)", env) pieces = [p for p in pieces if p.strip()] while len(pieces) > 0: current = pieces.pop(0) if current.endswith(): next = "" if len(pieces) > 0: next = pieces.pop(0) exports.append("%s%s" %(current, next)) elif in current: exports.append(current) elif current.endswith(): continue else: next = pieces.pop(0) exports.append("%s=%s" %(current, next)) return exports
parse_env will parse a single line (with prefix like ENV removed) to a list of commands in the format KEY=VALUE For example: ENV PYTHONBUFFER 1 --> [PYTHONBUFFER=1] ::Notes Docker: https://docs.docker.com/engine/reference/builder/#env
3,023
def ready(self): models_config.auto_load_configs() self.auto_load_app_modules([, ]) app_menu.auto_load_model_menu() auto_register_search_models() tabs.auto_generate_missing_tabs()
Auto load Trionyx
3,024
def check_key(self, key, raise_error=True, *args, **kwargs): return check_key( key, possible_keys=list(self), raise_error=raise_error, name=, *args, **kwargs)
Checks whether the key is a valid formatoption Parameters ---------- %(check_key.parameters.no_possible_keys|name)s Returns ------- %(check_key.returns)s Raises ------ %(check_key.raises)s
3,025
def relpath_to_modname(relpath):
Convert relative path to module name Within a project, a path to the source file is uniquely identified with a module name. Relative paths of the form 'foo/bar' are *not* converted to module names 'foo.bar', because (1) they identify directories, not regular files, and (2) already 'foo/bar/__init__.py' would claim that conversion. Args: relpath (str): Relative path from some location on sys.path Example: >>> relpath_to_modname('ballet/util/_util.py') 'ballet.util._util'
3,026
def cosine_similarity(sent1: str, sent2: str) -> float: WORD = re.compile(r) def get_cosine(vec1, vec2): intersection = set(vec1.keys()) & set(vec2.keys()) numerator = sum([vec1[x] * vec2[x] for x in intersection]) sum1 = sum([vec1[x]**2 for x in vec1.keys()]) sum2 = sum([vec2[x]**2 for x in vec2.keys()]) denominator = math.sqrt(sum1) * math.sqrt(sum2) if not denominator: return 0.0 else: return float(numerator) / denominator def text_to_vector(text): words = WORD.findall(text) return Counter(words) vector1 = text_to_vector(sent1) vector2 = text_to_vector(sent2) cosine = get_cosine(vector1, vector2) return cosine
Calculates cosine similarity between 2 sentences/documents. Thanks to @vpekar, see http://goo.gl/ykibJY
3,027
def _create_tag_lowlevel(self, tag_name, message=None, force=True, patch=False): tags = self.get_tags(patch=patch) old_commit = tags.get(tag_name) if old_commit is not None: if not force: return False old_rev = old_commit[] if self.is_ancestor(old_rev, , patch=patch): altered = self.hg(, , old_rev, , , ) if not altered or altered == []: force = False if not force: return False tag_args = [, tag_name] if message: tag_args += [, message] self.hg(patch=patch, *tag_args) return True
Create a tag on the toplevel or patch repo If the tag exists, and force is False, no tag is made. If force is True, and a tag exists, but it is a direct ancestor of the current commit, and there is no difference in filestate between the current commit and the tagged commit, no tag is made. Otherwise, the old tag is overwritten to point at the current commit. Returns True or False indicating whether the tag was actually committed
3,028
def save_series(self) -> None: hydpy.pub.sequencemanager.open_netcdf_writer( flatten=hydpy.pub.options.flattennetcdf, isolate=hydpy.pub.options.isolatenetcdf) self.prepare_sequencemanager() for sequence in self._iterate_sequences(): sequence.save_ext() hydpy.pub.sequencemanager.close_netcdf_writer()
Save time series data as defined by the actual XML `writer` element. >>> from hydpy.core.examples import prepare_full_example_1 >>> prepare_full_example_1() >>> from hydpy import HydPy, TestIO, XMLInterface >>> hp = HydPy('LahnH') >>> with TestIO(): ... hp.prepare_network() ... hp.init_models() ... interface = XMLInterface('single_run.xml') ... interface.update_options() >>> interface.update_timegrids() >>> series_io = interface.series_io >>> series_io.prepare_series() >>> hp.elements.land_dill.model.sequences.fluxes.pc.series[2, 3] = 9.0 >>> hp.nodes.lahn_2.sequences.sim.series[4] = 7.0 >>> with TestIO(): ... series_io.save_series() >>> import numpy >>> with TestIO(): ... os.path.exists( ... 'LahnH/series/output/land_lahn_2_flux_pc.npy') ... os.path.exists( ... 'LahnH/series/output/land_lahn_3_flux_pc.npy') ... numpy.load( ... 'LahnH/series/output/land_dill_flux_pc.npy')[13+2, 3] ... numpy.load( ... 'LahnH/series/output/lahn_2_sim_q_mean.npy')[13+4] True False 9.0 7.0
3,029
def endpoint_delete(auth=None, **kwargs): * cloud = get_operator_cloud(auth) kwargs = _clean_kwargs(**kwargs) return cloud.delete_endpoint(**kwargs)
Delete an endpoint CLI Example: .. code-block:: bash salt '*' keystoneng.endpoint_delete id=3bee4bd8c2b040ee966adfda1f0bfca9
3,030
def plot_options(cls, obj, percent_size): from .plot import MPLPlot factor = percent_size / 100.0 obj = obj.last if isinstance(obj, HoloMap) else obj options = Store.lookup_options(cls.backend, obj, ).options fig_size = options.get(, MPLPlot.fig_size)*factor return dict({:fig_size}, **MPLPlot.lookup_options(obj, ).options)
Given a holoviews object and a percentage size, apply heuristics to compute a suitable figure size. For instance, scaling layouts and grids linearly can result in unwieldy figure sizes when there are a large number of elements. As ad hoc heuristics are used, this functionality is kept separate from the plotting classes themselves. Used by the IPython Notebook display hooks and the save utility. Note that this can be overridden explicitly per object using the fig_size and size plot options.
3,031
def handle_signature(self, sig, signode): if self._is_attr_like(): sig_match = chpl_attr_sig_pattern.match(sig) if sig_match is None: raise ValueError(.format(sig)) func_prefix, name_prefix, name, retann = sig_match.groups() arglist = None else: sig_match = chpl_sig_pattern.match(sig) if sig_match is None: raise ValueError(.format(sig)) func_prefix, name_prefix, name, arglist, retann = \ sig_match.groups() modname = self.options.get( , self.env.temp_data.get()) classname = self.env.temp_data.get() if classname: if name_prefix and name_prefix.startswith(classname): fullname = name_prefix + name name_prefix = name_prefix[len(classname):].lstrip() elif name_prefix: return fullname, name_prefix
Parse the signature *sig* into individual nodes and append them to the *signode*. If ValueError is raises, parsing is aborted and the whole *sig* string is put into a single desc_name node. The return value is the value that identifies the object. IOW, it is the identifier that will be used to reference this object, datum, attribute, proc, etc. It is a tuple of "fullname" (including module and class(es)) and the classes. See also :py:meth:`add_target_and_index`.
3,032
def reindex_like(self, other, method=None, copy=True, limit=None, tolerance=None): d = other._construct_axes_dict(axes=self._AXIS_ORDERS, method=method, copy=copy, limit=limit, tolerance=tolerance) return self.reindex(**d)
Return an object with matching indices as other object. Conform the object to the same index on all axes. Optional filling logic, placing NaN in locations having no value in the previous index. A new object is produced unless the new index is equivalent to the current one and copy=False. Parameters ---------- other : Object of the same data type Its row and column indices are used to define the new indices of this object. method : {None, 'backfill'/'bfill', 'pad'/'ffill', 'nearest'} Method to use for filling holes in reindexed DataFrame. Please note: this is only applicable to DataFrames/Series with a monotonically increasing/decreasing index. * None (default): don't fill gaps * pad / ffill: propagate last valid observation forward to next valid * backfill / bfill: use next valid observation to fill gap * nearest: use nearest valid observations to fill gap copy : bool, default True Return a new object, even if the passed indexes are the same. limit : int, default None Maximum number of consecutive labels to fill for inexact matches. tolerance : optional Maximum distance between original and new labels for inexact matches. The values of the index at the matching locations most satisfy the equation ``abs(index[indexer] - target) <= tolerance``. Tolerance may be a scalar value, which applies the same tolerance to all values, or list-like, which applies variable tolerance per element. List-like includes list, tuple, array, Series, and must be the same size as the index and its dtype must exactly match the index's type. .. versionadded:: 0.21.0 (list-like tolerance) Returns ------- Series or DataFrame Same type as caller, but with changed indices on each axis. See Also -------- DataFrame.set_index : Set row labels. DataFrame.reset_index : Remove row labels or move them to new columns. DataFrame.reindex : Change to new indices or expand indices. Notes ----- Same as calling ``.reindex(index=other.index, columns=other.columns,...)``. Examples -------- >>> df1 = pd.DataFrame([[24.3, 75.7, 'high'], ... [31, 87.8, 'high'], ... [22, 71.6, 'medium'], ... [35, 95, 'medium']], ... columns=['temp_celsius', 'temp_fahrenheit', 'windspeed'], ... index=pd.date_range(start='2014-02-12', ... end='2014-02-15', freq='D')) >>> df1 temp_celsius temp_fahrenheit windspeed 2014-02-12 24.3 75.7 high 2014-02-13 31.0 87.8 high 2014-02-14 22.0 71.6 medium 2014-02-15 35.0 95.0 medium >>> df2 = pd.DataFrame([[28, 'low'], ... [30, 'low'], ... [35.1, 'medium']], ... columns=['temp_celsius', 'windspeed'], ... index=pd.DatetimeIndex(['2014-02-12', '2014-02-13', ... '2014-02-15'])) >>> df2 temp_celsius windspeed 2014-02-12 28.0 low 2014-02-13 30.0 low 2014-02-15 35.1 medium >>> df2.reindex_like(df1) temp_celsius temp_fahrenheit windspeed 2014-02-12 28.0 NaN low 2014-02-13 30.0 NaN low 2014-02-14 NaN NaN NaN 2014-02-15 35.1 NaN medium
3,033
def find_ent_space_price(package, category, size, tier_level): if category == : category_code = elif category == : category_code = else: category_code = level = ENDURANCE_TIERS.get(tier_level) for item in package[]: if int(item[]) != size: continue price_id = _find_price_id(item[], category_code, , level) if price_id: return price_id raise ValueError("Could not find price for %s storage space" % category)
Find the space price for the given category, size, and tier :param package: The Enterprise (Endurance) product package :param category: The category of space (endurance, replication, snapshot) :param size: The size for which a price is desired :param tier_level: The endurance tier for which a price is desired :return: Returns the matching price, or an error if not found
3,034
def fromXml(cls, elem): if elem is None: return None addon = cls.byName(elem.tag) if not addon: raise RuntimeError(.format(elem.tag)) return addon.load(elem)
Converts the inputted element to a Python object by looking through the IO addons for the element's tag. :param elem | <xml.etree.ElementTree.Element> :return <variant>
3,035
def mtr_tr_dense(sz): n = 2 ** sz hparams = mtf_bitransformer_base() hparams.d_model = 1024 hparams.max_length = 256 hparams.batch_size = 128 hparams.d_ff = int(4096 * n) hparams.d_kv = 128 hparams.encoder_num_heads = int(8 * n) hparams.decoder_num_heads = int(8 * n) hparams.learning_rate_decay_steps = 51400 hparams.layout = "batch:batch;vocab:model;d_ff:model;heads:model" hparams.mesh_shape = "batch:32" hparams.label_smoothing = 0.1 hparams.layer_prepostprocess_dropout = 0.1 hparams.attention_dropout = 0.1 hparams.relu_dropout = 0.1 return hparams
Series of machine translation models. All models are trained on sequences of 256 tokens. You can use the dataset translate_enfr_wmt32k_packed. 154000 steps = 3 epochs. Args: sz: an integer Returns: a hparams
3,036
def distance_to_closest(self, ps: Union["Units", List["Point2"], Set["Point2"]]) -> Union[int, float]: assert ps closest_distance_squared = math.inf for p2 in ps: if not isinstance(p2, Point2): p2 = p2.position distance = (self[0] - p2[0]) ** 2 + (self[1] - p2[1]) ** 2 if distance < closest_distance_squared: closest_distance_squared = distance return closest_distance_squared ** 0.5
This function assumes the 2d distance is meant
3,037
def metrics(self): masterThrp, backupThrp = self.getThroughputs(self.instances.masterId) r = self.instance_throughput_ratio(self.instances.masterId) m = [ ("{} Monitor metrics:".format(self), None), ("Delta", self.Delta), ("Lambda", self.Lambda), ("Omega", self.Omega), ("instances started", self.instances.started), ("ordered request counts", {i: r[0] for i, r in self.numOrderedRequests.items()}), ("ordered request durations", {i: r[1] for i, r in self.numOrderedRequests.items()}), ("master request latencies", self.masterReqLatencies), ("client avg request latencies", {i: self.getLatency(i) for i in self.instances.ids}), ("throughput", {i: self.getThroughput(i) for i in self.instances.ids}), ("master throughput", masterThrp), ("total requests", self.totalRequests), ("avg backup throughput", backupThrp), ("master throughput ratio", r)] return m
Calculate and return the metrics.
3,038
def set_dash(self, dashes, offset=0): cairo.cairo_set_dash( self._pointer, ffi.new(, dashes), len(dashes), offset) self._check_status()
Sets the dash pattern to be used by :meth:`stroke`. A dash pattern is specified by dashes, a list of positive values. Each value provides the length of alternate "on" and "off" portions of the stroke. :obj:`offset` specifies an offset into the pattern at which the stroke begins. Each "on" segment will have caps applied as if the segment were a separate sub-path. In particular, it is valid to use an "on" length of 0 with :obj:`LINE_CAP_ROUND` or :obj:`LINE_CAP_SQUARE` in order to distributed dots or squares along a path. Note: The length values are in user-space units as evaluated at the time of stroking. This is not necessarily the same as the user space at the time of :meth:`set_dash`. If :obj:`dashes` is empty dashing is disabled. If it is of length 1 a symmetric pattern is assumed with alternating on and off portions of the size specified by the single value. :param dashes: A list of floats specifying alternate lengths of on and off stroke portions. :type offset: float :param offset: An offset into the dash pattern at which the stroke should start. :raises: :exc:`CairoError` if any value in dashes is negative, or if all values are 0. The context will be put into an error state.
3,039
def search_cloud_integration_deleted_for_facet(self, facet, **kwargs): kwargs[] = True if kwargs.get(): return self.search_cloud_integration_deleted_for_facet_with_http_info(facet, **kwargs) else: (data) = self.search_cloud_integration_deleted_for_facet_with_http_info(facet, **kwargs) return data
Lists the values of a specific facet over the customer's deleted cloud integrations # noqa: E501 # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.search_cloud_integration_deleted_for_facet(facet, async_req=True) >>> result = thread.get() :param async_req bool :param str facet: (required) :param FacetSearchRequestContainer body: :return: ResponseContainerFacetResponse If the method is called asynchronously, returns the request thread.
3,040
def add_permission(self, name): perm = self.find_permission(name) if perm is None: try: perm = self.permission_model(name=name) perm.save() return perm except Exception as e: log.error(c.LOGMSG_ERR_SEC_ADD_PERMISSION.format(str(e))) return perm
Adds a permission to the backend, model permission :param name: name of the permission: 'can_add','can_edit' etc...
3,041
def zeros_coefs(nmax, mmax, coef_type=scalar): if(mmax > nmax): raise ValueError(err_msg[]) if(coef_type == scalar): L = (nmax + 1) + mmax * (2 * nmax - mmax + 1) vec = np.zeros(L, dtype=np.complex128) return ScalarCoefs(vec, nmax, mmax) elif(coef_type == vector): L = (nmax + 1) + mmax * (2 * nmax - mmax + 1) vec1 = np.zeros(L, dtype=np.complex128) vec2 = np.zeros(L, dtype=np.complex128) return VectorCoefs(vec1, vec2, nmax, mmax) else: raise TypeError(err_msg[])
Returns a ScalarCoefs object or a VectorCoeffs object where each of the coefficients is set to 0. The structure is such that *nmax* is th largest *n* can be in c[n, m], and *mmax* is the largest *m* can be for any *n*. (See *ScalarCoefs* and *VectorCoefs* for details.) Examples:: >>> c = spherepy.zeros_coefs(5, 3, coef_type = spherepy.scalar) >>> c = spherepy.zeros_coefs(5, 3) # same as above >>> vc = spherepy.zeros_coefs(5, 3, coef_type = spherepy.vector) Args: nmax (int): Largest *n* value in the set of modes. mmax (int): Largest abs(*m*) value in the set of modes. coef_type (int, optional): Set to 0 for scalar, and 1 for vector. The default option is scalar. If you would like to return a set of vector spherical hamonic coefficients, the preferred way to do so is vc = spherepy.zeros_coefs( 10, 12, coef_type = spherepy.vector). Returns: coefs: Returns a ScalarCoefs object if coef_type is either blank or set to 0. Returns a VectorCoefs object if coef_type = 1. Raises: TypeError: If coef_type is anything but 0 or 1.
3,042
def xmoe_2d(): hparams = xmoe_top_2() hparams.decoder_layers = ["att", "hmoe"] * 4 hparams.mesh_shape = "b0:2;b1:4" hparams.outer_batch_size = 4 hparams.layout = "outer_batch:b0;inner_batch:b1,expert_x:b1,expert_y:b0" hparams.moe_num_experts = [4, 4] return hparams
Two-dimensional hierarchical mixture of 16 experts.
3,043
def constraint_present(name, constraint_id, constraint_type, constraint_options=None, cibname=None): addvip_galerawithhaproxy-clone return _item_present(name=name, item=, item_id=constraint_id, item_type=constraint_type, create=None, extra_args=constraint_options, cibname=cibname)
Ensure that a constraint is created Should be run on one cluster node only (there may be races) Can only be run on a node with a functional pacemaker/corosync name Irrelevant, not used (recommended: {{formulaname}}__constraint_present_{{constraint_id}}) constraint_id name for the constraint (try first to create manually to find out the autocreated name) constraint_type constraint type (location, colocation, order) constraint_options options for creating the constraint cibname use a cached CIB-file named like cibname instead of the live CIB Example: .. code-block:: yaml haproxy_pcs__constraint_present_colocation-vip_galera-haproxy-clone-INFINITY: pcs.constraint_present: - constraint_id: colocation-vip_galera-haproxy-clone-INFINITY - constraint_type: colocation - constraint_options: - 'add' - 'vip_galera' - 'with' - 'haproxy-clone' - cibname: cib_for_haproxy
3,044
def bezier(self, points): coordinates = pgmagick.CoordinateList() for point in points: x, y = float(point[0]), float(point[1]) coordinates.append(pgmagick.Coordinate(x, y)) self.drawer.append(pgmagick.DrawableBezier(coordinates))
Draw a Bezier-curve. :param points: ex.) ((5, 5), (6, 6), (7, 7)) :type points: list
3,045
def delete(self, refobj): refobjinter = self.get_refobjinter() reference = refobjinter.get_reference(refobj) if reference: fullns = cmds.referenceQuery(reference, namespace=True) cmds.file(removeReference=True, referenceNode=reference) else: parentns = common.get_namespace(refobj) ns = cmds.getAttr("%s.namespace" % refobj) fullns = ":".join((parentns.rstrip(":"), ns.lstrip(":"))) cmds.namespace(removeNamespace=fullns, deleteNamespaceContent=True)
Delete the content of the given refobj :param refobj: the refobj that represents the content that should be deleted :type refobj: refobj :returns: None :rtype: None :raises: None
3,046
def ebrisk(rupgetter, srcfilter, param, monitor): riskmodel = param[] E = rupgetter.num_events L = len(riskmodel.lti) N = len(srcfilter.sitecol.complete) e1 = rupgetter.first_event with monitor(, measuremem=False): with datastore.read(srcfilter.filename) as dstore: assetcol = dstore[] assets_by_site = assetcol.assets_by_site() A = len(assetcol) getter = getters.GmfGetter(rupgetter, srcfilter, param[]) with monitor(): getter.init() hazard = getter.get_hazard() mon_risk = monitor(, measuremem=False) mon_agg = monitor(, measuremem=False) events = rupgetter.get_eid_rlz() eid2idx = dict(zip(events[], range(e1, e1 + E))) tagnames = param[] shape = assetcol.tagcol.agg_shape((E, L), tagnames) elt_dt = [(, U64), (, U16), (, (F32, shape[1:]))] if param[]: alt = numpy.zeros((A, E, L), F32) acc = numpy.zeros(shape, F32) if param[]: losses_by_A = numpy.zeros((A, L), F32) else: losses_by_A = 0 times = numpy.zeros(N) num_events_per_sid = 0 epspath = param[] for sid, haz in hazard.items(): t0 = time.time() assets_on_sid = assets_by_site[sid] if len(assets_on_sid) == 0: continue num_events_per_sid += len(haz) weights = getter.weights[haz[], 0] assets_by_taxo = get_assets_by_taxo(assets_on_sid, epspath) eidx = numpy.array([eid2idx[eid] for eid in haz[]]) - e1 haz[] = eidx + e1 with mon_risk: out = riskmodel.get_output(assets_by_taxo, haz) with mon_agg: for a, asset in enumerate(assets_on_sid): aid = asset[] tagi = asset[tagnames] if tagnames else () tagidxs = tuple(idx - 1 for idx in tagi) for lti, lt in enumerate(riskmodel.loss_types): lratios = out[lt][a] if lt == : losses = lratios * asset[] else: losses = lratios * asset[ + lt] if param[]: alt[aid, eidx, lti] = losses acc[(eidx, lti) + tagidxs] += losses if param[]: losses_by_A[aid, lti] += losses @ weights times[sid] = time.time() - t0 if hazard: num_events_per_sid /= len(hazard) with monitor(): elt = numpy.fromiter( ((event[], event[], losses) for event, losses in zip(events, acc) if losses.sum()), elt_dt) agg = general.AccumDict(accum=numpy.zeros(shape[1:], F32)) for rec in elt: agg[rec[]] += rec[] * param[] res = {: elt, : agg, : times, : num_events_per_sid} if param[]: res[] = losses_by_A * param[] if param[]: res[] = alt, events[] return res
:param rupgetter: a RuptureGetter instance :param srcfilter: a SourceFilter instance :param param: a dictionary of parameters :param monitor: :class:`openquake.baselib.performance.Monitor` instance :returns: an ArrayWrapper with shape (E, L, T, ...)
3,047
def _get_seal_key_ntlm2(negotiate_flags, exported_session_key, magic_constant): if negotiate_flags & NegotiateFlags.NTLMSSP_NEGOTIATE_128: seal_key = exported_session_key elif negotiate_flags & NegotiateFlags.NTLMSSP_NEGOTIATE_56: seal_key = exported_session_key[:7] else: seal_key = exported_session_key[:5] seal_key = hashlib.md5(seal_key + magic_constant).digest() return seal_key
3.4.5.3 SEALKEY Calculates the seal_key used to seal (encrypt) messages. This for authentication where NTLMSSP_NEGOTIATE_EXTENDED_SESSIONSECURITY has been negotiated. Will weaken the keys if NTLMSSP_NEGOTIATE_128 is not negotiated, will try NEGOTIATE_56 and then will default to the 40-bit key @param negotiate_flags: The negotiate_flags structure sent by the server @param exported_session_key: A 128-bit session key used to derive signing and sealing keys @param magic_constant: A constant value set in the MS-NLMP documentation (constants.SignSealConstants) @return seal_key: Key used to seal messages
3,048
def _stop_trial(self, trial, error=False, error_msg=None, stop_logger=True): if stop_logger: trial.close_logger() if error: self.set_status(trial, Trial.ERROR) else: self.set_status(trial, Trial.TERMINATED) try: trial.write_error_log(error_msg) if hasattr(trial, "runner") and trial.runner: if (not error and self._reuse_actors and self._cached_actor is None): logger.debug("Reusing actor for {}".format(trial.runner)) self._cached_actor = trial.runner else: logger.info( "Destroying actor for trial {}. If your trainable is " "slow to initialize, consider setting " "reuse_actors=True to reduce actor creation " "overheads.".format(trial)) trial.runner.stop.remote() trial.runner.__ray_terminate__.remote() except Exception: logger.exception("Error stopping runner for Trial %s", str(trial)) self.set_status(trial, Trial.ERROR) finally: trial.runner = None
Stops this trial. Stops this trial, releasing all allocating resources. If stopping the trial fails, the run will be marked as terminated in error, but no exception will be thrown. Args: error (bool): Whether to mark this trial as terminated in error. error_msg (str): Optional error message. stop_logger (bool): Whether to shut down the trial logger.
3,049
def p_factor_unary_operators(self, p): p[0] = p[2] if p[1] == : p[0] = Instruction(, context={: p[0]})
term : SUB factor | ADD factor
3,050
def prep_cwl(samples, workflow_fn, out_dir, out_file, integrations=None, add_container_tag=None): if add_container_tag is None: container_tags = None elif add_container_tag.lower() == "quay_lookup": container_tags = {} else: container_tags = collections.defaultdict(lambda: add_container_tag) step_dir = utils.safe_makedir(os.path.join(out_dir, "steps")) get_retriever = GetRetriever(integrations, samples) variables, keyvals = _flatten_samples(samples, out_file, get_retriever) cur_remotes = _get_cur_remotes(keyvals) file_estimates = _calc_input_estimates(keyvals, get_retriever) out = _cwl_workflow_template(variables) parent_wfs = [] step_parallelism = {} steps, wfoutputs = workflow_fn(samples) used_inputs = set([]) for cur in workflow.generate(variables, steps, wfoutputs): if cur[0] == "step": _, name, parallel, inputs, outputs, image, programs, disk, cores, no_files = cur step_file = _write_tool(step_dir, name, inputs, outputs, parallel, image, programs, file_estimates, disk, cores, samples, cur_remotes, no_files, container_tags) out["steps"].append(_step_template(name, step_file, inputs, outputs, parallel, step_parallelism)) used_inputs |= set(x["id"] for x in inputs) elif cur[0] == "expressiontool": _, name, inputs, outputs, expression, parallel = cur step_file = _write_expressiontool(step_dir, name, inputs, outputs, expression, parallel) out["steps"].append(_step_template(name, step_file, inputs, outputs, parallel, step_parallelism)) used_inputs |= set(x["id"] for x in inputs) elif cur[0] == "upload": for output in cur[1]: wf_output = copy.deepcopy(output) if "outputSource" not in wf_output: wf_output["outputSource"] = wf_output.pop("source") wf_output = _clean_record(wf_output) if wf_output["id"] in used_inputs: wf_output["id"] = "%s_out" % wf_output["id"] out["outputs"].append(wf_output) elif cur[0] == "wf_start": parent_wfs.append(out) out = _cwl_workflow_template(cur[1]) elif cur[0] == "wf_finish": _, name, parallel, inputs, outputs, scatter = cur wf_out_file = "wf-%s.cwl" % name with open(os.path.join(out_dir, wf_out_file), "w") as out_handle: yaml.safe_dump(out, out_handle, default_flow_style=False, allow_unicode=False) out = parent_wfs.pop(-1) out["steps"].append(_step_template(name, wf_out_file, inputs, outputs, parallel, step_parallelism, scatter)) used_inputs |= set(x["id"] for x in inputs) else: raise ValueError("Unexpected workflow value %s" % str(cur)) step_parallelism[name] = parallel with open(out_file, "w") as out_handle: out["inputs"] = [x for x in out["inputs"] if x["id"] in used_inputs] yaml.safe_dump(out, out_handle, default_flow_style=False, allow_unicode=False) sample_json = "%s-samples.json" % utils.splitext_plus(out_file)[0] out_clean = _clean_final_outputs(copy.deepcopy({k: v for k, v in keyvals.items() if k in used_inputs}), get_retriever) with open(sample_json, "w") as out_handle: json.dump(out_clean, out_handle, sort_keys=True, indent=4, separators=(, )) return out_file, sample_json
Output a CWL description with sub-workflows and steps.
3,051
def charge_parent(self, mol, skip_standardize=False): if not skip_standardize: mol = self.standardize(mol) fragment = self.fragment_parent(mol, skip_standardize=True) if fragment: uncharged = self.uncharge(fragment) uncharged = self.standardize(uncharged) return uncharged
Return the charge parent of a given molecule. The charge parent is the uncharged version of the fragment parent. :param mol: The input molecule. :type mol: rdkit.Chem.rdchem.Mol :param bool skip_standardize: Set to True if mol has already been standardized. :returns: The charge parent molecule. :rtype: rdkit.Chem.rdchem.Mol
3,052
def check_expected_infos(self, test_method): f = lambda key, default=[]: getattr(test_method, key, default) expected_info_messages = f(EXPECTED_INFO_MESSAGES) allowed_info_messages = f(ALLOWED_INFO_MESSAGES) self.check_infos(expected_info_messages, allowed_info_messages)
This method is called after each test. It will read decorated informations and check if there are expected infos. You can set expected infos by decorators :py:func:`.expected_info_messages` and :py:func:`.allowed_info_messages`.
3,053
def server_add(s_name, s_ip, s_state=None, **connection_args): *serverNameserverIpAddress*serverNameserverIpAddressserverState ret = True if server_exists(s_name, **connection_args): return False nitro = _connect(**connection_args) if nitro is None: return False server = NSServer() server.set_name(s_name) server.set_ipaddress(s_ip) if s_state is not None: server.set_state(s_state) try: NSServer.add(nitro, server) except NSNitroError as error: log.debug(, error) ret = False _disconnect(nitro) return ret
Add a server Note: The default server state is ENABLED CLI Example: .. code-block:: bash salt '*' netscaler.server_add 'serverName' 'serverIpAddress' salt '*' netscaler.server_add 'serverName' 'serverIpAddress' 'serverState'
3,054
def _set_tcp_keepalive(sock, opts): if hasattr(socket, ): if opts.get(, False): sock.setsockopt(socket.SOL_SOCKET, socket.SO_KEEPALIVE, 1) if hasattr(socket, ): if hasattr(socket, ): tcp_keepalive_idle = opts.get(, -1) if tcp_keepalive_idle > 0: sock.setsockopt( socket.SOL_TCP, socket.TCP_KEEPIDLE, int(tcp_keepalive_idle)) if hasattr(socket, ): tcp_keepalive_cnt = opts.get(, -1) if tcp_keepalive_cnt > 0: sock.setsockopt( socket.SOL_TCP, socket.TCP_KEEPCNT, int(tcp_keepalive_cnt)) if hasattr(socket, ): tcp_keepalive_intvl = opts.get(, -1) if tcp_keepalive_intvl > 0: sock.setsockopt( socket.SOL_TCP, socket.TCP_KEEPINTVL, int(tcp_keepalive_intvl)) if hasattr(socket, ): if tcp_keepalive_idle > 0 or tcp_keepalive_intvl > 0: if tcp_keepalive_idle <= 0: tcp_keepalive_idle = 7200 if tcp_keepalive_intvl <= 0: tcp_keepalive_intvl = 1 sock.ioctl(socket.SIO_KEEPALIVE_VALS, ( 1, int(tcp_keepalive_idle * 1000), int(tcp_keepalive_intvl * 1000))) else: sock.setsockopt(socket.SOL_SOCKET, socket.SO_KEEPALIVE, 0)
Ensure that TCP keepalives are set for the socket.
3,055
def validation_step(self, Xi, yi, **fit_params): self.module_.eval() with torch.no_grad(): y_pred = self.infer(Xi, **fit_params) loss = self.get_loss(y_pred, yi, X=Xi, training=False) return { : loss, : y_pred, }
Perform a forward step using batched data and return the resulting loss. The module is set to be in evaluation mode (e.g. dropout is not applied). Parameters ---------- Xi : input data A batch of the input data. yi : target data A batch of the target data. **fit_params : dict Additional parameters passed to the ``forward`` method of the module and to the ``self.train_split`` call.
3,056
def combine_dictionaries(a, b): c = {} for key in list(b.keys()): c[key]=b[key] for key in list(a.keys()): c[key]=a[key] return c
returns the combined dictionary. a's values preferentially chosen
3,057
def request_generic(self, act, coro, perform, complete): overlapped = OVERLAPPED() overlapped.object = act self.add_token(act, coro, (overlapped, perform, complete)) rc, nbytes = perform(act, overlapped) completion_key = c_long(0) if rc == 0: elif rc != WSA_IO_PENDING: self.remove_token(act) raise SocketError(rc, "%s on %r" % (ctypes.FormatError(rc), act))
Performs an overlapped request (via `perform` callable) and saves the token and the (`overlapped`, `perform`, `complete`) trio.
3,058
def compute_absolute_error(self, predicted_data, record, dataframe_record): absolute_error = abs(record[] - predicted_data[self.ddg_analysis_type]) dataframe_record[] = absolute_error
Calculate the absolute error for this case.
3,059
def teleport(self, agent_name, location=None, rotation=None): self.agents[agent_name].teleport(location * 100, rotation) self.tick()
Teleports the target agent to any given location, and applies a specific rotation. Args: agent_name (str): The name of the agent to teleport. location (np.ndarray or list): XYZ coordinates (in meters) for the agent to be teleported to. If no location is given, it isn't teleported, but may still be rotated. Defaults to None. rotation (np.ndarray or list): A new rotation target for the agent. If no rotation is given, it isn't rotated, but may still be teleported. Defaults to None.
3,060
def close(self): project_nodes_id = set([n.id for n in self.nodes]) for module in self.compute(): module_nodes_id = set([n.id for n in module.instance().nodes]) if len(module_nodes_id & project_nodes_id): yield from module.instance().project_closing(self) yield from self._close_and_clean(False) for module in self.compute(): module_nodes_id = set([n.id for n in module.instance().nodes]) if len(module_nodes_id & project_nodes_id): yield from module.instance().project_closed(self) try: if os.path.exists(self.tmp_working_directory()): shutil.rmtree(self.tmp_working_directory()) except OSError: pass
Closes the project, but keep information on disk
3,061
def __clear_buffer_watch(self, bw): pid = bw.pid start = bw.start end = bw.end base = MemoryAddresses.align_address_to_page_start(start) limit = MemoryAddresses.align_address_to_page_end(end) pages = MemoryAddresses.get_buffer_size_in_pages(start, end - start) continue cset.add(condition) condition.remove(bw) if condition.count() == 0: try: self.erase_page_breakpoint(pid, bp.get_address()) except WindowsError: msg = "Cannot remove page breakpoint at address %s" msg = msg % HexDump.address( bp.get_address() ) warnings.warn(msg, BreakpointWarning) page_addr = page_addr + pageSize
Used by L{dont_watch_buffer} and L{dont_stalk_buffer}. @type bw: L{BufferWatch} @param bw: Buffer watch identifier.
3,062
def get_roles(self): if self.role.exist: return [self.role] else: roles = [] if self.role_query_code: roles = RoleModel.objects.filter(**self.role_query_code) elif self.unit.exist: if self.recursive_units: roles = (RoleModel.objects.get(k) for k in UnitModel.get_role_keys(self.unit.key)) else: roles = RoleModel.objects.filter(unit=self.unit) elif self.get_roles_from: return ROLE_GETTER_METHODS[self.get_roles_from](RoleModel) if self.abstract_role.exist and roles: if isinstance(roles, (list, types.GeneratorType)): roles = [a for a in roles if a.abstract_role.key == self.abstract_role.key] else: roles = roles.filter(abstract_role=self.abstract_role) else: roles = RoleModel.objects.filter(abstract_role=self.abstract_role) return roles
Returns: Role instances according to task definition.
3,063
def list_pr_comments(repo: GithubRepository, pull_id: int ) -> List[Dict[str, Any]]: url = ("https://api.github.com/repos/{}/{}/issues/{}/comments" "?access_token={}".format(repo.organization, repo.name, pull_id, repo.access_token)) response = requests.get(url) if response.status_code != 200: raise RuntimeError( .format( response.status_code, response.content)) payload = json.JSONDecoder().decode(response.content.decode()) return payload
References: https://developer.github.com/v3/issues/comments/#list-comments-on-an-issue
3,064
def get_http_method_arg_name(self): if self.method == : arg_name = else: arg_name = return getattr(requests, self.method), arg_name
Return the HTTP function to call and the params/data argument name
3,065
def dateadd(value: fields.DateTime(), addend: fields.Int(validate=Range(min=1)), unit: fields.Str(validate=OneOf([, ]))=): value = value or dt.datetime.utcnow() if unit == : delta = dt.timedelta(minutes=addend) else: delta = dt.timedelta(days=addend) result = value + delta return {: result}
Add a value to a date.
3,066
def _profile_module(self): with open(self._run_object, ) as srcfile, _StatProfiler() as prof: code = compile(srcfile.read(), self._run_object, ) prof.base_frame = inspect.currentframe() try: exec(code, self._globs, None) except SystemExit: pass call_tree = prof.call_tree return { : self._object_name, : _SAMPLE_INTERVAL, : prof.run_time, : call_tree, : call_tree.get(, 0), : int(time.time()) }
Runs statistical profiler on a module.
3,067
def diff(new, old): if old is not None: is_update = True removed = set(new.removed(old)) updated = set(new.updated(old)) else: is_update = False updated = new removed = set() return updated, removed, is_update
Compute the difference in items of two revisioned collections. If only `new' is specified, it is assumed it is not an update. If both are set, the removed items are returned first. Otherwise, the updated and edited ones are returned. :param set new: Set of new objects :param set old: Set of old objects :return: A tuple consisting of `(added, removed, is_update)`. :rtype: tuple
3,068
def get_translation_lookup(identifier, field, value): parts = field.split("__") transformers = parts[1:] if len(parts) > 1 else None field_name = parts[0] language = get_fallback_language() name_parts = parts[0].split("_") if len(name_parts) > 1: supported_languages = get_supported_languages() last_part = name_parts[-1] if last_part in supported_languages: field_name = "_".join(name_parts[:-1]) language = last_part else: field_name = "_".join(name_parts) value_lookup = ( "field_value" if transformers is None else "field_value__%s" % "__".join(transformers) ) lookup = {"field_name": field_name, "identifier": identifier, "language": language} lookup[value_lookup] = value return lookup
Mapper that takes a language field, its value and returns the related lookup for Translation model.
3,069
def _augment_url_with_version(auth_url): if has_in_url_path(auth_url, ["/v2.0", "/v3"]): return auth_url if get_keystone_version() >= 3: return url_path_append(auth_url, "/v3") else: return url_path_append(auth_url, "/v2.0")
Optionally augment auth_url path with version suffix. Check if path component already contains version suffix and if it does not, append version suffix to the end of path, not erasing the previous path contents, since keystone web endpoint (like /identity) could be there. Keystone version needs to be added to endpoint because as of Kilo, the identity URLs returned by Keystone might no longer contain API versions, leaving the version choice up to the user.
3,070
def django(line): [23/Aug/2017 11:35:25] INFO [app.middleware_log_req:50]View func called:{"exception": null,"processing_time": 0.00011801719665527344, "url": "<url>",host": "localhost", "user": "testing", "post_contents": "", "method": "POST" }dataloglevelINFOlogname[app.middleware_log_req:50]messageView func called:{"exception": null,"processing_time": 0.00011801719665527344, "url": "<url>",host": "localhost", "user": "testing", "post_contents": "", "method": "POST" }timestamp2017-08-23T11:35:25levelINFOtimestamp2017-08-23T11:35:25[22/Sep/2017 06:32:15] INFO [app.function:6022] {"UUID": "c47f3530-9f5f-11e7-a559-917d011459f7", "timestamp":1506061932546, "misc": {"status": 200, "ready_state": 4, "end_time_ms": 1506061932546, "url": "/api/function?", "start_time_ms": 1506061932113, "response_length": 31, "status_message": "OK", "request_time_ms": 433}, "user": "root", "host_url": "localhost:8888", "message": "ajax success"}dataloglevelINFOlogname[app.function:6022]messageUUIDc47f3530-9f5f-11e7-a559-917d011459f7host_urllocalhost:8888messageajax successmiscend_time_msready_staterequest_time_msresponse_lengthstart_time_msstatusstatus_messageOKurl/api/function?timestampuserroottimestamp2017-09-22T06:32:15levelINFOtimestamp2017-09-22T06:32:15localhost:27017collection_cachefunction_dummy_version data = {} log = re.findall(r, line) if len(log) == 1: data[] = datetime.datetime.strptime(re.findall(r,\ log[0])[0],"%d/%b/%Y %H:%M:%S").isoformat() data[] = re.findall(, log[0])[1] data[] = re.findall(, log[0])[0] message = re.findall(, log[0]) try: if len(message) > 0: message = json.loads(message[0]) else: message = re.split(, log[0]) message = .join(message[2:]) except ValueError: message = re.split(, log[0]) message = .join(message[2:]) data[] = message return dict( timestamp=data[], level=data[], data=data, ) else: return dict( timestamp=datetime.datetime.isoformat(datetime.datetime.utcnow()), data={raw:line} )
>>> import pprint >>> input_line1 = '[23/Aug/2017 11:35:25] INFO [app.middleware_log_req:50]View func called:{"exception": null,"processing_time": 0.00011801719665527344, "url": "<url>",host": "localhost", "user": "testing", "post_contents": "", "method": "POST" }' >>> output_line1 = django(input_line1) >>> pprint.pprint(output_line1) {'data': {'loglevel': 'INFO', 'logname': '[app.middleware_log_req:50]', 'message': 'View func called:{"exception": null,"processing_time": 0.00011801719665527344, "url": "<url>",host": "localhost", "user": "testing", "post_contents": "", "method": "POST" }', 'timestamp': '2017-08-23T11:35:25'}, 'level': 'INFO', 'timestamp': '2017-08-23T11:35:25'} >>> input_line2 = '[22/Sep/2017 06:32:15] INFO [app.function:6022] {"UUID": "c47f3530-9f5f-11e7-a559-917d011459f7", "timestamp":1506061932546, "misc": {"status": 200, "ready_state": 4, "end_time_ms": 1506061932546, "url": "/api/function?", "start_time_ms": 1506061932113, "response_length": 31, "status_message": "OK", "request_time_ms": 433}, "user": "root", "host_url": "localhost:8888", "message": "ajax success"}' >>> output_line2 = django(input_line2) >>> pprint.pprint(output_line2) {'data': {'loglevel': 'INFO', 'logname': '[app.function:6022]', 'message': {u'UUID': u'c47f3530-9f5f-11e7-a559-917d011459f7', u'host_url': u'localhost:8888', u'message': u'ajax success', u'misc': {u'end_time_ms': 1506061932546L, u'ready_state': 4, u'request_time_ms': 433, u'response_length': 31, u'start_time_ms': 1506061932113L, u'status': 200, u'status_message': u'OK', u'url': u'/api/function?'}, u'timestamp': 1506061932546L, u'user': u'root'}, 'timestamp': '2017-09-22T06:32:15'}, 'level': 'INFO', 'timestamp': '2017-09-22T06:32:15'} Case2: [18/Sep/2017 05:40:36] ERROR [app.apps:78] failed to get the record, collection = Collection(Database(MongoClient(host=['localhost:27017'], document_class=dict, tz_aware=False, connect=True, serverselectiontimeoutms=3000), u'collection_cache'), u'function_dummy_version') Traceback (most recent call last): File "/usr/local/lib/python2.7/dist-packages/mongo_cache/mongocache.py", line 70, in __getitem__ result = self.collection.find_one({"_id": key}) OperationFailure: not authorized on collection_cache to execute command { find: "function", filter: { _id: "zydelig-cosine-20" }, limit: 1, singleBatch: true }
3,071
def ekopw(fname): fname = stypes.stringToCharP(fname) handle = ctypes.c_int() libspice.ekopw_c(fname, ctypes.byref(handle)) return handle.value
Open an existing E-kernel file for writing. http://naif.jpl.nasa.gov/pub/naif/toolkit_docs/C/cspice/ekopw_c.html :param fname: Name of EK file. :type fname: str :return: Handle attached to EK file. :rtype: int
3,072
def check_read_inputs(self, sampfrom, sampto, channels, physical, smooth_frames, return_res): if not hasattr(sampfrom, ): raise TypeError() if not hasattr(sampto, ): raise TypeError() if not isinstance(channels, list): raise TypeError() if sampfrom < 0: raise ValueError() if sampfrom > self.sig_len: raise ValueError() if sampto < 0: raise ValueError() if sampto > self.sig_len: raise ValueError() if sampto <= sampfrom: raise ValueError() if len(channels): if min(channels) < 0: raise ValueError() if max(channels) > self.n_sig - 1: raise ValueError() if return_res not in [64, 32, 16, 8]: raise ValueError("return_res must be one of the following: 64, 32, 16, 8") if physical is True and return_res == 8: raise ValueError("return_res must be one of the following when physical is True: 64, 32, 16") if isinstance(self, MultiRecord): if smooth_frames is False: raise ValueError()
Ensure that input read parameters (from rdsamp) are valid for the record
3,073
def switch_window(self, window_id: int): if window_id not in self.tmux_available_window_ids: for i in range(max(self.tmux_available_window_ids)+1, window_id+1): self._run_raw(f) tmux_window = self.tmux_session + + str(i) cmd = shlex.quote(f) tmux_cmd = f self._run_raw(tmux_cmd) self.tmux_available_window_ids.append(i) self.tmux_window_id = window_id
Switches currently active tmux window for given task. 0 is the default window Args: window_id: integer id of tmux window to use
3,074
def transfer_config_dict(soap_object, data_dict): for key, val in data_dict.items(): setattr(soap_object, key, val)
This is a utility function used in the certification modules to transfer the data dicts above to SOAP objects. This avoids repetition and allows us to store all of our variable configuration here rather than in each certification script.
3,075
def version_range(guid, version, before=None, app_versions=None): if app_versions is None: app_versions = validator.constants.APPROVED_APPLICATIONS app_key = None for app_guid, app_name in APPLICATIONS.items(): if app_name == guid: guid = app_guid break for key in app_versions.keys(): if app_versions[key][] == guid: app_key = key break if not app_key or version not in app_versions[app_key][]: raise Exception( % version) all_versions = app_versions[app_key][] version_pos = all_versions.index(version) before_pos = None if before is not None and before in all_versions: before_pos = all_versions.index(before) return all_versions[version_pos:before_pos]
Returns all values after (and including) `version` for the app `guid`
3,076
def pip_install(self, reqs): if not reqs: return log.info(, reqs) check_call([ sys.executable, , , , , , self.path] + list(reqs))
Install dependencies into this env by calling pip in a subprocess
3,077
def slugable(self): if self.page: if self.is_leaf_node(): return True if not self.is_leaf_node() and not self.page.regex: return True if not self.is_leaf_node() and self.page.regex and not self.page.show_regex: return True if not self.is_leaf_node() and self.page.regex and self.page.show_regex and self.value_regex: return True elif not self.is_leaf_node() and not self.hide_in_url: return True return False
A node is slugable in following cases: 1 - Node doesn't have children. 2 - Node has children but its page doesn't have a regex. 3 - Node has children, its page has regex but it doesn't show it. 4 - Node has children, its page shows his regex and node has a default value for regex. 5 - Node hasn't a page but it ins't hidden in url.
3,078
def setup_plugins(extra_plugin_dir=None): if os.path.isdir(PLUGINS_DIR): load_plugins([PLUGINS_DIR]) if extra_plugin_dir: load_plugins(extra_plugin_dir)
Loads any additional plugins.
3,079
def authenticate_user(username, password): user_model = Query() user = db.get(user_model.username == username) if not user: logger.warning("User %s not found", username) return False if user[] == hash_password(password, user.get()): return user[] return False
Authenticate a username and password against our database :param username: :param password: :return: authenticated username
3,080
def mft_mirror_offset(self): return self.bpb.bytes_per_sector * \ self.bpb.sectors_per_cluster * self.extended_bpb.mft_mirror_cluster
Returns: int: Mirror MFT Table offset from the beginning of the partition \ in bytes
3,081
def __process_by_ccore(self): ccore_metric = metric_wrapper.create_instance(self.__metric) self.__score = wrapper.silhoeutte(self.__data, self.__clusters, ccore_metric.get_pointer())
! @brief Performs processing using CCORE (C/C++ part of pyclustering library).
3,082
def _get_boolean(data, position, dummy0, dummy1): end = position + 1 return data[position:end] == b"\x01", end
Decode a BSON true/false to python True/False.
3,083
def _CollapseStrings(elided): if _RE_PATTERN_INCLUDE.match(elided): return elided collapsed = while True: match = Match(r"]*)([\, elided) if not match: collapsed += elided break head, quote, tail = match.groups() if quote == : second_quote = tail.find() if second_quote >= 0: collapsed += head + elided = tail[second_quote + 1:] else: elided = match_literal.group(2) else: second_quote = tail.find('" elided = tail[second_quote + 1:] else: collapsed += elided break return collapsed
Collapses strings and chars on a line to simple "" or '' blocks. We nix strings first so we're not fooled by text like '"http://"' Args: elided: The line being processed. Returns: The line with collapsed strings.
3,084
def get_variables(self) -> Set[str]: variables = set() for cmd in self._cmd: for var in self.__formatter.parse(cmd): logger.debug("Checking variable: %s", var) if var[1] is not None and var[1] not in ["creates", "requires"]: variables.add(var[1]) return variables
Find all the variables specified in a format string. This returns a list of all the different variables specified in a format string, that is the variables inside the braces.
3,085
def can_user_access_build(param_name): build_id = ( request.args.get(param_name, type=int) or request.form.get(param_name, type=int) or request.json[param_name]) if not build_id: logging.debug(, param_name) abort(400) ops = operations.UserOps(current_user.get_id()) build, user_is_owner = ops.owns_build(build_id) if not build: logging.debug(, build_id) abort(404) if current_user.is_authenticated() and not user_is_owner: abort(login.needs_refresh()) return build
Determines if the current user can access the build ID in the request. Args: param_name: Parameter name to use for getting the build ID from the request. Will fetch from GET or POST requests. Returns: The build the user has access to.
3,086
def to_python(self, value): value = super(LinkedTZDateTimeField, self).to_python(value) if not value: return value return value.astimezone(self.timezone)
Convert the value to the appropriate timezone.
3,087
def _get_metricsmgr_cmd(self, metricsManagerId, sink_config_file, port): metricsmgr_main_class = metricsmgr_cmd = [os.path.join(self.heron_java_home, ), , , , , , , , , , , , , , , , , , , , self.metrics_manager_classpath, metricsmgr_main_class, + metricsManagerId, + str(port), + self.topology_name, + self.cluster, + self.role, + self.environment, + self.topology_id, + self.heron_internals_config_file, + self.override_config_file, + sink_config_file] return Command(metricsmgr_cmd, self.shell_env)
get the command to start the metrics manager processes
3,088
def generate_ast(path): if os.path.isfile(path): with open(path, ) as f: try: tree = ast.parse(f.read()) return PytTransformer().visit(tree) except SyntaxError: global recursive if not recursive: _convert_to_3(path) recursive = True return generate_ast(path) else: raise SyntaxError( ) raise IOError( + path)
Generate an Abstract Syntax Tree using the ast module. Args: path(str): The path to the file e.g. example/foo/bar.py
3,089
def set_params(w, src): params = extract_source_params(src) params.update(extract_geometry_params(src)) mfd_pars, rate_pars = extract_mfd_params(src) params.update(mfd_pars) params.update(rate_pars) strikes, dips, rakes, np_weights = extract_source_nodal_planes(src) params.update(strikes) params.update(dips) params.update(rakes) params.update(np_weights) hds, hdsw = extract_source_hypocentral_depths(src) params.update(hds) params.update(hdsw) pstrikes, pdips = extract_source_planes_strikes_dips(src) params.update(pstrikes) params.update(pdips) params[] = striptag(src.tag) w.record(**params)
Set source parameters.
3,090
def make_cashed(self): self._descendance_cash = [dict() for _ in self.graph] self.descend = self._descend_cashed
Включает кэширование запросов к descend
3,091
def verify_file_exists(file_name, file_location): return __os.path.isfile(__os.path.join(file_location, file_name))
Function to verify if a file exists Args: file_name: The name of file to check file_location: The location of the file, derive from the os module Returns: returns boolean True or False
3,092
def deactivate_lvm_volume_group(block_device): vg = list_lvm_volume_group(block_device) if vg: cmd = [, , vg] check_call(cmd)
Deactivate any volume gruop associated with an LVM physical volume. :param block_device: str: Full path to LVM physical volume
3,093
def list_vdirs(site, app=_DEFAULT_APP): * ret = dict() ps_cmd = [, , r"".format(site), , r"".format(app), , "Select-Object PhysicalPath, @{ Name = ;", r"Expression = { $_.path.Split()[-1] } }"] cmd_ret = _srvmgr(cmd=ps_cmd, return_json=True) try: items = salt.utils.json.loads(cmd_ret[], strict=False) except ValueError: raise CommandExecutionError() for item in items: ret[item[]] = {: item[]} if not ret: log.warning(, cmd_ret) return ret
Get all configured IIS virtual directories for the specified site, or for the combination of site and application. Args: site (str): The IIS site name. app (str): The IIS application. Returns: dict: A dictionary of the virtual directory names and properties. CLI Example: .. code-block:: bash salt '*' win_iis.list_vdirs site
3,094
def generate_property_names(self): property_names_definition = self._definition.get(, {}) if property_names_definition is True: pass elif property_names_definition is False: self.create_variable_keys() with self.l(): self.l() else: self.create_variable_is_dict() with self.l(): self.create_variable_with_length() with self.l(): self.l() with self.l(): with self.l(): self.generate_func_code_block( property_names_definition, .format(self._variable), self._variable_name, clear_variables=True, ) with self.l(): self.l() with self.l(): self.l()
Means that keys of object must to follow this definition. .. code-block:: python { 'propertyNames': { 'maxLength': 3, }, } Valid keys of object for this definition are foo, bar, ... but not foobar for example.
3,095
def encode(self, sequence): polymorphisms = [] defaultSequence = binSequence = array.array(self.forma.typecode) b = 0 i = 0 trueI = 0 poly = set() while i < len(sequence)-1: b = b | self.forma[self.charToBin[sequence[i]]] if sequence[i+1] == : poly.add(sequence[i]) i += 2 else : binSequence.append(b) if len(poly) > 0 : poly.add(sequence[i]) polymorphisms.append((trueI, poly)) poly = set() bb = 0 while b % 2 != 0 : b = b/2 defaultSequence += sequence[i] b = 0 i += 1 trueI += 1 if i < len(sequence) : b = b | self.forma[self.charToBin[sequence[i]]] binSequence.append(b) if len(poly) > 0 : if sequence[i] not in poly : poly.add(sequence[i]) polymorphisms.append((trueI, poly)) defaultSequence += sequence[i] return (binSequence, defaultSequence, polymorphisms)
Returns a tuple (binary reprensentation, default sequence, polymorphisms list)
3,096
def from_dict(cls, pref, prefix = None): if prefix is None: prefix = Prefix() prefix.id = pref[] if pref[] is not None: prefix.vrf = VRF.get(pref[]) prefix.family = pref[] prefix.prefix = pref[] prefix.display_prefix = pref[] prefix.description = pref[] prefix.comment = pref[] prefix.node = pref[] if pref[] is not None: prefix.pool = Pool.get(pref[]) prefix.type = pref[] prefix.indent = pref[] prefix.country = pref[] prefix.order_id = pref[] prefix.customer_id = pref[] prefix.external_key = pref[] prefix.authoritative_source = pref[] prefix.alarm_priority = pref[] prefix.monitor = pref[] prefix.vlan = pref[] prefix.added = pref[] prefix.last_modified = pref[] prefix.total_addresses = int(pref[]) prefix.used_addresses = int(pref[]) prefix.free_addresses = int(pref[]) prefix.status = pref[] prefix.avps = pref[] prefix.expires = pref[] prefix.inherited_tags = {} for tag_name in pref[]: tag = Tag.from_dict({: tag_name }) prefix.inherited_tags[tag_name] = tag prefix.tags = {} for tag_name in pref[]: tag = Tag.from_dict({: tag_name }) prefix.tags[tag_name] = tag if in pref: prefix.match = pref[] if in pref: prefix.display = pref[] if in pref: prefix.children = pref[] return prefix
Create a Prefix object from a dict. Suitable for creating Prefix objects from XML-RPC input.
3,097
def validate(retval, func, args): if retval != 0 and not ERROR.details: return args err = "{}() failed".format(func.__name__) details = {"retval": retval, "args": args} raise ScreenShotError(err, details=details)
Validate the returned value of a Xlib or XRANDR function.
3,098
def raw(self, module, method=, data=None): request = self.session url = % (self.host, self.port, module) if self.verbose: print data if method==: response = request.get(url) elif method==: response = request.post(url,data) elif method==: response = request.put(url,data) elif method==: response = request.delete(url) else: return { : % method} return response
Submits or requsts raw input
3,099
def update_subscription(self, update_parameters, subscription_id): route_values = {} if subscription_id is not None: route_values[] = self._serialize.url(, subscription_id, ) content = self._serialize.body(update_parameters, ) response = self._send(http_method=, location_id=, version=, route_values=route_values, content=content) return self._deserialize(, response)
UpdateSubscription. [Preview API] Update an existing subscription. Depending on the type of subscription and permissions, the caller can update the description, filter settings, channel (delivery) settings and more. :param :class:`<NotificationSubscriptionUpdateParameters> <azure.devops.v5_0.notification.models.NotificationSubscriptionUpdateParameters>` update_parameters: :param str subscription_id: :rtype: :class:`<NotificationSubscription> <azure.devops.v5_0.notification.models.NotificationSubscription>`