Unnamed: 0
int64 0
389k
| code
stringlengths 26
79.6k
| docstring
stringlengths 1
46.9k
|
---|---|---|
377,400 | def parseService(self, yadis_url, uri, type_uris, service_element):
self.type_uris = type_uris
self.server_url = uri
self.used_yadis = True
if not self.isOPIdentifier():
self.local_id = findOPLocalIdentifier(service_element,
self.type_uris)
self.claimed_id = yadis_url | Set the state of this object based on the contents of the
service element. |
377,401 | def set_subparsers_args(self, *args, **kwargs):
self.subparsers_args = args
self.subparsers_kwargs = kwargs | Sets args and kwargs that are passed when creating a subparsers group
in an argparse.ArgumentParser i.e. when calling
argparser.ArgumentParser.add_subparsers |
377,402 | def add_thermodynamic(self, em=1000):
internal = set(r for r in self._model.reactions
if not self._model.is_exchange(r))
v = self._v
alpha = self._prob.namespace(internal, types=lp.VariableType.Binary)
dmu = self._prob.namespace(internal)
for reaction_id in self._model.reactions:
if not self._model.is_exchange(reaction_id):
flux = v(reaction_id)
alpha_r = alpha(reaction_id)
dmu_r = dmu(reaction_id)
lower, upper = self._model.limits[reaction_id]
self._prob.add_linear_constraints(
flux >= lower * (1 - alpha_r),
flux <= upper * alpha_r,
dmu_r >= -em * alpha_r + (1 - alpha_r),
dmu_r <= em * (1 - alpha_r) - alpha_r)
mu = self._prob.namespace(self._model.compounds)
tdbalance_lhs = {reaction_id: 0
for reaction_id in self._model.reactions}
for spec, value in iteritems(self._model.matrix):
compound, reaction_id = spec
if not self._model.is_exchange(reaction_id):
tdbalance_lhs[reaction_id] += mu(compound) * value
for reaction_id, lhs in iteritems(tdbalance_lhs):
if not self._model.is_exchange(reaction_id):
self._prob.add_linear_constraints(lhs == dmu(reaction_id)) | Apply thermodynamic constraints to the model.
Adding these constraints restricts the solution space to only
contain solutions that have no internal loops [Schilling00]_. This is
solved as a MILP problem as described in [Muller13]_. The time to solve
a problem with thermodynamic constraints is usually much longer than a
normal FBA problem.
The ``em`` parameter is the upper bound on the delta mu reaction
variables. This parameter has to be balanced based on the model size
since setting the value too low can result in the correct solutions
being infeasible and setting the value too high can result in
numerical instability which again makes the correct solutions
infeasible. The default value should work in all cases as long as the
model is not unusually large. |
377,403 | async def async_get_current_program(channel, no_cache=False):
chan = await async_determine_channel(channel)
guide = await async_get_program_guide(chan, no_cache)
if not guide:
_LOGGER.warning(, channel)
return
now = datetime.datetime.now()
for prog in guide:
start = prog.get()
end = prog.get()
if now > start and now < end:
return prog | Get the current program info |
377,404 | def setItemPolicy(self, item, policy):
index = item._combobox_indices[self.ColAction].get(policy, 0)
self._updateItemComboBoxIndex(item, self.ColAction, index)
combobox = self.itemWidget(item, self.ColAction)
if combobox:
combobox.setCurrentIndex(index) | Sets the policy of the given item |
377,405 | def get_users(profile=):
grafana*
if isinstance(profile, string_types):
profile = __salt__[](profile)
response = requests.get(
.format(profile[]),
auth=_get_auth(profile),
headers=_get_headers(profile),
timeout=profile.get(, 3),
)
if response.status_code >= 400:
response.raise_for_status()
return response.json() | List all users.
profile
Configuration profile used to connect to the Grafana instance.
Default is 'grafana'.
CLI Example:
.. code-block:: bash
salt '*' grafana4.get_users |
377,406 | def make_qr(content, error=None, version=None, mode=None, mask=None,
encoding=None, eci=False, boost_error=True):
return make(content, error=error, version=version, mode=mode, mask=mask,
encoding=encoding, eci=eci, micro=False, boost_error=boost_error) | \
Creates a QR Code (never a Micro QR Code).
See :py:func:`make` for a description of the parameters.
:rtype: QRCode |
377,407 | def get_or_create_model_key(self):
model_cache_info = model_cache_backend.retrieve_model_cache_info(self.model._meta.db_table)
if not model_cache_info:
return uuid.uuid4().hex, True
return model_cache_info.table_key, False | Get or create key for the model.
Returns
~~~~~~~
(model_key, boolean) tuple |
377,408 | def compile_pycos(toc):
global BUILDPATH
basepath = os.path.join(BUILDPATH, "localpycos")
new_toc = []
for (nm, fnm, typ) in toc:
source_fnm = fnm[:-1]
leading, mod_name = nm.split(".")[:-1], nm.split(".")[-1]
else:
leading, mod_name = nm.split("."), "__init__"
leading = os.path.join(basepath, *leading)
if not os.path.exists(leading):
os.makedirs(leading)
fnm = os.path.join(leading, mod_name + ext)
py_compile.compile(source_fnm, fnm)
new_toc.append((nm, fnm, typ))
return new_toc | Given a TOC or equivalent list of tuples, generates all the required
pyc/pyo files, writing in a local directory if required, and returns the
list of tuples with the updated pathnames. |
377,409 | def contents(self):
c = self._header[:]
c.append(.format(self.font_weight))
c.append(.format(self.font_family))
c.append(.format(*self.screen_size))
sclw = self.original_size[0] * self.scale_factor
sclh = self.original_size[1] * self.scale_factor
longside = max([sclw, sclh])
width = round(longside + self.margin * 2, 2)
height = round(longside + self.margin * 2, 2)
xleft = round(-self.margin - (longside - sclw) / 2, 2)
ytop = round(-self.margin - (longside - sclh) / 2, 2)
c.append(.format(
xleft, ytop, width, height))
if self.bgcolor is not None:
c.append(.format(xleft, ytop, width, height, self.bgcolor))
c.extend(self._elems)
c.append("</svg>")
return "".join(c) | Get svg string |
377,410 | def _seg(chars):
s =
ret = []
flag = 0
for n, c in enumerate(chars):
if RE_HANS.match(c):
if n == 0:
flag = 0
if flag == 0:
s += c
else:
ret.append(s)
flag = 0
s = c
else:
if n == 0:
flag = 1
if flag == 1:
s += c
else:
ret.append(s)
flag = 1
s = c
ret.append(s)
return ret | 按是否是汉字进行分词 |
377,411 | def delete(ctx, short_name):
wva = get_wva(ctx)
subscription = wva.get_subscription(short_name)
subscription.delete() | Delete a specific subscription by short name |
377,412 | def transform_audio(self, y):
temposcale
data = super(TempoScale, self).transform_audio(y)
data[] = np.abs(fmt(data.pop(),
axis=1,
n_fmt=self.n_fmt)).astype(np.float32)[self.idx]
return data | Apply the scale transform to the tempogram
Parameters
----------
y : np.ndarray
The audio buffer
Returns
-------
data : dict
data['temposcale'] : np.ndarray, shape=(n_frames, n_fmt)
The scale transform magnitude coefficients |
377,413 | def default_namespace(self, value):
if value is not None:
assert type(value) is unicode, " attribute: type is not !".format(
"default_namespace", value)
self.__default_namespace = value | Setter for **self.__default_namespace** attribute.
:param value: Attribute value.
:type value: unicode |
377,414 | def handle_msg(self, msg):
if msg.type == BGP_MSG_KEEPALIVE:
if self.state.bgp_state == const.BGP_FSM_OPEN_CONFIRM:
self.state.bgp_state = const.BGP_FSM_ESTABLISHED
self._enqueue_init_updates()
elif msg.type == BGP_MSG_UPDATE:
assert self.state.bgp_state == const.BGP_FSM_ESTABLISHED
self._handle_update_msg(msg)
elif msg.type == BGP_MSG_ROUTE_REFRESH:
assert self.state.bgp_state == const.BGP_FSM_ESTABLISHED
self._handle_route_refresh_msg(msg)
else:
raise ValueError(
%
(msg, self.state.bgp_state)) | BGP message handler.
BGP message handling is shared between protocol instance and peer. Peer
only handles limited messages under suitable state. Here we handle
KEEPALIVE, UPDATE and ROUTE_REFRESH messages. UPDATE and ROUTE_REFRESH
messages are handled only after session is established. |
377,415 | def get_price(item):
the_price = "No Default Pricing"
for price in item.get(, []):
if not price.get():
the_price = "%0.4f" % float(price[])
return the_price | Finds the price with the default locationGroupId |
377,416 | def gevent_monkey_patch_report(self):
try:
import gevent.socket
import socket
if gevent.socket.socket is socket.socket:
self.log("gevent monkey patching is active")
return True
else:
self.notify_user("gevent monkey patching failed.")
except ImportError:
self.notify_user("gevent is not installed, monkey patching failed.")
return False | Report effective gevent monkey patching on the logs. |
377,417 | def _format_job_instance(job):
ret = {: job.get(, ),
: salt.utils.json.loads(job.get(, )),
: job.get(, ),
: job.get(, ),
: job.get(, )}
return ret | Format the job instance correctly |
377,418 | def size(self, source):
result = []
for src in self.source_expand(source):
size = 0
for f in self.s3walk(src):
size += f[]
result.append((src, size))
return result | Get the size component of the given s3url. If it is a
directory, combine the sizes of all the files under
that directory. Subdirectories will not be counted unless
--recursive option is set. |
377,419 | def trace(function, *args, **k) :
if doTrace : print ("> "+function.__name__, args, k)
result = function(*args, **k)
if doTrace : print ("< "+function.__name__, args, k, "->", result)
return result | Decorates a function by tracing the begining and
end of the function execution, if doTrace global is True |
377,420 | def list(self, *args, **kwargs):
greedy = kwargs.pop(, False)
resp = self.client.api.networks(*args, **kwargs)
networks = [self.prepare_model(item) for item in resp]
if greedy and version_gte(self.client.api._version, ):
for net in networks:
net.reload()
return networks | List networks. Similar to the ``docker networks ls`` command.
Args:
names (:py:class:`list`): List of names to filter by.
ids (:py:class:`list`): List of ids to filter by.
filters (dict): Filters to be processed on the network list.
Available filters:
- ``driver=[<driver-name>]`` Matches a network's driver.
- ``label=[<key>]`` or ``label=[<key>=<value>]``.
- ``type=["custom"|"builtin"]`` Filters networks by type.
greedy (bool): Fetch more details for each network individually.
You might want this to get the containers attached to them.
Returns:
(list of :py:class:`Network`) The networks on the server.
Raises:
:py:class:`docker.errors.APIError`
If the server returns an error. |
377,421 | def step1ab(self):
if self.b[self.k] == "s":
if self.ends("sses"):
self.k = self.k - 2
elif self.ends("ies"):
self.setto("i")
elif self.b[self.k - 1] != "s":
self.k = self.k - 1
if self.ends("eed"):
if self.m() > 0:
self.k = self.k - 1
elif (self.ends("ed") or self.ends("ing")) and self.vowelinstem():
self.k = self.j
if self.ends("at"):
self.setto("ate")
elif self.ends("bl"):
self.setto("ble")
elif self.ends("iz"):
self.setto("ize")
elif self.doublec(self.k):
self.k = self.k - 1
ch = self.b[self.k]
if ch == "l" or ch == "s" or ch == "z":
self.k = self.k + 1
elif self.m() == 1 and self.cvc(self.k):
self.setto("e") | step1ab() gets rid of plurals and -ed or -ing. e.g.
caresses -> caress
ponies -> poni
ties -> ti
caress -> caress
cats -> cat
feed -> feed
agreed -> agree
disabled -> disable
matting -> mat
mating -> mate
meeting -> meet
milling -> mill
messing -> mess
meetings -> meet |
377,422 | def _compute_zs_mat(sz:TensorImageSize, scale:float, squish:float,
invert:bool, row_pct:float, col_pct:float)->AffineMatrix:
"Utility routine to compute zoom/squish matrix."
orig_ratio = math.sqrt(sz[1]/sz[0])
for s,r,i in zip(scale,squish, invert):
s,r = 1/math.sqrt(s),math.sqrt(r)
if s * r <= 1 and s / r <= 1:
w,h = (s/r, s*r) if i else (s*r,s/r)
col_c = (1-w) * (2*col_pct - 1)
row_c = (1-h) * (2*row_pct - 1)
return _get_zoom_mat(w, h, col_c, row_c)
if orig_ratio > 1: return _get_zoom_mat(1/orig_ratio**2, 1, 0, 0.)
else: return _get_zoom_mat(1, orig_ratio**2, 0, 0.) | Utility routine to compute zoom/squish matrix. |
377,423 | def _set_data(self, data, offset=None, copy=False):
data = np.array(data, copy=copy)
data = self._normalize_shape(data)
if offset is None:
self._resize(data.shape)
elif all([i == 0 for i in offset]) and data.shape == self._shape:
self._resize(data.shape)
offset = offset or tuple([0 for i in range(self._ndim)])
assert len(offset) == self._ndim
for i in range(len(data.shape)-1):
if offset[i] + data.shape[i] > self._shape[i]:
raise ValueError("Data is too large")
self._glir.command(, self._id, offset, data) | Internal method for set_data. |
377,424 | def _generate_struct_deserializer(self, struct):
struct_name = fmt_class_prefix(struct)
with self.block_func(
func=,
args=fmt_func_args_declaration([(,
)]),
return_type=.format(struct_name),
class_func=True):
if not struct.all_fields and not struct.has_enumerated_subtypes():
self.emit()
def emit_struct_deserialize_logic(struct):
for field in struct.all_fields:
data_type, nullable = unwrap_nullable(field.data_type)
input_value = .format(field.name)
if is_primitive_type(data_type):
deserialize_call = input_value
else:
deserialize_call = self._fmt_serialization_call(
field.data_type, input_value, False)
if nullable or field.has_default:
default_value = fmt_default_value(
field) if field.has_default else
if is_primitive_type(data_type):
deserialize_call = .format(
input_value, default_value)
else:
deserialize_call = .format(
input_value, deserialize_call, default_value)
self.emit(.format(
fmt_type(field.data_type),
fmt_var(field.name), deserialize_call))
self.emit()
deserialized_obj_args = [(fmt_var(f.name), fmt_var(f.name))
for f in struct.all_fields]
init_call = fmt_func_call(
caller=fmt_alloc_call(caller=struct_name),
callee=self._cstor_name_from_fields(struct.all_fields),
args=fmt_func_args(deserialized_obj_args))
self.emit(.format(init_call))
if not struct.has_enumerated_subtypes():
emit_struct_deserialize_logic(struct)
else:
for tags, subtype in struct.get_all_subtypes_with_tags():
assert len(tags) == 1, tags
tag = tags[0]
base_string =
with self.block(base_string.format(tag)):
caller = fmt_serial_class(fmt_class_prefix(subtype))
args = fmt_func_args([(, )])
deserialize_call = fmt_func_call(
caller=caller, callee=, args=args)
self.emit(.format(deserialize_call))
self.emit()
if struct.is_catch_all():
emit_struct_deserialize_logic(struct)
else:
description_str = (
)
self._generate_throw_error(, description_str)
self.emit() | Emits the deserialize method for the serialization object for the given struct. |
377,425 | def read_string(self, len):
format = + str(len) +
length = struct.calcsize(format)
info = struct.unpack(format,
self.data[self.offset:self.offset + length])
self.offset += length
return info[0] | Reads a string of a given length from the packet |
377,426 | def __dtw_calc_accu_cost(C, D, D_steps, step_sizes_sigma,
weights_mul, weights_add, max_0, max_1):
for cur_n in range(max_0, D.shape[0]):
for cur_m in range(max_1, D.shape[1]):
for cur_step_idx, cur_w_add, cur_w_mul in zip(range(step_sizes_sigma.shape[0]),
weights_add, weights_mul):
cur_D = D[cur_n - step_sizes_sigma[cur_step_idx, 0],
cur_m - step_sizes_sigma[cur_step_idx, 1]]
cur_C = cur_w_mul * C[cur_n - max_0, cur_m - max_1]
cur_C += cur_w_add
cur_cost = cur_D + cur_C
if cur_cost < D[cur_n, cur_m]:
D[cur_n, cur_m] = cur_cost
D_steps[cur_n, cur_m] = cur_step_idx
return D, D_steps | Calculate the accumulated cost matrix D.
Use dynamic programming to calculate the accumulated costs.
Parameters
----------
C : np.ndarray [shape=(N, M)]
pre-computed cost matrix
D : np.ndarray [shape=(N, M)]
accumulated cost matrix
D_steps : np.ndarray [shape=(N, M)]
steps which were used for calculating D
step_sizes_sigma : np.ndarray [shape=[n, 2]]
Specifies allowed step sizes as used by the dtw.
weights_add : np.ndarray [shape=[n, ]]
Additive weights to penalize certain step sizes.
weights_mul : np.ndarray [shape=[n, ]]
Multiplicative weights to penalize certain step sizes.
max_0 : int
maximum number of steps in step_sizes_sigma in dim 0.
max_1 : int
maximum number of steps in step_sizes_sigma in dim 1.
Returns
-------
D : np.ndarray [shape=(N,M)]
accumulated cost matrix.
D[N,M] is the total alignment cost.
When doing subsequence DTW, D[N,:] indicates a matching function.
D_steps : np.ndarray [shape=(N,M)]
steps which were used for calculating D.
See Also
--------
dtw |
377,427 | def split_grads_by_size(threshold_size, device_grads):
small_grads = []
large_grads = []
for dl in device_grads:
small_dl = []
large_dl = []
for (g, v) in dl:
tensor_size = g.get_shape().num_elements()
if tensor_size <= threshold_size:
small_dl.append([g, v])
else:
large_dl.append([g, v])
if small_dl:
small_grads.append(small_dl)
if large_dl:
large_grads.append(large_dl)
return small_grads, large_grads | Break gradients into two sets according to tensor size.
Args:
threshold_size: int size cutoff for small vs large tensor.
device_grads: List of lists of (gradient, variable) tuples. The outer
list is over devices. The inner list is over individual gradients.
Returns:
small_grads: Subset of device_grads where shape is <= theshold_size
elements.
large_grads: Subset of device_grads where shape is > threshold_size
elements. |
377,428 | def fuse_batchnorm_weights(gamma, beta, mean, var, epsilon):
scale = gamma / np.sqrt(var + epsilon)
bias = beta - gamma * mean / np.sqrt(var + epsilon)
return [scale, bias] | float sqrt_var = sqrt(var_data[i]);
a_data[i] = bias_data[i] - slope_data[i] * mean_data[i] / sqrt_var;
b_data[i] = slope_data[i] / sqrt_var;
...
ptr[i] = b * ptr[i] + a; |
377,429 | def _unpickle_channel(raw):
try:
return pickle.loads(raw)
except (ValueError, pickle.UnpicklingError, EOFError, TypeError,
IndexError) as exc:
if isinstance(raw, bytes):
raw = raw.decode()
try:
Channel.MATCH.match(raw)
except ValueError:
raise exc
return raw | Try and unpickle a channel with sensible error handling |
377,430 | def getCert(username, password,
certHost=_SERVER,
certfile=None,
certQuery=_PROXY):
if certfile is None:
certfile = tempfile.NamedTemporaryFile()
password_mgr = urllib2.HTTPPasswordMgrWithDefaultRealm()
top_level_url = "http://" + certHost
logging.debug(top_level_url)
password_mgr.add_password(None, top_level_url, username, password)
handler = urllib2.HTTPBasicAuthHandler(password_mgr)
logging.debug(str(handler))
opener = urllib2.build_opener(handler)
urllib2.install_opener(opener)
url = "http://" + certHost + certQuery
logging.debug(url)
r = None
try:
r = opener.open(url)
except urllib2.HTTPError as e:
logging.debug(url)
logging.debug(str(e))
return False
logging.debug(str(r))
if r is not None:
while True:
buf = r.read()
logging.debug(buf)
if not buf:
break
certfile.write(buf)
r.close()
return certfile | Access the cadc certificate server. |
377,431 | def _process_health_pill_value(self,
wall_time,
step,
device_name,
output_slot,
node_name,
tensor_proto,
node_name_set=None):
if node_name_set and node_name not in node_name_set:
return None
elements = list(tensor_util.make_ndarray(tensor_proto))
return HealthPillEvent(
wall_time=wall_time,
step=step,
device_name=device_name,
output_slot=output_slot,
node_name=node_name,
dtype=repr(tf.as_dtype(elements[12])),
shape=elements[14:],
value=elements) | Creates a HealthPillEvent containing various properties of a health pill.
Args:
wall_time: The wall time in seconds.
step: The session run step of the event.
device_name: The name of the node's device.
output_slot: The numeric output slot.
node_name: The name of the node (without the output slot).
tensor_proto: A tensor proto of data.
node_name_set: An optional set of node names that are relevant. If not
provided, no filtering by relevance occurs.
Returns:
An event_accumulator.HealthPillEvent. Or None if one could not be created. |
377,432 | def iplot_histogram(data, figsize=None, number_to_keep=None,
sort=, legend=None):
html_template = Template()
javascript_template = Template()
div_number = str(time.time())
div_number = re.sub(, , div_number)
if figsize is None:
figsize = (7, 5)
options = {: 0 if number_to_keep is None else number_to_keep,
: sort,
: 0,
: int(figsize[0]),
: int(figsize[1])}
if legend:
options[] = 1
data_to_plot = []
if isinstance(data, dict):
data = [data]
if legend and len(legend) != len(data):
raise VisualizationError("Length of legendL (%s) doesnnumber_to_keepdatanamedivNumberdivNumberexecutionsoptions': options
})
display(HTML(html + javascript)) | Create a histogram representation.
Graphical representation of the input array using a vertical bars
style graph.
Args:
data (list or dict): This is either a list of dicts or a single
dict containing the values to represent (ex. {'001' : 130})
figsize (tuple): Figure size in pixels.
number_to_keep (int): The number of terms to plot and
rest is made into a single bar called other values
sort (string): Could be 'asc' or 'desc'
legend (list): A list of strings to use for labels of the data.
The number of entries must match the length of data.
Raises:
VisualizationError: When legend is provided and the length doesn't
match the input data. |
377,433 | def new_data(self, mem, addr, data):
done = False
if mem.id == self.id:
if addr == LocoMemory.MEM_LOCO_INFO:
self.nr_of_anchors = data[0]
if self.nr_of_anchors == 0:
done = True
else:
self.anchor_data = \
[AnchorData() for _ in range(self.nr_of_anchors)]
self._request_page(0)
else:
page = int((addr - LocoMemory.MEM_LOCO_ANCHOR_BASE) /
LocoMemory.MEM_LOCO_ANCHOR_PAGE_SIZE)
self.anchor_data[page].set_from_mem_data(data)
next_page = page + 1
if next_page < self.nr_of_anchors:
self._request_page(next_page)
else:
done = True
if done:
self.valid = True
if self._update_finished_cb:
self._update_finished_cb(self)
self._update_finished_cb = None | Callback for when new memory data has been fetched |
377,434 | def nvmlDeviceSetEccMode(handle, mode):
r
fn = _nvmlGetFunctionPointer("nvmlDeviceSetEccMode")
ret = fn(handle, _nvmlEnableState_t(mode))
_nvmlCheckReturn(ret)
return None | r"""
/**
* Set the ECC mode for the device.
*
* For Kepler &tm; or newer fully supported devices.
* Only applicable to devices with ECC.
* Requires \a NVML_INFOROM_ECC version 1.0 or higher.
* Requires root/admin permissions.
*
* The ECC mode determines whether the GPU enables its ECC support.
*
* This operation takes effect after the next reboot.
*
* See \ref nvmlEnableState_t for details on available modes.
*
* @param device The identifier of the target device
* @param ecc The target ECC mode
*
* @return
* - \ref NVML_SUCCESS if the ECC mode was set
* - \ref NVML_ERROR_UNINITIALIZED if the library has not been successfully initialized
* - \ref NVML_ERROR_INVALID_ARGUMENT if \a device is invalid or \a ecc is invalid
* - \ref NVML_ERROR_NOT_SUPPORTED if the device does not support this feature
* - \ref NVML_ERROR_NO_PERMISSION if the user doesn't have permission to perform this operation
* - \ref NVML_ERROR_GPU_IS_LOST if the target GPU has fallen off the bus or is otherwise inaccessible
* - \ref NVML_ERROR_UNKNOWN on any unexpected error
*
* @see nvmlDeviceGetEccMode()
*/
nvmlReturn_t DECLDIR nvmlDeviceSetEccMode |
377,435 | def opened(self, block_identifier: BlockSpecification) -> bool:
return self.token_network.channel_is_opened(
participant1=self.participant1,
participant2=self.participant2,
block_identifier=block_identifier,
channel_identifier=self.channel_identifier,
) | Returns if the channel is opened. |
377,436 | def buildcontent(self):
self.buildcontainer()
self.buildjschart()
self.htmlcontent = self.template_content_nvd3.render(chart=self) | Build HTML content only, no header or body tags. To be useful this
will usually require the attribute `juqery_on_ready` to be set which
will wrap the js in $(function(){<regular_js>};) |
377,437 | def basic_stats(self):
comment_score = sum(comment.score for comment in self.comments)
if self.comments:
comment_duration = (self.comments[-1].created_utc -
self.comments[0].created_utc)
comment_rate = self._rate(len(self.comments), comment_duration)
else:
comment_rate = 0
submission_duration = self.max_date - self.min_date
submission_rate = self._rate(len(self.submissions),
submission_duration)
submission_score = sum(sub.score for sub in self.submissions.values())
values = [(, len(self.submissions), len(self.comments)),
(, .format(submission_rate),
.format(comment_rate)),
(, len(self.submitters),
len(self.commenters)),
(, submission_score, comment_score)]
retval = .format(submission_duration / 86400.)
retval +=
for quad in values:
retval += .format(*quad)
return retval + | Return a markdown representation of simple statistics. |
377,438 | def _create_ring(self, nodes):
for node_name, node_conf in nodes:
for w in range(0, node_conf[] * node_conf[]):
self._distribution[node_name] += 1
self._ring[self.hashi( % (node_name, w))] = node_name
self._keys = sorted(self._ring.keys()) | Generate a ketama compatible continuum/ring. |
377,439 | def visualRect(self, index):
rect = super(XTreeWidget, self).visualRect(index)
item = self.itemFromIndex(index)
if not rect.isNull() and item and item.isFirstColumnSpanned():
vpos = self.viewport().mapFromParent(QtCore.QPoint(0, 0))
rect.setX(vpos.x())
rect.setWidth(self.width())
return rect
return rect | Returns the visual rectangle for the inputed index.
:param index | <QModelIndex>
:return <QtCore.QRect> |
377,440 | def zero_level_calibrate(self, duration, t0=0.0):
t1 = t0 + duration
indices = np.flatnonzero((self.timestamps >= t0) & (self.timestamps <= t1))
m = np.mean(self.gyro_data[:, indices], axis=1)
self.gyro_data -= m.reshape(3,1)
return self.gyro_data | Performs zero-level calibration from the chosen time interval.
This changes the previously lodaded data in-place.
Parameters
--------------------
duration : float
Number of timeunits to use for calibration
t0 : float
Starting time for calibration
Returns
----------------------
gyro_data : (3, N) float ndarray
The calibrated data (note that it is also changed in-place!) |
377,441 | def inference(self, observed_arr):
if observed_arr.ndim < 4:
observed_arr = np.expand_dims(observed_arr, axis=1)
self.__add_channel_flag = True
else:
self.__add_channel_flag = False
return super().inference(observed_arr) | Draws samples from the `true` distribution.
Args:
observed_arr: `np.ndarray` of observed data points.
Returns:
`np.ndarray` of inferenced. |
377,442 | def start(self, *args, **kwargs):
args = (self.counter,) + args
thread = threading.Thread(
target=self._work_callback,
args=args, kwargs=kwargs
)
thread.setDaemon(self.daemon)
thread.start() | Start the task.
This is:
* not threadsave
* assumed to be called in the gtk mainloop |
377,443 | def orient_directed_graph(self, data, graph):
warnings.warn("The algorithm is ran on the skeleton of the given graph.")
return self.orient_undirected_graph(data, nx.Graph(graph)) | Run the algorithm on a directed_graph.
Args:
data (pandas.DataFrame): DataFrame containing the data
graph (networkx.DiGraph): Skeleton of the graph to orient
Returns:
networkx.DiGraph: Solution on the given skeleton.
.. warning::
The algorithm is ran on the skeleton of the given graph. |
377,444 | def nvmlUnitGetHandleByIndex(index):
r
c_index = c_uint(index)
unit = c_nvmlUnit_t()
fn = _nvmlGetFunctionPointer("nvmlUnitGetHandleByIndex")
ret = fn(c_index, byref(unit))
_nvmlCheckReturn(ret)
return bytes_to_str(unit) | r"""
/**
* Acquire the handle for a particular unit, based on its index.
*
* For S-class products.
*
* Valid indices are derived from the \a unitCount returned by \ref nvmlUnitGetCount().
* For example, if \a unitCount is 2 the valid indices are 0 and 1, corresponding to UNIT 0 and UNIT 1.
*
* The order in which NVML enumerates units has no guarantees of consistency between reboots.
*
* @param index The index of the target unit, >= 0 and < \a unitCount
* @param unit Reference in which to return the unit handle
*
* @return
* - \ref NVML_SUCCESS if \a unit has been set
* - \ref NVML_ERROR_UNINITIALIZED if the library has not been successfully initialized
* - \ref NVML_ERROR_INVALID_ARGUMENT if \a index is invalid or \a unit is NULL
* - \ref NVML_ERROR_UNKNOWN on any unexpected error
*/
nvmlReturn_t DECLDIR nvmlUnitGetHandleByIndex |
377,445 | def figure_tensor(func, **tf_pyfunc_kwargs):
name = tf_pyfunc_kwargs.pop(, func.__name__)
@wraps(func)
def wrapper(*func_args, **func_kwargs):
tf_args = PositionalTensorArgs(func_args)
def pyfnc_callee(*tensor_values, **unused):
try:
figs = as_list(func(*tf_args.mix_args(tensor_values), **func_kwargs))
for f in figs:
f.canvas.draw()
return figure_buffer(figs)
except Exception:
print(*5 + + *5)
print(traceback.format_exc())
print(*20)
raise
return tf.py_func(pyfnc_callee, tf_args.tensor_args, tf.uint8, name=name, **tf_pyfunc_kwargs)
return wrapper | Decorate matplotlib drawing routines.
This dectorator is meant to decorate functions that return matplotlib
figures. The decorated function has to have the following signature
def decorated(*args, **kwargs) -> figure or iterable of figures
where `*args` can be any positional argument and `**kwargs` are any
keyword arguments. The decorated function returns a tensor of shape
`[NumFigures, Height, Width, 3]` of type `tf.uint8`.
The drawing code is invoked during running of TensorFlow sessions,
at a time when all positional tensor arguments have been evaluated
by the session. The decorated function is then passed the tensor values.
All non tensor arguments remain unchanged. |
377,446 | def _check_feature_types(self):
if self.default_feature_type is not None and self.default_feature_type not in self.allowed_feature_types:
raise ValueError()
for feature_type in self.feature_collection:
if feature_type is not None and feature_type not in self.allowed_feature_types:
raise ValueError(.format(self.allowed_feature_types,
feature_type)) | Checks that feature types are a subset of allowed feature types. (`None` is handled
:raises: ValueError |
377,447 | def update(self):
stats = self.get_init_value()
if self.input_method == :
for k, v in iteritems(self.glances_amps.update()):
stats.append({: k,
: v.NAME,
: v.result(),
: v.refresh(),
: v.time_until_refresh(),
: v.count(),
: v.count_min(),
: v.count_max()})
else:
pass
self.stats = stats
return self.stats | Update the AMP list. |
377,448 | def sync_objects_out(self, force=False):
self.log()
from ambry.bundle.files import BuildSourceFile
self.dstate = self.STATES.BUILDING
for f in self.build_source_files.list_records():
self.log(.format(f.record.path))
f.objects_to_record()
self.commit() | Synchronize from objects to records, and records to files |
377,449 | def to_example_dict(encoder, inputs, mask, outputs):
bases = []
input_ids = []
last_idx = -1
for row in np.argwhere(inputs):
idx, base_id = row
idx, base_id = int(idx), int(base_id)
assert idx > last_idx
while idx != last_idx + 1:
bases.append(encoder.UNK)
last_idx += 1
bases.append(encoder.BASES[base_id])
last_idx = idx
assert len(inputs) == len(bases)
input_ids = encoder.encode(bases)
input_ids.append(text_encoder.EOS_ID)
targets_mask = [float(v) for v in mask]
targets = [float(v) for v in outputs.flatten()]
targets_shape = [int(dim) for dim in outputs.shape]
assert mask.shape[0] == outputs.shape[0]
example_keys = ["inputs", "targets_mask", "targets", "targets_shape"]
ex_dict = dict(
zip(example_keys, [input_ids, targets_mask, targets, targets_shape]))
return ex_dict | Convert single h5 record to an example dict. |
377,450 | def add_rednoise(psr,A,gamma,components=10,seed=None):
if seed is not None:
N.random.seed(seed)
t = psr.toas()
minx, maxx = N.min(t), N.max(t)
x = (t - minx) / (maxx - minx)
T = (day/year) * (maxx - minx)
size = 2*components
F = N.zeros((psr.nobs,size),)
f = N.zeros(size,)
for i in range(components):
F[:,2*i] = N.cos(2*math.pi*(i+1)*x)
F[:,2*i+1] = N.sin(2*math.pi*(i+1)*x)
f[2*i] = f[2*i+1] = (i+1) / T
norm = A**2 * year**2 / (12 * math.pi**2 * T)
prior = norm * f**(-gamma)
y = N.sqrt(prior) * N.random.randn(size)
psr.stoas[:] += (1.0/day) * N.dot(F,y) | Add red noise with P(f) = A^2 / (12 pi^2) (f year)^-gamma,
using `components` Fourier bases.
Optionally take a pseudorandom-number-generator seed. |
377,451 | def get_getter(cls, prop_name,
user_getter=None, getter_takes_name=False):
if user_getter:
if getter_takes_name:
_deps = type(cls)._get_old_style_getter_deps(cls, prop_name,
user_getter)
def _getter(self, deps=_deps):
return user_getter(self, prop_name)
else:
_getter = user_getter
return _getter
def _getter(self):
return getattr(self, PROP_NAME % { : prop_name})
return _getter | Returns a function wich is a getter for a property.
prop_name is the name off the property.
user_getter is an optional function doing the work. If
specified, that function will be called instead of getting
the attribute whose name is in 'prop_name'.
If user_getter is specified with a False value for
getter_takes_name (default), than the method is used to get
the value of the property. If True is specified for
getter_takes_name, then the user_getter is called by
passing the property name (i.e. it is considered a general
method which receive the property name whose value has to
be returned.) |
377,452 | def validate(self, **kwargs):
default_data_schema = json.load(open(self.default_schema_file, ))
data = kwargs.pop("data", None)
file_path = kwargs.pop("file_path", None)
if file_path is None:
raise LookupError("file_path argument must be supplied")
if data is None:
try:
data = yaml.load(open(file_path, ), Loader=Loader)
except Exception as e:
self.add_validation_message(ValidationMessage(file=file_path, message=
+ e.__str__()))
return False
try:
if in data:
custom_schema = self.load_custom_schema(data[])
json_validate(data, custom_schema)
else:
json_validate(data, default_data_schema)
except ValidationError as ve:
self.add_validation_message(
ValidationMessage(file=file_path,
message=ve.message + + str(ve.instance)))
if self.has_errors(file_path):
return False
else:
return True | Validates a data file
:param file_path: path to file to be loaded.
:param data: pre loaded YAML object (optional).
:return: Bool to indicate the validity of the file. |
377,453 | def apply(self, data, path=None, applicator=None):
if applicator:
applicator.pset = self
else:
applicator = Applicator(self)
return applicator.apply(data, path=path) | Apply permissions in this set to the provided data, effectively
removing all keys from it are not permissioned to be viewed
Arguments:
data -- dict of data
Returns:
Cleaned data |
377,454 | def parse_iso8601(text):
parsed = _parse_iso8601_duration(text)
if parsed is not None:
return parsed
m = ISO8601_DT.match(text)
if not m:
raise ParserError("Invalid ISO 8601 string")
ambiguous_date = False
is_date = False
is_time = False
year = 0
month = 1
day = 1
minute = 0
second = 0
microsecond = 0
tzinfo = None
if m:
if m.group("date"):
is_date = True
if m.group("isocalendar"):
if (
m.group("weeksep")
and not m.group("weekdaysep")
and m.group("isoweekday")
):
raise ParserError("Invalid date string: {}".format(text))
if not m.group("weeksep") and m.group("weekdaysep"):
raise ParserError("Invalid date string: {}".format(text))
try:
date = _get_iso_8601_week(
m.group("isoyear"), m.group("isoweek"), m.group("isoweekday")
)
except ParserError:
raise
except ValueError:
raise ParserError("Invalid date string: {}".format(text))
year = date["year"]
month = date["month"]
day = date["day"]
else:
year = int(m.group("year"))
if not m.group("monthday"):
month = 1
day = 1
else:
if m.group("month") and m.group("day"):
if not m.group("daysep") and len(m.group("day")) == 1:
ordinal = int(m.group("month") + m.group("day"))
leap = is_leap(year)
months_offsets = MONTHS_OFFSETS[leap]
if ordinal > months_offsets[13]:
raise ParserError("Ordinal day is out of range")
for i in range(1, 14):
if ordinal <= months_offsets[i]:
day = ordinal - months_offsets[i - 1]
month = i - 1
break
else:
month = int(m.group("month"))
day = int(m.group("day"))
else:
if not m.group("monthsep"):
ambiguous_date = True
month = int(m.group("month"))
day = 1
if not m.group("time"):
if ambiguous_date:
hhmmss = "{}{:0>2}".format(str(year), str(month))
return datetime.time(int(hhmmss[:2]), int(hhmmss[2:4]), int(hhmmss[4:]))
return datetime.date(year, month, day)
if ambiguous_date:
raise ParserError("Invalid date string: {}".format(text))
if is_date and not m.group("timesep"):
raise ParserError("Invalid date string: {}".format(text))
if not is_date:
is_time = True
hour = int(m.group("hour"))
minsep = m.group("minsep")
if m.group("minute"):
minute = int(m.group("minute"))
elif minsep:
raise ParserError("Invalid ISO 8601 time part")
secsep = m.group("secsep")
if secsep and not minsep and m.group("minute"):
raise ParserError("Invalid ISO 8601 time part")
if m.group("second"):
if not secsep and minsep:
raise ParserError("Invalid ISO 8601 time part")
second = int(m.group("second"))
elif secsep:
raise ParserError("Invalid ISO 8601 time part")
if m.group("subsecondsection"):
subsecond = m.group("subsecond")[:6]
microsecond = int("{:0<6}".format(subsecond))
tz = m.group("tz")
if tz:
if tz == "Z":
offset = 0
else:
negative = True if tz.startswith("-") else False
tz = tz[1:]
if ":" not in tz:
if len(tz) == 2:
tz = "{}00".format(tz)
off_hour = tz[0:2]
off_minute = tz[2:4]
else:
off_hour, off_minute = tz.split(":")
offset = ((int(off_hour) * 60) + int(off_minute)) * 60
if negative:
offset = -1 * offset
tzinfo = FixedTimezone(offset)
if is_time:
return datetime.time(hour, minute, second, microsecond)
return datetime.datetime(
year, month, day, hour, minute, second, microsecond, tzinfo=tzinfo
) | ISO 8601 compliant parser.
:param text: The string to parse
:type text: str
:rtype: datetime.datetime or datetime.time or datetime.date |
377,455 | def config(filename):
Config = collections.namedtuple(, [
,
,
,
,
,
,
,
,
])
return [Config(**d) for d in _get_config_generator(filename)] | Construct `Config` object and return a list.
:parse filename: A string containing the path to YAML file.
:return: list |
377,456 | def process_pure_python(self, content):
output = []
savefig = False
multiline = False
multiline_start = None
fmtin = self.promptin
ct = 0
for lineno, line in enumerate(content):
line_stripped = line.strip()
if not len(line):
output.append(line)
continue
if line_stripped.startswith():
output.extend([line])
if in line:
savefig = True
continue
if line_stripped.startswith():
output.extend([line])
continue
continuation = u% .join([]*(len(str(ct))+2))
if not multiline:
modified = u"%s %s" % (fmtin % ct, line_stripped)
output.append(modified)
ct += 1
try:
ast.parse(line_stripped)
output.append(u)
except Exception:
multiline = True
multiline_start = lineno
else:
modified = u % (continuation, line)
output.append(modified)
try:
mod = ast.parse(
.join(content[multiline_start:lineno+1]))
if isinstance(mod.body[0], ast.FunctionDef):
for element in mod.body[0].body:
if isinstance(element, ast.Return):
multiline = False
else:
output.append(u)
multiline = False
except Exception:
pass
if savefig:
self.ensure_pyplot()
self.process_input_line(, store_history=False)
self.clear_cout()
savefig = False
return output | content is a list of strings. it is unedited directive conent
This runs it line by line in the InteractiveShell, prepends
prompts as needed capturing stderr and stdout, then returns
the content as a list as if it were ipython code |
377,457 | def config_unset(name,
value_regex=None,
repo=None,
user=None,
password=None,
output_encoding=None,
**kwargs):
rbazbazfoofoo\..+
ret = {: name,
: {},
: True,
: }
kwargs = salt.utils.args.clean_kwargs(**kwargs)
global_ = kwargs.pop(, False)
all_ = kwargs.pop(, False)
if kwargs:
return _fail(
ret,
salt.utils.args.invalid_kwargs(kwargs, raise_exc=False)
)
if not global_ and not repo:
return _fail(
ret,
repo\
)
if not isinstance(name, six.string_types):
name = six.text_type(name)
if value_regex is not None:
if not isinstance(value_regex, six.string_types):
value_regex = six.text_type(value_regex)
key = + name.lstrip().rstrip() +
pre_matches = __salt__[](
cwd=repo,
key=key,
value_regex=value_regex,
user=user,
password=password,
ignore_retcode=True,
output_encoding=output_encoding,
**{: global_}
)
if not pre_matches:
return ret
return ret | r'''
.. versionadded:: 2015.8.0
Ensure that the named config key is not present
name
The name of the configuration key to unset. This value can be a regex,
but the regex must match the entire key name. For example, ``foo\.``
would not match all keys in the ``foo`` section, it would be necessary
to use ``foo\..+`` to do so.
value_regex
Regex indicating the values to unset for the matching key(s)
.. note::
This option behaves differently depending on whether or not ``all``
is set to ``True``. If it is, then all values matching the regex
will be deleted (this is the only way to delete multiple values
from a multivar). If ``all`` is set to ``False``, then this state
will fail if the regex matches more than one value in a multivar.
all : False
If ``True``, unset all matches
repo
Location of the git repository for which the config value should be
set. Required unless ``global`` is set to ``True``.
user
User under which to run git commands. By default, commands are run by
the user under which the minion is running.
password
Windows only. Required when specifying ``user``. This parameter will be
ignored on non-Windows platforms.
.. versionadded:: 2016.3.4
global : False
If ``True``, this will set a global git config option
output_encoding
Use this option to specify which encoding to use to decode the output
from any git commands which are run. This should not be needed in most
cases.
.. note::
This should only be needed if the files in the repository were
created with filenames using an encoding other than UTF-8 to handle
Unicode characters.
.. versionadded:: 2018.3.1
**Examples:**
.. code-block:: yaml
# Value matching 'baz'
mylocalrepo:
git.config_unset:
- name: foo.bar
- value_regex: 'baz'
- repo: /path/to/repo
# Ensure entire multivar is unset
mylocalrepo:
git.config_unset:
- name: foo.bar
- all: True
# Ensure all variables in 'foo' section are unset, including multivars
mylocalrepo:
git.config_unset:
- name: 'foo\..+'
- all: True
# Ensure that global config value is unset
mylocalrepo:
git.config_unset:
- name: foo.bar
- global: True |
377,458 | def simple_memoize(callable_object):
cache = dict()
def wrapper(*rest):
if rest not in cache:
cache[rest] = callable_object(*rest)
return cache[rest]
return wrapper | Simple memoization for functions without keyword arguments.
This is useful for mapping code objects to module in this context.
inspect.getmodule() requires a number of system calls, which may slow down
the tracing considerably. Caching the mapping from code objects (there is
*one* code object for each function, regardless of how many simultaneous
activations records there are).
In this context we can ignore keyword arguments, but a generic memoizer
ought to take care of that as well. |
377,459 | def _get_friends_count(session, user_id):
response = session.fetch(, user_id=user_id, count=1)
return response["count"] | https://vk.com/dev/friends.get |
377,460 | def get_properties(self, mode, name_list=None):
assert mode in ("allprop", "name", "named")
if mode in ("allprop", "name"):
assert name_list is None
name_list = self.get_property_names(mode == "allprop")
else:
assert name_list is not None
propList = []
namesOnly = mode == "name"
for name in name_list:
try:
if namesOnly:
propList.append((name, None))
else:
value = self.get_property_value(name)
propList.append((name, value))
except DAVError as e:
propList.append((name, e))
except Exception as e:
propList.append((name, as_DAVError(e)))
if self.provider.verbose >= 2:
traceback.print_exc(10, sys.stdout)
return propList | Return properties as list of 2-tuples (name, value).
If mode is 'name', then None is returned for the value.
name
the property name in Clark notation.
value
may have different types, depending on the status:
- string or unicode: for standard property values.
- etree.Element: for complex values.
- DAVError in case of errors.
- None: if mode == 'name'.
@param mode: "allprop", "name", or "named"
@param name_list: list of property names in Clark Notation (required for mode 'named')
This default implementation basically calls self.get_property_names() to
get the list of names, then call self.get_property_value on each of them. |
377,461 | def handle_pkg_optional_fields(self, package, package_node):
self.handle_package_literal_optional(package, package_node, self.spdx_namespace.versionInfo, )
self.handle_package_literal_optional(package, package_node, self.spdx_namespace.packageFileName, )
self.handle_package_literal_optional(package, package_node, self.spdx_namespace.supplier, )
self.handle_package_literal_optional(package, package_node, self.spdx_namespace.originator, )
self.handle_package_literal_optional(package, package_node, self.spdx_namespace.sourceInfo, )
self.handle_package_literal_optional(package, package_node, self.spdx_namespace.licenseComments, )
self.handle_package_literal_optional(package, package_node, self.spdx_namespace.summary, )
self.handle_package_literal_optional(package, package_node, self.spdx_namespace.description, )
if package.has_optional_field():
checksum_node = self.create_checksum_node(package.check_sum)
self.graph.add((package_node, self.spdx_namespace.checksum, checksum_node))
if package.has_optional_field():
homepage_node = URIRef(self.to_special_value(package.homepage))
homepage_triple = (package_node, self.doap_namespace.homepage, homepage_node)
self.graph.add(homepage_triple) | Write package optional fields. |
377,462 | def check_num_columns_in_param_list_arrays(param_list):
try:
num_columns = param_list[0].shape[1]
assert all([x is None or (x.shape[1] == num_columns)
for x in param_list])
except AssertionError:
msg = "param_list arrays should have equal number of columns."
raise ValueError(msg)
return None | Ensure that each array in param_list, that is not None, has the same number
of columns. Raises a helpful ValueError if otherwise.
Parameters
----------
param_list : list of ndarrays or None.
Returns
-------
None. |
377,463 | def reverse(self, search: str):
url_path = "/api/reverse/{search}".format(search=search)
return self._request(path=url_path) | Return reverse DNS lookup information we have for the given IPv{4,6} address with history of changes. Multiple reverse DNS entries may match. We return all of them. |
377,464 | def delete_folder(self, folder_id, folder_etag=None, recursive=None):
return self( join(, folder_id),
dict(recursive=recursive), method=,
headers={: folder_etag} if folder_etag else dict() ) | Delete specified folder.
Pass folder_etag to avoid race conditions (raises error 412).
recursive keyword does just what it says on the tin. |
377,465 | def sieve(self, name=None, sample_rate=None, sample_range=None,
exact_match=False, **others):
if isinstance(name, Pattern):
flags = name.flags
name = name.pattern
else:
flags = 0
if exact_match:
name = name if name.startswith(r) else r"\A%s" % name
name = name if name.endswith(r) else r"%s\Z" % name
name_regexp = re.compile(name, flags=flags)
matched = list(self)
if name is not None:
matched = [entry for entry in matched if
name_regexp.search(entry.name) is not None]
if sample_rate is not None:
sample_rate = (sample_rate.value if
isinstance(sample_rate, units.Quantity) else
float(sample_rate))
matched = [entry for entry in matched if entry.sample_rate and
entry.sample_rate.value == sample_rate]
if sample_range is not None:
matched = [entry for entry in matched if
sample_range[0] <= entry.sample_rate.value <=
sample_range[1]]
for attr, val in others.items():
if val is not None:
matched = [entry for entry in matched if
(hasattr(entry, attr) and
getattr(entry, attr) == val)]
return self.__class__(matched) | Find all `Channels <Channel>` in this list matching the
specified criteria.
Parameters
----------
name : `str`, or regular expression
any part of the channel name against which to match
(or full name if `exact_match=False` is given)
sample_rate : `float`
rate (number of samples per second) to match exactly
sample_range : 2-`tuple`
`[low, high]` closed interval or rates to match within
exact_match : `bool`
return channels matching `name` exactly, default: `False`
Returns
-------
new : `ChannelList`
a new `ChannelList` containing the matching channels |
377,466 | def _on_connection_close(self, connection, reply_code_or_reason, reply_text=None):
self._channel = None
if isinstance(reply_code_or_reason, pika_errs.ConnectionClosed):
reply_code = reply_code_or_reason.reply_code
reply_text = reply_code_or_reason.reply_text
elif isinstance(reply_code_or_reason, int):
reply_code = reply_code_or_reason
else:
reply_code = 0
reply_text = str(reply_code_or_reason)
if reply_code == 200:
_log.info("Server connection closed (%s), shutting down", reply_text)
connection.ioloop.stop()
else:
_log.warning(
"Connection to %s closed unexpectedly (%d): %s",
connection.params.host,
reply_code,
reply_text,
)
self.call_later(1, self.reconnect) | Callback invoked when a previously-opened connection is closed.
Args:
connection (pika.connection.SelectConnection): The connection that
was just closed.
reply_code_or_reason (int|Exception): The reason why the channel
was closed. In older versions of pika, this is the AMQP code.
reply_text (str): The human-readable reason the connection was
closed (only in older versions of pika) |
377,467 | def filepattern(self, *args, **kwargs):
return [p.filepattern(*args, **kwargs) for p in self.problems] | Returns a list of filepatterns, one for each problem. |
377,468 | def main(argv=None):
print (transliterate(, , ))
if argv is None:
argv = sys.argv
try:
text, inFormat, outFormat = argv[1:4]
except ValueError:
print (main.__doc__)
return 2
inFormat = inFormat.upper()
outFormat = outFormat.upper()
try:
f = open(text)
except IOError:
i = i + 1
f.close()
return 0 | Call transliterator from a command line.
python transliterator.py text inputFormat outputFormat
... writes the transliterated text to stdout
text -- the text to be transliterated OR the name of a file containing the text
inputFormat -- the name of the character block or transliteration scheme that
the text is to be transliterated FROM, e.g. 'CYRILLIC', 'IAST'.
Not case-sensitive
outputFormat -- the name of the character block or transliteration scheme that
the text is to be transliterated TO, e.g. 'CYRILLIC', 'IAST'.
Not case-sensitive |
377,469 | def get_commits(self, repo, organization=):
path = ( + organization + + repo.name + )
is_only_today = False
if not os.path.exists(path):
all_commits = repo.iter_commits()
is_only_today = True
else:
files = os.listdir(path)
date = str(files[-1][:-5])
if date == str(datetime.date.today()):
if len(files) > 2:
date = str(files[-2][:-5])
else:
all_commits = repo.iter_commits()
is_only_today = True
if not is_only_today:
all_commits = repo.iter_commits(since=date)
for commit in all_commits:
self.commits_json[repo.name].append(commit.to_json())
count = 0
for commit in repo.iter_commits():
count += 1
return count | Retrieves the number of commits to a repo in the organization. If it is
the first time getting commits for a repo, it will get all commits and
save them to JSON. If there are previous commits saved, it will only get
commits that have not been saved to disk since the last date of commits. |
377,470 | def get(self, request, path):
if path == :
config = {
: request.build_absolute_uri(),
: self.meteor_settings.get(, {}),
: request.build_absolute_uri(
% (
self.runtime_config.get(, ),
),
),
: ,
}
if config[].startswith() \
and settings.SECURE_SSL_REDIRECT:
config[] = % (
config[].split(, 1)[1],
)
config.update(self.runtime_config)
return HttpResponse(
% dumps(config),
content_type=,
)
try:
file_path, content_type = self.url_map[path]
with open(file_path, ) as content:
return HttpResponse(
content.read(),
content_type=content_type,
)
except KeyError:
return HttpResponse(self.html) | Return HTML (or other related content) for Meteor. |
377,471 | def send_to_azure(instance, data, thread_number, sub_commit, table_info, nb_threads):
rows = data["rows"]
if not rows:
return 0
columns_name = data["columns_name"]
table_name = data["table_name"] + "_" + str(thread_number)
print(C.HEADER + "Create table %s..." % table_name + C.ENDC)
create_table_from_info(instance, table_info, table_name)
print(C.OKGREEN + "Create table %s...OK" % table_name + C.ENDC)
small_batch_size = int(2099 / len(columns_name))
cnxn = connect(instance)
cursor = cnxn.cursor()
boolean = True
total_rows = len(rows)
question_mark_pattern = "(%s)" % ",".join(["?" for i in range(len(rows[0]))])
counter = 0
while boolean:
temp_row = []
question_mark_list = []
for i in range(small_batch_size):
if rows:
temp_row.append(rows.pop())
question_mark_list.append(question_mark_pattern)
else:
boolean = False
continue
counter = counter + len(temp_row)
threads_state = eval(read_file("threads_state_%s" % str(thread_number)))
threads_state["iteration"] = counter
write_in_file("threads_state_%s" % str(thread_number), str(threads_state))
if sub_commit:
suffix = "rows sent"
else:
suffix = "rows prepared to be sent"
print_progress_bar_multi_threads(nb_threads, suffix=suffix)
data_values_str = .join(question_mark_list)
columns_name_str = ", ".join(columns_name)
inserting_request = % (table_name, columns_name_str, data_values_str)
final_data = [y for x in temp_row for y in x]
if final_data:
cursor.execute(inserting_request, final_data)
if sub_commit:
commit_function(cnxn)
if not sub_commit:
commit_function(cnxn)
cursor.close()
cnxn.close()
return 0 | data = {
"table_name" : 'name_of_the_azure_schema' + '.' + 'name_of_the_azure_table' #Must already exist,
"columns_name" : [first_column_name,second_column_name,...,last_column_name],
"rows" : [[first_raw_value,second_raw_value,...,last_raw_value],...]
} |
377,472 | def get_function(self, name):
p = ffi.lib.LLVMPY_GetNamedFunction(self, _encode_string(name))
if not p:
raise NameError(name)
return ValueRef(p, , dict(module=self)) | Get a ValueRef pointing to the function named *name*.
NameError is raised if the symbol isn't found. |
377,473 | def handle_ChannelClose(self, frame):
self.sender.send_CloseOK()
exc = exceptions._get_exception_type(frame.payload.reply_code)
self._close_all(exc) | AMQP server closed the channel with an error |
377,474 | def factory(ec, code=None, token=None, refresh=None, **kwargs):
TTYPE = {: , : , : }
args = {}
if code:
args[] = init_token_handler(ec, code, TTYPE[])
if token:
args[] = init_token_handler(ec, token, TTYPE[])
if refresh:
args[] = init_token_handler(ec, token, TTYPE[])
return TokenHandler(**args) | Create a token handler
:param code:
:param token:
:param refresh:
:return: TokenHandler instance |
377,475 | def __get_untitled_file_name(self):
untitledNameId = Editor._Editor__untitled_name_id
for file in self.list_files():
if not os.path.dirname(file) == self.__default_session_directory:
continue
search = re.search(r"\d+", os.path.basename(file))
if not search:
continue
untitledNameId = max(int(search.group(0)), untitledNameId) + 1
name = "{0} {1}.{2}".format(self.__default_file_name, untitledNameId, self.__default_file_extension)
Editor._Editor__untitled_name_id += 1
LOGGER.debug("> Next untitled file name: .".format(name))
return name | Returns an untitled file name.
:return: Untitled file name.
:rtype: unicode |
377,476 | def create_dataset(self, name, **kwargs):
return self._write_op(self._create_dataset_nosync, name, **kwargs) | Create an array.
Parameters
----------
name : string
Array name.
data : array_like, optional
Initial data.
shape : int or tuple of ints
Array shape.
chunks : int or tuple of ints, optional
Chunk shape. If not provided, will be guessed from `shape` and
`dtype`.
dtype : string or dtype, optional
NumPy dtype.
compressor : Codec, optional
Primary compressor.
fill_value : object
Default value to use for uninitialized portions of the array.
order : {'C', 'F'}, optional
Memory layout to be used within each chunk.
synchronizer : zarr.sync.ArraySynchronizer, optional
Array synchronizer.
filters : sequence of Codecs, optional
Sequence of filters to use to encode chunk data prior to
compression.
overwrite : bool, optional
If True, replace any existing array or group with the given name.
cache_metadata : bool, optional
If True, array configuration metadata will be cached for the
lifetime of the object. If False, array metadata will be reloaded
prior to all data access and modification operations (may incur
overhead depending on storage and data access pattern).
Returns
-------
a : zarr.core.Array
Examples
--------
>>> import zarr
>>> g1 = zarr.group()
>>> d1 = g1.create_dataset('foo', shape=(10000, 10000),
... chunks=(1000, 1000))
>>> d1
<zarr.core.Array '/foo' (10000, 10000) float64>
>>> d2 = g1.create_dataset('bar/baz/qux', shape=(100, 100, 100),
... chunks=(100, 10, 10))
>>> d2
<zarr.core.Array '/bar/baz/qux' (100, 100, 100) float64> |
377,477 | def _verify(function):
def wrapped(pin, *args, **kwargs):
pin = int(pin)
if pin not in _open:
ppath = gpiopath(pin)
if not os.path.exists(ppath):
log.debug("Creating Pin {0}".format(pin))
with _export_lock:
with open(pjoin(gpio_root, ), ) as f:
_write(f, pin)
value = open(pjoin(ppath, ), FMODE)
direction = open(pjoin(ppath, ), FMODE)
_open[pin] = PinState(value=value, direction=direction)
return function(pin, *args, **kwargs)
return wrapped | decorator to ensure pin is properly set up |
377,478 | def get_type(self):
if self.type_idx_value == None:
self.type_idx_value = self.CM.get_type(self.type_idx)
return self.type_idx_value | Return the type of the field
:rtype: string |
377,479 | async def issue_cmd(self, cmd, value, retry=3):
async with self._cmd_lock:
if not self.connected:
_LOGGER.debug(
"Serial transport closed, not sending command %s", cmd)
return
while not self._cmdq.empty():
_LOGGER.debug("Clearing leftover message from command queue:"
" %s", await self._cmdq.get())
_LOGGER.debug("Sending command: %s with value %s", cmd, value)
self.transport.write(
.format(cmd, value).encode())
if cmd == OTGW_CMD_REPORT:
expect = r.format(cmd, value)
else:
expect = r.format(cmd)
async def send_again(err):
nonlocal retry
_LOGGER.warning("Command %s failed with %s, retrying...", cmd,
err)
retry -= 1
self.transport.write(
.format(cmd, value).encode())
async def process(msg):
_LOGGER.debug("Got possible response for command %s: %s", cmd,
msg)
if msg in OTGW_ERRS:
if retry == 0:
raise OTGW_ERRS[msg]
await send_again(msg)
return
if cmd == OTGW_CMD_MODE and value == :
while not re.match(
r, msg):
msg = await self._cmdq.get()
return True
match = re.match(expect, msg)
if match:
if match.group(1) in OTGW_ERRS:
if retry == 0:
raise OTGW_ERRS[match.group(1)]
await send_again(msg)
return
ret = match.group(1)
if cmd == OTGW_CMD_SUMMARY and ret == :
part2 = await self._cmdq.get()
ret = [ret, part2]
return ret
if re.match(r, msg):
_LOGGER.warning("Received %s. If this happens during a "
"reset of the gateway it can be safely "
"ignored.", msg)
return
_LOGGER.warning("Unknown message in command queue: %s", msg)
await send_again(msg)
while True:
msg = await self._cmdq.get()
ret = await process(msg)
if ret is not None:
return ret | Issue a command, then await and return the return value.
This method is a coroutine |
377,480 | def respond(self, text, sessionID = "general"):
text = self.__normalize(text)
previousText = self.__normalize(self.conversation[sessionID][-2])
text_correction = self.__correction(text)
current_topic = self.topic[sessionID]
current_topic_order = current_topic.split(".")
while current_topic_order:
try:return self.__response_on_topic(text, previousText, text_correction, current_topic, sessionID)
except ValueError as e:pass
current_topic_order.pop()
current_topic = ".".join(current_topic_order)
try:return self.__response_on_topic(text, previousText, text_correction, current_topic, sessionID)
except ValueError as e:return "Sorry I couldn't find anything relevant" | Generate a response to the user input.
:type text: str
:param text: The string to be mapped
:rtype: str |
377,481 | def read_igor_D_gene_parameters(params_file_name):
params_file = open(params_file_name, )
D_gene_info = {}
in_D_gene_sec = False
for line in params_file:
if line.startswith():
in_D_gene_sec = True
elif in_D_gene_sec:
if line[0] == :
split_line = line[1:].split()
D_gene_info[split_line[0]] = [split_line[1] , int(split_line[2])]
else:
break
params_file.close()
genD = [[]]*len(D_gene_info.keys())
for D_gene in D_gene_info.keys():
genD[D_gene_info[D_gene][1]] = [D_gene, D_gene_info[D_gene][0]]
return genD | Load genD from file.
genD is a list of genomic D information. Each element is a list of the name
of the D allele and the germline sequence.
Parameters
----------
params_file_name : str
File name for a IGOR parameter file.
Returns
-------
genD : list
List of genomic D information. |
377,482 | def _scaled_int(s):
r
s = bytearray(s)
sign = 1 - ((s[0] & 0x80) >> 6)
int_val = (((s[0] & 0x7f) << 16) | (s[1] << 8) | s[2])
log.debug(, .join(hex(c) for c in s), int_val, sign)
return (sign * int_val) / 10000. | r"""Convert a 3 byte string to a signed integer value. |
377,483 | def emit_java_headers(target, source, env):
class_suffix = env.get(, )
classdir = env.get()
if not classdir:
try:
s = source[0]
except IndexError:
classdir =
else:
try:
classdir = s.attributes.java_classdir
except AttributeError:
classdir =
classdir = env.Dir(classdir).rdir()
if str(classdir) == :
c_ = None
else:
c_ = str(classdir) + os.sep
slist = []
for src in source:
try:
classname = src.attributes.java_classname
except AttributeError:
classname = str(src)
if c_ and classname[:len(c_)] == c_:
classname = classname[len(c_):]
if class_suffix and classname[-len(class_suffix):] == class_suffix:
classname = classname[:-len(class_suffix)]
classname = SCons.Tool.javac.classname(classname)
s = src.rfile()
s.attributes.java_classname = classname
slist.append(s)
s = source[0].rfile()
if not hasattr(s.attributes, ):
s.attributes.java_classdir = classdir
if target[0].__class__ is SCons.Node.FS.File:
tlist = target
else:
if not isinstance(target[0], SCons.Node.FS.Dir):
target[0].__class__ = SCons.Node.FS.Dir
target[0]._morph()
tlist = []
for s in source:
fname = s.attributes.java_classname.replace(, ) +
t = target[0].File(fname)
t.attributes.java_lookupdir = target[0]
tlist.append(t)
return tlist, source | Create and return lists of Java stub header files that will
be created from a set of class files. |
377,484 | def use_astropy_helpers(**kwargs):
global BOOTSTRAPPER
config = BOOTSTRAPPER.config
config.update(**kwargs)
BOOTSTRAPPER = _Bootstrapper(**config)
BOOTSTRAPPER.run() | Ensure that the `astropy_helpers` module is available and is importable.
This supports automatic submodule initialization if astropy_helpers is
included in a project as a git submodule, or will download it from PyPI if
necessary.
Parameters
----------
path : str or None, optional
A filesystem path relative to the root of the project's source code
that should be added to `sys.path` so that `astropy_helpers` can be
imported from that path.
If the path is a git submodule it will automatically be initialized
and/or updated.
The path may also be to a ``.tar.gz`` archive of the astropy_helpers
source distribution. In this case the archive is automatically
unpacked and made temporarily available on `sys.path` as a ``.egg``
archive.
If `None` skip straight to downloading.
download_if_needed : bool, optional
If the provided filesystem path is not found an attempt will be made to
download astropy_helpers from PyPI. It will then be made temporarily
available on `sys.path` as a ``.egg`` archive (using the
``setup_requires`` feature of setuptools. If the ``--offline`` option
is given at the command line the value of this argument is overridden
to `False`.
index_url : str, optional
If provided, use a different URL for the Python package index than the
main PyPI server.
use_git : bool, optional
If `False` no git commands will be used--this effectively disables
support for git submodules. If the ``--no-git`` option is given at the
command line the value of this argument is overridden to `False`.
auto_upgrade : bool, optional
By default, when installing a package from a non-development source
distribution ah_boostrap will try to automatically check for patch
releases to astropy-helpers on PyPI and use the patched version over
any bundled versions. Setting this to `False` will disable that
functionality. If the ``--offline`` option is given at the command line
the value of this argument is overridden to `False`.
offline : bool, optional
If `False` disable all actions that require an internet connection,
including downloading packages from the package index and fetching
updates to any git submodule. Defaults to `True`. |
377,485 | def compare_values(values0, values1):
values0 = {v[0]: v[1:] for v in values0}
values1 = {v[0]: v[1:] for v in values1}
created = [(k, v[0], v[1]) for k, v in values1.items() if k not in values0]
deleted = [(k, v[0], v[1]) for k, v in values0.items() if k not in values1]
modified = [(k, v[0], v[1]) for k, v in values0.items()
if v != values1.get(k, None)]
return created, deleted, modified | Compares all the values of a single registry key. |
377,486 | def calculate_mvgd_stats(nw):
omega = 2 * pi * 50
nw.control_circuit_breakers(mode=)
trafos_dict = {}
generators_dict = {}
branches_dict = {}
ring_dict = {}
LA_dict = {}
other_nodes_dict = {}
lv_branches_dict = {}
trafos_idx = 0
gen_idx = 0
branch_idx = 0
ring_idx = 0
LA_idx = 0
lv_branches_idx = 0
for district in nw.mv_grid_districts():
root = district.mv_grid.station()
mv_impedances = {}
mvlv_impedances = {}
mv_path_lengths = {}
mvlv_path_lengths = {}
mv_thermal_limits = {}
lv_thermal_limits = {}
mvlv_thermal_limits = {}
n_outgoing_LV = 0
n_stations_LV = 0
n_outgoing_MV = 0
G = district.mv_grid._graph
for node in G.nodes():
if isinstance(node, MVStationDing0):
n_outgoing_MV += len(list(G.neighbors(node)))
continue
mv_impedance = 0
mv_path_length = 0
if not isinstance(node, MVCableDistributorDing0) and not isinstance(node, CircuitBreakerDing0):
if not nx.has_path(G, root, node):
continue
else:
path = nx.shortest_path(G, root, node)
for i in range(len(path) - 1):
mv_impedance += np.sqrt(
(G.adj[path[i]][path[i + 1]][].type[
] * 1e-3 * omega * \
G.adj[path[i]][path[i + 1]][
].length) ** 2. + \
(G.adj[path[i]][path[i + 1]][].type[
] * \
G.adj[path[i]][path[i + 1]][
].length) ** 2.)
mv_path_length += G.adj[path[i]][path[i + 1]][
].length
mv_impedances[node] = mv_impedance
mv_path_lengths[node] = mv_path_length
mv_thermal_limit = G.adj[path[0]][path[1]][].type[]
mv_thermal_limits[node] = mv_thermal_limit
if isinstance(node, LVStationDing0):
lvstation_impedance = 0.
for trafo in node.transformers():
lvstation_impedance += 1. / np.hypot(trafo.r,trafo.x)
if lvstation_impedance > 0.:
lvstation_impedance = 1. / lvstation_impedance
else:
lvstation_impedance = 0.
for lv_LA in district.lv_load_areas():
for lv_dist in lv_LA.lv_grid_districts():
if lv_dist.lv_grid._station == node:
G_lv = lv_dist.lv_grid._graph
for lv_node in G_lv.nodes():
if isinstance(lv_node, GeneratorDing0) or isinstance(lv_node, LVLoadDing0):
path = nx.shortest_path(G_lv, node, lv_node)
lv_impedance = lvstation_impedance
lv_path_length = 0.
for i in range(len(path)-1):
lv_impedance += np.sqrt((G_lv.adj[path[i]][path[i+1]][].type[] * 1e-3 * omega * \
G_lv.adj[path[i]][path[i+1]][].length)**2. + \
(G_lv.adj[path[i]][path[i+1]][].type[] * \
G_lv.adj[path[i]][path[i+1]][].length)**2.)
lv_path_length += G_lv.adj[path[i]][path[i+1]][].length
lv_thermal_limit = G_lv.adj[path[0]][path[1]][].type[]
mvlv_impedances[lv_node] = mv_impedance + lv_impedance
mvlv_path_lengths[lv_node] = mv_path_length + lv_path_length
lv_thermal_limits[lv_node] = lv_thermal_limit
mvlv_thermal_limits[lv_node] = mv_thermal_limit
elif isinstance(lv_node, LVStationDing0):
n_outgoing_LV += len(list(G_lv.neighbors(lv_node)))
n_stations_LV += 1
sum_impedances = 0.
sum_thermal_limits = 0.
sum_path_lengths = 0.
n_terminal_nodes_MV = 0
for terminal_node in mv_impedances.keys():
if not isinstance(terminal_node, LVStationDing0) and not isinstance(terminal_node, MVStationDing0):
sum_impedances += mv_impedances[terminal_node]
sum_thermal_limits += mv_thermal_limits[terminal_node]
sum_path_lengths += mv_path_lengths[terminal_node]
n_terminal_nodes_MV += 1
sum_thermal_limits_LV = 0.
n_terminal_nodes_LV = 0
for terminal_node in mvlv_impedances.keys():
sum_impedances += mvlv_impedances[terminal_node]
sum_thermal_limits += mvlv_thermal_limits[terminal_node]
sum_thermal_limits_LV += lv_thermal_limits[terminal_node]
sum_path_lengths += mvlv_path_lengths[terminal_node]
n_terminal_nodes_LV += 1
n_terminal_nodes = n_terminal_nodes_MV + n_terminal_nodes_LV
if n_terminal_nodes < 1:
mean_impedance = np.nan
mean_thermal_limit = np.nan
mean_path_length = np.nan
else:
mean_impedance = sum_impedances / n_terminal_nodes
mean_thermal_limit = sum_thermal_limits / n_terminal_nodes
mean_path_length = sum_path_lengths / n_terminal_nodes
if n_terminal_nodes_LV < 1:
mean_thermal_limit_LV = np.nan
else:
mean_thermal_limit_LV = sum_thermal_limits_LV / n_terminal_nodes_LV
number_outgoing_LV = n_outgoing_LV
number_outgoing_MV = n_outgoing_MV
max_mv_path = 0
max_mvlv_path = 0
nodes_in_rings = []
branches_in_rings = []
for ring in district.mv_grid.rings_full_data():
ring_idx += 1
ring_gen = 0
for node in ring[2]:
nodes_in_rings.append(node)
if isinstance(node, GeneratorDing0):
ring_gen += node.capacity
ring_length = 0
for branch in ring[1]:
branches_in_rings.append(branch)
ring_length += branch.length / 1e3
ring_dict[ring_idx] = {
: district.mv_grid.id_db,
: ring_length,
: ring_gen,
}
for trafo in district.mv_grid.station().transformers():
trafos_idx += 1
trafos_dict[trafos_idx] = {
: district.mv_grid.id_db,
: trafo.s_max_a}
cd_count = 0
LVs_count = 0
cb_count = 0
lv_trafo_count = 0
lv_trafo_cap = 0
for node in district.mv_grid._graph.nodes():
mv_path_length = 0
mvlv_path_length = 0
if isinstance(node, GeneratorDing0):
gen_idx += 1
isolation = not node in nodes_in_rings
subtype = node.subtype
if subtype == None:
subtype =
generators_dict[gen_idx] = {
: district.mv_grid.id_db,
: node.type,
: node.type + + subtype,
: node.capacity,
: node.v_level,
: isolation,
}
mv_path_length = district.mv_grid.graph_path_length(
node_source=root,
node_target=node)
elif isinstance(node, MVCableDistributorDing0):
cd_count += 1
elif isinstance(node, LVStationDing0):
LVs_count += 1
lv_trafo_count += len([trafo for trafo in node.transformers()])
lv_trafo_cap += np.sum([trafo.s_max_a for trafo in node.transformers()])
if not node.lv_load_area.is_aggregated:
mv_path_length = district.mv_grid.graph_path_length(
node_source=root,
node_target=node)
max_lv_path = 0
for lv_LA in district.lv_load_areas():
for lv_dist in lv_LA.lv_grid_districts():
if lv_dist.lv_grid._station == node:
for lv_node in lv_dist.lv_grid._graph.nodes():
lv_path_length = lv_dist.lv_grid.graph_path_length(
node_source=node,
node_target=lv_node)
max_lv_path = max(max_lv_path, lv_path_length)
mvlv_path_length = mv_path_length + max_lv_path
elif isinstance(node, CircuitBreakerDing0):
cb_count += 1
max_mv_path = max(max_mv_path, mv_path_length / 1000)
max_mvlv_path = max(max_mvlv_path, mvlv_path_length / 1000)
other_nodes_dict[district.mv_grid.id_db] = {
: cd_count,
: LVs_count,
: cb_count,
: lv_trafo_count,
: lv_trafo_cap,
: max_mv_path,
: max_mvlv_path,
: mean_impedance,
: mean_thermal_limit,
: mean_thermal_limit_LV,
: mean_path_length / 1.e3,
: number_outgoing_LV,
: number_outgoing_MV
}
for branch in district.mv_grid.graph_edges():
branch_idx += 1
br_in_ring = branch[] in branches_in_rings
branches_dict[branch_idx] = {
: district.mv_grid.id_db,
: branch[].length / 1e3,
: branch[].type[],
: branch[].kind,
: br_in_ring,
}
for LA in district.lv_load_areas():
LA_idx += 1
LA_dict[LA_idx] = {
: district.mv_grid.id_db,
: LA.is_aggregated,
: LA.is_satellite,
}
LA_pop = 0
residential_peak_load = 0
retail_peak_load = 0
industrial_peak_load = 0
agricultural_peak_load = 0
lv_gen_level_6 = 0
lv_gen_level_7 = 0
for lv_district in LA.lv_grid_districts():
LA_pop = + lv_district.population
residential_peak_load += lv_district.peak_load_residential
retail_peak_load += lv_district.peak_load_retail
industrial_peak_load += lv_district.peak_load_industrial
agricultural_peak_load += lv_district.peak_load_agricultural
for g in lv_district.lv_grid.generators():
if g.v_level == 6:
lv_gen_level_6 += g.capacity
elif g.v_level == 7:
lv_gen_level_7 += g.capacity
for br in lv_district.lv_grid.graph_edges():
lv_branches_idx += 1
lv_branches_dict[lv_branches_idx] = {
: district.mv_grid.id_db,
: br[].length / 1e3,
: br[].type.to_frame().columns[0],
: br[].kind,
}
LA_dict[LA_idx].update({
: LA_pop,
: residential_peak_load,
: retail_peak_load,
: industrial_peak_load,
: agricultural_peak_load,
: residential_peak_load + retail_peak_load + \
industrial_peak_load + agricultural_peak_load,
: lv_gen_level_6 + lv_gen_level_7,
: lv_gen_level_6,
: lv_gen_level_7,
})
proj = partial(
pyproj.transform,
pyproj.Proj(init=),
pyproj.Proj(init=))
district_geo = transform(proj, district.geo_data)
other_nodes_dict[district.mv_grid.id_db].update({: district_geo.area})
mvgd_stats = pd.DataFrame.from_dict({}, orient=)
trafos_df = pd.DataFrame.from_dict(trafos_dict, orient=)
generators_df = pd.DataFrame.from_dict(generators_dict, orient=)
other_nodes_df = pd.DataFrame.from_dict(other_nodes_dict, orient=)
branches_df = pd.DataFrame.from_dict(branches_dict, orient=)
lv_branches_df = pd.DataFrame.from_dict(lv_branches_dict, orient=)
ring_df = pd.DataFrame.from_dict(ring_dict, orient=)
LA_df = pd.DataFrame.from_dict(LA_dict, orient=)
if not trafos_df.empty:
mvgd_stats = pd.concat([mvgd_stats, trafos_df.groupby().count()[]], axis=1)
mvgd_stats = pd.concat([mvgd_stats, trafos_df.groupby().sum()[[]]], axis=1)
mvgd_stats.columns = [, ]
if not generators_df.empty:
mv_generation = generators_df.groupby([, ])[].sum().to_frame().unstack(level=-1)
mv_generation.columns = [ + _[1] if isinstance(_, tuple) else _
for _ in mv_generation.columns]
mvgd_stats = pd.concat([mvgd_stats, mv_generation], axis=1)
mv_generation = generators_df.groupby(
[, ])[].sum().to_frame().unstack(level=-1)
mv_generation.columns = [ + str(_[1])
if isinstance(_, tuple) else _
for _ in mv_generation.columns]
mvgd_stats = pd.concat([mvgd_stats, mv_generation], axis=1)
mv_generation = generators_df[generators_df[]].groupby(
[])[].count().to_frame()
mv_generation.columns = []
mvgd_stats = pd.concat([mvgd_stats, mv_generation], axis=1)
if not other_nodes_df.empty:
mvgd_stats[] = other_nodes_df[].to_frame().astype(int)
mvgd_stats[] = other_nodes_df[].to_frame().astype(int)
mvgd_stats[] = other_nodes_df[].to_frame().astype(int)
mvgd_stats[] = other_nodes_df[].to_frame()
mvgd_stats[] = other_nodes_df[].to_frame().astype(int)
mvgd_stats[] = other_nodes_df[].to_frame()
mvgd_stats[] = other_nodes_df[].to_frame()
mvgd_stats[] = other_nodes_df[].to_frame()
mvgd_stats[] = \
other_nodes_df[].to_frame()
mvgd_stats[] = \
other_nodes_df[].to_frame()
mvgd_stats[] = \
other_nodes_df[].to_frame()
mvgd_stats[] = \
other_nodes_df[].to_frame()
mvgd_stats[] = \
other_nodes_df[].to_frame()
mvgd_stats[] = \
other_nodes_df[].to_frame()
if not branches_df.empty:
branches_data = branches_df[branches_df[] == ].groupby(
[])[].sum().to_frame()
branches_data.columns = []
mvgd_stats = pd.concat([mvgd_stats, branches_data], axis=1)
branches_data = branches_df[branches_df[] == ].groupby(
[])[].sum().to_frame()
branches_data.columns = []
mvgd_stats = pd.concat([mvgd_stats, branches_data], axis=1)
branches_data = branches_df.groupby(
[, ])[].sum().to_frame().unstack(level=-1)
branches_data.columns = [ + _[1] if isinstance(_, tuple) else _
for _ in branches_data.columns]
mvgd_stats = pd.concat([mvgd_stats, branches_data], axis=1)
total_br = branches_df.groupby([])[].count().to_frame()
ring_br = branches_df[branches_df[]].groupby(
[])[].count().to_frame()
branches_data = total_br - ring_br
total_br.columns = []
mvgd_stats = pd.concat([mvgd_stats, total_br], axis=1)
branches_data.columns = []
mvgd_stats = pd.concat([mvgd_stats, branches_data], axis=1)
if not lv_branches_df.empty:
lv_branches_data = lv_branches_df[lv_branches_df[] == ].groupby(
[])[].sum().to_frame()
lv_branches_data.columns = []
mvgd_stats = pd.concat([mvgd_stats, lv_branches_data], axis=1)
lv_branches_data = lv_branches_df[lv_branches_df[] == ].groupby(
[])[].sum().to_frame()
lv_branches_data.columns = []
mvgd_stats = pd.concat([mvgd_stats, lv_branches_data], axis=1)
lv_branches_data = lv_branches_df.groupby(
[, ])[].sum().to_frame().unstack(level=-1)
lv_branches_data.columns = [ + _[1] if isinstance(_, tuple) else _
for _ in lv_branches_data.columns]
mvgd_stats = pd.concat([mvgd_stats, lv_branches_data], axis=1)
total_lv_br = lv_branches_df.groupby([])[].count().to_frame()
total_lv_br.columns = []
mvgd_stats = pd.concat([mvgd_stats, total_lv_br], axis=1)
if not ring_df.empty:
ring_data = ring_df.groupby([])[].count().to_frame()
ring_data.columns = []
mvgd_stats = pd.concat([mvgd_stats, ring_data], axis=1)
ring_data = ring_df.groupby([])[].min().to_frame()
ring_data.columns = []
mvgd_stats = pd.concat([mvgd_stats, ring_data], axis=1)
ring_data = ring_df.groupby([])[].max().to_frame()
ring_data.columns = []
mvgd_stats = pd.concat([mvgd_stats, ring_data], axis=1)
ring_data = ring_df.groupby([])[].mean().to_frame()
ring_data.columns = []
mvgd_stats = pd.concat([mvgd_stats, ring_data], axis=1)
ring_data = ring_df.groupby([])[].sum().to_frame()
ring_data.columns = []
mvgd_stats = pd.concat([mvgd_stats, ring_data], axis=1)
non_ring_data = branches_df.groupby([])[].sum().to_frame()
non_ring_data.columns = []
ring_data = non_ring_data - ring_data
ring_data.columns = []
mvgd_stats = pd.concat([mvgd_stats, ring_data.round(1).abs()], axis=1)
ring_data = ring_df.groupby([])[].sum().to_frame()
ring_data.columns = []
mvgd_stats = pd.concat([mvgd_stats, ring_data], axis=1)
if not LA_df.empty:
LA_data = LA_df.groupby([])[].count().to_frame()
LA_data.columns = []
mvgd_stats = pd.concat([mvgd_stats, LA_data], axis=1)
LA_data = LA_df.groupby([])[,
,
,
,
,
,
,
,
].sum()
LA_data.columns = [,
,
,
,
,
,
,
,
,
]
mvgd_stats = pd.concat([mvgd_stats, LA_data], axis=1)
if not LA_df.empty:
agg_LA_data = LA_df[LA_df[]].groupby(
[])[].count().to_frame()
agg_LA_data.columns = []
mvgd_stats = pd.concat([mvgd_stats, agg_LA_data], axis=1)
sat_LA_data = LA_df[LA_df[]].groupby(
[])[].count().to_frame()
sat_LA_data.columns = []
mvgd_stats = pd.concat([mvgd_stats, sat_LA_data], axis=1)
agg_LA_data = LA_df[LA_df[]].groupby([])[,
,
].sum()
agg_LA_data.columns = [,
,
]
mvgd_stats = pd.concat([mvgd_stats, agg_LA_data], axis=1)
mvgd_stats = mvgd_stats.fillna(0)
mvgd_stats = mvgd_stats[sorted(mvgd_stats.columns.tolist())]
return mvgd_stats | MV Statistics for an arbitrary network
Parameters
----------
nw: :any:`list` of NetworkDing0
The MV grid(s) to be studied
Returns
-------
mvgd_stats : pandas.DataFrame
Dataframe containing several statistical numbers about the MVGD |
377,487 | def extract_atoms(molecule):
if molecule == :
return molecule
try:
return float(molecule)
except BaseException:
pass
atoms =
if not molecule[0].isalpha():
i = 0
while not molecule[i].isalpha():
i += 1
prefactor = float(molecule[:i])
if prefactor < 0:
prefactor = abs(prefactor)
sign =
else:
sign =
molecule = molecule[i:]
else:
prefactor = 1
sign =
for k in range(len(molecule)):
if molecule[k].isdigit():
for j in range(int(molecule[k]) - 1):
atoms += molecule[k - 1]
else:
atoms += molecule[k]
if prefactor % 1 == 0:
atoms *= int(prefactor)
elif prefactor % 1 == 0.5:
atoms_sort = sorted(atoms)
N = len(atoms)
atoms =
for n in range(N):
for m in range(int(prefactor - 0.5)):
atoms += atoms_sort[n]
if n % 2 == 0:
atoms += atoms_sort[n]
return sign + .join(sorted(atoms)) | Return a string with all atoms in molecule |
377,488 | def last_insert_id(self, cursor, table_name, pk_name):
table_name = self.quote_name(table_name)
cursor.execute("SELECT CAST(IDENT_CURRENT(%s) as bigint)", [table_name])
return cursor.fetchone()[0] | Given a cursor object that has just performed an INSERT statement into
a table that has an auto-incrementing ID, returns the newly created ID.
This method also receives the table name and the name of the primary-key
column. |
377,489 | def is_module_on_std_lib_path(cls, module):
module_file_real_path = os.path.realpath(module.__file__)
if module_file_real_path.startswith(cls.STANDARD_LIB_PATH):
return True
elif os.path.splitext(module_file_real_path)[1] == :
py_file_real_path = os.path.realpath(os.path.splitext(module_file_real_path)[0] + )
return py_file_real_path.startswith(cls.STANDARD_LIB_PATH)
return False | Sometimes .py files are symlinked to the real python files, such as the case of virtual
env. However the .pyc files are created under the virtual env directory rather than
the path in cls.STANDARD_LIB_PATH. Hence this function checks for both.
:param module: a module
:return: True if module is on interpreter's stdlib path. False otherwise. |
377,490 | def format_cert_name(env=, account=, region=, certificate=None):
cert_name = None
if certificate:
if certificate.startswith():
LOG.info("Full ARN provided...skipping lookup.")
cert_name = certificate
else:
generated_cert_name = generate_custom_cert_name(env, region, account, certificate)
if generated_cert_name:
LOG.info("Found generated certificate %s from template", generated_cert_name)
cert_name = generated_cert_name
else:
LOG.info("Using default certificate name logic")
cert_name = (.format(
account=account, name=certificate))
LOG.debug(, cert_name)
return cert_name | Format the SSL certificate name into ARN for ELB.
Args:
env (str): Account environment name
account (str): Account number for ARN
region (str): AWS Region.
certificate (str): Name of SSL certificate
Returns:
str: Fully qualified ARN for SSL certificate
None: Certificate is not desired |
377,491 | def _annotate_validations(eval_files, data):
for key in ["tp", "tp-calls", "fp", "fn"]:
if eval_files.get(key):
eval_files[key] = annotation.add_genome_context(eval_files[key], data)
return eval_files | Add annotations about potential problem regions to validation VCFs. |
377,492 | def sine(w, A=1, phi=0, offset=0):
from math import sin
def f(i):
return A * sin(w*i + phi) + offset
return partial(force, sequence=_advance(f)) | Return a driver function that can advance a sequence of sine values.
.. code-block:: none
value = A * sin(w*i + phi) + offset
Args:
w (float) : a frequency for the sine driver
A (float) : an amplitude for the sine driver
phi (float) : a phase offset to start the sine driver with
offset (float) : a global offset to add to the driver values |
377,493 | def store_text_log_summary_artifact(job, text_log_summary_artifact):
step_data = json.loads(
text_log_summary_artifact[])[]
result_map = {v: k for (k, v) in TextLogStep.RESULTS}
with transaction.atomic():
for step in step_data[]:
name = step[][:TextLogStep._meta.get_field().max_length]
error_summary.get_error_summary(job) | Store the contents of the text log summary artifact |
377,494 | def change_attributes(self, bounds, radii, colors):
self.n_cylinders = len(bounds)
self.is_empty = True if self.n_cylinders == 0 else False
if self.is_empty:
self.bounds = bounds
self.radii = radii
self.colors = colors
return
self.bounds = np.array(bounds, dtype=)
vertices, directions = self._gen_bounds(self.bounds)
self.radii = np.array(radii, dtype=)
prim_radii = self._gen_radii(self.radii)
self.colors = np.array(colors, dtype=)
prim_colors = self._gen_colors(self.colors)
local = np.array([
0.0, 0.0, 0.0,
0.0, 1.0, 0.0,
1.0, 1.0, 0.0,
0.0, 0.0, 0.0,
1.0, 1.0, 0.0,
1.0, 0.0, 0.0,
0.0, 0.0, 1.0,
0.0, 1.0, 1.0,
1.0, 1.0, 1.0,
0.0, 0.0, 1.0,
1.0, 1.0, 1.0,
1.0, 0.0, 1.0,
0.0, 0.0, 0.0,
0.0, 0.0, 1.0,
0.0, 1.0, 1.0,
0.0, 0.0, 0.0,
0.0, 1.0, 1.0,
0.0, 1.0, 0.0,
1.0, 0.0, 0.0,
1.0, 0.0, 1.0,
1.0, 1.0, 1.0,
1.0, 0.0, 0.0,
1.0, 1.0, 1.0,
1.0, 1.0, 0.0,
0.0, 1.0, 0.0,
0.0, 1.0, 1.0,
1.0, 1.0, 1.0,
0.0, 1.0, 0.0,
1.0, 1.0, 1.0,
1.0, 1.0, 0.0,
0.0, 0.0, 0.0,
0.0, 0.0, 1.0,
1.0, 0.0, 1.0,
0.0, 0.0, 0.0,
1.0, 0.0, 1.0,
1.0, 0.0, 0.0,
]).astype()
local = np.tile(local, self.n_cylinders)
self._verts_vbo = VertexBuffer(vertices,GL_DYNAMIC_DRAW)
self._directions_vbo = VertexBuffer(directions, GL_DYNAMIC_DRAW)
self._local_vbo = VertexBuffer(local,GL_DYNAMIC_DRAW)
self._color_vbo = VertexBuffer(prim_colors, GL_DYNAMIC_DRAW)
self._radii_vbo = VertexBuffer(prim_radii, GL_DYNAMIC_DRAW) | Reinitialize the buffers, to accomodate the new
attributes. This is used to change the number of cylinders to
be displayed. |
377,495 | def buffer_read(library, session, count):
buffer = create_string_buffer(count)
return_count = ViUInt32()
ret = library.viBufRead(session, buffer, count, byref(return_count))
return buffer.raw[:return_count.value], ret | Reads data from device or interface through the use of a formatted I/O read buffer.
Corresponds to viBufRead function of the VISA library.
:param library: the visa library wrapped by ctypes.
:param session: Unique logical identifier to a session.
:param count: Number of bytes to be read.
:return: data read, return value of the library call.
:rtype: bytes, :class:`pyvisa.constants.StatusCode` |
377,496 | def strsettings(self, indent=0, maxindent=25, width=0):
out = []
makelabel = lambda name: * indent + name +
settingsindent = _autoindent([makelabel(s) for s in self.options], indent, maxindent)
for name in self.option_order:
option = self.options[name]
label = makelabel(name)
settingshelp = "%s(%s): %s" % (option.formatname, option.strvalue, option.location)
wrapped = self._wrap_labelled(label, settingshelp, settingsindent, width)
out.extend(wrapped)
return .join(out) | Return user friendly help on positional arguments.
indent is the number of spaces preceeding the text on each line.
The indent of the documentation is dependent on the length of the
longest label that is shorter than maxindent. A label longer than
maxindent will be printed on its own line.
width is maximum allowed page width, use self.width if 0. |
377,497 | def get(self, field_paths=None, transaction=None):
if isinstance(field_paths, six.string_types):
raise ValueError(" must be a sequence of paths, not a string.")
if field_paths is not None:
mask = common_pb2.DocumentMask(field_paths=sorted(field_paths))
else:
mask = None
firestore_api = self._client._firestore_api
try:
document_pb = firestore_api.get_document(
self._document_path,
mask=mask,
transaction=_helpers.get_transaction_id(transaction),
metadata=self._client._rpc_metadata,
)
except exceptions.NotFound:
data = None
exists = False
create_time = None
update_time = None
else:
data = _helpers.decode_dict(document_pb.fields, self._client)
exists = True
create_time = document_pb.create_time
update_time = document_pb.update_time
return DocumentSnapshot(
reference=self,
data=data,
exists=exists,
read_time=None,
create_time=create_time,
update_time=update_time,
) | Retrieve a snapshot of the current document.
See :meth:`~.firestore_v1beta1.client.Client.field_path` for
more information on **field paths**.
If a ``transaction`` is used and it already has write operations
added, this method cannot be used (i.e. read-after-write is not
allowed).
Args:
field_paths (Optional[Iterable[str, ...]]): An iterable of field
paths (``.``-delimited list of field names) to use as a
projection of document fields in the returned results. If
no value is provided, all fields will be returned.
transaction (Optional[~.firestore_v1beta1.transaction.\
Transaction]): An existing transaction that this reference
will be retrieved in.
Returns:
~.firestore_v1beta1.document.DocumentSnapshot: A snapshot of
the current document. If the document does not exist at
the time of `snapshot`, the snapshot `reference`, `data`,
`update_time`, and `create_time` attributes will all be
`None` and `exists` will be `False`. |
377,498 | def revise(csp, Xi, Xj, removals):
"Return true if we remove a value."
revised = False
for x in csp.curr_domains[Xi][:]:
if every(lambda y: not csp.constraints(Xi, x, Xj, y),
csp.curr_domains[Xj]):
csp.prune(Xi, x, removals)
revised = True
return revised | Return true if we remove a value. |
377,499 | def get_eventhub_info(self):
alt_creds = {
"username": self._auth_config.get("iot_username"),
"password":self._auth_config.get("iot_password")}
try:
mgmt_auth = self._create_auth(**alt_creds)
mgmt_client = uamqp.AMQPClient(self.mgmt_target, auth=mgmt_auth, debug=self.debug)
mgmt_client.open()
mgmt_msg = Message(application_properties={: self.eh_name})
response = mgmt_client.mgmt_request(
mgmt_msg,
constants.READ_OPERATION,
op_type=b,
status_code_field=b,
description_fields=b)
eh_info = response.get_data()
output = {}
if eh_info:
output[] = eh_info[b].decode()
output[] = eh_info[b].decode()
output[] = datetime.datetime.fromtimestamp(float(eh_info[b])/1000)
output[] = eh_info[b]
output[] = [p.decode() for p in eh_info[b]]
return output
finally:
mgmt_client.close() | Get details on the specified EventHub.
Keys in the details dictionary include:
-'name'
-'type'
-'created_at'
-'partition_count'
-'partition_ids'
:rtype: dict |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.