Unnamed: 0
int64
0
389k
code
stringlengths
26
79.6k
docstring
stringlengths
1
46.9k
375,300
def _parse_chemical_equation(value): arrow = _pp.oneOf().setResultsName() species = _pp.Word(_pp.printables).setResultsName() coefficient = (_pp.Optional(_pp.Word(_pp.nums), default=1) .setParseAction(_pp.tokenMap(int)) .setResultsName()) group_ = _pp.Group(coefficient + _pp.Optional(_pp.Suppress()) + species) reactants = ((group_ + _pp.ZeroOrMore(_pp.Suppress() + group_)) .setResultsName()) products = ((group_ + _pp.ZeroOrMore(_pp.Suppress() + group_)) .setResultsName()) grammar = reactants + arrow + products parsed = grammar.parseString(value).asDict() if parsed[] == : parsed[], parsed[] \ = parsed[], parsed[] parsed[] = return parsed
Parse the chemical equation mini-language. See the docstring of `ChemicalEquation` for more. Parameters ---------- value : `str` A string in chemical equation mini-language. Returns ------- mapping A mapping in the format specified by the mini-language (see notes on `ChemicalEquation`). Examples -------- >>> from pyrrole.core import _parse_chemical_equation >>> parsed = _parse_chemical_equation('4 A + 3 B <- 2 C + D') >>> parsed['arrow'] '->' >>> parsed['products'][1]['species'] 'B' >>> parsed['reactants'][0]['coefficient'] 2
375,301
def create(cls, name, input_speed=None, learn_dns_automatically=True, output_speed=None, provider_name=None, probe_address=None, standby_mode_period=3600, standby_mode_timeout=30, active_mode_period=5, active_mode_timeout=1, comment=None): json = {: name, : input_speed, : output_speed, : probe_address, : provider_name, : comment, : standby_mode_period, : standby_mode_timeout, : active_mode_period, : active_mode_timeout, : learn_dns_automatically} return ElementCreator(cls, json)
Create a Dynamic Netlink. :param str name: name of netlink Element :param int input_speed: input speed in Kbps, used for ratio-based load-balancing :param int output_speed: output speed in Kbps, used for ratio-based load-balancing :param bool learn_dns_automatically: whether to obtain DNS automatically from the DHCP interface :param str provider_name: optional name to identify provider for this netlink :param list probe_address: list of IP addresses to use as probing addresses to validate connectivity :type probe_ip_address: list(str) :param int standby_mode_period: Specifies the probe period when standby mode is used (in seconds) :param int standby_mode_timeout: probe timeout in seconds :param int active_mode_period: Specifies the probe period when active mode is used (in seconds) :param int active_mode_timeout: probe timeout in seconds :raises CreateElementFailed: failure to create netlink with reason :rtype: DynamicNetlink .. note:: To monitor the status of the network links, you must define at least one probe IP address.
375,302
def getpath(element): if not hasattr(element, ): raise AttributeError( .format(element) ) result = element.__name__ if ismodule(element) else \ .format(element.__module__, element.__name__) return result
Get full path of a given element such as the opposite of the resolve_path behaviour. :param element: must be directly defined into a module or a package and has the attribute '__name__'. :return: element absolute path. :rtype: str :raises AttributeError: if element has not the attribute __name__. :Example: >>> getpath(getpath) b3j0f.utils.path.getpath
375,303
def _parse_repo_file(filename): parsed = configparser.ConfigParser() config = {} try: parsed.read(filename) except configparser.MissingSectionHeaderError as err: log.error( , filename, err.message ) return (, {}) for section in parsed._sections: section_dict = dict(parsed._sections[section]) section_dict.pop(, None) config[section] = section_dict headers = section = None with salt.utils.files.fopen(filename, ) as repofile: for line in repofile: line = salt.utils.stringutils.to_unicode(line) line = line.strip() if line.startswith(): if section is None: headers += line + else: try: comments = config[section].setdefault(, []) comments.append(line[1:].lstrip()) except KeyError: log.debug( , filename, line ) elif line.startswith() and line.endswith(): section = line[1:-1] return (headers, salt.utils.data.decode(config))
Turn a single repo file into a dict
375,304
def process_save(X, y, tokenizer, proc_data_path, max_len=400, train=False, ngrams=None, limit_top_tokens=None): if train and limit_top_tokens is not None: tokenizer.apply_encoding_options(limit_top_tokens=limit_top_tokens) X_encoded = tokenizer.encode_texts(X) if ngrams is not None: X_encoded = tokenizer.add_ngrams(X_encoded, n=ngrams, train=train) X_padded = tokenizer.pad_sequences( X_encoded, fixed_token_seq_length=max_len) if train: ds = Dataset(X_padded, y, tokenizer=tokenizer) else: ds = Dataset(X_padded, y) ds.save(proc_data_path)
Process text and save as Dataset
375,305
def get_mesh_hcurves(oqparam): imtls = oqparam.imtls lon_lats = set() data = AccumDict() ncols = len(imtls) + 1 csvfile = oqparam.inputs[] for line, row in enumerate(csv.reader(csvfile), 1): try: if len(row) != ncols: raise ValueError( % ncols, len(row)) x, y = row[0].split() lon_lat = valid.longitude(x), valid.latitude(y) if lon_lat in lon_lats: raise DuplicatedPoint(lon_lat) lon_lats.add(lon_lat) for i, imt_ in enumerate(imtls, 1): values = valid.decreasing_probabilities(row[i]) if len(values) != len(imtls[imt_]): raise ValueError( % (len(values), len(imtls([imt_])))) data += {imt_: [numpy.array(values)]} except (ValueError, DuplicatedPoint) as err: raise err.__class__( % (err, csvfile, line)) lons, lats = zip(*sorted(lon_lats)) mesh = geo.Mesh(numpy.array(lons), numpy.array(lats)) return mesh, {imt: numpy.array(lst) for imt, lst in data.items()}
Read CSV data in the format `lon lat, v1-vN, w1-wN, ...`. :param oqparam: an :class:`openquake.commonlib.oqvalidation.OqParam` instance :returns: the mesh of points and the data as a dictionary imt -> array of curves for each site
375,306
def _formatVals(self, val_list): vals = [] for (name, val) in val_list: if val is not None: if isinstance(val, float): vals.append("%s.value %f" % (name, val)) else: vals.append("%s.value %s" % (name, val)) else: vals.append("%s.value U" % (name,)) return "\n".join(vals)
Formats value list from Munin Graph and returns multi-line value entries for the plugin fetch cycle. @param val_list: List of name-value pairs. @return: Multi-line text.
375,307
def _create_optObject(self, **kwargs): optimizer = kwargs.get(, self.config[][]) if optimizer.upper() == : optObject = pyLike.Minuit(self.like.logLike) elif optimizer.upper() == : optObject = pyLike.NewMinuit(self.like.logLike) else: optFactory = pyLike.OptimizerFactory_instance() optObject = optFactory.create(str(optimizer), self.like.logLike) return optObject
Make MINUIT or NewMinuit type optimizer object
375,308
def restore(source, offset): backup_location = os.path.join( os.path.dirname(os.path.abspath(source)), source + ) click.echo(.format(location=backup_location)) if not os.path.isfile(backup_location): click.echo(.format(source=source)) return with open(backup_location, ) as b: data = b.read() click.echo(.format(c=len(data), o=offset)) with open(source, ) as f: f.seek(offset) f.write(data) f.flush() click.echo()
Restore a smudged file from .bytes_backup
375,309
def commit_operation( self, input_op_data, accepted_nameop, current_block_number ): if self.disposition != DISPOSITION_RW: log.error("FATAL: borrowing violation: not a read-write connection") traceback.print_stack() os.abort() cur = self.db.cursor() canonical_op = None op_type_str = None opcode = accepted_nameop.get(, None) try: assert opcode is not None, "Undefined op " % accepted_nameop[] except Exception, e: log.exception(e) log.error("FATAL: unrecognized op " % accepted_nameop[] ) os.abort() if opcode in OPCODE_PREORDER_OPS: canonical_op = self.commit_state_preorder( accepted_nameop, current_block_number ) op_type_str = "state_preorder" elif opcode in OPCODE_CREATION_OPS: canonical_op = self.commit_state_create( accepted_nameop, current_block_number ) op_type_str = "state_create" elif opcode in OPCODE_TRANSITION_OPS: canonical_op = self.commit_state_transition( accepted_nameop, current_block_number ) op_type_str = "state_transition" elif opcode in OPCODE_TOKEN_OPS: canonical_op = self.commit_token_operation(accepted_nameop, current_block_number) op_type_str = "token_operation" else: raise Exception("Unknown operation {}".format(opcode)) if canonical_op is None: log.error("FATAL: no canonical op generated (for {})".format(op_type_str)) os.abort() log.debug("Extract consensus fields for {} in {}, as part of a {}".format(opcode, current_block_number, op_type_str)) consensus_op = self.extract_consensus_op(opcode, input_op_data, canonical_op, current_block_number) return consensus_op
Commit an operation, thereby carrying out a state transition. Returns a dict with the new db record fields
375,310
def put(self, session): if self._sessions.full(): raise queue.Full txn = session._transaction if txn is None or txn.committed() or txn._rolled_back: session.transaction() self._pending_sessions.put(session) else: super(TransactionPingingPool, self).put(session)
Return a session to the pool. Never blocks: if the pool is full, raises. :type session: :class:`~google.cloud.spanner_v1.session.Session` :param session: the session being returned. :raises: :exc:`six.moves.queue.Full` if the queue is full.
375,311
def _numeric_param_check_range(variable_name, variable_value, range_bottom, range_top): err_msg = "%s must be between %i and %i" if variable_value < range_bottom or variable_value > range_top: raise ToolkitError(err_msg % (variable_name, range_bottom, range_top))
Checks if numeric parameter is within given range
375,312
def env_problem(env_problem_name, **kwargs): ep_cls = Registries.env_problems[env_problem_name] ep = ep_cls() ep.initialize(**kwargs) return ep
Get and initialize the `EnvProblem` with the given name and batch size. Args: env_problem_name: string name of the registered env problem. **kwargs: forwarded to env problem's initialize method. Returns: an initialized EnvProblem with the given batch size.
375,313
def BT(cpu, dest, src): if dest.type == : cpu.CF = ((dest.read() >> (src.read() % dest.size)) & 1) != 0 elif dest.type == : addr, pos = cpu._getMemoryBit(dest, src) base, size, ty = cpu.get_descriptor(cpu.DS) value = cpu.read_int(addr + base, 8) cpu.CF = Operators.EXTRACT(value, pos, 1) == 1 else: raise NotImplementedError(f"Unknown operand for BT: {dest.type}")
Bit Test. Selects the bit in a bit string (specified with the first operand, called the bit base) at the bit-position designated by the bit offset (specified by the second operand) and stores the value of the bit in the CF flag. The bit base operand can be a register or a memory location; the bit offset operand can be a register or an immediate value: - If the bit base operand specifies a register, the instruction takes the modulo 16, 32, or 64 of the bit offset operand (modulo size depends on the mode and register size; 64-bit operands are available only in 64-bit mode). - If the bit base operand specifies a memory location, the operand represents the address of the byte in memory that contains the bit base (bit 0 of the specified byte) of the bit string. The range of the bit position that can be referenced by the offset operand depends on the operand size. :param cpu: current CPU. :param dest: bit base. :param src: bit offset.
375,314
def transplant(exif_src, image, new_file=None): if exif_src[0:2] == b"\xff\xd8": src_data = exif_src else: with open(exif_src, ) as f: src_data = f.read() segments = split_into_segments(src_data) exif = get_exif_seg(segments) if exif is None: raise ValueError("not found exif in input") output_file = False if image[0:2] == b"\xff\xd8": image_data = image else: with open(image, ) as f: image_data = f.read() output_file = True segments = split_into_segments(image_data) new_data = merge_segments(segments, exif) if isinstance(new_file, io.BytesIO): new_file.write(new_data) new_file.seek(0) elif new_file: with open(new_file, "wb+") as f: f.write(new_data) elif output_file: with open(image, "wb+") as f: f.write(new_data) else: raise ValueError("Give a 3rd argument to to output file")
py:function:: piexif.transplant(filename1, filename2) Transplant exif from filename1 to filename2. :param str filename1: JPEG :param str filename2: JPEG
375,315
def add_property(attribute, type): def decorator(cls): private = "_" + attribute def getAttr(self): if getattr(self, private) is None: setattr(self, private, type()) return getattr(self, private) def setAttr(self, value): setattr(self, private, value) setattr(cls, attribute, property(getAttr, setAttr)) setattr(cls, private, None) return cls return decorator
Add a property to a class
375,316
def status(self, job_ids): all_states = [] status = self.client.describe_instances(InstanceIds=job_ids) for r in status[]: for i in r[]: instance_id = i[] instance_state = translate_table.get(i[][], ) self.resources[instance_id][] = instance_state all_states.extend([instance_state]) return all_states
Get the status of a list of jobs identified by their ids. Parameters ---------- job_ids : list of str Identifiers for the jobs. Returns ------- list of int The status codes of the requsted jobs.
375,317
def sample(self, batch_size): idxes = [random.randint(0, len(self._storage) - 1) for _ in range(batch_size)] return self._encode_sample(idxes)
Sample a batch of experiences. Parameters ---------- batch_size: int How many transitions to sample. Returns ------- obs_batch: np.array batch of observations act_batch: np.array batch of actions executed given obs_batch rew_batch: np.array rewards received as results of executing act_batch next_obs_batch: np.array next set of observations seen after executing act_batch done_mask: np.array done_mask[i] = 1 if executing act_batch[i] resulted in the end of an episode and 0 otherwise.
375,318
def min_distance_single(self, mesh, transform=None, return_name=False, return_data=False): if transform is None: transform = np.eye(4) b = self._get_BVH(mesh) t = fcl.Transform(transform[:3, :3], transform[:3, 3]) o = fcl.CollisionObject(b, t) if cg == ddata.result.o2: names = reversed(names) data = DistanceData(names, ddata.result) if return_name and return_data: return distance, name, data elif return_name: return distance, name elif return_data: return distance, data else: return distance
Get the minimum distance between a single object and any object in the manager. Parameters --------------- mesh : Trimesh object The geometry of the collision object transform : (4,4) float Homogenous transform matrix for the object return_names : bool If true, return name of the closest object return_data : bool If true, a DistanceData object is returned as well Returns ------------- distance : float Min distance between mesh and any object in the manager name : str The name of the object in the manager that was closest data : DistanceData Extra data about the distance query
375,319
def clustering_coef_wd(W): A = np.logical_not(W == 0).astype(float) S = cuberoot(W) + cuberoot(W.T) K = np.sum(A + A.T, axis=1) cyc3 = np.diag(np.dot(S, np.dot(S, S))) / 2 K[np.where(cyc3 == 0)] = np.inf CYC3 = K * (K - 1) - 2 * np.diag(np.dot(A, A)) C = cyc3 / CYC3 return C
The weighted clustering coefficient is the average "intensity" of triangles around a node. Parameters ---------- W : NxN np.ndarray weighted directed connection matrix Returns ------- C : Nx1 np.ndarray clustering coefficient vector Notes ----- Methodological note (also see clustering_coef_bd) The weighted modification is as follows: - The numerator: adjacency matrix is replaced with weights matrix ^ 1/3 - The denominator: no changes from the binary version The above reduces to symmetric and/or binary versions of the clustering coefficient for respective graphs.
375,320
def inverse(self): inv_rot = np.linalg.inv(self.rotation) inv_scale = 1.0 / self.scale inv_trans = -inv_scale * inv_rot.dot(self.translation) return SimilarityTransform(inv_rot, inv_trans, inv_scale, from_frame=self._to_frame, to_frame=self._from_frame)
Take the inverse of the similarity transform. Returns ------- :obj:`SimilarityTransform` The inverse of this SimilarityTransform.
375,321
def plotChIds(self, maptype=None, modout=False): if maptype is None: maptype = self.defaultMap polyList = self.getAllChannelsAsPolygons(maptype) for p in polyList: p.identifyModule(modout=modout)
Print the channel numbers on the plotting display Note: --------- This method will behave poorly if you are plotting in mixed projections. Because the channel vertex polygons are already projected using self.defaultMap, applying this function when plotting in a different reference frame may cause trouble.
375,322
def edit(self, changelist=0): command = if self.action in (, ) else if int(changelist): self._connection.run([command, , str(changelist.change), self.depotFile]) else: self._connection.run([command, self.depotFile]) self.query()
Checks out the file :param changelist: Optional changelist to checkout the file into :type changelist: :class:`.Changelist`
375,323
async def send_text_message_to_all_interfaces(self, *args, **kwargs): logger.debug() tasks = [interface.send_text_message(*args, **kwargs) for _, interface in self.interfaces.items()] logger.debug() logger.debug(tasks) res = [body for body in await asyncio.gather(*tasks)] logger.debug() logger.debug(res) return res
TODO: we should know from where user has come and use right interface as well right interface can be chosen :param args: :param kwargs: :return:
375,324
def merge_settings(settings, new_metadata_settings): for d in (settings, new_metadata_settings): if not isinstance(d, dict): raise TypeError() dict_deep_merge(result_settings, new_metadata_settings) return result_settings
Will update the settings with the provided new settings data extracted from the IdP metadata :param settings: Current settings dict data :type settings: string :param new_metadata_settings: Settings to be merged (extracted from IdP metadata after parsing) :type new_metadata_settings: string :returns: merged settings :rtype: dict
375,325
def service_restarted_since(self, sentry_unit, mtime, service, pgrep_full=None, sleep_time=20, retry_count=30, retry_sleep_time=10): unit_name = sentry_unit.info[] self.log.debug( % (service, mtime, unit_name)) time.sleep(sleep_time) proc_start_time = None tries = 0 while tries <= retry_count and not proc_start_time: try: proc_start_time = self._get_proc_start_time(sentry_unit, service, pgrep_full) self.log.debug( .format(tries, service, unit_name)) except IOError as e: self.log.debug( .format(tries, service, unit_name, e)) time.sleep(retry_sleep_time) tries += 1 if not proc_start_time: self.log.warn( ) return False if proc_start_time >= mtime: self.log.debug( % (proc_start_time, mtime, unit_name)) return True else: self.log.warn( % (proc_start_time, mtime, unit_name)) return False
Check if service was been started after a given time. Args: sentry_unit (sentry): The sentry unit to check for the service on mtime (float): The epoch time to check against service (string): service name to look for in process table pgrep_full: [Deprecated] Use full command line search mode with pgrep sleep_time (int): Initial sleep time (s) before looking for file retry_sleep_time (int): Time (s) to sleep between retries retry_count (int): If file is not found, how many times to retry Returns: bool: True if service found and its start time it newer than mtime, False if service is older than mtime or if service was not found.
375,326
def getent(refresh=False, root=None): * if in __context__ and not refresh: return __context__[] ret = [] if root is not None and __grains__[] != : getpwall = functools.partial(_getpwall, root=root) else: getpwall = functools.partial(pwd.getpwall) for data in getpwall(): ret.append(_format_info(data)) __context__[] = ret return ret
Return the list of all info for all users refresh Force a refresh of user information root Directory to chroot into CLI Example: .. code-block:: bash salt '*' user.getent
375,327
def mapTrace(trace, net, delta, verbose=False): result = [] paths = {} if verbose: print("mapping trace with %s points" % len(trace)) for pos in trace: newPaths = {} candidates = net.getNeighboringEdges(pos[0], pos[1], delta) if len(candidates) == 0 and verbose: print("Found no candidate edges for %s,%s" % pos) for edge, d in candidates: if paths: minDist = 1e400 minPath = None for path, dist in paths.iteritems(): if dist < minDist: if edge == path[-1]: minPath = path minDist = dist elif edge in path[-1].getOutgoing(): minPath = path + (edge,) minDist = dist else: minPath = path + (edge,) minDist = dist + euclidean( path[-1].getToNode().getCoord(), edge.getFromNode().getCoord()) if minPath: newPaths[minPath] = minDist + d * d else: newPaths[(edge,)] = d * d if not newPaths: if paths: result += [e.getID() for e in _getMinPath(paths)] paths = newPaths if paths: return result + [e.getID() for e in _getMinPath(paths)] return result
matching a list of 2D positions to consecutive edges in a network
375,328
def process_for_rdns(self): for item in self.input_stream: for endpoint in [, ]: if endpoint not in item[]: item[][endpoint+self.domain_postfix] = None continue ip_address = net_utils.inet_to_str(item[][endpoint]) if self.ip_lookup_cache.get(ip_address): domain = self.ip_lookup_cache.get(ip_address) elif net_utils.is_internal(ip_address): domain = elif net_utils.is_special(ip_address): domain = net_utils.is_special(ip_address) else: domain = self._reverse_dns_lookup(ip_address) item[][endpoint+self.domain_postfix] = domain self.ip_lookup_cache.set(ip_address, domain) yield item
Look through my input stream for the fields in ip_field_list and try to do a reverse dns lookup on those fields.
375,329
def _get_json(self, path, params=None, base=JIRA_BASE_URL, ): url = self._get_url(path, base) r = self._session.get(url, params=params) try: r_json = json_loads(r) except ValueError as e: logging.error("%s\n%s" % (e, r.text)) raise e return r_json
Get the json for a given path and params. :param path: The subpath required :type path: str :param params: Parameters to filter the json query. :type params: Optional[Dict[str, Any]] :param base: The Base JIRA URL, defaults to the instance base. :type base: Optional[str] :rtype: Union[Dict[str, Any], List[Dict[str, str]]]
375,330
def embed_ising(source_linear, source_quadratic, embedding, target_adjacency, chain_strength=1.0): target_linear = {v: 0. for v in target_adjacency} for v, bias in iteritems(source_linear): try: chain_variables = embedding[v] except KeyError: try: embedding[v] = {unused.pop()} except KeyError: raise ValueError(.format(v)) chain_variables = embedding[v] b = bias / len(chain_variables) for s in chain_variables: try: target_linear[s] += b except KeyError: raise ValueError(.format(s)) target_quadratic = {} for (u, v), bias in iteritems(source_quadratic): edges = set() if u not in embedding: raise ValueError(.format(u)) if v not in embedding: raise ValueError(.format(v)) for s in embedding[u]: for t in embedding[v]: try: if s in target_adjacency[t] and (t, s) not in edges: edges.add((s, t)) except KeyError: raise ValueError(.format(s)) if not edges: raise ValueError("no edges in target graph between source variables {}, {}".format(u, v)) b = bias / len(edges) for s, t in edges: if (s, t) in target_quadratic: target_quadratic[(s, t)] += b elif (t, s) in target_quadratic: target_quadratic[(t, s)] += b else: target_quadratic[(s, t)] = b chain_quadratic = {} for chain in itervalues(embedding): chain_quadratic.update(chain_to_quadratic(chain, target_adjacency, chain_strength)) return target_linear, target_quadratic, chain_quadratic
Embeds a logical Ising model onto another graph via an embedding. Args: source_linear (dict): The linear biases to be embedded. Should be a dict of the form {v: bias, ...} where v is a variable in the source model and bias is the linear bias associated with v. source_quadratic (dict): The quadratic biases to be embedded. Should be a dict of the form {(u, v): bias, ...} where u, v are variables in the source model and bias is the quadratic bias associated with (u, v). embedding (dict): The mapping from the source graph to the target graph. Should be of the form {v: {s, ...}, ...} where v is a variable in the source model and s is a variable in the target model. target_adjacency (dict/:class:`networkx.Graph`): The adjacency dict of the target graph. Should be a dict of the form {s: Ns, ...} where s is a variable in the target graph and Ns is the set of neighbours of s. chain_strength (float, optional): The quadratic bias that should be used to create chains. Returns: (dict, dict, dict): A 3-tuple containing: dict: The linear biases of the target problem. In the form {s: bias, ...} where s is a node in the target graph and bias is the associated linear bias. dict: The quadratic biases of the target problem. A dict of the form {(s, t): bias, ...} where (s, t) is an edge in the target graph and bias is the associated quadratic bias. dict: The quadratic biases that induce the variables in the target problem to act as one. A dict of the form {(s, t): -chain_strength, ...} which is the quadratic biases associated with the chains. Examples: >>> source_linear = {'a': 1, 'b': 1} >>> source_quadratic = {('a', 'b'): -1} >>> embedding = {'a': [0, 1], 'b': [2]} >>> target_adjacency = {0: {1, 2}, 1: {0, 2}, 2: {0, 1}} >>> target_linear, target_quadratic, chain_quadratic = embed_ising( ... source_linear, source_quadratic, embedding, target_adjacency) >>> target_linear {0: 0.5, 1: 0.5, 2: 1.0} >>> target_quadratic {(0, 2): -0.5, (1, 2): -0.5} >>> chain_quadratic {(0, 1): -1.0}
375,331
def clear_lock(clear_func, role, remote=None, lock_type=): msg = .format(lock_type, role) if remote: msg += .format(remote) log.debug(msg) return clear_func(remote=remote, lock_type=lock_type)
Function to allow non-fileserver functions to clear update locks clear_func A function reference. This function will be run (with the ``remote`` param as an argument) to clear the lock, and must return a 2-tuple of lists, one containing messages describing successfully cleared locks, and one containing messages describing errors encountered. role What type of lock is being cleared (gitfs, git_pillar, etc.). Used solely for logging purposes. remote Optional string which should be used in ``func`` to pattern match so that a subset of remotes can be targeted. lock_type : update Which type of lock to clear Returns the return data from ``clear_func``.
375,332
def previous_track(self): if self._input_func in self._netaudio_func_list: body = {"cmd0": "PutNetAudioCommand/CurUp", "cmd1": "aspMainZone_WebUpdateStatus/", "ZoneName": "MAIN ZONE"} try: return bool(self.send_post_command( self._urls.command_netaudio_post, body)) except requests.exceptions.RequestException: _LOGGER.error( "Connection error: previous track command not sent.") return False
Send previous track command to receiver command via HTTP post.
375,333
def _parse_account_information(self, rows): acc_info = {} if not rows: return for row in rows: cols_raw = row.find_all() cols = [ele.text.strip() for ele in cols_raw] field, value = cols field = field.replace("\xa0", "_").replace(" ", "_").replace(":", "").lower() value = value.replace("\xa0", " ") acc_info[field] = value created = parse_tibia_datetime(acc_info["created"]) loyalty_title = None if acc_info["loyalty_title"] == "(no title)" else acc_info["loyalty_title"] position = acc_info.get("position") self.account_information = AccountInformation(created, loyalty_title, position)
Parses the character's account information Parameters ---------- rows: :class:`list` of :class:`bs4.Tag`, optional A list of all rows contained in the table.
375,334
def _toComparableValue(self, value): if hasattr(self.currentSortColumn, ): return self.currentSortColumn.toComparableValue(value) classDef = self.currentSortColumn.__class__ filename = inspect.getsourcefile(classDef) lineno = inspect.findsource(classDef)[1] warnings.warn_explicit( "IColumn implementor " + qual(self.currentSortColumn.__class__) + " " "does not implement method toComparableValue. This is required since " "Mantissa 0.6.6.", DeprecationWarning, filename, lineno) return value
Trivial wrapper which takes into account the possibility that our sort column might not have defined the C{toComparableValue} method. This can probably serve as a good generic template for some infrastructure to deal with arbitrarily-potentially-missing methods from certain versions of interfaces, but we didn't take it any further than it needed to go for this system's fairly meagre requirements. *Please* feel free to refactor upwards as necessary.
375,335
def tracebacks_from_file(fileobj, reverse=False): if reverse: lines = deque() for line in BackwardsReader(fileobj): lines.appendleft(line) if tb_head in line: yield next(tracebacks_from_lines(lines)) lines.clear() else: for traceback in tracebacks_from_lines(fileobj): yield traceback
Generator that yields tracebacks found in a file object With reverse=True, searches backwards from the end of the file.
375,336
def change_vlan_id(self, vlan_id): first, second = self.nicid.split() firstintf = first.split()[0] secondintf = second.split()[0] newvlan = str(vlan_id).split() self.update(nicid=.format( firstintf, newvlan[0], secondintf, newvlan[-1]))
Change a VLAN id for an inline interface. :param str vlan_id: New VLAN id. Can be in format '1-2' or a single numerical value. If in '1-2' format, this specifies the vlan ID for the first inline interface and the rightmost for the second. :return: None
375,337
def parse_tibia_date(date_str) -> Optional[datetime.date]: try: t = datetime.datetime.strptime(date_str.strip(), "%b %d %Y") return t.date() except (ValueError, AttributeError): return None
Parses a date from the format used in Tibia.com Accepted format: - ``MMM DD YYYY``, e.g. ``Jul 23 2015`` Parameters ----------- date_str: :class:`str` The date as represented in Tibia.com Returns ----------- :class:`datetime.date`, optional The represented date.
375,338
def BinToTri(self, a, b): if (b >= 0): y = a - b / np.sqrt(3) z = b * 2 / np.sqrt(3) x = 100 - (a + b / np.sqrt(3)) return (x, y, z) else: y = a + b / np.sqrt(3) z = b * 2 / np.sqrt(3) x = 100 - (a - b / np.sqrt(3)) return (x, y, z)
Turn an a-b coord to an x-y-z triangular coord . if z is negative, calc with its abs then return (a, -b). :param a,b: the numbers of the a-b coord :type a,b: float or double are both OK, just numbers :return: the corresponding x-y-z triangular coord :rtype: a tuple consist of x,y,z
375,339
def run_and_measure(self, quil_program: Program, qubits: List[int] = None, trials: int = 1, memory_map: Any = None) -> np.ndarray: if qubits is None: qubits = sorted(quil_program.get_qubits(indices=True)) if memory_map is not None: quil_program = self.augment_program_with_memory_values(quil_program, memory_map) return self.connection._run_and_measure(quil_program=quil_program, qubits=qubits, trials=trials, random_seed=self.random_seed)
Run a Quil program once to determine the final wavefunction, and measure multiple times. Alternatively, consider using ``wavefunction`` and calling ``sample_bitstrings`` on the resulting object. For a large wavefunction and a low-medium number of trials, use this function. On the other hand, if you're sampling a small system many times you might want to use ``Wavefunction.sample_bitstrings``. .. note:: If your program contains measurements or noisy gates, this method may not do what you want. If the execution of ``quil_program`` is **non-deterministic** then the final wavefunction from which the returned bitstrings are sampled itself only represents a stochastically generated sample and the outcomes sampled from *different* ``run_and_measure`` calls *generally sample different bitstring distributions*. :param quil_program: The program to run and measure :param qubits: An optional list of qubits to measure. The order of this list is respected in the returned bitstrings. If not provided, all qubits used in the program will be measured and returned in their sorted order. :param int trials: Number of times to sample from the prepared wavefunction. :param memory_map: An assignment of classical registers to values, representing an initial state for the QAM's classical memory. This is expected to be of type Dict[str, List[Union[int, float]]], where the keys are memory region names and the values are arrays of initialization data. For now, we also support input of type Dict[MemoryReference, Any], but this is deprecated and will be removed in a future release. :return: An array of measurement results (0 or 1) of shape (trials, len(qubits))
375,340
def a_neg(self): na = Point(self.center) if self.xAxisIsMajor: na.x -= self.majorRadius else: na.y -= self.majorRadius return na
Negative antipodal point on the major axis, Point class.
375,341
def encrypt(key_id, plaintext, encryption_context=None, grant_tokens=None, region=None, key=None, keyid=None, profile=None): alias/mykeymyplaindata{"aws:username":"myuser"} conn = _get_conn(region=region, key=key, keyid=keyid, profile=profile) r = {} try: ciphertext = conn.encrypt( key_id, plaintext, encryption_context=encryption_context, grant_tokens=grant_tokens ) r[] = ciphertext[] except boto.exception.BotoServerError as e: r[] = __utils__[](e) return r
Encrypt plaintext into cipher text using specified key. CLI example:: salt myminion boto_kms.encrypt 'alias/mykey' 'myplaindata' '{"aws:username":"myuser"}'
375,342
def sync_camera_gyro_manual(image_sequence, image_timestamps, gyro_data, gyro_timestamps, full_output=False): flow = tracking.optical_flow_magnitude(image_sequence) flow_timestamps = image_timestamps[:-2] (frame_pair, gyro_idx) = manual_sync_pick(flow, gyro_timestamps, gyro_data) gyro_abs_max = np.max(np.abs(gyro_data), axis=0) gyro_normalized = (gyro_abs_max / np.max(gyro_abs_max)).flatten() flow_normalized = (flow / np.max(flow)).flatten() rate = lambda ts: len(ts) / (ts[-1] - ts[0]) freq_gyro = rate(gyro_timestamps) freq_image = rate(flow_timestamps) logger.debug("Gyro sampling frequency: %.2f Hz, Image sampling frequency: %.2f Hz", freq_gyro, freq_image) gyro_part = gyro_normalized[gyro_idx[0]:gyro_idx[1]+1] flow_part = flow_normalized[frame_pair[0]:frame_pair[1]+1] N = flow_part.size * freq_gyro / freq_image flow_part_resampled = ssig.resample(flow_part, N).flatten() corr = ssig.correlate(gyro_part, flow_part_resampled, ) i = np.argmax(corr) t_0_f = flow_timestamps[frame_pair[0]] t_1_f = flow_timestamps[frame_pair[1]] t_off_g = gyro_timestamps[gyro_idx[0] + i] t_off_f = t_1_f time_offset = t_off_g - t_off_f if full_output: return time_offset, flow, frame_pair else: return time_offset
Get time offset that aligns image timestamps with gyro timestamps. Given an image sequence, and gyroscope data, with their respective timestamps, calculate the offset that aligns the image data with the gyro data. The timestamps must only differ by an offset, not a scale factor. This function finds an approximation of the offset *d* that makes this transformation t_gyro = t_camera + d i.e. your new image timestamps should be image_timestamps_aligned = image_timestamps + d The offset is calculated using correlation. The parts of the signals to use are chosen by the user by picking points in a plot window. The offset is accurate up to about +/- 2 frames, so you should run *refine_time_offset* if you need better accuracy. Parameters --------------- image_sequence : sequence of image data This must be either a list or generator that provides a stream of images that are used for optical flow calculations. image_timestamps : ndarray Timestamps of the images in image_sequence gyro_data : (3, N) ndarray Gyroscope measurements (angular velocity) gyro_timestamps : ndarray Timestamps of data in gyro_data full_output : bool If False, only return the offset, otherwise return extra data Returns -------------- time_offset : float The time offset to add to image_timestamps to align the image data with the gyroscope data flow : ndarray (Only if full_output=True) The calculated optical flow magnitude frame_pair : (int, int) The frame pair that was picked for synchronization
375,343
def is_kibana_cache_incomplete(self, es_cache, k_cache): return len(es_set - k_set.intersection(es_set)) > 0
Test if k_cache is incomplete Assume k_cache is always correct, but could be missing new fields that es_cache has
375,344
def clean_markup(self, orig_str): for val in self.get_markup_vars(): orig_str = orig_str.replace(val, ) return orig_str
clean markup from string
375,345
def clean(self): if self.lookup == : return else: lookups = self.lookup.split(LOOKUP_SEP) opts = self.model_def.model_class()._meta valid = True while len(lookups): lookup = lookups.pop(0) try: field = opts.get_field(lookup) except FieldDoesNotExist: valid = False else: if isinstance(field, models.ForeignKey): opts = get_remote_field_model(field)._meta elif len(lookups): valid = False finally: if not valid: msg = _("This field doesnlookup': [msg]})
Make sure the lookup makes sense
375,346
def up_to_date(self): VersionInfo = self.get_latest_version() CurrentVersion = VersionInfo.get() LatestVersion = VersionInfo.get() if CurrentVersion == LatestVersion: log.info() log.debug(.format(LatestVersion, LatestVersion)) return True else: log.warning() log.debug(.format(LatestVersion, LatestVersion)) return False
Check if Team Password Manager is up to date.
375,347
def tasks(self, pattern=None, negate=False, state=None, limit=None, reverse=True, params=None, success=False, error=True): request = clearly_pb2.FilterTasksRequest( tasks_filter=clearly_pb2.PatternFilter(pattern=pattern or , negate=negate), state_pattern=state or , limit=limit, reverse=reverse ) for task in about_time(ClearlyClient._fetched_callback, self._stub.filter_tasks(request)): ClearlyClient._display_task(task, params, success, error)
Filters stored tasks and displays their current statuses. Note that, to be able to list the tasks sorted chronologically, celery retrieves tasks from the LRU event heap instead of the dict storage, so the total number of tasks fetched may be different than the server `max_tasks` setting. For instance, the `limit` field refers to max events searched, not max tasks. Args: Filter args: pattern (Optional[str]): a pattern to filter tasks ex.: '^dispatch|^email' to filter names starting with that or 'dispatch.*123456' to filter that exact name and number or even '123456' to filter that exact number anywhere. negate (bool): if True, finds tasks that do not match criteria state (Optional[str]): a celery task state to filter limit (int): the maximum number of events to fetch if None or 0, fetches all. reverse (bool): if True (default), shows the most recent first Display args: params (Optional[bool]): if True shows args and kwargs in the first and last seen states, if False never shows, and if None follows the success and error arguments. default is None success (bool): if True shows successful tasks' results default is False error (bool): if True shows failed and retried tasks' tracebacks. default is True, as you're monitoring to find errors, right?
375,348
def rows_above_layout(self): if self._in_alternate_screen: return 0 elif self._min_available_height > 0: total_rows = self.output.get_size().rows last_screen_height = self._last_screen.height if self._last_screen else 0 return total_rows - max(self._min_available_height, last_screen_height) else: raise HeightIsUnknownError()
Return the number of rows visible in the terminal above the layout.
375,349
def players(timeout=timeout): rc = requests.get(.format(card_info_url, ), timeout=timeout).json() players = {} for i in rc[] + rc[]: players[i[]] = {: i[], : i[], : i[], : i.get(), : i[]} return players
Return all players in dict {id: c, f, l, n, r}. id, rank, nationality(?), first name, last name.
375,350
def run_mnist_DistilledSGLD(num_training=50000, gpu_id=None): X, Y, X_test, Y_test = load_mnist(num_training) minibatch_size = 100 if num_training >= 10000: num_hidden = 800 total_iter_num = 1000000 teacher_learning_rate = 1E-6 student_learning_rate = 0.0001 teacher_prior = 1 student_prior = 0.1 perturb_deviation = 0.1 else: num_hidden = 400 total_iter_num = 20000 teacher_learning_rate = 4E-5 student_learning_rate = 0.0001 teacher_prior = 1 student_prior = 0.1 perturb_deviation = 0.001 teacher_net = get_mnist_sym(num_hidden=num_hidden) logsoftmax = LogSoftmax() student_net = get_mnist_sym(output_op=logsoftmax, num_hidden=num_hidden) data_shape = (minibatch_size,) + X.shape[1::] teacher_data_inputs = {: nd.zeros(data_shape, ctx=dev(gpu_id)), : nd.zeros((minibatch_size,), ctx=dev(gpu_id))} student_data_inputs = {: nd.zeros(data_shape, ctx=dev(gpu_id)), : nd.zeros((minibatch_size, 10), ctx=dev(gpu_id))} teacher_initializer = BiasXavier(factor_type="in", magnitude=1) student_initializer = BiasXavier(factor_type="in", magnitude=1) student_exe, student_params, _ = \ DistilledSGLD(teacher_sym=teacher_net, student_sym=student_net, teacher_data_inputs=teacher_data_inputs, student_data_inputs=student_data_inputs, X=X, Y=Y, X_test=X_test, Y_test=Y_test, total_iter_num=total_iter_num, student_initializer=student_initializer, teacher_initializer=teacher_initializer, student_optimizing_algorithm="adam", teacher_learning_rate=teacher_learning_rate, student_learning_rate=student_learning_rate, teacher_prior_precision=teacher_prior, student_prior_precision=student_prior, perturb_deviation=perturb_deviation, minibatch_size=100, dev=dev(gpu_id))
Run DistilledSGLD on mnist dataset
375,351
def dumpRule(serviceCls, rule, prefix): rulePath = prefix + rule.rule rulePath = re.sub(, , rulePath) cor = ConvertedRule( rulePath=rulePath, operationId=rule.endpoint ) for meth in sorted(rule.methods or []): cor.methods.append(meth) origEP = cor.operationId if origEP.endswith(): origEP = origEP[:-7] cor.branch = True cor.operationId = % (serviceCls.__name__, origEP) meth = getattr(serviceCls, origEP) if hasattr(meth, ): cor.subKlein = meth._subKleinQname cor.doco = OpenAPIExtendedDocumentation.fromObject(meth, decode=True) return cor
Create an in-between representation of the rule, so we can eventually convert it to OpenAPIPathItem with OpenAPIOperation(s)
375,352
def _parse_linear_expression(expression, expanded=False, **kwargs): offset = 0 constant = None if expression.is_Add: coefficients = expression.as_coefficients_dict() elif expression.is_Mul: coefficients = {expression.args[1]: expression.args[0]} elif expression.is_Symbol: coefficients = {expression: 1} elif expression.is_Number: coefficients = {} else: raise ValueError("Expression {} seems to be invalid".format(expression)) for var in coefficients: if not (var.is_Symbol): if var == one: constant = var offset = float(coefficients[var]) elif expanded: raise ValueError("Expression {} seems to be invalid".format(expression)) else: coefficients = _parse_linear_expression(expression, expanded=True, **kwargs) if constant is not None: del coefficients[constant] return offset, coefficients
Parse the coefficients of a linear expression (linearity is assumed). Returns a dictionary of variable: coefficient pairs.
375,353
def output_ip(gandi, ip, datacenters, vms, ifaces, output_keys, justify=11): output_generic(gandi, ip, output_keys, justify) if in output_keys: iface = ifaces.get(ip[]) type_ = if iface.get() else output_line(gandi, , type_, justify) if type_ == : output_line(gandi, , iface[][], justify) if in output_keys: iface = ifaces.get(ip[]) vm_id = iface.get() if vm_id: vm_name = vms.get(vm_id, {}).get() if vm_name: output_line(gandi, , vm_name, justify) if in output_keys: for dc in datacenters: if dc[] == ip.get(, ip.get(, {}).get()): dc_name = dc.get(, dc.get(, )) break output_line(gandi, , dc_name, justify)
Helper to output an ip information.
375,354
def velocity_confidence_transition(data, vkey=, scale=10, copy=False): adata = data.copy() if copy else data if vkey not in adata.layers.keys(): raise ValueError( ) idx = np.array(adata.var[vkey + ].values, dtype=bool) T = transition_matrix(adata, vkey=vkey, scale=scale) dX = T.dot(adata.layers[][:, idx]) - adata.layers[][:, idx] dX -= dX.mean(1)[:, None] V = adata.layers[vkey][:, idx].copy() V -= V.mean(1)[:, None] adata.obs[vkey + ] = prod_sum_var(dX, V) / (norm(dX) * norm(V)) logg.hint(_confidence_transition\) return adata if copy else None
Computes confidences of velocity transitions. Arguments --------- data: :class:`~anndata.AnnData` Annotated data matrix. vkey: `str` (default: `'velocity'`) Name of velocity estimates to be used. scale: `float` (default: 10) Scale parameter of gaussian kernel. copy: `bool` (default: `False`) Return a copy instead of writing to adata. Returns ------- Returns or updates `adata` with the attributes velocity_confidence_transition: `.obs` Confidence of transition for each cell
375,355
def iter_coords(obj): if isinstance(obj, (tuple, list)): coords = obj elif in obj: coords = [geom[][] for geom in obj[]] elif in obj: coords = obj[][] else: coords = obj.get(, obj) for coord in coords: if isinstance(coord, (float, int)): yield tuple(coords) break else: for f in iter_coords(coord): yield f
Returns all the coordinate tuples from a geometry or feature.
375,356
def get_all_slots(class_): all_slots = [] parent_param_classes = [c for c in classlist(class_)[1::]] for c in parent_param_classes: if hasattr(c,): all_slots+=c.__slots__ return all_slots
Return a list of slot names for slots defined in class_ and its superclasses.
375,357
def declare_set(self, name, sep=os.pathsep): self._declare_special(name, sep, SetVariable)
Declare an environment variable as a set-like special variable. This can be used even if the environment variable is not present. :param name: The name of the environment variable that should be considered set-like. :param sep: The separator to be used. Defaults to the value of ``os.pathsep``.
375,358
def string_repr(s): if compat.is_bytes(s): res = "{!r}: ".format(s) for b in s: if type(b) is str: b = ord(b) res += "%02x " % b return res return "{}".format(s)
Return a string as hex dump.
375,359
def find_output_without_tag(self, tag): tag = tag.upper() return FileList([i for i in self if tag not in i.tags])
Find all files who do not have tag in self.tags
375,360
def save_species_fitness(self, delimiter=, null_value=, filename=): with open(filename, ) as f: w = csv.writer(f, delimiter=delimiter) for s in self.get_species_fitness(null_value): w.writerow(s)
Log species' average fitness throughout evolution.
375,361
def setInstitutionLogo(self, pathList: tuple): for p in pathList: url = None if type(p) in (list, tuple): p, url = p logo = QtSvg.QSvgWidget(p) s = logo.sizeHint() aR = s.height() / s.width() h = 150 w = h / aR logo.setFixedSize(int(w), int(h)) self.layout().addWidget(logo) if url: logo.mousePressEvent = lambda evt, u=url: self._openUrl(evt, u)
takes one or more [logo].svg paths if logo should be clickable, set pathList = ( (my_path1.svg,www.something1.html), (my_path2.svg,www.something2.html), ...)
375,362
def lrange(self, name, start, end): return self.execute_command(, name, start, end)
Return a slice of the list ``name`` between position ``start`` and ``end`` ``start`` and ``end`` can be negative numbers just like Python slicing notation
375,363
def delete_record(self, identifier=None, rtype=None, name=None, content=None, **kwargs): if not rtype and kwargs.get(): warnings.warn(, DeprecationWarning) rtype = kwargs.get() return self._delete_record(identifier=identifier, rtype=rtype, name=name, content=content)
Delete an existing record. If record does not exist, do nothing. If an identifier is specified, use it, otherwise do a lookup using type, name and content.
375,364
def write_content(self, content, destination): directory = os.path.dirname(destination) if directory and not os.path.exists(directory): os.makedirs(directory) with io.open(destination, , encoding=) as f: f.write(content) return destination
Write given content to destination path. It will create needed directory structure first if it contain some directories that does not allready exists. Args: content (str): Content to write to target file. destination (str): Destination path for target file. Returns: str: Path where target file has been written.
375,365
def draw(self, startpoint=(0, 0), mode=, showfig=False): p0 = startpoint angle = 0.0 patchlist = [] anotelist = [] xmin0, xmax0, ymin0, ymax0 = 0, 0, 0, 0 xmin, xmax, ymin, ymax = 0, 0, 0, 0 for ele in self._lattice_eleobjlist: ele.setDraw(p0=p0, angle=angle, mode=mode) angle += ele.next_inc_angle patchlist.extend(ele._patches) if hasattr(ele, ): anotelist.append(ele._anote) try: p0 = ele.next_p0 xyrange = ele._patches[0].get_path().get_extents() xmin, xmax = xyrange.xmin, xyrange.xmax ymin, ymax = xyrange.ymin, xyrange.ymax except: pass xmin0 = min(xmin, xmin0) xmax0 = max(xmax, xmax0) ymin0 = min(ymin, ymin0) ymax0 = max(ymax, ymax0) if showfig: fig = plt.figure() ax = fig.add_subplot(111, aspect=) [ax.add_patch(i) for i in patchlist] [ax.annotate(s=i[], xy=i[], xytext=i[], arrowprops=dict(arrowstyle=), rotation=-90, fontsize=) for i in anotelist] ax.set_xlim([xmin0 * 2, xmax0 * 2]) ax.set_ylim([ymin0 * 2, ymax0 * 2]) plt.show() return patchlist, anotelist, (xmin0, xmax0), (ymin0, ymax0)
lattice visualization :param startpoint: start drawing point coords, default: (0, 0) :param showfig: show figure or not, default: False :param mode: artist mode, 'plain' or 'fancy', 'plain' by default :return: patchlist, anotelist, (xmin0, xmax0), (ymin0, ymax0) patchlist: list of element patches anotelist: list of annotations (xmin0, xmax0) and (ymin0, ymax0) are ploting range
375,366
def get_or_add_dPt_for_point(self, idx): matches = self.xpath( % idx) if matches: return matches[0] dPt = self._add_dPt() dPt.idx.val = idx return dPt
Return the `c:dPt` child representing the visual properties of the data point at index *idx*.
375,367
def get_module_item_sequence(self, course_id, asset_id=None, asset_type=None): path = {} data = {} params = {} path["course_id"] = course_id if asset_type is not None: self._validate_enum(asset_type, ["ModuleItem", "File", "Page", "Discussion", "Assignment", "Quiz", "ExternalTool"]) params["asset_type"] = asset_type if asset_id is not None: params["asset_id"] = asset_id self.logger.debug("GET /api/v1/courses/{course_id}/module_item_sequence with query params: {params} and form data: {data}".format(params=params, data=data, **path)) return self.generic_request("GET", "/api/v1/courses/{course_id}/module_item_sequence".format(**path), data=data, params=params, single_item=True)
Get module item sequence. Given an asset in a course, find the ModuleItem it belongs to, and also the previous and next Module Items in the course sequence.
375,368
def get_widget(self, index=None, path=None, tabs=None): if (index and tabs) or (path and tabs): return tabs.widget(index) elif self.plugin: return self.get_plugin_tabwidget(self.plugin).currentWidget() else: return self.plugins_tabs[0][0].currentWidget()
Get widget by index. If no tabs and index specified the current active widget is returned.
375,369
def get(self, spike_ids, channels=None): if isinstance(spike_ids, slice): spike_ids = _range_from_slice(spike_ids, start=0, stop=self.n_spikes, ) if not hasattr(spike_ids, ): spike_ids = [spike_ids] if channels is None: channels = slice(None, None, None) nc = self.n_channels else: channels = np.asarray(channels, dtype=np.int32) assert np.all(channels < self.n_channels) nc = len(channels) spike_ids = _as_array(spike_ids) n_spikes = len(spike_ids) shape = (n_spikes, nc, self._n_samples_extract) waveforms = np.zeros(shape, dtype=np.float32) if self.n_samples_trace == 0: return np.transpose(waveforms, (0, 2, 1)) for i, spike_id in enumerate(spike_ids): assert 0 <= spike_id < self.n_spikes time = self._spike_samples[spike_id] try: w = self._load_at(time, channels) except ValueError as e: logger.warn("Error while loading waveform: %s", str(e)) continue assert w.shape == (self._n_samples_extract, nc) waveforms[i, :, :] = w.T waveforms_f = waveforms.reshape((-1, self._n_samples_extract)) unmasked = waveforms_f.max(axis=1) != 0 waveforms_f[unmasked] = self._filter(waveforms_f[unmasked], axis=1) waveforms_f = waveforms_f.reshape((n_spikes, nc, self._n_samples_extract)) margin_before, margin_after = self._filter_margin if margin_after > 0: assert margin_before >= 0 waveforms_f = waveforms_f[:, :, margin_before:-margin_after] assert waveforms_f.shape == (n_spikes, nc, self.n_samples_waveforms, ) return np.transpose(waveforms_f, (0, 2, 1))
Load the waveforms of the specified spikes.
375,370
def batchcancel_openOrders(self, acc_id, symbol=None, side=None, size=None, _async=False): params = {} path = params[] = acc_id if symbol: params[] = symbol if side: assert side in [, ] params[] = side if size: params[] = size return api_key_get(params, path, _async=_async)
批量撤销未成交订单 :param acc_id: 帐号ID :param symbol: 交易对 :param side: 方向 :param size: :param _async: :return:
375,371
def libvlc_video_set_spu_delay(p_mi, i_delay): f = _Cfunctions.get(, None) or \ _Cfunction(, ((1,), (1,),), None, ctypes.c_int, MediaPlayer, ctypes.c_int64) return f(p_mi, i_delay)
Set the subtitle delay. This affects the timing of when the subtitle will be displayed. Positive values result in subtitles being displayed later, while negative values will result in subtitles being displayed earlier. The subtitle delay will be reset to zero each time the media changes. @param p_mi: media player. @param i_delay: time (in microseconds) the display of subtitles should be delayed. @return: 0 on success, -1 on error. @version: LibVLC 2.0.0 or later.
375,372
def _local(self, args): args.pop(0) command = args[0] if command == : self._local_install(args) elif command == : self._local_list_files(args) elif command == : self._local_info(args) else: raise SPMInvocationError({0}\.format(command))
Process local commands
375,373
def parse_default_arguments(self, default_args_sample): parsed_arguments_dict = {} default_arguments = list(self._arguments.default_arguments.values()) expected_length = len(default_arguments) real_length = len(default_args_sample) default_args_count = len([item for item in default_arguments if item.default is not None]) if not self._arguments.has_optional_default_argument and (default_args_sample is None or expected_length != real_length): raise ArgumentException("Command require {} positional argument(s), found {}".format( expected_length, real_length )) elif self._arguments.has_optional_default_argument and default_args_sample is not None and real_length < expected_length - default_args_count: raise ArgumentException("Command require {} or {} positional argument(s), found {}".format( expected_length, expected_length - default_args_count, real_length )) for index in range(0, expected_length): arg_meta = default_arguments[index] try: arg = default_args_sample[index] except IndexError: arg = arg_meta.default try: if arg_meta.value_type is not None: arg = self.__convert_value_to_type(arg, arg_meta.value_type) parsed_arguments_dict[arg_meta.name] = arg except (TypeError, ValueError): raise ArgumentException("Invalid argument type - expected {}, got {}".format(arg_meta.value_type.__name__, type(arg).__name__)) return parsed_arguments_dict
:type default_args_sample list :rtype dict
375,374
def detect_compiler(libpath): from os import waitpid, path from subprocess import Popen, PIPE command = "nm {0}".format(path.abspath(libpath)) child = Popen(command, shell=True, executable="/bin/bash", stdout=PIPE) waitpid(child.pid, 0) contents = child.stdout.readlines() i = 0 found = False while i < len(contents) and found == False: if "_MOD_" in contents[i]: found = "gfortran" elif "_mp_" in contents[i]: found = "ifort" i += 1 return found
Determines the compiler used to compile the specified shared library by using the system utilities. :arg libpath: the full path to the shared library *.so file.
375,375
def eventize(self, granularity): email = {} email[Email.EMAIL_ID] = [] email[Email.EMAIL_EVENT] = [] email[Email.EMAIL_DATE] = [] email[Email.EMAIL_OWNER] = [] email[Email.EMAIL_SUBJECT] = [] email[Email.EMAIL_BODY] = [] email[Email.EMAIL_ORIGIN] = [] events = pandas.DataFrame() for item in self.items: origin = item["origin"] email_data = item["data"] if granularity == 1: email[Email.EMAIL_ID].append(email_data["Message-ID"]) email[Email.EMAIL_EVENT].append(Email.EVENT_OPEN) try: email[Email.EMAIL_DATE].append(str_to_datetime(email_data["Date"], ignoretz=True)) except KeyError: email[Email.EMAIL_DATE].append(str_to_datetime("1970-01-01")) email[Email.EMAIL_OWNER].append(email_data["From"]) email[Email.EMAIL_SUBJECT].append(email_data["Subject"]) try: email[Email.EMAIL_BODY].append(email_data["body"]["plain"]) except KeyError: email[Email.EMAIL_BODY].append("None") email[Email.EMAIL_ORIGIN].append(origin) if granularity == 2: pass if granularity == 3: pass events[Email.EMAIL_ID] = email[Email.EMAIL_ID] events[Email.EMAIL_EVENT] = email[Email.EMAIL_EVENT] events[Email.EMAIL_DATE] = email[Email.EMAIL_DATE] events[Email.EMAIL_OWNER] = email[Email.EMAIL_OWNER] events[Email.EMAIL_SUBJECT] = email[Email.EMAIL_SUBJECT] events[Email.EMAIL_BODY] = email[Email.EMAIL_BODY] events[Email.EMAIL_ORIGIN] = email[Email.EMAIL_ORIGIN] return events
This splits the JSON information found at self.events into the several events. For this there are three different levels of time consuming actions: 1-soft, 2-medium and 3-hard. Level 1 provides events about emails Level 2 not implemented Level 3 not implemented :param granularity: Levels of time consuming actions to calculate events :type granularity: integer :returns: Pandas dataframe with splitted events. :rtype: pandas.DataFrame
375,376
def proc_exit(self, details): log = self._params.get(, self._discard) pid = self._key exit_code = details why = statusfmt(exit_code) proc = None for p in self._parent._proc_state: if pid == p.pid: proc = p if proc is None: log.error("Legion reported exit of unknown pid %s for task %r which %s", pid, self._name, why) return now = time.time() proc.pid = None proc.exit_code = exit_code proc.exited = now proc.pending_sig = None proc.next_sig = None self._parent._last_status = exit_code extant = len(self._parent.get_pids()) if extant == 0: self._parent._started = None self._parent._stopping = None self._parent._stopped = now self._parent.onexit() else: log.debug("Task still has %d process%s running", self._name, extant, ses(extant, )) if exit_code and not self._parent._terminated: log.warning("Task pid %d %s -- unexpected error exit", self._name, pid, why) else: log.info("Task pid %d %s", self._name, pid, why)
Handle the event when one of the task processes exits.
375,377
def sort_objs_by_attr(objs, key, reverse=False): if len(objs) == 0: return [] if not hasattr(objs[0], key): raise AttributeError(.format(type(objs[0]), key)) result = sorted(objs, key=attrgetter(key), reverse=reverse) return result
对原生不支持比较操作的对象根据属性排序 :param: * objs: (list) 需要排序的对象列表 * key: (string) 需要进行排序的对象属性 * reverse: (bool) 排序结果是否进行反转,默认为 False,不进行反转 :return: * result: (list) 排序后的对象列表 举例如下:: print('--- sorted_objs_by_attr demo---') class User(object): def __init__(self, user_id): self.user_id = user_id users = [User(23), User(3), User(99)] result = sorted_objs_by_attr(users, key='user_id') reverse_result = sorted_objs_by_attr(users, key='user_id', reverse=True) print([item.user_id for item in result]) print([item.user_id for item in reverse_result]) print('---') 执行结果:: --- sorted_objs_by_attr demo--- [3, 23, 99] [99, 23, 3] ---
375,378
def parse_terminal_token(cls, parser, text): token_regex = cls.token_regex if parser._parsing_texkey_expression: token_regex = cls.texkey_token_regex parser._parsing_texkey_expression = False match = token_regex.match(text) if match: matched_token = match.group(0) if cls.starts_with_colon.match(remaining_text): return text, \ SyntaxError("parsing a keyword (token followed by \":\"): \"" + repr(matched_token) + "\"") if not parser._parsing_parenthesized_simple_values_expression \ and matched_token in INSPIRE_KEYWORDS_SET: return text, SyntaxError("parsing a keyword (non shortened INSPIRE keyword)") result = remaining_text, matched_token else: result = text, SyntaxError("expecting match on " + repr(cls.token_regex.pattern)) return result
Parses a terminal token that doesn't contain parentheses nor colon symbol. Note: Handles a special case of tokens where a ':' is needed (for `texkey` queries). If we're parsing text not in parentheses, then some DSL keywords (e.g. And, Or, Not, defined above) should not be recognized as terminals, thus we check if they are in the Keywords table (namespace like structure handled by PyPeg). This is done only when we are not parsing a parenthesized SimpleValue. Also, helps in supporting more implicit-and queries cases (last two checks).
375,379
def build_library(tile, libname, chip): dirs = chip.build_dirs() output_name = % (libname, chip.arch_name()) if os.path.exists(): VariantDir(dirs[], os.path.join(, ), duplicate=0) else: VariantDir(dirs[], , duplicate=0) library_env = setup_environment(chip) library_env[] = output_name library_env[] = os.path.join(dirs[], output_name) library_env[] = dirs[] tilebus_defs = setup_dependencies(tile, library_env) tilebus_defs += tile.find_products() compile_tilebus(tilebus_defs, library_env, header_only=True) SConscript(os.path.join(dirs[], ), exports=) library_env.InstallAs(os.path.join(dirs[], output_name), os.path.join(dirs[], output_name)) for src, dst in chip.property(, []): srcpath = os.path.join(*src) destpath = os.path.join(dirs[], dst) library_env.InstallAs(destpath, srcpath) return os.path.join(dirs[], output_name)
Build a static ARM cortex library
375,380
def raster_reclassify(srcfile, v_dict, dstfile, gdaltype=GDT_Float32): src_r = RasterUtilClass.read_raster(srcfile) src_data = src_r.data dst_data = numpy.copy(src_data) if gdaltype == GDT_Float32 and src_r.dataType != GDT_Float32: gdaltype = src_r.dataType no_data = src_r.noDataValue new_no_data = DEFAULT_NODATA if gdaltype in [GDT_Unknown, GDT_Byte, GDT_UInt16, GDT_UInt32]: new_no_data = 0 if not MathClass.floatequal(new_no_data, src_r.noDataValue): if src_r.noDataValue not in v_dict: v_dict[src_r.noDataValue] = new_no_data no_data = new_no_data for (k, v) in iteritems(v_dict): dst_data[src_data == k] = v RasterUtilClass.write_gtiff_file(dstfile, src_r.nRows, src_r.nCols, dst_data, src_r.geotrans, src_r.srs, no_data, gdaltype)
Reclassify raster by given classifier dict. Args: srcfile: source raster file. v_dict: classifier dict. dstfile: destination file path. gdaltype (:obj:`pygeoc.raster.GDALDataType`): GDT_Float32 as default.
375,381
def unregister_node_path(self, node): path = node.file if hasattr(node, "file") else node.path path = foundations.strings.to_string(path) return self.unregister_file(path)
Unregisters given Node path from the **file_system_events_manager**. :param node: Node. :type node: FileNode or DirectoryNode or ProjectNode :return: Method success. :rtype: bool
375,382
def delete(filething): t = OggOpus(filething) filething.fileobj.seek(0) t.delete(filething)
delete(filething) Arguments: filething (filething) Raises: mutagen.MutagenError Remove tags from a file.
375,383
def ScreenGenerator(nfft, r0, nx, ny): while 1: layers = GenerateTwoScreens(nfft, r0) for iLayer in range(2): for iy in range(int(nfft/ny)): for ix in range(int(nfft/nx)): yield layers[iLayer][iy*ny:iy*ny+ny, ix*nx:ix*nx+nx]
Generate an infinite series of rectangular phase screens Uses an FFT screen generator to make a large screen and then returns non-overlapping subsections of it
375,384
def hacking_has_only_comments(physical_line, filename, lines, line_number): if line_number == 1 and all(map(EMPTY_LINE_RE.match, lines)): return (0, "H104: File contains nothing but comments")
Check for empty files with only comments H104 empty file with only comments
375,385
def is_entry_safe(self, entry): normalized = os.path.normpath(entry) if normalized.startswith(os.sep) or normalized.startswith(".." + os.sep): self.log([u"Entry is not safe", entry]) return False self.log([u"Entry is safe", entry]) return True
Return ``True`` if ``entry`` can be safely extracted, that is, if it does start with ``/`` or ``../`` after path normalization, ``False`` otherwise. :rtype: bool
375,386
def setupFog(self): fogcfg = self.cfg["graphics.fogSettings"] if not fogcfg["enable"]: return glEnable(GL_FOG) if fogcfg["color"] is None: fogcfg["color"] = self.cfg["graphics.clearColor"] glFogfv(GL_FOG_COLOR, (GLfloat * 4)(*fogcfg["color"])) glHint(GL_FOG_HINT, GL_DONT_CARE) glFogi(GL_FOG_MODE, GL_LINEAR) glFogf(GL_FOG_START, fogcfg["start"]) glFogf(GL_FOG_END, fogcfg["end"])
Sets the fog system up. The specific options available are documented under :confval:`graphics.fogSettings`\ .
375,387
def _send_container_healthcheck_sc(self, containers_by_id): for container in containers_by_id.itervalues(): healthcheck_tags = self._get_tags(container, HEALTHCHECK) match = False for tag in healthcheck_tags: for rule in self.whitelist_patterns: if re.match(rule, tag): match = True self._submit_healthcheck_sc(container) break if match: break
Send health service checks for containers.
375,388
def t_HEXCONSTANT(self, t): r t.value = int(t.value, 16) t.type = return t
r'0x[0-9A-Fa-f]+
375,389
def processing_blocks(self): sbi_ids = Subarray(self.get_name()).sbi_ids pbs = [] for sbi_id in sbi_ids: sbi = SchedulingBlockInstance(sbi_id) pbs.append(sbi.processing_block_ids) return , pbs
Return list of PBs associated with the subarray. <http://www.esrf.eu/computing/cs/tango/pytango/v920/server_api/server.html#PyTango.server.pipe>
375,390
def next_power_of_2(n): n -= 1 shift = 1 while (n + 1) & n: n |= n >> shift shift *= 2 return max(4, n + 1)
Return next power of 2 greater than or equal to n
375,391
def _get_app_path(url): app_path = urlparse(url).path.rstrip("/") if not app_path.startswith("/"): app_path = "/" + app_path return app_path
Extract the app path from a Bokeh server URL Args: url (str) : Returns: str
375,392
def _ioctl_cast(n): if sys.version_info < (2, 5): n, = struct.unpack(, struct.pack(, n)) return n
Linux ioctl() request parameter is unsigned, whereas on BSD/Darwin it is signed. Until 2.5 Python exclusively implemented the BSD behaviour, preventing use of large unsigned int requests like the TTY layer uses below. So on 2.4, we cast our unsigned to look like signed for Python.
375,393
def import_cvxpy(): global _CVXPY_ERROR_LOGGED try: import cvxpy except ImportError: cvxpy = None if not _CVXPY_ERROR_LOGGED: _log.error("Could not import cvxpy. Tomography tools will not function.") _CVXPY_ERROR_LOGGED = True return cvxpy
Try importing the qutip module, log an error if unsuccessful. :return: The cvxpy module if successful or None :rtype: Optional[module]
375,394
def ppo_opt_step(i, opt_state, ppo_opt_update, policy_net_apply, old_policy_params, value_net_apply, value_net_params, padded_observations, padded_actions, padded_rewards, reward_mask, gamma=0.99, lambda_=0.95, epsilon=0.1): new_policy_params = trax_opt.get_params(opt_state) g = grad( ppo_loss, argnums=1)( policy_net_apply, new_policy_params, old_policy_params, value_net_apply, value_net_params, padded_observations, padded_actions, padded_rewards, reward_mask, gamma=gamma, lambda_=lambda_, epsilon=epsilon) return ppo_opt_update(i, g, opt_state)
PPO optimizer step.
375,395
def main(): if sys.version_info[0] < 3: sys.stdout = codecs.getwriter("utf-8")(sys.stdout) options = docopt.docopt(__doc__, help=True, version= % __VERSION__) print(template_remover.clean(io.open(options[]).read())) return 0
Entry point for remove_template.
375,396
def loadkml(self, filename): nodes = self.readkmz(filename) self.snap_points = [] for n in nodes: point = self.readObject(n) if self.mpstate.map is not None and point[0] == : self.snap_points.extend(point[2]) newcolour = (random.randint(0, 255), 0, random.randint(0, 255)) curpoly = mp_slipmap.SlipPolygon(point[1], point[2], layer=2, linewidth=2, colour=newcolour) self.mpstate.map.add_object(curpoly) self.allayers.append(curpoly) self.curlayers.append(point[1]) if self.mpstate.map is not None and point[0] == : icon = self.mpstate.map.icon() curpoint = mp_slipmap.SlipIcon(point[1], latlon = (point[2][0][0], point[2][0][1]), layer=3, img=icon, rotation=0, follow=False) curtext = mp_slipmap.SlipLabel(point[1], point = (point[2][0][0], point[2][0][1]), layer=4, label=point[1], colour=(0,255,255)) self.mpstate.map.add_object(curpoint) self.mpstate.map.add_object(curtext) self.allayers.append(curpoint) self.alltextlayers.append(curtext) self.curlayers.append(point[1]) self.curtextlayers.append(point[1]) self.menu_needs_refreshing = True
Load a kml from file and put it on the map
375,397
def refresh(self): new_device_json = self._device_request() _LOGGER.debug("Device Refresh Response: %s", new_device_json) new_avatar_json = self._avatar_request() _LOGGER.debug("Avatar Refresh Response: %s", new_avatar_json) new_info_json = self._info_request() _LOGGER.debug("Device Info Refresh Response: %s", new_info_json) new_settings_json = self._settings_request() _LOGGER.debug("Device Settings Refresh Response: %s", new_settings_json) self.update(new_device_json, new_info_json, new_settings_json, new_avatar_json) self._update_activities()
Refresh the devices json object data.
375,398
def _proxy(self): if self._context is None: self._context = EventContext( self._version, workspace_sid=self._solution[], sid=self._solution[], ) return self._context
Generate an instance context for the instance, the context is capable of performing various actions. All instance actions are proxied to the context :returns: EventContext for this EventInstance :rtype: twilio.rest.taskrouter.v1.workspace.event.EventContext
375,399
def hook(name=None, *args, **kwargs): def decorator(f): if not hasattr(f, "hooks"): f.hooks = [] f.hooks.append((name or f.__name__, args, kwargs)) return f return decorator
Decorator to register the function as a hook