Unnamed: 0
int64
0
389k
code
stringlengths
26
79.6k
docstring
stringlengths
1
46.9k
376,500
def validate_edge_direction(edge_direction): if not isinstance(edge_direction, six.string_types): raise TypeError(u.format( type(edge_direction), edge_direction)) if edge_direction not in ALLOWED_EDGE_DIRECTIONS: raise ValueError(u.format(edge_direction))
Ensure the provided edge direction is either "in" or "out".
376,501
def django_include(context, template_name, **kwargs): try: djengine = engines[] except KeyError as e: raise TemplateDoesNotExist("Django template engine not configured in settings, so template cannot be found: {}".format(template_name)) from e djtemplate = djengine.get_template(template_name) djcontext = {} djcontext.update(context) djcontext.update(kwargs) return djtemplate.render(djcontext, context[])
Mako tag to include a Django template withing the current DMP (Mako) template. Since this is a Django template, it is search for using the Django search algorithm (instead of the DMP app-based concept). See https://docs.djangoproject.com/en/2.1/topics/templates/. The current context is sent to the included template, which makes all context variables available to the Django template. Any additional kwargs are added to the context.
376,502
def sync_main(async_main, config_path=None, default_config=None, should_validate_task=True, loop_function=asyncio.get_event_loop): context = _init_context(config_path, default_config) _init_logging(context) if should_validate_task: validate_task_schema(context) loop = loop_function() loop.run_until_complete(_handle_asyncio_loop(async_main, context))
Entry point for scripts using scriptworker. This function sets up the basic needs for a script to run. More specifically: * it creates the scriptworker context and initializes it with the provided config * the path to the config file is either taken from `config_path` or from `sys.argv[1]`. * it verifies `sys.argv` doesn't have more arguments than the config path. * it creates the asyncio event loop so that `async_main` can run Args: async_main (function): The function to call once everything is set up config_path (str, optional): The path to the file to load the config from. Loads from ``sys.argv[1]`` if ``None``. Defaults to None. default_config (dict, optional): the default config to use for ``_init_context``. defaults to None. should_validate_task (bool, optional): whether we should validate the task schema. Defaults to True. loop_function (function, optional): the function to call to get the event loop; here for testing purposes. Defaults to ``asyncio.get_event_loop``.
376,503
def submit_url(self, url, params={}, _extra_params={}): self._check_user_parameters(params) params = copy.copy(params) params[] = url return self._submit(params, _extra_params=_extra_params)
Submit a website for analysis.
376,504
def proxy_global(name, no_expand_macro=False, fname=, args=()): if no_expand_macro: @property def gSomething_no_func(self): glob = self(getattr(ROOT, name)) def func(): return glob glob.func = func return glob return gSomething_no_func @property def gSomething(self): obj_func = getattr(getattr(ROOT, name), fname) try: obj = obj_func(*args) except ReferenceError: return None return self(obj) return gSomething
Used to automatically asrootpy ROOT's thread local variables
376,505
def get_threads_where_participant_is_active(self, participant_id): participations = Participation.objects.\ filter(participant__id=participant_id).\ exclude(date_left__lte=now()).\ distinct().\ select_related() return Thread.objects.\ filter(id__in=[p.thread.id for p in participations]).\ distinct()
Gets all the threads in which the current participant is involved. The method excludes threads where the participant has left.
376,506
def decode_intervals(self, encoded, duration=None, multi=True, sparse=False, transition=None, p_state=None, p_init=None): if np.isrealobj(encoded): if multi: if transition is None: encoded = encoded >= 0.5 else: encoded = viterbi_binary(encoded.T, transition, p_init=p_init, p_state=p_state).T elif sparse and encoded.shape[1] > 1: if transition is None: encoded = np.argmax(encoded, axis=1)[:, np.newaxis] else: encoded = viterbi_discriminative(encoded.T, transition, p_init=p_init, p_state=p_state)[:, np.newaxis] elif not sparse: if transition is None: encoded = (encoded == np.max(encoded, axis=1, keepdims=True)) else: encoded_ = viterbi_discriminative(encoded.T, transition, p_init=p_init, p_state=p_state) encoded = np.zeros(encoded.shape, dtype=bool) encoded[np.arange(len(encoded_)), encoded_] = True if duration is None: duration = 1 + encoded.shape[0] else: duration = 1 + time_to_frames(duration, sr=self.sr, hop_length=self.hop_length) times = times_like(duration + 1, sr=self.sr, hop_length=self.hop_length) if sparse: idx = np.where(encoded[1:] != encoded[:-1])[0] else: idx = np.where(np.max(encoded[1:] != encoded[:-1], axis=-1))[0] idx = np.unique(np.append(idx, encoded.shape[0])) delta = np.diff(np.append(-1, idx)) position = np.cumsum(np.append(0, delta)) return [(times[p], times[p + d], encoded[p]) for (p, d) in zip(position, delta)]
Decode labeled intervals into (start, end, value) triples Parameters ---------- encoded : np.ndarray, shape=(n_frames, m) Frame-level annotation encodings as produced by ``encode_intervals`` duration : None or float > 0 The max duration of the annotation (in seconds) Must be greater than the length of encoded array. multi : bool If true, allow multiple labels per input frame. If false, take the most likely label per input frame. sparse : bool If true, values are returned as indices, not one-hot. If false, values are returned as one-hot encodings. Only applies when `multi=False`. transition : None or np.ndarray [shape=(m, m) or (2, 2) or (m, 2, 2)] Optional transition matrix for each interval, used for Viterbi decoding. If `multi=True`, then transition should be `(2, 2)` or `(m, 2, 2)`-shaped. If `multi=False`, then transition should be `(m, m)`-shaped. p_state : None or np.ndarray [shape=(m,)] Optional marginal probability for each label. p_init : None or np.ndarray [shape=(m,)] Optional marginal probability for each label. Returns ------- [(start, end, value)] : iterable of tuples where `start` and `end` are the interval boundaries (in seconds) and `value` is an np.ndarray, shape=(m,) of the encoded value for this interval.
376,507
def pre_execute(self, execution, context): path = self._fspath if path: path = path.format( benchmark=context.benchmark, api=execution[], **execution.get(, {}) ) if self.clean_path: shutil.rmtree(path, ignore_errors=True) if execution[][] == : path = osp.dirname(path) if not osp.exists(path): os.makedirs(path)
Make sure the named directory is created if possible
376,508
def standardize(self, x): if self.preprocessing_function: x = self.preprocessing_function(x) if self.rescale: x *= self.rescale if self.samplewise_center: x -= np.mean(x, keepdims=True) if self.samplewise_std_normalization: x /= np.std(x, keepdims=True) + 1e-7 if self.featurewise_center: if self.mean is not None: x -= self.mean else: warnings.warn( t been fit on any training data. Fit it first by calling `.fit(numpy_data)`.This ImageDataGenerator specifies `featurewise_std_normalization`, but it hasn\ ) if self.zca_whitening: if self.principal_components is not None: flatx = np.reshape(x, (-1, np.prod(x.shape[-3:]))) whitex = np.dot(flatx, self.principal_components) x = np.reshape(whitex, x.shape) else: warnings.warn( t been fit on any training data. Fit it first by calling `.fit(numpy_data)`.') return x
Apply the normalization configuration to a batch of inputs. # Arguments x: batch of inputs to be normalized. # Returns The inputs, normalized.
376,509
def series_index(self, series): for idx, s in enumerate(self): if series is s: return idx raise ValueError()
Return the integer index of *series* in this sequence.
376,510
def min(self): results = [x.ufuncs.min() for x in self.elem] return np.min(results)
Return the minimum of ``self``. See Also -------- numpy.amin max
376,511
def loads(astring): try: return marshal.loads(zlib.decompress(astring)) except zlib.error as e: raise SerializerError( .format(str(e)) ) except Exception as e: raise SerializerError( .format(str(e)) )
Decompress and deserialize string into Python object via marshal.
376,512
def _update_tree_store(self): self.list_store.clear() if self.view_dict[] and isinstance(self.model, ContainerStateModel) and \ len(self.model.state.transitions) > 0: for transition_id in self.combo[].keys(): t = self.model.state.transitions[transition_id] if t.from_state is not None: from_state = self.model.state.states[t.from_state] from_state_label = from_state.name from_outcome_label = from_state.outcomes[t.from_outcome].name else: from_state_label = "self (" + self.model.state.name + ")" from_outcome_label = "" if t.to_state is None: to_state_label = "self (" + self.model.state.name + ")" to_outcome = None if t.to_outcome is None else self.model.state.outcomes[t.to_outcome] to_outcome_label = "None" if to_outcome is None else to_outcome.name else: if t.to_state == self.model.state.state_id: to_state_label = "self (" + self.model.state.name + ")" to_outcome_label = self.model.state.outcomes[t.to_outcome].name else: to_state_label = self.model.state.states[t.to_state].name to_outcome_label = None self.list_store.append([transition_id, from_state_label, from_outcome_label, to_state_label, to_outcome_label, False, t, self.model.state, True, self.model.get_transition_m(transition_id)]) if self.view_dict[] and self.model.parent and \ len(self.model.parent.state.transitions) > 0: for transition_id in self.combo[].keys(): try: t = self.model.parent.state.transitions[transition_id] from_state = None if t.from_state is not None: from_state = self.model.parent.states[t.from_state].state if from_state is None: from_state_label = "parent (" + self.model.state.parent.name + ")" from_outcome_label = "" elif from_state.state_id == self.model.state.state_id: from_state_label = "self (" + from_state.name + ")" from_outcome_label = from_state.outcomes[t.from_outcome].name else: from_state_label = from_state.name from_outcome_label = from_state.outcomes[t.from_outcome].name if t.to_state == self.model.parent.state.state_id: to_state_label = + self.model.parent.state.name + ")" to_outcome_label = self.model.parent.state.outcomes[t.to_outcome].name else: if t.to_state == self.model.state.state_id: to_state_label = "self (" + self.model.state.name + ")" else: to_state_label = self.model.parent.state.states[t.to_state].name to_outcome_label = None self.list_store.append([transition_id, from_state_label, from_outcome_label, to_state_label, to_outcome_label, True, t, self.model.state, True, self.model.parent.get_transition_m(transition_id)]) except Exception as e: logger.warning("There was a problem while updating the data-flow widget TreeStore. {0}".format(e))
Updates TreeStore of the Gtk.ListView according internal combo knowledge gained by _update_internal_data_base function call.
376,513
def show_progress(self): from pyemma import config if not hasattr(self, "_show_progress"): val = config.show_progress_bars self._show_progress = val elif not config.show_progress_bars: return False return self._show_progress
whether to show the progress of heavy calculations on this object.
376,514
def _Rforce(self,R,phi=0.,t=0.): return self._A*math.exp(-(t-self._to)**2./2./self._sigma2)\ /R*math.sin(self._alpha*math.log(R) -self._m*(phi-self._omegas*t-self._gamma))
NAME: _Rforce PURPOSE: evaluate the radial force for this potential INPUT: R - Galactocentric cylindrical radius phi - azimuth t - time OUTPUT: the radial force HISTORY: 2010-11-24 - Written - Bovy (NYU)
376,515
def complete_server(self, text, line, begidx, endidx): return [i for i in PsiturkShell.server_commands if i.startswith(text)]
Tab-complete server command
376,516
def query_pager_by_slug(slug, current_page_num=1, tag=, order=False): cat_rec = MCategory.get_by_slug(slug) if cat_rec: cat_id = cat_rec.uid else: return None if cat_id.endswith(): cat_con = TabPost2Tag.par_id == cat_id else: cat_con = TabPost2Tag.tag_id == cat_id if tag: condition = { : [tag] } recs = TabPost.select().join( TabPost2Tag, on=((TabPost.uid == TabPost2Tag.post_id) & (TabPost.valid == 1)) ).where( cat_con & TabPost.extinfo.contains(condition) ).order_by( TabPost.time_update.desc() ).paginate(current_page_num, CMS_CFG[]) elif order: recs = TabPost.select().join( TabPost2Tag, on=((TabPost.uid == TabPost2Tag.post_id) & (TabPost.valid == 1)) ).where( cat_con ).order_by( TabPost.order.asc() ) else: recs = TabPost.select().join( TabPost2Tag, on=((TabPost.uid == TabPost2Tag.post_id) & (TabPost.valid == 1)) ).where( cat_con ).order_by( TabPost.time_update.desc() ).paginate(current_page_num, CMS_CFG[]) return recs
Query pager via category slug.
376,517
def Beach(fm, linewidth=2, facecolor=, bgcolor=, edgecolor=, alpha=1.0, xy=(0, 0), width=200, size=100, nofill=False, zorder=100, axes=None): try: assert(len(width) == 2) except TypeError: width = (width, width) mt = None np1 = None if isinstance(fm, MomentTensor): mt = fm np1 = MT2Plane(mt) elif isinstance(fm, NodalPlane): np1 = fm elif len(fm) == 6: mt = MomentTensor(fm[0], fm[1], fm[2], fm[3], fm[4], fm[5], 0) np1 = MT2Plane(mt) elif len(fm) == 3: np1 = NodalPlane(fm[0], fm[1], fm[2]) else: raise TypeError("Wrong input value for .") if size < 100: size = 100 if mt: (T, N, P) = MT2Axes(mt) if np.fabs(N.val) < EPSILON and np.fabs(T.val + P.val) < EPSILON: colors, p = plotDC(np1, size, xy=xy, width=width) else: colors, p = plotMT(T, N, P, size, plot_zerotrace=True, xy=xy, width=width) else: colors, p = plotDC(np1, size=size, xy=xy, width=width) if nofill: col = collections.PatchCollection([p[1]], match_original=False) col.set_facecolor() else: col = collections.PatchCollection(p, match_original=False) fc = [facecolor if c == else bgcolor for c in colors] col.set_facecolors(fc) if axes is not None: col.set_transform(transforms.IdentityTransform()) for p in col._paths: p.vertices -= xy col.set_offsets(xy) col._transOffset = axes.transData col.set_edgecolor(edgecolor) col.set_alpha(alpha) col.set_linewidth(linewidth) col.set_zorder(zorder) return col
Return a beach ball as a collection which can be connected to an current matplotlib axes instance (ax.add_collection). S1, D1, and R1, the strike, dip and rake of one of the focal planes, can be vectors of multiple focal mechanisms. :param fm: Focal mechanism that is either number of mechanisms (NM) by 3 (strike, dip, and rake) or NM x 6 (M11, M22, M33, M12, M13, M23 - the six independent components of the moment tensor, where the coordinate system is 1,2,3 = Up,South,East which equals r,theta,phi). The strike is of the first plane, clockwise relative to north. The dip is of the first plane, defined clockwise and perpendicular to strike, relative to horizontal such that 0 is horizontal and 90 is vertical. The rake is of the first focal plane solution. 90 moves the hanging wall up-dip (thrust), 0 moves it in the strike direction (left-lateral), -90 moves it down-dip (normal), and 180 moves it opposite to strike (right-lateral). :param facecolor: Color to use for quadrants of tension; can be a string, e.g. ``'r'``, ``'b'`` or three component color vector, [R G B]. Defaults to ``'b'`` (blue). :param bgcolor: The background color. Defaults to ``'w'`` (white). :param edgecolor: Color of the edges. Defaults to ``'k'`` (black). :param alpha: The alpha level of the beach ball. Defaults to ``1.0`` (opaque). :param xy: Origin position of the beach ball as tuple. Defaults to ``(0, 0)``. :type width: int or tuple :param width: Symbol size of beach ball, or tuple for elliptically shaped patches. Defaults to size ``200``. :param size: Controls the number of interpolation points for the curves. Minimum is automatically set to ``100``. :param nofill: Do not fill the beach ball, but only plot the planes. :param zorder: Set zorder. Artists with lower zorder values are drawn first. :type axes: :class:`matplotlib.axes.Axes` :param axes: Used to make beach balls circular on non-scaled axes. Also maintains the aspect ratio when resizing the figure. Will not add the returned collection to the axes instance.
376,518
def setColor( self, color ): self.setBorderColor(color) clr = QColor(color) clr.setAlpha(150) self.setHighlightColor(clr) clr = QColor(color) clr.setAlpha(80) self.setFillColor(clr)
Convenience method to set the border, fill and highlight colors based on the inputed color. :param color | <QColor>
376,519
def _get_previous_open_tag(self, obj): prev_instance = self.get_previous_instance(obj) if prev_instance and prev_instance.plugin_type == self.__class__.__name__: return prev_instance.glossary.get()
Return the open tag of the previous sibling
376,520
def derive_single_object_url_pattern(slug_url_kwarg, path, action): if slug_url_kwarg: return r % (path, action, slug_url_kwarg) else: return r % (path, action)
Utility function called by class methods for single object views
376,521
def to_dict(self): return { : self.asset, : self.amount, : self.cost_basis, : self.last_sale_price }
Creates a dictionary representing the state of this position. Returns a dict object of the form:
376,522
def _sort_lows_and_highs(func): "Decorator for extract_cycles" @functools.wraps(func) def wrapper(*args, **kwargs): for low, high, mult in func(*args, **kwargs): if low < high: yield low, high, mult else: yield high, low, mult return wrapper
Decorator for extract_cycles
376,523
def _set_static_ag_ipv6_config(self, v, load=False): if hasattr(v, "_utype"): v = v._utype(v) try: t = YANGDynClass(v,base=static_ag_ipv6_config.static_ag_ipv6_config, is_container=, presence=False, yang_name="static-ag-ipv6-config", rest_name="", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u: {u: None, u: u}}, namespace=, defining_module=, yang_type=, is_config=True) except (TypeError, ValueError): raise ValueError({ : , : "container", : , }) self.__static_ag_ipv6_config = t if hasattr(self, ): self._set()
Setter method for static_ag_ipv6_config, mapped from YANG variable /rbridge_id/ipv6/static_ag_ipv6_config (container) If this variable is read-only (config: false) in the source YANG file, then _set_static_ag_ipv6_config is considered as a private method. Backends looking to populate this variable should do so via calling thisObj._set_static_ag_ipv6_config() directly.
376,524
def configurar_interface_de_rede(self, configuracao): resp = self._http_post(, configuracao=configuracao.documento()) conteudo = resp.json() return RespostaSAT.configurar_interface_de_rede(conteudo.get())
Sobrepõe :meth:`~satcfe.base.FuncoesSAT.configurar_interface_de_rede`. :return: Uma resposta SAT padrão. :rtype: satcfe.resposta.padrao.RespostaSAT
376,525
def set_prefs(prefs): prefs[] = [, , , , , , , ] prefs[] = True prefs[] = False prefs[] = True prefs[] = 0 prefs[] = True prefs[] = True prefs[] = 32 prefs[] = True prefs[] = False
This function is called before opening the project
376,526
def age(self): if not self.birthdate(): return -1 adjuster = 0 today = date.today() birthday = self.birthdate() if today.month == birthday.month: if today.day < birthday.day: adjuster -= 1 elif today.month < birthday.month: adjuster -= 1 return (today.year - birthday.year) + adjuster
Returns the user's age, determined by their birthdate()
376,527
def tag_values(request): data = defaultdict(lambda: {"values": {}}) for tag in Tag.objects.filter(lang=get_language(request)): data[tag.type]["name"] = tag.type_name data[tag.type]["values"][tag.value] = tag.value_name return render_json(request, data, template=, help_text=tag_values.__doc__)
Get tags types and values with localized names language: language of tags
376,528
def send_keys(self, keys, wait=True): self._process.stdin.write(bytearray(keys, self._encoding)) self._process.stdin.flush() if wait: self.wait()
Send a raw key sequence to *Vim*. .. note:: *Vim* style key sequence notation (like ``<Esc>``) is not recognized. Use escaped characters (like ``'\033'``) instead. Example: >>> import headlessvim >>> with headlessvim.open() as vim: ... vim.send_keys('ispam\033') ... str(vim.display_lines()[0].strip()) ... 'spam' :param strgin keys: key sequence to send :param boolean wait: whether if wait a response
376,529
def _split_path(path, seps=PATH_SEPS): if not path: return [] for sep in seps: if sep in path: if path == sep: return [] return [x for x in path.split(sep) if x] return [path]
Parse path expression and return list of path items. :param path: Path expression may contain separator chars. :param seps: Separator char candidates. :return: A list of keys to fetch object[s] later. >>> assert _split_path('') == [] >>> assert _split_path('/') == [''] # JSON Pointer spec expects this. >>> for p in ('/a', '.a', 'a', 'a.'): ... assert _split_path(p) == ['a'], p >>> assert _split_path('/a/b/c') == _split_path('a.b.c') == ['a', 'b', 'c'] >>> assert _split_path('abc') == ['abc']
376,530
def loadUnStructuredGrid(filename): reader = vtk.vtkUnstructuredGridReader() reader.SetFileName(filename) reader.Update() gf = vtk.vtkUnstructuredGridGeometryFilter() gf.SetInputConnection(reader.GetOutputPort()) gf.Update() return Actor(gf.GetOutput())
Load a ``vtkunStructuredGrid`` object from file and return a ``Actor(vtkActor)`` object.
376,531
def arrays2wcxf(C): d = {} for k, v in C.items(): if np.shape(v) == () or np.shape(v) == (1,): d[k] = v else: ind = np.indices(v.shape).reshape(v.ndim, v.size).T for i in ind: name = k + + .join([str(int(j) + 1) for j in i]) d[name] = v[tuple(i)] return d
Convert a dictionary with Wilson coefficient names as keys and numbers or numpy arrays as values to a dictionary with a Wilson coefficient name followed by underscore and numeric indices as keys and numbers as values. This is needed for the output in WCxf format.
376,532
def iflat_nodes(self, status=None, op="==", nids=None): nids = as_set(nids) if status is None: if not (nids and self.node_id not in nids): yield self for work in self: if nids and work.node_id not in nids: continue yield work for task in work: if nids and task.node_id not in nids: continue yield task else: op = operator_from_str(op) status = Status.as_status(status) if not (nids and self.node_id not in nids): if op(self.status, status): yield self for wi, work in enumerate(self): if nids and work.node_id not in nids: continue if op(work.status, status): yield work for ti, task in enumerate(work): if nids and task.node_id not in nids: continue if op(task.status, status): yield task
Generators that produces a flat sequence of nodes. if status is not None, only the tasks with the specified status are selected. nids is an optional list of node identifiers used to filter the nodes.
376,533
def find_item_project(self, eitem): ds_name = self.cfg_section_name if self.cfg_section_name else self.get_connector_name() try: if self.projects_json_repo: project = self.prjs_map[ds_name][self.projects_json_repo] project = self.prjs_map[ds_name][ds_repo] break if project == UNKNOWN_PROJECT: project = None return project
Find the project for a enriched item :param eitem: enriched item for which to find the project :return: the project entry (a dictionary)
376,534
def minion_pub(self, load): if not self.__verify_minion_publish(load): return {} pub_load = { : load[], : salt.utils.args.parse_input( load[], no_parse=load.get(, [])), : load.get(, ), : load[], : load[], : load[], } if in load: if load[].startswith(): if load[] in self.opts[]: pub_load[] = self.opts[][load[]] pub_load[] = else: return {} else: pub_load[] = load[] ret = {} ret[] = self.local.cmd_async(**pub_load) _res = self.ckminions.check_minions( load[], pub_load[]) ret[] = _res[] auth_cache = os.path.join( self.opts[], ) if not os.path.isdir(auth_cache): os.makedirs(auth_cache) jid_fn = os.path.join(auth_cache, six.text_type(ret[])) with salt.utils.files.fopen(jid_fn, ) as fp_: fp_.write(salt.utils.stringutils.to_str(load[])) return ret
Publish a command initiated from a minion, this method executes minion restrictions so that the minion publication will only work if it is enabled in the config. The configuration on the master allows minions to be matched to salt functions, so the minions can only publish allowed salt functions The config will look like this: peer: .*: - .* This configuration will enable all minions to execute all commands. peer: foo.example.com: - test.* This configuration will only allow the minion foo.example.com to execute commands from the test module
376,535
def median1d(self, name, return_errors=False): if return_errors: mid = self.data[name][] low, high = self.data[name][] return (mid, low, high) else: return self.data[name][]
Return median 1d marginalized parameters Parameters ---------- name: str The name of the parameter requested return_errors: Optional, {bool, False} If true, return a second and third parameter that represents the lower and upper 90% error on the parameter. Returns ------- param: float or tuple The requested parameter
376,536
def html_single_plot(self,abfID,launch=False,overwrite=False): if type(abfID) is str: abfID=[abfID] for thisABFid in cm.abfSort(abfID): parentID=cm.parent(self.groups,thisABFid) saveAs=os.path.abspath("%s/%s_plot.html"%(self.folder2,parentID)) if overwrite is False and os.path.basename(saveAs) in self.files2: continue filesByType=cm.filesByType(self.groupFiles[parentID]) html="" html+= html+=%parentID html+=%os.path.abspath(self.folder1+"/"+parentID+".abf") html+= for fname in filesByType[]: html+=self.htmlFor(fname) print("creating",saveAs,) style.save(html,saveAs,launch=launch)
create ID_plot.html of just intrinsic properties.
376,537
def blockstack_tx_filter( tx ): if not in tx: return False if tx[] is None: return False payload = binascii.unhexlify( tx[] ) if payload.startswith(blockstack_magic_bytes()): return True else: return False
Virtualchain tx filter function: * only take txs whose OP_RETURN payload starts with 'id'
376,538
def check_version(): if sys.version_info[0:3] == PYTHON_VERSION_INFO[0:3]: return sys.exit( ansi.error() + + os.linesep + os.linesep + BIN_PYTHON + os.linesep )
Sanity check version information for corrupt virtualenv symlinks
376,539
def _print_speed(self): if self._bandwidth_meter.num_samples: speed = self._bandwidth_meter.speed() if self._human_format: file_size_str = wpull.string.format_size(speed) else: file_size_str = .format(speed * 8) speed_str = _().format( preformatted_file_size=file_size_str ) else: speed_str = _() self._print(speed_str)
Print the current speed.
376,540
def form_field(self): "Returns appropriate form field." label = unicode(self) defaults = dict(required=False, label=label, widget=self.widget) defaults.update(self.extra) return self.field_class(**defaults)
Returns appropriate form field.
376,541
def create_namespace(self, namespace): std_namespace = _ensure_unicode(namespace.strip()) ws_profiles = self.get_selected_profiles(, ) if ws_profiles: ws_profiles_sorted = sorted( ws_profiles, key=lambda prof: prof[]) ws_profile_inst = ws_profiles_sorted[-1] ws_insts = self.get_central_instances(ws_profile_inst.path) if len(ws_insts) != 1: raise CIMError( CIM_ERR_FAILED, _format("Unexpected number of central instances of WBEM " "Server profile: {0!A}", [i.path for i in ws_insts])) ws_inst = ws_insts[0] ns_inst = CIMInstance() ns_inst[] = std_namespace try: (ret_val, out_params) = self._conn.InvokeMethod( MethodName="CreateWBEMServerNamespace", ObjectName=ws_inst.path, Params=[(, ns_inst)]) except CIMError as exc: if exc.status_code in (CIM_ERR_METHOD_NOT_FOUND, CIM_ERR_METHOD_NOT_AVAILABLE, CIM_ERR_NOT_SUPPORTED): pass else: raise else: if ret_val != 0: raise CIMError( CIM_ERR_FAILED, _format("The CreateWBEMServerNamespace() method is " "implemented but failed: {0}", out_params[])) else: if self.brand == "OpenPegasus": ns_classname = else: ns_classname = ns_inst = CIMInstance(ns_classname) if self.brand == "OpenPegasus": ns_inst[] = True ns_inst[] = std_namespace ns_inst[] = ns_classname ns_inst[] = self.cimom_inst[] ns_inst[] = \ self.cimom_inst[] ns_inst[] = self.cimom_inst[] ns_inst[] = \ self.cimom_inst[] self.conn.CreateInstance(ns_inst, namespace=self.interop_ns) self._determine_namespaces() return std_namespace
Create the specified CIM namespace in the WBEM server and update this WBEMServer object to reflect the new namespace there. This method attempts the following approaches for creating the namespace, in order, until an approach succeeds: 1. Namespace creation as described in the WBEM Server profile (:term:`DSP1092`) via CIM method `CIM_WBEMServer.CreateWBEMServerNamespace()`. This is a new standard approach that is not likely to be widely implemented yet. 2. Issuing the `CreateInstance` operation using the CIM class representing namespaces ('PG_Namespace' for OpenPegasus, and 'CIM_Namespace' otherwise), against the Interop namespace. This approach is typically supported in WBEM servers that support the creation of CIM namespaces. This approach is similar to the approach described in :term:`DSP0200`. Creating namespaces using the `__Namespace` pseudo-class has been deprecated already in DSP0200 1.1.0 (released in 01/2003), and pywbem does not implement that approach. Parameters: namespace (:term:`string`): CIM namespace name. Must not be `None`. The namespace may contain leading and a trailing slash, both of which will be ignored. Returns: :term:`unicode string`: The specified CIM namespace name in its standard format (i.e. without leading or trailing slash characters). Raises: Exceptions raised by :class:`~pywbem.WBEMConnection`. ModelError: An issue with the model implemented by the WBEM server. CIMError: CIM_ERR_ALREADY_EXISTS, Specified namespace already exists in the WBEM server. CIMError: CIM_ERR_NOT_FOUND, Interop namespace could not be determined. CIMError: CIM_ERR_NOT_FOUND, Unexpected number of `CIM_ObjectManager` instances. CIMError: CIM_ERR_FAILED, Unexpected number of central instances of WBEM Server profile.
376,542
def hicpro_mapping_chart (self): keys = OrderedDict() keys[] = { : , : } keys[] = { : , : } keys[] = { : , : } data = [{},{}] for s_name in self.hicpro_data: for r in [1,2]: data[r-1][.format(s_name, r)] = { : self.hicpro_data[s_name][.format(r)], : self.hicpro_data[s_name][.format(r)], : int(self.hicpro_data[s_name][.format(r)]) - int(self.hicpro_data[s_name][.format(r)]) } config = { : , : , : , : , : [ {: , : }, {: , : } ] } return bargraph.plot(data, [keys, keys], config)
Generate the HiC-Pro Aligned reads plot
376,543
def match_file(filename): base_name = os.path.basename(filename) if base_name.startswith(): return False if not os.path.isdir(filename) and not filename.lower().endswith(): return False return True
Return True if file is okay for modifying/recursing.
376,544
def show_instances(server, cim_class): if cim_class == : for inst in server.profiles: print(inst.tomof()) return for ns in server.namespaces: try: insts = server.conn.EnumerateInstances(cim_class, namespace=ns) if len(insts): print( % (cim_class, ns)) for inst in insts: print(inst.tomof()) except pywbem.Error as er: if er.status_code != pywbem.CIM_ERR_INVALID_CLASS: print( % (cim_class, ns, server, er))
Display the instances of the CIM_Class defined by cim_class. If the namespace is None, use the interop namespace. Search all namespaces for instances except for CIM_RegisteredProfile
376,545
def _FindLargestIdPostfixNumber(self, schedule): postfix_number_re = re.compile() def ExtractPostfixNumber(entity_id): if entity_id is None: return 0 match = postfix_number_re.search(entity_id) if match is not None: return int(match.group(1)) else: return 0 id_data_sets = {: schedule.GetAgencyList(), : schedule.GetStopList(), : schedule.GetRouteList(), : schedule.GetTripList(), : schedule.GetServicePeriodList(), : schedule.GetFareAttributeList(), : schedule.GetShapeList()} max_postfix_number = 0 for id_name, entity_list in id_data_sets.items(): for entity in entity_list: entity_id = getattr(entity, id_name) postfix_number = ExtractPostfixNumber(entity_id) max_postfix_number = max(max_postfix_number, postfix_number) return max_postfix_number
Finds the largest integer used as the ending of an id in the schedule. Args: schedule: The schedule to check. Returns: The maximum integer used as an ending for an id.
376,546
def image_uuid(pil_img): print() img_bytes_ = pil_img.tobytes() uuid_ = hashable_to_uuid(img_bytes_) return uuid_
UNSAFE: DEPRICATE: JPEG IS NOT GAURENTEED TO PRODUCE CONSITENT VALUES ON MULTIPLE MACHINES image global unique id References: http://stackoverflow.com/questions/23565889/jpeg-images-have-different-pixel-values-across-multiple-devices
376,547
def create_config(config_path="scriptworker.yaml"): if not os.path.exists(config_path): print("{} doesncredentials\ncredentialscredentials']) config = get_frozen_copy(config) return config, credentials
Create a config from DEFAULT_CONFIG, arguments, and config file. Then validate it and freeze it. Args: config_path (str, optional): the path to the config file. Defaults to "scriptworker.yaml" Returns: tuple: (config frozendict, credentials dict) Raises: SystemExit: on failure
376,548
def add_pagination_meta(self, params, meta): meta[] = params[] meta[] = params[] meta[] = "page={0}&page_size={1}".format( params[] - 1, params[] ) if meta[] > 0 else None meta[] = "page={0}&page_size={1}".format( params[] + 1, params[] ) if meta.get(, True) else None
Extend default meta dictionary value with pagination hints. Note: This method handler attaches values to ``meta`` dictionary without changing it's reference. This means that you should never replace ``meta`` dictionary with any other dict instance but simply modify its content. Args: params (dict): dictionary of decoded parameter values meta (dict): dictionary of meta values attached to response
376,549
def upload(self, fileobj, tileset, name=None, patch=False, callback=None, bypass=False): tileset = self._validate_tileset(tileset) url = self.stage(fileobj, callback=callback) return self.create(url, tileset, name=name, patch=patch, bypass=bypass)
Upload data and create a Mapbox tileset Effectively replicates the Studio upload feature. Returns a Response object, the json() of which returns a dict with upload metadata. Parameters ---------- fileobj: file object or str A filename or a Python file object opened in binary mode. tileset: str A tileset identifier such as '{owner}.my-tileset'. name: str A short name for the tileset that will appear in Mapbox studio. patch: bool Optional patch mode which requires a flag on the owner's account. bypass: bool Optional bypass validation mode for MBTiles which requires a flag on the owner's account. callback: func A function that takes a number of bytes processed as its sole argument. May be used with a progress bar. Returns ------- requests.Response
376,550
def _get_ordering_field_lookup(self, field_name): field = field_name get_field = getattr(self, "get_%s_ordering_field" % field_name, None) if get_field: field = get_field() return field
get real model field to order by
376,551
def _model_foreign(ins): fks = [] for t in ins.tables: fks.extend([ SaForeignkeyDoc( key=fk.column.key, target=fk.target_fullname, onupdate=fk.onupdate, ondelete=fk.ondelete ) for fk in t.foreign_keys]) return fks
Get foreign keys info :type ins: sqlalchemy.orm.mapper.Mapper :rtype: list[SaForeignkeyDoc]
376,552
def _wrap_class(request_handler, validator): METHODS = [, , , , , , ] for name in METHODS: method = getattr(request_handler, name) setattr(request_handler, name, _auth_required(method, validator)) return request_handler
Decorate each HTTP verb method to check if the request is authenticated :param request_handler: a tornado.web.RequestHandler instance
376,553
def clear(self, decorated_function=None): if decorated_function is not None and decorated_function in self._storage: self._storage.pop(decorated_function) else: self._storage.clear() if self.__statistic is True: self.__cache_missed = 0 self.__cache_hit = 0
:meth:`WCacheStorage.clear` method implementation (Clears statistics also)
376,554
def _gti_dirint_lt_90(poa_global, aoi, aoi_lt_90, solar_zenith, solar_azimuth, times, surface_tilt, surface_azimuth, pressure=101325., use_delta_kt_prime=True, temp_dew=None, albedo=.25, model=, model_perez=, max_iterations=30): I0 = get_extra_radiation(times, 1370, ) cos_zenith = tools.cosd(solar_zenith) I0h = I0 * np.maximum(0.065, cos_zenith) airmass = atmosphere.get_relative_airmass(solar_zenith, model=) airmass = atmosphere.get_absolute_airmass(airmass, pressure) coeffs = np.empty(max(30, max_iterations)) coeffs[0:3] = 1 coeffs[3:10] = 0.5 coeffs[10:20] = 0.25 coeffs[20:] = 0.125 coeffs = coeffs[:max_iterations] diff = pd.Series(9999, index=times) best_diff = diff poa_global_i = poa_global for iteration, coeff in enumerate(coeffs): best_diff_lte_1 = best_diff <= 1 best_diff_lte_1_lt_90 = best_diff_lte_1[aoi_lt_90] if best_diff_lte_1_lt_90.all(): break kt = clearness_index(poa_global_i, aoi, I0) disc_dni = np.maximum(_disc_kn(kt, airmass)[0] * I0, 0) kt_prime = clearness_index_zenith_independent(kt, airmass) dni = _dirint_from_dni_ktprime(disc_dni, kt_prime, solar_zenith, use_delta_kt_prime, temp_dew) ghi = kt * I0h dhi = ghi - dni * cos_zenith dni = np.maximum(dni, 0) ghi = np.maximum(ghi, 0) dhi = np.maximum(dhi, 0) all_irrad = get_total_irradiance( surface_tilt, surface_azimuth, solar_zenith, solar_azimuth, dni, ghi, dhi, dni_extra=I0, airmass=airmass, albedo=albedo, model=model, model_perez=model_perez) gti_model = all_irrad[] diff = gti_model - poa_global diff_abs = diff.abs() smallest_diff = diff_abs < best_diff best_diff = diff_abs.where(smallest_diff, best_diff) if iteration == 0: best_ghi = ghi best_dni = dni best_dhi = dhi best_kt_prime = kt_prime else: best_ghi = ghi.where(smallest_diff, best_ghi) best_dni = dni.where(smallest_diff, best_dni) best_dhi = dhi.where(smallest_diff, best_dhi) best_kt_prime = kt_prime.where(smallest_diff, best_kt_prime) poa_global_i = np.maximum(1.0, poa_global_i - coeff * diff) else: import warnings failed_points = best_diff[aoi_lt_90][~best_diff_lte_1_lt_90] warnings.warn( ( % (len(failed_points), max_iterations, failed_points)), RuntimeWarning) return best_ghi, best_dni, best_dhi, best_kt_prime
GTI-DIRINT model for AOI < 90 degrees. See Marion 2015 Section 2.1. See gti_dirint signature for parameter details.
376,555
def is_course_run_enrollable(course_run): now = datetime.datetime.now(pytz.UTC) end = parse_datetime_handle_invalid(course_run.get()) enrollment_start = parse_datetime_handle_invalid(course_run.get()) enrollment_end = parse_datetime_handle_invalid(course_run.get()) return (not end or end > now) and \ (not enrollment_start or enrollment_start < now) and \ (not enrollment_end or enrollment_end > now)
Return true if the course run is enrollable, false otherwise. We look for the following criteria: - end is greater than now OR null - enrollment_start is less than now OR null - enrollment_end is greater than now OR null
376,556
def findall(text): results = TIMESTRING_RE.findall(text) dates = [] for date in results: if re.compile(, re.I).match(date[0]): dates.append((date[0].strip(), Range(date[0]))) else: dates.append((date[0].strip(), Date(date[0]))) return dates
Find all the timestrings within a block of text. >>> timestring.findall("once upon a time, about 3 weeks ago, there was a boy whom was born on august 15th at 7:20 am. epic.") [ ('3 weeks ago,', <timestring.Date 2014-02-09 00:00:00 4483019280>), ('august 15th at 7:20 am', <timestring.Date 2014-08-15 07:20:00 4483019344>) ]
376,557
def save(self): username, email, password = (self.cleaned_data[], self.cleaned_data[], self.cleaned_data[]) user = get_user_model().objects.create_user(username, email, password, not defaults.ACCOUNTS_ACTIVATION_REQUIRED, defaults.ACCOUNTS_ACTIVATION_REQUIRED) return user
Creates a new user and account. Returns the newly created user.
376,558
def unstack_annotations(annotations_sframe, num_rows=None): _raise_error_if_not_sframe(annotations_sframe, variable_name="annotations_sframe") cols = [, , ] has_confidence = in annotations_sframe.column_names() if has_confidence: cols.append() if num_rows is None: if len(annotations_sframe) == 0: num_rows = 0 else: num_rows = annotations_sframe[].max() + 1 sf = annotations_sframe sf[] = sf = sf.pack_columns([, , , ], dtype=dict, new_column_name=) sf = sf.pack_columns(cols, dtype=dict, new_column_name=) sf = sf.unstack(, new_column_name=) sf_all_ids = _tc.SFrame({: range(num_rows)}) sf = sf.join(sf_all_ids, on=, how=) sf = sf.fillna(, []) sf = sf.sort() annotations_sarray = sf[] if has_confidence: annotations_sarray = annotations_sarray.apply( lambda x: sorted(x, key=lambda ann: ann[], reverse=True), dtype=list) return annotations_sarray
Converts object detection annotations (ground truth or predictions) to unstacked format (an `SArray` where each element is a list of object instances). Parameters ---------- annotations_sframe: SFrame An `SFrame` with stacked predictions, produced by the `stack_annotations` function. num_rows: int Optionally specify the number of rows in your original dataset, so that all get represented in the unstacked format, regardless of whether or not they had instances or not. Returns ------- annotations_sarray: An `SArray` with unstacked annotations. See also -------- stack_annotations Examples -------- If you have annotations in stacked format: >>> stacked_predictions Data: +--------+------------+-------+-------+-------+-------+--------+ | row_id | confidence | label | x | y | width | height | +--------+------------+-------+-------+-------+-------+--------+ | 0 | 0.98 | dog | 123.0 | 128.0 | 80.0 | 182.0 | | 0 | 0.67 | cat | 150.0 | 183.0 | 129.0 | 101.0 | | 1 | 0.8 | dog | 50.0 | 432.0 | 65.0 | 98.0 | +--------+------------+-------+-------+-------+-------+--------+ [3 rows x 7 columns] They can be converted to unstacked format using this function: >>> turicreate.object_detector.util.unstack_annotations(stacked_predictions)[0] [{'confidence': 0.98, 'coordinates': {'height': 182.0, 'width': 80.0, 'x': 123.0, 'y': 128.0}, 'label': 'dog', 'type': 'rectangle'}, {'confidence': 0.67, 'coordinates': {'height': 101.0, 'width': 129.0, 'x': 150.0, 'y': 183.0}, 'label': 'cat', 'type': 'rectangle'}]
376,559
def events(cls, filters): current = filters.pop(, False) current_params = [] if current: current_params = [(, )] filter_url = uparse.urlencode(sorted(list(filters.items())) + current_params) events = cls.json_get( % (cls.api_url, filter_url), empty_key=True, send_key=False) return events
Retrieve events details from status.gandi.net.
376,560
async def async_poller(client, initial_response, deserialization_callback, polling_method): try: client = client if isinstance(client, ServiceClientAsync) else client._client except AttributeError: raise ValueError("Poller client parameter must be a low-level msrest Service Client or a SDK client.") response = initial_response.response if isinstance(initial_response, ClientRawResponse) else initial_response if isinstance(deserialization_callback, type) and issubclass(deserialization_callback, Model): deserialization_callback = deserialization_callback.deserialize polling_method.initialize(client, response, deserialization_callback) await polling_method.run() return polling_method.resource()
Async Poller for long running operations. :param client: A msrest service client. Can be a SDK client and it will be casted to a ServiceClient. :type client: msrest.service_client.ServiceClient :param initial_response: The initial call response :type initial_response: msrest.universal_http.ClientResponse or msrest.pipeline.ClientRawResponse :param deserialization_callback: A callback that takes a Response and return a deserialized object. If a subclass of Model is given, this passes "deserialize" as callback. :type deserialization_callback: callable or msrest.serialization.Model :param polling_method: The polling strategy to adopt :type polling_method: msrest.polling.PollingMethod
376,561
def note_list(self, body_matches=None, post_id=None, post_tags_match=None, creator_name=None, creator_id=None, is_active=None): params = { : body_matches, : post_id, : post_tags_match, : creator_name, : creator_id, : is_active } return self._get(, params)
Return list of notes. Parameters: body_matches (str): The note's body matches the given terms. post_id (int): A specific post. post_tags_match (str): The note's post's tags match the given terms. creator_name (str): The creator's name. Exact match. creator_id (int): The creator's user id. is_active (bool): Can be: True, False.
376,562
def model_to_select_list(model_class, filter_dict=None, q_filter=None): if filter_dict is None: filter_dict = {} if q_filter is not None: filter_list = [q_filter] else: filter_list = [] objects = model_class.objects.filter( *filter_list, **filter_dict).values(, ) return list(objects)
只选择 id 和 name,用来做列表选择 :param model_class: :param filter_dict: :param q_filter: :return:
376,563
def determinize(m): if not m.is_finite(): raise TypeError("machine must be a finite automaton") transitions = collections.defaultdict(lambda: collections.defaultdict(set)) alphabet = set() for transition in m.get_transitions(): [[lstate], read] = transition.lhs [[rstate]] = transition.rhs if len(read) > 1: raise NotSupportedException("multiple input symbols on transition not supported") if len(read) == 1: alphabet.add(read[0]) transitions[lstate][tuple(read)].add(rstate) class Set(frozenset): def __str__(self): return "{{{}}}".format(",".join(map(str, sorted(self)))) def _repr_html_(self): return "{{{}}}".format(",".join(x._repr_html_() for x in sorted(self))) def eclosure(states): states = set(states) frontier = set(states) while len(frontier) > 0: lstate = frontier.pop() for rstate in transitions[lstate][()]: if rstate not in states: states.add(rstate) frontier.add(rstate) return states dm = FiniteAutomaton() start_state = Set(eclosure([m.get_start_state()])) dm.set_start_state(start_state) frontier = {start_state} visited = set() while len(frontier) > 0: lstates = frontier.pop() if lstates in visited: continue visited.add(lstates) dtransitions = collections.defaultdict(set) for lstate in lstates: for read in alphabet: dtransitions[read] |= transitions[lstate][(read,)] for read in alphabet: rstates = Set(eclosure(dtransitions[read])) dm.add_transition([[lstates], read], [[rstates]]) frontier.add(rstates) accept_states = set(m.get_accept_states()) for states in visited: if len(states & accept_states) > 0: dm.add_accept_state(states) return dm
Determinizes a finite automaton.
376,564
def hpforest(self, data: [, str] = None, freq: str = None, id: str = None, input: [str, list, dict] = None, save: str = None, score: [str, bool, ] = True, target: [str, list, dict] = None, procopts: str = None, stmtpassthrough: str = None, **kwargs: dict) -> :
Python method to call the HPFOREST procedure Documentation link: https://support.sas.com/documentation/solutions/miner/emhp/14.1/emhpprcref.pdf :param data: SASdata object or string. This parameter is required. :parm freq: The freq variable can only be a string type. :parm id: The id variable can only be a string type. :parm input: The input variable can be a string, list or dict type. It refers to the dependent, y, or label variable. This parameter is required :parm save: The save variable can only be a string type. :parm score: The score variable can only be a string type. :parm target: The target variable can be a string, list or dict type. It refers to the dependent, y, or label variable. This parameter is required :parm procopts: The procopts variable is a generic option available for advanced use. It can only be a string type. :parm stmtpassthrough: The stmtpassthrough variable is a generic option available for advanced use. It can only be a string type. :return: SAS Result Object
376,565
def _repr_html_row_(self, keys): tr, th, c = , , r = h = for k in keys: v = self.__dict__.get(k) if k == : k = c = utils.text_colour_for_hex(v) style = .format(c, v) else: style = if k == : try: v = v._repr_html_() except AttributeError: v = v.__repr__() tr += r.format(v=v, stl=style) th += h.format(k=k) return th, tr
Jupyter Notebook magic repr function as a row – used by ``Legend._repr_html_()``.
376,566
def check_denovo_input(inputfile, params): background = params["background"] input_type = determine_file_type(inputfile) if input_type == "fasta": valid_bg = FA_VALID_BGS elif input_type in ["bed", "narrowpeak"]: genome = params["genome"] valid_bg = BED_VALID_BGS if "genomic" in background or "gc" in background: Genome(genome) check_bed_file(inputfile) else: sys.stderr.write("Format of inputfile {} not recognized.\n".format(inputfile)) sys.stderr.write("Input should be FASTA, BED or narrowPeak.\n") sys.stderr.write("See https://genome.ucsc.edu/FAQ/FAQformat.html for specifications.\n") sys.exit(1) for bg in background: if not bg in valid_bg: logger.info("Input type is %s, ignoring background type ", input_type, bg) background = [bg for bg in background if bg in valid_bg] if len(background) == 0: logger.error("No valid backgrounds specified!") sys.exit(1) return input_type, background
Check if an input file is valid, which means BED, narrowPeak or FASTA
376,567
def re_evaluate(local_dict=None): try: compiled_ex = _numexpr_last[] except KeyError: raise RuntimeError("not a previous evaluate() execution found") argnames = _numexpr_last[] args = getArguments(argnames, local_dict) kwargs = _numexpr_last[] with evaluate_lock: return compiled_ex(*args, **kwargs)
Re-evaluate the previous executed array expression without any check. This is meant for accelerating loops that are re-evaluating the same expression repeatedly without changing anything else than the operands. If unsure, use evaluate() which is safer. Parameters ---------- local_dict : dictionary, optional A dictionary that replaces the local operands in current frame.
376,568
def write_by_templ(templ, target, sub_value, safe=False): templ_txt = read_file(templ) txt = None if safe: txt = Template(templ_txt).safe_substitute(sub_value) else: txt = Template(templ_txt).substitute(sub_value) write_file(target, txt)
根据模版写入文件。 :param str templ: 模版文件所在路径。 :param str target: 要写入的文件所在路径。 :param dict sub_value: 被替换的内容。
376,569
def _imply_options(self): self.no_upload = self.no_upload or self.to_stdout or self.offline self.auto_update = self.auto_update and not self.offline if (self.analyze_container or self.analyze_file or self.analyze_mountpoint or self.analyze_image_id): self.analyze_container = True self.to_json = self.to_json or self.analyze_container self.register = (self.register or self.reregister) and not self.offline self.keep_archive = self.keep_archive or self.no_upload if self.payload: self.legacy_upload = False
Some options enable others automatically
376,570
def process_flat_files(id_mappings_file, complexes_file=None, ptm_file=None, ppi_file=None, seq_file=None, motif_window=7): id_df = pd.read_csv(id_mappings_file, delimiter=, names=_hprd_id_cols, dtype=) id_df = id_df.set_index() if complexes_file is None and ptm_file is None and ppi_file is None: raise ValueError( ) if ptm_file and not seq_file: raise ValueError() cplx_df = None if complexes_file: cplx_df = pd.read_csv(complexes_file, delimiter=, names=_cplx_cols, dtype=, na_values=[, ]) ptm_df = None seq_dict = None if ptm_file: ptm_df = pd.read_csv(ptm_file, delimiter=, names=_ptm_cols, dtype=, na_values=) seq_dict = load_fasta_sequences(seq_file, id_index=2) ppi_df = None if ppi_file: ppi_df = pd.read_csv(ppi_file, delimiter=, names=_ppi_cols, dtype=) return HprdProcessor(id_df, cplx_df, ptm_df, ppi_df, seq_dict, motif_window)
Get INDRA Statements from HPRD data. Of the arguments, `id_mappings_file` is required, and at least one of `complexes_file`, `ptm_file`, and `ppi_file` must also be given. If `ptm_file` is given, `seq_file` must also be given. Note that many proteins (> 1,600) in the HPRD content are associated with outdated RefSeq IDs that cannot be mapped to Uniprot IDs. For these, the Uniprot ID obtained from the HGNC ID (itself obtained from the Entrez ID) is used. Because the sequence referenced by the Uniprot ID obtained this way may be different from the (outdated) RefSeq sequence included with the HPRD content, it is possible that this will lead to invalid site positions with respect to the Uniprot IDs. To allow these site positions to be mapped during assembly, the Modification statements produced by the HprdProcessor include an additional key in the `annotations` field of their Evidence object. The annotations field is called 'site_motif' and it maps to a dictionary with three elements: 'motif', 'respos', and 'off_by_one'. 'motif' gives the peptide sequence obtained from the RefSeq sequence included with HPRD. 'respos' indicates the position in the peptide sequence containing the residue. Note that these positions are ONE-INDEXED (not zero-indexed). Finally, the 'off-by-one' field contains a boolean value indicating whether the correct position was inferred as being an off-by-one (methionine cleavage) error. If True, it means that the given residue could not be found in the HPRD RefSeq sequence at the given position, but a matching residue was found at position+1, suggesting a sequence numbering based on the methionine-cleaved sequence. The peptide included in the 'site_motif' dictionary is based on this updated position. Parameters ---------- id_mappings_file : str Path to HPRD_ID_MAPPINGS.txt file. complexes_file : Optional[str] Path to PROTEIN_COMPLEXES.txt file. ptm_file : Optional[str] Path to POST_TRANSLATIONAL_MODIFICATIONS.txt file. ppi_file : Optional[str] Path to BINARY_PROTEIN_PROTEIN_INTERACTIONS.txt file. seq_file : Optional[str] Path to PROTEIN_SEQUENCES.txt file. motif_window : int Number of flanking amino acids to include on each side of the PTM target residue in the 'site_motif' annotations field of the Evidence for Modification Statements. Default is 7. Returns ------- HprdProcessor An HprdProcessor object which contains a list of extracted INDRA Statements in its statements attribute.
376,571
def get_n_excluded_patches(self): base = self.get_patches_base() if not base: return 0 p = base.rfind() if p == -1: return 0 try: n = int(base[p+1:]) return n except TypeError: return 0
Gets number of excluded patches from patches_base: #patches_base=1.0.0+THIS_NUMBER
376,572
def remove_info_file(): try: os.unlink(_get_info_file_path()) except OSError as e: if e.errno == errno.ENOENT: pass else: raise
Remove the current process's TensorBoardInfo file, if it exists. If the file does not exist, no action is taken and no error is raised.
376,573
def removeFile(file): if "y" in speech.question("Are you sure you want to remove " + file + "? (Y/N): "): speech.speak("Removing " + file + " with the command.") subprocess.call(["rm", "-r", file]) else: speech.speak("Okay, I won't remove " + file + ".")
remove a file
376,574
def topfnfile(self, fileobj): for entry in self: print >>fileobj, entry.path fileobj.close()
write a cache object to filename as a plain text pfn file
376,575
def run_file(path_or_file, context=None): if context is None: context = EvalJs() if not isinstance(context, EvalJs): raise TypeError() eval_value = context.eval(get_file_contents(path_or_file)) return eval_value, context
Context must be EvalJS object. Runs given path as a JS program. Returns (eval_value, context).
376,576
def get_books_for_schedule(self, schedule): slns = self._get_slns(schedule) books = {} for sln in slns: try: section_books = self.get_books_by_quarter_sln( schedule.term.quarter, sln ) books[sln] = section_books except DataFailureException: pass return books
Returns a dictionary of data. SLNs are the keys, an array of Book objects are the values.
376,577
def handle_errors( cls, message, *format_args, re_raise=True, exception_class=Exception, do_finally=None, do_except=None, do_else=None, **format_kwds ): try: yield except exception_class as err: try: final_message = cls.reformat_exception( message, err, *format_args, **format_kwds ) except Exception as msg_err: raise cls( "Failed while formatting message: {}".format(repr(msg_err)) ) trace = cls.get_traceback() if do_except is not None: do_except(err, final_message, trace) if re_raise: raise cls(final_message).with_traceback(trace) else: if do_else is not None: do_else() finally: if do_finally is not None: do_finally()
provides a context manager that will intercept exceptions and repackage them as Buzz instances with a message attached: .. code-block:: python with Buzz.handle_errors("It didn't work"): some_code_that_might_raise_an_exception() :param: message: The message to attach to the raised Buzz :param: format_args: Format arguments. Follows str.format conv. :param: format_kwds: Format keyword args. Follows str.format conv. :param: re_raise: If true, the re-packaged exception will be raised :param: exception_class: Limits the class of exceptions that will be re-packaged as a Buzz exception. Any other exception types will not be caught and re-packaged. Defaults to Exception (will handle all exceptions) :param: do_finally: A function that should always be called at the end of the block. Should take no parameters :param: do_except: A function that should be called only if there was an exception. Should take the raised exception as its first parameter, the final message for the exception that will be raised as its second, and the traceback as its third :param: do_else: A function taht should be called only if there were no exceptions encountered
376,578
def recordAndPropagate(self, request: Request, clientName): self.requests.add(request) self.propagate(request, clientName) self.tryForwarding(request)
Record the request in the list of requests and propagate. :param request: :param clientName:
376,579
def is_cf_trajectory(nc, variable): dims = nc.variables[variable].dimensions cmatrix = coordinate_dimension_matrix(nc) for req in (, , ): if req not in cmatrix: return False if len(cmatrix[]) != 2: return False if cmatrix[] != cmatrix[]: return False if cmatrix[] != cmatrix[]: return False if in cmatrix and cmatrix[] != cmatrix[]: return False if dims == cmatrix[]: return True return False
Returns true if the variable is a CF trajectory feature type :param netCDF4.Dataset nc: An open netCDF dataset :param str variable: name of the variable to check
376,580
def parse_pkcs12(data, password=None): if not isinstance(data, byte_cls): raise TypeError(pretty_message( , type_name(data) )) if password is not None: if not isinstance(password, byte_cls): raise TypeError(pretty_message( , type_name(password) )) else: password = b certs = {} private_keys = {} pfx = pkcs12.Pfx.load(data) auth_safe = pfx[] if auth_safe[].native != : raise ValueError(pretty_message( )) authenticated_safe = pfx.authenticated_safe mac_data = pfx[] if mac_data: mac_algo = mac_data[][][].native key_length = { : 20, : 28, : 32, : 48, : 64, : 28, : 32, }[mac_algo] mac_key = pkcs12_kdf( mac_algo, password, mac_data[].native, mac_data[].native, key_length, 3 ) hash_mod = getattr(hashlib, mac_algo) computed_hmac = hmac.new(mac_key, auth_safe[].contents, hash_mod).digest() stored_hmac = mac_data[][].native if not constant_compare(computed_hmac, stored_hmac): raise ValueError() for content_info in authenticated_safe: content = content_info[] if isinstance(content, core.OctetString): _parse_safe_contents(content.native, certs, private_keys, password) elif isinstance(content, cms.EncryptedData): encrypted_content_info = content[] encryption_algorithm_info = encrypted_content_info[] encrypted_content = encrypted_content_info[].native decrypted_content = _decrypt_encrypted_data(encryption_algorithm_info, encrypted_content, password) _parse_safe_contents(decrypted_content, certs, private_keys, password) else: raise ValueError(pretty_message( )) key_fingerprints = set(private_keys.keys()) cert_fingerprints = set(certs.keys()) common_fingerprints = sorted(list(key_fingerprints & cert_fingerprints)) key = None cert = None other_certs = [] if len(common_fingerprints) >= 1: fingerprint = common_fingerprints[0] key = private_keys[fingerprint] cert = certs[fingerprint] other_certs = [certs[f] for f in certs if f != fingerprint] return (key, cert, other_certs) if len(private_keys) > 0: first_key = sorted(list(private_keys.keys()))[0] key = private_keys[first_key] if len(certs) > 0: first_key = sorted(list(certs.keys()))[0] cert = certs[first_key] del certs[first_key] if len(certs) > 0: other_certs = sorted(list(certs.values())) return (key, cert, other_certs)
Parses a PKCS#12 ANS.1 DER-encoded structure and extracts certs and keys :param data: A byte string of a DER-encoded PKCS#12 file :param password: A byte string of the password to any encrypted data :raises: ValueError - when any of the parameters are of the wrong type or value OSError - when an error is returned by one of the OS decryption functions :return: A three-element tuple of: 1. An asn1crypto.keys.PrivateKeyInfo object 2. An asn1crypto.x509.Certificate object 3. A list of zero or more asn1crypto.x509.Certificate objects that are "extra" certificates, possibly intermediates from the cert chain
376,581
def percent(self, value) -> : raise_not_number(value) self.gap = .format(value) return self
Set the margin as a percentage.
376,582
def synchronize(self, graph_data=None): profile = graph_data or self.graph.get() self.facebook_username = profile.get() self.first_name = profile.get() self.middle_name = profile.get() self.last_name = profile.get() self.birthday = datetime.strptime(profile[], ) if profile.has_key() else None self.email = profile.get() self.locale = profile.get() self.gender = profile.get() self.extra_data = profile self.save()
Synchronize ``facebook_username``, ``first_name``, ``middle_name``, ``last_name`` and ``birthday`` with Facebook. :param graph_data: Optional pre-fetched graph data
376,583
def dtype_contract(input_dtype=None, output_dtype=None): def wrap(function): @wraps(function) def wrapped_function(*args, **kwargs): if input_dtype is not None: check_dtype(args[0], input_dtype) array = function(*args, **kwargs) if output_dtype is not None: check_dtype(array, output_dtype) return array return wrapped_function return wrap
Function decorator for specifying input and/or output array dtypes.
376,584
def predecessors(self, node, exclude_compressed=True): preds = super(Graph, self).predecessors(node) if exclude_compressed: return [n for n in preds if not self.node[n].get(, False)] else: return preds
Returns the list of predecessors of a given node Parameters ---------- node : str The target node exclude_compressed : boolean If true, compressed nodes are excluded from the predecessors list Returns ------- list List of predecessors nodes
376,585
def enumeration(*values, **kwargs): if not (values and all(isinstance(value, string_types) and value for value in values)): raise ValueError("expected a non-empty sequence of strings, got %s" % values) if len(values) != len(set(values)): raise ValueError("enumeration items must be unique, got %s" % values) attrs = {value: value for value in values} attrs.update({ "_values": list(values), "_default": values[0], "_case_sensitive": kwargs.get("case_sensitive", True), "_quote": kwargs.get("quote", False), }) return type(str("Enumeration"), (Enumeration,), attrs)()
Create an |Enumeration| object from a sequence of values. Call ``enumeration`` with a sequence of (unique) strings to create an Enumeration object: .. code-block:: python #: Specify the horizontal alignment for rendering text TextAlign = enumeration("left", "right", "center") Args: values (str) : string enumeration values, passed as positional arguments The order of arguments is the order of the enumeration, and the first element will be considered the default value when used to create |Enum| properties. Keyword Args: case_sensitive (bool, optional) : Whether validation should consider case or not (default: True) quote (bool, optional): Whther values should be quoted in the string representations (default: False) Raises: ValueError if values empty, if any value is not a string or not unique Returns: Enumeration
376,586
def print_all(): _, conf = read_latoolscfg() default = conf[][] pstr = for s in conf.sections(): if s == default: pstr += s + elif s == : pstr += s + else: pstr += s + for k, v in conf[s].items(): if k != : if v[:9] == : v = pkgrs.resource_filename(, v) pstr += + k + + v + pstr += print(pstr) return
Prints all currently defined configurations.
376,587
def get_pr(pr_num, config=None, repo=DEFAULT_REPO, raw=False): response = requests.get(PR_ENDPOINT.format(repo, pr_num), auth=get_auth_info(config)) if raw: return response else: response.raise_for_status() return response.json()
Get the payload for the given PR number. Let exceptions bubble up.
376,588
def nu_max(self, *args): return 3120.* (self.mass(*args) / (self.radius(*args)**2 * np.sqrt(self.Teff(*args)/5777.)))
Returns asteroseismic nu_max in uHz reference: https://arxiv.org/pdf/1312.3853v1.pdf, Eq (3)
376,589
def _download_astorb( self): self.log.info() url = self.settings["astorb"]["url"] print "Downloading orbital elements from " % locals() response = urllib2.urlopen(url) data = response.read() astorbgz = "/tmp/astorb.dat.gz" file_ = open(astorbgz, ) file_.write(data) file_.close() print "Finished downloading orbital elements" % locals() self.log.info() return astorbgz
*download the astorb database file* **Key Arguments:** - ``astorbgz`` -- path to the downloaded astorb database file
376,590
def strain(self, ifo, duration=32, sample_rate=4096): from astropy.utils.data import download_file from pycbc.frame import read_frame length = "{}sec".format(duration) if sample_rate == 4096: sampling = "4KHz" elif sample_rate == 16384: sampling = "16KHz" channel = "{}:GWOSC-{}_R1_STRAIN".format(ifo, sampling.upper()) url = self.data[][ifo][length][sampling][] filename = download_file(url, cache=True) return read_frame(str(filename), str(channel))
Return strain around the event Currently this will return the strain around the event in the smallest format available. Selection of other data is not yet available. Parameters ---------- ifo: str The name of the observatory you want strain for. Ex. H1, L1, V1 Returns ------- strain: pycbc.types.TimeSeries Strain around the event.
376,591
def _parse_materials(header, views): try: import PIL.Image except ImportError: log.warning("unable to load textures without pillow!") return None images = None if "images" in header: images = [None] * len(header["images"]) for i, img in enumerate(header["images"]): blob = views[img["bufferView"]] try: images[i] = PIL.Image.open(util.wrap_as_stream(blob)) except BaseException: log.error("failed to load image!", exc_info=True) materials = [] if "materials" in header: for mat in header["materials"]: loopable = mat.copy() if "pbrMetallicRoughness" in loopable: loopable.update(loopable.pop("pbrMetallicRoughness")) pbr = {} for k, v in loopable.items(): if not isinstance(v, dict): pbr[k] = v elif "index" in v: idx = header["textures"][v["index"]]["source"] pbr[k] = images[idx] materials.append(visual.texture.PBRMaterial(**pbr)) return materials
Convert materials and images stored in a GLTF header and buffer views to PBRMaterial objects. Parameters ------------ header : dict Contains layout of file views : (n,) bytes Raw data Returns ------------ materials : list List of trimesh.visual.texture.Material objects
376,592
def delete_all(self, filter, force=False, timeout=-1): uri = "{}?filter={}&force={}".format(self._base_uri, quote(filter), force) logger.debug("Delete all resources (uri = %s)" % uri) return self.delete(uri)
Deletes all resources from the appliance that match the provided filter. Args: filter: A general filter/query string to narrow the list of items deleted. force: If set to true, the operation completes despite any problems with network connectivity or errors on the resource itself. The default is false. timeout: Timeout in seconds. Wait for task completion by default. The timeout does not abort the operation in OneView; it just stops waiting for its completion. Returns: bool: Indicates if the resources were successfully deleted.
376,593
def basic_params1(): return hparam.HParams( batch_size=4096, batch_shuffle_size=512, use_fixed_batch_size=False, num_hidden_layers=4, kernel_height=3, kernel_width=1, hidden_size=64, compress_steps=0, dropout=0.2, clip_grad_norm=2.0, grad_noise_scale=0.0, summarize_grads=False, mlperf_mode=False, summarize_vars=False, initializer="orthogonal", initializer_gain=1.5, label_smoothing=0.1, optimizer="adam", optimizer_adam_epsilon=1e-6, optimizer_adam_beta1=0.85, optimizer_adam_beta2=0.997, optimizer_momentum_momentum=0.9, optimizer_momentum_nesterov=False, optimizer_adafactor_beta1=0.0, optimizer_adafactor_beta2=0.999, optimizer_adafactor_factored=True, optimizer_adafactor_decay_type="pow", optimizer_adafactor_memory_exponent=0.8, optimizer_adafactor_clipping_threshold=1.0, optimizer_adafactor_multiply_by_parameter_scale=True, optimizer_multistep_accumulate_steps=0, mixed_precision_optimizer_loss_scaler="exponential", mixed_precision_optimizer_init_loss_scale=2**15, optimizer_zero_grads=False, weight_decay=1e-6, weight_noise=0.0, learning_rate_schedule="legacy", learning_rate_constant=1.0, learning_rate_decay_scheme="none", learning_rate_decay_steps=5000, learning_rate_decay_staircase=False, learning_rate_minimum=None, learning_rate_decay_rate=1.0, learning_rate_warmup_steps=100, learning_rate_cosine_cycle_steps=250000, learning_rate=0.1, sampling_method="argmax", sampling_temp=1.0, sampling_keep_top_k=-1, factored_logits=False, multiply_embedding_mode="sqrt_depth", moe_hidden_sizes="2048", moe_num_experts=64, moe_k=2, moe_loss_coef=1e-2, layer_preprocess_sequence="none", layer_postprocess_sequence="dan", layer_prepostprocess_dropout=0.1, layer_prepostprocess_dropout_broadcast_dims="", symbol_dropout=0.0, norm_type="layer", norm_epsilon=1e-6, vocab_divisor=1, min_length=0, max_length=0, pack_dataset=False, use_custom_ops=True, split_targets_chunk_length=0, split_targets_max_chunks=100, split_targets_strided_training=False, min_length_bucket=8, length_bucket_step=1.1, eval_drop_long_sequences=False, eval_run_autoregressive=False, shared_embedding_and_softmax_weights=False, shared_embedding=False, symbol_modality_num_shards=1, scheduled_sampling_prob=0.0, scheduled_sampling_warmup_steps=50000, scheduled_sampling_gold_mixin_prob=0.5, daisy_chain_variables=True, force_full_predict=False, no_data_parallelism=False, activation_dtype="float32", weight_dtype="float32", pretrained_model_dir="", multiproblem_schedule_threshold=0.5, multiproblem_per_task_threshold="", multiproblem_schedule_max_examples=1e7, multiproblem_mixing_schedule="constant", multiproblem_reweight_label_loss=False, multiproblem_label_weight=0.5, max_relative_position=0, heads_share_relative_embedding=False, add_relative_to_values=False, tpu_enable_host_call=False, pad_batch=False, multiproblem_target_eval_only=False, multiproblem_vocab_size=-1, multiproblem_max_input_length=-1, multiproblem_max_target_length=-1, multiproblem_fixed_train_length=-1, warm_start_from_second="", area_value_mode="none", area_key_mode="none", num_area_layers=0, max_area_width=1, max_area_height=1, memory_height=1 )
A set of basic hyperparameters.
376,594
def _connect(self): if self.connected: return self._connect_broker() stack = self._build_stack() self._connect_stack(stack)
Establish a connection to the master process's UNIX listener socket, constructing a mitogen.master.Router to communicate with the master, and a mitogen.parent.Context to represent it. Depending on the original transport we should emulate, trigger one of the _connect_*() service calls defined above to cause the master process to establish the real connection on our behalf, or return a reference to the existing one.
376,595
def get_geocode(city, state, street_address="", zipcode=""): try: key = settings.GMAP_KEY except AttributeError: return "You need to put GMAP_KEY in settings" location = "" if street_address: location += .format(street_address.replace(" ", "+")) location += .format(city.replace(" ", "+"), state) if zipcode: location += "+{}".format(zipcode) url = "http://maps.google.com/maps/geo?q={}&output=xml&key={}".format(location, key) file = urllib.urlopen(url).read() try: xml = xmltramp.parse(file) except Exception as error: print("Failed to parse xml file {}: {}".format(file, error)) return None status = str(xml.Response.Status.code) if status == "200": geocode = str(xml.Response.Placemark.Point.coordinates).split() return (geocode[1], geocode[0]) else: print(status) return None
For given location or object, takes address data and returns latitude and longitude coordinates from Google geocoding service get_geocode(self, street_address="1709 Grand Ave.", state="MO", zip="64112") Returns a tuple of (lat, long) Most times you'll want to join the return.
376,596
def _file_where(user_id, api_path): directory, name = split_api_filepath(api_path) return and_( files.c.name == name, files.c.user_id == user_id, files.c.parent_name == directory, )
Return a WHERE clause matching the given API path and user_id.
376,597
def console_hline( con: tcod.console.Console, x: int, y: int, l: int, flag: int = BKGND_DEFAULT, ) -> None: lib.TCOD_console_hline(_console(con), x, y, l, flag)
Draw a horizontal line on the console. This always uses the character 196, the horizontal line character. .. deprecated:: 8.5 Use :any:`Console.hline` instead.
376,598
def random_forest_error(forest, X_train, X_test, inbag=None, calibrate=True, memory_constrained=False, memory_limit=None): if inbag is None: inbag = calc_inbag(X_train.shape[0], forest) pred = np.array([tree.predict(X_test) for tree in forest]).T pred_mean = np.mean(pred, 0) pred_centered = pred - pred_mean n_trees = forest.n_estimators V_IJ = _core_computation(X_train, X_test, inbag, pred_centered, n_trees, memory_constrained, memory_limit) V_IJ_unbiased = _bias_correction(V_IJ, inbag, pred_centered, n_trees) if np.max(inbag) == 1: variance_inflation = 1 / (1 - np.mean(inbag)) ** 2 V_IJ_unbiased *= variance_inflation if not calibrate: return V_IJ_unbiased if V_IJ_unbiased.shape[0] <= 20: print("No calibration with n_samples <= 20") return V_IJ_unbiased if calibrate: calibration_ratio = 2 n_sample = np.ceil(n_trees / calibration_ratio) new_forest = copy.deepcopy(forest) new_forest.estimators_ =\ np.random.permutation(new_forest.estimators_)[:int(n_sample)] new_forest.n_estimators = int(n_sample) results_ss = random_forest_error(new_forest, X_train, X_test, calibrate=False, memory_constrained=memory_constrained, memory_limit=memory_limit) sigma2_ss = np.mean((results_ss - V_IJ_unbiased)**2) delta = n_sample / n_trees sigma2 = (delta**2 + (1 - delta)**2) / (2 * (1 - delta)**2) * sigma2_ss V_IJ_calibrated = calibrateEB(V_IJ_unbiased, sigma2) return V_IJ_calibrated
Calculate error bars from scikit-learn RandomForest estimators. RandomForest is a regressor or classifier object this variance can be used to plot error bars for RandomForest objects Parameters ---------- forest : RandomForest Regressor or Classifier object. X_train : ndarray An array with shape (n_train_sample, n_features). The design matrix for training data. X_test : ndarray An array with shape (n_test_sample, n_features). The design matrix for testing data inbag : ndarray, optional The inbag matrix that fit the data. If set to `None` (default) it will be inferred from the forest. However, this only works for trees for which bootstrapping was set to `True`. That is, if sampling was done with replacement. Otherwise, users need to provide their own inbag matrix. calibrate: boolean, optional Whether to apply calibration to mitigate Monte Carlo noise. Some variance estimates may be negative due to Monte Carlo effects if the number of trees in the forest is too small. To use calibration, Default: True memory_constrained: boolean, optional Whether or not there is a restriction on memory. If False, it is assumed that a ndarry of shape (n_train_sample,n_test_sample) fits in main memory. Setting to True can actually provide a speed up if memory_limit is tuned to the optimal range. memory_limit: int, optional. An upper bound for how much memory the itermediate matrices will take up in Megabytes. This must be provided if memory_constrained=True. Returns ------- An array with the unbiased sampling variance (V_IJ_unbiased) for a RandomForest object. See Also ---------- :func:`calc_inbag` Notes ----- The calculation of error is based on the infinitesimal jackknife variance, as described in [Wager2014]_ and is a Python implementation of the R code provided at: https://github.com/swager/randomForestCI .. [Wager2014] S. Wager, T. Hastie, B. Efron. "Confidence Intervals for Random Forests: The Jackknife and the Infinitesimal Jackknife", Journal of Machine Learning Research vol. 15, pp. 1625-1651, 2014.
376,599
def _idx_table_by_num(tables): logger_jsons.info("enter idx_table_by_num") _tables = [] for name, table in tables.items(): try: tmp = _idx_col_by_num(table) _tables.append(tmp) except Exception as e: logger_jsons.error("idx_table_by_num: {}".format(e)) logger_jsons.info("exit idx_table_by_num") return _tables
Switch tables to index-by-number :param dict tables: Metadata :return list _tables: Metadata