Unnamed: 0
int64
0
389k
code
stringlengths
26
79.6k
docstring
stringlengths
1
46.9k
377,700
def do_quality(self, quality): if (quality == or quality == ): self.logger.debug("quality: converting to gray") self.image = self.image.convert() elif (quality == ): self.logger.debug("quality: converting to bitonal") self.image = self.image.convert() else: if (self.image.mode.startswith()): self.logger.debug("quality: fudged conversion from mode %s to I" % (self.image.mode)) self.image = self.image.convert() self.image = self.image.point(lambda i: i * (1.0 / 256.0)) if (self.image.mode not in (, , , )): self.logger.debug("quality: converting from mode %s to RGB" % (self.image.mode)) self.image = self.image.convert() else: self.logger.debug("quality: quality (nop)")
Apply value of quality parameter. For PIL docs see <http://pillow.readthedocs.org/en/latest/reference/Image.html#PIL.Image.Image.convert>
377,701
def save_models(self, model_path): for group, condition_model_set in self.condition_models.items(): for model_name, model_obj in condition_model_set.items(): out_filename = model_path + \ "{0}_{1}_condition.pkl".format(group, model_name.replace(" ", "-")) with open(out_filename, "wb") as pickle_file: pickle.dump(model_obj, pickle_file, pickle.HIGHEST_PROTOCOL) for group, size_model_set in self.size_models.items(): for model_name, model_obj in size_model_set.items(): out_filename = model_path + \ "{0}_{1}_size.pkl".format(group, model_name.replace(" ", "-")) with open(out_filename, "wb") as pickle_file: pickle.dump(model_obj, pickle_file, pickle.HIGHEST_PROTOCOL) for group, dist_model_set in self.size_distribution_models.items(): for model_type, model_objs in dist_model_set.items(): for model_name, model_obj in model_objs.items(): out_filename = model_path + \ "{0}_{1}_{2}_sizedist.pkl".format(group, model_name.replace(" ", "-"), model_type) with open(out_filename, "wb") as pickle_file: pickle.dump(model_obj, pickle_file, pickle.HIGHEST_PROTOCOL) for model_type, track_type_models in self.track_models.items(): for group, track_model_set in track_type_models.items(): for model_name, model_obj in track_model_set.items(): out_filename = model_path + \ "{0}_{1}_{2}_track.pkl".format(group, model_name.replace(" ", "-"), model_type) with open(out_filename, "wb") as pickle_file: pickle.dump(model_obj, pickle_file, pickle.HIGHEST_PROTOCOL) return
Save machine learning models to pickle files.
377,702
def find(self, pair, default=None): pair = normalizers.normalizeKerningKey(pair) value = self._find(pair, default) if value != default: value = normalizers.normalizeKerningValue(value) return value
Returns the value for the kerning pair. **pair** is a ``tuple`` of two :ref:`type-string`\s, and the returned values will either be :ref:`type-int-float` or ``None`` if no pair was found. :: >>> font.kerning[("A", "V")] -25
377,703
def get_bucket(self, hash_name, bucket_key): if hash_name in self.buckets: if bucket_key in self.buckets[hash_name]: return self.buckets[hash_name][bucket_key] return []
Returns bucket content as list of tuples (vector, data).
377,704
def convert_mapper(self, tomap): frommap = self.crdmap if frommap == tomap: return if hasattr(self, ): x0, y0 = frommap.offset_pt((self.x, self.y), (self.radius, 0)) pts = frommap.to_data(((self.x, self.y), (x0, y0))) pts = tomap.data_to(pts) self.radius = np.fabs(pts[1][0] - pts[0][0]) elif hasattr(self, ): x0, y0 = frommap.offset_pt((self.x, self.y), (self.xradius, self.yradius)) pts = frommap.to_data(((self.x, self.y), (x0, y0))) pts = tomap.data_to(pts) self.xradius = np.fabs(pts[1][0] - pts[0][0]) self.yradius = np.fabs(pts[1][1] - pts[0][1]) data_pts = self.get_data_points() self.crdmap = tomap self.set_data_points(data_pts)
Converts our object from using one coordinate map to another. NOTE: In some cases this only approximately preserves the equivalent point values when transforming between coordinate spaces.
377,705
def minimize_t0s(means, weights, combs): def make_quality_function(means, weights, combs): def quality_function(t0s): sq_sum = 0 for mean, comb, weight in zip(means, combs, weights): sq_sum += ((mean - (t0s[comb[1]] - t0s[comb[0]])) * weight)**2 return sq_sum return quality_function qfunc = make_quality_function(means, weights, combs) t0s = np.random.rand(31) bounds = [(0, 0)] + [(-10., 10.)] * 30 opt_t0s = optimize.minimize(qfunc, t0s, bounds=bounds) return opt_t0s
Varies t0s to minimize the deviation of the gaussian means from zero. Parameters ---------- means: numpy array of means of all PMT combinations weights: numpy array of weights for the squared sum combs: pmt combinations to use for minimization Returns ------- opt_t0s: optimal t0 values for all PMTs
377,706
def reduce_loss_dict(loss_dict): world_size = get_world_size() if world_size < 2: return loss_dict with torch.no_grad(): loss_names = [] all_losses = [] for k in sorted(loss_dict.keys()): loss_names.append(k) all_losses.append(loss_dict[k]) all_losses = torch.stack(all_losses, dim=0) dist.reduce(all_losses, dst=0) if dist.get_rank() == 0: all_losses /= world_size reduced_losses = {k: v for k, v in zip(loss_names, all_losses)} return reduced_losses
Reduce the loss dictionary from all processes so that process with rank 0 has the averaged results. Returns a dict with the same fields as loss_dict, after reduction.
377,707
def dispatch_command(function, *args, **kwargs): parser = argparse.ArgumentParser(formatter_class=PARSER_FORMATTER) set_default_command(parser, function) dispatch(parser, *args, **kwargs)
A wrapper for :func:`dispatch` that creates a one-command parser. Uses :attr:`PARSER_FORMATTER`. This:: dispatch_command(foo) ...is a shortcut for:: parser = ArgumentParser() set_default_command(parser, foo) dispatch(parser) This function can be also used as a decorator.
377,708
def updateHeader(self, wcsname=None, reusename=False): self.openFile() verbose_level = 1 if not self.perform_update: verbose_level = 0 if self.perform_update: wcscorr.init_wcscorr(self._im.hdu) extlist = [] wcscorr_extname = self.ext_name if self.ext_name == "PRIMARY": extlist = [0] else: for ext in range(1,self.nvers+1): extlist.append((self.ext_name,ext)) if ( not in self._im.hdu[self.ext_name,ext].header and self._im.hdu.fileinfo(0)[] == ): self._im.hdu[self.ext_name,ext].header[] = if not self.identityfit and self.goodmatch and \ self.fit[][0] != np.nan: updatehdr.updatewcs_with_shift(self._im.hdu, self.refWCS, wcsname=wcsname, reusename=reusename, fitgeom=self.fit_pars[], xsh=self.fit[][0],ysh=self.fit[][1], rot=self.fit[],scale=self.fit[][0], fit=self.fit[], verbose=verbose_level, xrms=self.fit[][], yrms=self.fit[][]) wnames = altwcs.wcsnames(self._im.hdu,ext=extlist[0]) altkeys = [] for k in wnames: if wnames[k] == wcsname: altkeys.append(k) if len(altkeys) > 1 and in altkeys: altkeys.remove() if len(altkeys) == 0: next_key = else: next_key = altkeys[-1] if self.perform_update: log.info(%next_key) self.next_key = next_key else: if reusename: next_key = altwcs.getKeyFromName(self._im.hdu[extlist[0]].header,wcsname) if next_key is None: next_key = altwcs.next_wcskey(self._im.hdu[extlist[0]].header) else: next_key = altwcs.next_wcskey(self._im.hdu[extlist[0]].header) if self.perform_update: wnames = altwcs.wcsnames(self._im.hdu,ext=extlist[0]) if len(wnames) == 0: pri_wcsname = None else: if not in wnames: self._im.hdu[extlist[0]].header[] = wnames[] = pri_wcsname = wnames[] next_pkey = altwcs.getKeyFromName(fits.getheader(self.name, extlist[0], memmap=False),pri_wcsname) log.info(%next_pkey) altwcs.archiveWCS(self._im.hdu, extlist, wcskey=next_pkey, wcsname=pri_wcsname, reusekey=True) if reusename: next_key = altwcs.getKeyFromName(self._im.hdu[extlist[0]].header,wcsname) if next_key is None: next_key = altwcs.next_wcskey(self._im.hdu[extlist[0]].header) else: next_key = altwcs.next_wcskey(self._im.hdu[extlist[0]].header) for ext in extlist: self._im.hdu[ext].header[] = wcsname altwcs.archiveWCS(self._im.hdu, extlist, wcskey=next_key,wcsname=wcsname, reusekey=reusename) self.next_key = wcscorr.update_wcscorr(self._im.hdu, wcs_id=wcsname, extname=self.ext_name)
Update header of image with shifts computed by *perform_fit()*.
377,709
def rootChild_resetPassword(self, req, webViewer): from xmantissa.ixmantissa import IWebTranslator, IPreferenceAggregator return URL.fromString( IWebTranslator(self.store).linkTo( IPreferenceAggregator(self.store).storeID))
Redirect authenticated users to their settings page (hopefully they have one) when they try to reset their password. This is the wrong way for this functionality to be implemented. See #2524.
377,710
def _get_table_info(self): self.rowid = None self.fields = [] self.field_info = {} self.cursor.execute( %self.name) for row in self.cursor.fetchall(): field,typ,null,key,default,extra = row self.fields.append(field) self.field_info[field] = {:typ,:null,:key, :default,:extra} if extra == : self.rowid = field
Database-specific method to get field names
377,711
def get_cameras_schedule(self): resource = "schedule" schedule_event = self.publish_and_get_event(resource) if schedule_event: return schedule_event.get() return None
Return the schedule set for cameras.
377,712
def add(self, *nodes): for node in nodes: node.set_parent(self) self.add_sibling(node)
Adds nodes as siblings :param nodes: GraphNode(s)
377,713
def check_webhook_secret(app_configs=None, **kwargs): from . import settings as djstripe_settings messages = [] secret = djstripe_settings.WEBHOOK_SECRET if secret and not secret.startswith("whsec_"): messages.append( checks.Warning( "DJSTRIPE_WEBHOOK_SECRET does not look valid", hint="It should start with whsec_...", id="djstripe.W003", ) ) return messages
Check that DJSTRIPE_WEBHOOK_SECRET looks correct
377,714
def iter_actions(self): ns = scpd_body = requests.get(self.base_url + self.scpd_url).content tree = XML.fromstring(scpd_body) vartypes = {} srvStateTables = tree.findall(.format(ns)) for srvStateTable in srvStateTables: statevars = srvStateTable.findall(.format(ns)) for state in statevars: name = state.findtext(.format(ns)) datatype = state.findtext(.format(ns)) default = state.findtext(.format(ns)) value_list_elt = state.find(.format(ns)) if value_list_elt is None: value_list_elt = () value_list = [item.text for item in value_list_elt] or None value_range_elt = state.find(.format(ns)) if value_range_elt is None: value_range_elt = () value_range = [item.text for item in value_range_elt] or None vartypes[name] = Vartype(datatype, default, value_list, value_range) actionLists = tree.findall(.format(ns)) for actionList in actionLists: actions = actionList.findall(.format(ns)) for i in actions: action_name = i.findtext(.format(ns)) argLists = i.findall(.format(ns)) for argList in argLists: args_iter = argList.findall(.format(ns)) in_args = [] out_args = [] for arg in args_iter: arg_name = arg.findtext(.format(ns)) direction = arg.findtext(.format(ns)) related_variable = arg.findtext( .format(ns)) vartype = vartypes[related_variable] if direction == "in": in_args.append(Argument(arg_name, vartype)) else: out_args.append(Argument(arg_name, vartype)) yield Action(action_name, in_args, out_args)
Yield the service's actions with their arguments. Yields: `Action`: the next action. Each action is an Action namedtuple, consisting of action_name (a string), in_args (a list of Argument namedtuples consisting of name and argtype), and out_args (ditto), eg:: Action( name='SetFormat', in_args=[ Argument(name='DesiredTimeFormat', vartype=<Vartype>), Argument(name='DesiredDateFormat', vartype=<Vartype>)], out_args=[] )
377,715
def login(self, access_token=""): if access_token: credentials = argparse.Namespace(token=access_token, refresh_token=None, id_token=None) else: scopes = ["openid", "email", "offline_access"] from google_auth_oauthlib.flow import InstalledAppFlow flow = InstalledAppFlow.from_client_config(self.application_secrets, scopes=scopes) msg = "Authentication successful. Please close this tab and run HCA CLI commands in the terminal." credentials = flow.run_local_server(success_message=msg, audience=self._audience) self.config.oauth2_token = dict(access_token=credentials.token, refresh_token=credentials.refresh_token, id_token=credentials.id_token, expires_at="-1", token_type="Bearer") print("Storing access credentials")
Configure and save {prog} authentication credentials. This command may open a browser window to ask for your consent to use web service authentication credentials.
377,716
def find_children(self, pattern=r".*", flags=0, candidates=None): if candidates is None: candidates = [] for child in self.__children: if re.search(pattern, child.name, flags): child not in candidates and candidates.append(child) child.find_children(pattern, flags, candidates) return candidates
Finds the children matching the given patten. Usage:: >>> node_a = AbstractCompositeNode("MyNodeA") >>> node_b = AbstractCompositeNode("MyNodeB", node_a) >>> node_c = AbstractCompositeNode("MyNodeC", node_a) >>> node_a.find_children("c", re.IGNORECASE) [<AbstractCompositeNode object at 0x101078040>] :param pattern: Matching pattern. :type pattern: unicode :param flags: Matching regex flags. :type flags: int :param candidates: Matching candidates. :type candidates: list :return: Matching children. :rtype: list
377,717
def coverage(fn): fp = TraceFuncCoverage(fn) def new_fn(*args, **kw): return fp(*args, **kw) new_fn.__doc__ = fn.__doc__ new_fn.__name__ = fn.__name__ new_fn.__dict__ = fn.__dict__ new_fn.__module__ = fn.__module__ return new_fn
Mark `fn` for line coverage analysis. Results will be printed to sys.stdout on program termination. Usage:: def fn(...): ... fn = coverage(fn) If you are using Python 2.4, you should be able to use the decorator syntax:: @coverage def fn(...): ...
377,718
def _split_audio_by_duration(self, audio_abs_path, results_abs_path, duration_seconds): total_seconds = self._get_audio_duration_seconds(audio_abs_path) current_segment = 0 while current_segment <= total_seconds // duration_seconds + 1: if current_segment + duration_seconds > total_seconds: ending_second = total_seconds else: ending_second = current_segment + duration_seconds self._audio_segment_extractor( audio_abs_path, results_abs_path.replace("*", "{:03d}".format( current_segment)), starting_second=current_segment, duration=(ending_second - current_segment)) current_segment += 1
Calculates the length of each segment and passes it to self._audio_segment_extractor Parameters ---------- audio_abs_path : str results_abs_path : str A place for adding digits needs to be added prior the the format decleration i.e. name%03.wav. Here, we've added `*` at staging step, which we'll replace. duration_seconds : int
377,719
def broken_faces(mesh, color=None): adjacency = nx.from_edgelist(mesh.face_adjacency) broken = [k for k, v in dict(adjacency.degree()).items() if v != 3] broken = np.array(broken) if color is not None: color = np.array(color) if not (color.shape == (4,) or color.shape == (3,)): color = [255, 0, 0, 255] mesh.visual.face_colors[broken] = color return broken
Return the index of faces in the mesh which break the watertight status of the mesh. Parameters -------------- mesh: Trimesh object color: (4,) uint8, will set broken faces to this color None, will not alter mesh colors Returns --------------- broken: (n, ) int, indexes of mesh.faces
377,720
def write_long_at(self, n, pos, pack_into=Struct().pack_into): if 0 <= n <= 0xFFFFFFFF: pack_into(self._output_buffer, pos, n) else: raise ValueError(, n) return self
Write an unsigned 32bit value at a specific position in the buffer. Used for writing tables and frames.
377,721
def _multicall_callback(self, values, calls): result = KojiMultiCallIterator(values) result.connection = self.connection result.calls = calls return result
Fires when we get information back from the XML-RPC server. This is processes the raw results of system.multicall into a usable iterator of values (and/or Faults). :param values: list of data txkoji.Connection.call() :param calls: list of calls we sent in this multicall RPC :returns: KojiMultiCallIterator with the resulting values from all our calls.
377,722
def get_social_login(self, *args, **kwargs): social_login = super(SocialConnectMixin, self).get_social_login(*args, **kwargs) social_login.state[] = AuthProcess.CONNECT return social_login
Set the social login process state to connect rather than login Refer to the implementation of get_social_login in base class and to the allauth.socialaccount.helpers module complete_social_login function.
377,723
def auth_required(realm, auth_func): def auth_decorator(func): def inner(self, *args, **kw): if self.get_authenticated_user(auth_func, realm): return func(self, *args, **kw) return inner return auth_decorator
Decorator that protect methods with HTTP authentication.
377,724
def as_new_format(self, format="ATR"): first_data = len(self.header) raw = self.rawdata[first_data:] data = add_atr_header(raw) newraw = SegmentData(data) image = self.__class__(newraw) return image
Create a new disk image in the specified format
377,725
def isInRoom(self, _id): if SockJSRoomHandler._room.has_key(self._gcls() + _id): if self in SockJSRoomHandler._room[self._gcls() + _id]: return True return False
Check a given user is in given room
377,726
def create_snapshot(self, systemId, snapshotSpecificationObject): self.conn.connection._check_login() response = self.conn.connection._do_post("{}/{}{}/{}".format(self.conn.connection._api_url, "instances/System::", systemId, ), json=snapshotSpecificationObject.__to_dict__()) return response
Create snapshot for list of volumes :param systemID: Cluster ID :param snapshotSpecificationObject: Of class SnapshotSpecification :rtype: SnapshotGroupId
377,727
def update(self, read, write, manage): data = values.of({: read, : write, : manage, }) payload = self._version.update( , self._uri, data=data, ) return SyncMapPermissionInstance( self._version, payload, service_sid=self._solution[], map_sid=self._solution[], identity=self._solution[], )
Update the SyncMapPermissionInstance :param bool read: Read access. :param bool write: Write access. :param bool manage: Manage access. :returns: Updated SyncMapPermissionInstance :rtype: twilio.rest.sync.v1.service.sync_map.sync_map_permission.SyncMapPermissionInstance
377,728
def listTheExtras(self, deleteAlso): extras = configobj.get_extra_values(self) expanded = [ (x+ \ ( bool(len(x[0])<1 and hasattr(self[x[1]], )), ) \ ) for x in extras] retval = if expanded: retval = flattened2str(expanded, extra=1) if deleteAlso: for tup_to_del in extras: target = self location = tup_to_del[0] for subdict in location: target = target[subdict] target.pop(tup_to_del[1]) return retval
Use ConfigObj's get_extra_values() call to find any extra/unknown parameters we may have loaded. Return a string similar to findTheLost. If deleteAlso is True, this will also delete any extra/unknown items.
377,729
def get_is_group_member(self, grp_name, user): self.project_service.set_auth(self._token_project) return self.project_service.get_is_group_member(grp_name, user)
Check if the given user is a member of the named group. Note that a group maintainer is not considered a member unless the user is also explicitly added as a member. Args: name (string): Name of group. user_name (string): User of interest. Returns: (bool): False if user not a member.
377,730
def RemoveClass(self, class_name): if class_name not in self._class_mapping: raise problems.NonexistentMapping(class_name) del self._class_mapping[class_name]
Removes an entry from the list of known classes. Args: class_name: A string with the class name that is to be removed. Raises: NonexistentMapping if there is no class with the specified class_name.
377,731
def MeetsConditions(knowledge_base, source): source_conditions_met = True os_conditions = ConvertSupportedOSToConditions(source) if os_conditions: source.conditions.append(os_conditions) for condition in source.conditions: source_conditions_met &= artifact_utils.CheckCondition( condition, knowledge_base) return source_conditions_met
Check conditions on the source.
377,732
def safe_listget(list_, index, default=): if index >= len(list_): return default ret = list_[index] if ret is None: return default return ret
depricate
377,733
def multi_to_dict(multi): return dict( (key, value[0] if len(value) == 1 else value) for key, value in multi.to_dict(False).items() )
Transform a Werkzeug multidictionnary into a flat dictionnary
377,734
def make_pipeline(context): primary_share = IsPrimaryShare() not_wi = ~IEXCompany.symbol.latest.endswith() not_lp_name = ~IEXCompany.companyName.latest.matches() have_market_cap = IEXKeyStats.marketcap.latest >= 1 price = USEquityPricing.close.latest AtLeastPrice = (price >= context.MyLeastPrice) AtMostPrice = (price <= context.MyMostPrice) tradeable_stocks = ( primary_share & not_wi & not_lp_name & have_market_cap & AtLeastPrice & AtMostPrice ) LowVar = 6 HighVar = 40 log.info( % (context.MaxCandidates, LowVar, HighVar)) base_universe = AverageDollarVolume( window_length=20, mask=tradeable_stocks ).percentile_between(LowVar, HighVar) ShortAvg = SimpleMovingAverage( inputs=[USEquityPricing.close], window_length=3, mask=base_universe ) LongAvg = SimpleMovingAverage( inputs=[USEquityPricing.close], window_length=45, mask=base_universe ) percent_difference = (ShortAvg - LongAvg) / LongAvg stocks_worst = percent_difference.bottom(context.MaxCandidates) securities_to_trade = (stocks_worst) return Pipeline( columns={ : stocks_worst }, screen=(securities_to_trade), )
Create our pipeline.
377,735
def send_request(user_session, method, request): if user_session.session: session = user_session.session try: method = method.upper() if method else if method == GET: if request.filename: return file_download(user_session, request) response = session.get( request.href, params=request.params, headers=request.headers, timeout=user_session.timeout) response.encoding = counters.update(read=1) if logger.isEnabledFor(logging.DEBUG): debug(response) if response.status_code not in (200, 204, 304): raise SMCOperationFailure(response) elif method == POST: if request.files: return file_upload(user_session, method, request) response = session.post( request.href, data=json.dumps(request.json, cls=CacheEncoder), headers=request.headers, params=request.params) response.encoding = counters.update(create=1) if logger.isEnabledFor(logging.DEBUG): debug(response) if response.status_code not in (200, 201, 202): raise SMCOperationFailure(response) elif method == PUT: if request.files: return file_upload(user_session, method, request) request.headers.update(Etag=request.etag) response = session.put( request.href, data=json.dumps(request.json, cls=CacheEncoder), params=request.params, headers=request.headers) counters.update(update=1) if logger.isEnabledFor(logging.DEBUG): debug(response) if response.status_code != 200: raise SMCOperationFailure(response) elif method == DELETE: response = session.delete( request.href, headers=request.headers) counters.update(delete=1) if response.status_code in (409,): req = session.get(request.href) etag = req.headers.get() response = session.delete( request.href, headers={: etag}) response.encoding = if logger.isEnabledFor(logging.DEBUG): debug(response) if response.status_code not in (200, 204): raise SMCOperationFailure(response) else: return SMCResult(msg= % method, user_session=user_session) except SMCOperationFailure as error: if error.code in (401,): user_session.refresh() return send_request(user_session, method, request) raise error except requests.exceptions.RequestException as e: raise SMCConnectionError( % e) else: return SMCResult(response, user_session=user_session) else: raise SMCConnectionError()
Send request to SMC :param Session user_session: session object :param str method: method for request :param SMCRequest request: request object :raises SMCOperationFailure: failure with reason :rtype: SMCResult
377,736
def jensen_shannon(logu, self_normalized=False, name=None): with tf.compat.v1.name_scope(name, "jensen_shannon", [logu]): logu = tf.convert_to_tensor(value=logu, name="logu") npdt = logu.dtype.as_numpy_dtype y = tf.nn.softplus(logu) if self_normalized: y -= np.log(2).astype(npdt) return tf.exp(logu) * logu - (1. + tf.exp(logu)) * y
The Jensen-Shannon Csiszar-function in log-space. A Csiszar-function is a member of, ```none F = { f:R_+ to R : f convex }. ``` When `self_normalized = True`, the Jensen-Shannon Csiszar-function is: ```none f(u) = u log(u) - (1 + u) log(1 + u) + (u + 1) log(2) ``` When `self_normalized = False` the `(u + 1) log(2)` term is omitted. Observe that as an f-Divergence, this Csiszar-function implies: ```none D_f[p, q] = KL[p, m] + KL[q, m] m(x) = 0.5 p(x) + 0.5 q(x) ``` In a sense, this divergence is the "reverse" of the Arithmetic-Geometric f-Divergence. This Csiszar-function induces a symmetric f-Divergence, i.e., `D_f[p, q] = D_f[q, p]`. Warning: this function makes non-log-space calculations and may therefore be numerically unstable for `|logu| >> 0`. For more information, see: Lin, J. "Divergence measures based on the Shannon entropy." IEEE Trans. Inf. Th., 37, 145-151, 1991. Args: logu: `float`-like `Tensor` representing `log(u)` from above. self_normalized: Python `bool` indicating whether `f'(u=1)=0`. When `f'(u=1)=0` the implied Csiszar f-Divergence remains non-negative even when `p, q` are unnormalized measures. name: Python `str` name prefixed to Ops created by this function. Returns: jensen_shannon_of_u: `float`-like `Tensor` of the Csiszar-function evaluated at `u = exp(logu)`.
377,737
def _prefix_from_uri(self, uriname): uripart, tag = uriname.split(, maxsplit=1) uri = uripart.replace(, ) return self.REVERSE_NS[uri] + + tag
Given a fully qualified XML name, find a prefix e.g. {http://ns.adobe.com/pdf/1.3/}Producer -> pdf:Producer
377,738
def status( message: str = None, progress: float = None, section_message: str = None, section_progress: float = None, ): environ.abort_thread() step = _cd.project.get_internal_project().current_step if message is not None: step.progress_message = message if progress is not None: step.progress = max(0.0, min(1.0, progress)) if section_message is not None: step.sub_progress_message = section_message if section_progress is not None: step.sub_progress = section_progress
Updates the status display, which is only visible while a step is running. This is useful for providing feedback and information during long-running steps. A section progress is also available for cases where long running tasks consist of multiple tasks and you want to display sub-progress messages within the context of the larger status. Note: this is only supported when running in the Cauldron desktop application. :param message: The status message you want to display. If left blank the previously set status message will be retained. Should you desire to remove an existing message, specify a blank string for this argument. :param progress: A number between zero and one that indicates the overall progress for the current status. If no value is specified, the previously assigned progress will be retained. :param section_message: The status message you want to display for a particular task within a long-running step. If left blank the previously set section message will be retained. Should you desire to remove an existing message, specify a blank string for this argument. :param section_progress: A number between zero and one that indicates the progress for the current section status. If no value is specified, the previously assigned section progress value will be retained.
377,739
def replace_find_selection(self, focus_replace_text=False): if self.editor is not None: replace_text = to_text_string(self.replace_text.currentText()) search_text = to_text_string(self.search_text.currentText()) case = self.case_button.isChecked() words = self.words_button.isChecked() re_flags = re.MULTILINE if case else re.IGNORECASE|re.MULTILINE re_pattern = None if self.re_button.isChecked(): pattern = search_text else: pattern = re.escape(search_text) replace_text = re.escape(replace_text) if words: pattern = r.format(pattern=pattern) try: re_pattern = re.compile(pattern, flags=re_flags) re_pattern.sub(replace_text, ) except re.error as e: return selected_text = to_text_string(self.editor.get_selected_text()) replacement = re_pattern.sub(replace_text, selected_text) if replacement != selected_text: cursor = self.editor.textCursor() cursor.beginEditBlock() cursor.removeSelectedText() if not self.re_button.isChecked(): replacement = re.sub(r, r, replacement) cursor.insertText(replacement) cursor.endEditBlock() if focus_replace_text: self.replace_text.setFocus() else: self.editor.setFocus()
Replace and find in the current selection
377,740
def get_permissions(self, token, resource_scopes_tuples=None, submit_request=False, ticket=None): headers = { "Authorization": "Bearer %s" % token, : , } data = [ (, ), (, self._client_id), (, True), ] if resource_scopes_tuples: for atuple in resource_scopes_tuples: data.append((, .join(atuple))) data.append((, submit_request)) elif ticket: data.append((, ticket)) authz_info = {} try: response = self._realm.client.post( self.well_known[], data=urlencode(data), headers=headers, ) error = response.get() if error: self.logger.warning( , error, response.get() ) else: token = response.get() decoded_token = self._decode_token(token.split()[1]) authz_info = decoded_token.get(, {}) except KeycloakClientError as error: self.logger.warning(str(error)) return authz_info
Request permissions for user from keycloak server. https://www.keycloak.org/docs/latest/authorization_services/index .html#_service_protection_permission_api_papi :param str token: client access token :param Iterable[Tuple[str, str]] resource_scopes_tuples: list of tuples (resource, scope) :param boolean submit_request: submit request if not allowed to access? :param str ticket: Permissions ticket rtype: dict
377,741
def add_child(self, child): if child: if child.tag in self.contained_children: self.children.append(child) else: raise ETD_MS_StructureException( % (child.tag, self.tag) )
Add a child object to the current one. Checks the contained_children list to make sure that the object is allowable, and throws an exception if not.
377,742
def select_previous(self): self.footer.clear_message() if self.selected == 0: self.footer.draw_message("Cannot move beyond first toot.", Color.GREEN) return old_index = self.selected new_index = self.selected - 1 self.selected = new_index self.redraw_after_selection_change(old_index, new_index)
Move to the previous status in the timeline.
377,743
def get_orgas(self): r = self._request() if not r: return None retour = [] for data in r.json()[]: o = Orga() o.__dict__.update(data) o.pk = o.id retour.append(o) return retour
Return the list of pk for all orgas
377,744
def enable(self): nwin = self.nwin.value() for label, xs, ys, nx, ny in \ zip(self.label[:nwin], self.xs[:nwin], self.ys[:nwin], self.nx[:nwin], self.ny[:nwin]): label.config(state=) xs.enable() ys.enable() nx.enable() ny.enable() for label, xs, ys, nx, ny in \ zip(self.label[nwin:], self.xs[nwin:], self.ys[nwin:], self.nx[nwin:], self.ny[nwin:]): label.config(state=) xs.disable() ys.disable() nx.disable() ny.disable() self.nwin.enable() self.xbin.enable() self.ybin.enable() self.sbutt.enable()
Enables all settings
377,745
def _create_session(self): self.driver = requests.Session(**self.driver_args) self.update_headers(self.current_headers) self.update_cookies(self.current_cookies) self.set_proxy(self.current_proxy)
Creates a fresh session with the default header (random UA)
377,746
def yiq_to_rgb(y, i=None, q=None): if type(y) in [list,tuple]: y, i, q = y r = y + (i * 0.9562) + (q * 0.6210) g = y - (i * 0.2717) - (q * 0.6485) b = y - (i * 1.1053) + (q * 1.7020) return (r, g, b)
Convert the color from YIQ coordinates to RGB. Parameters: :y: Tte Y component value [0...1] :i: The I component value [0...1] :q: The Q component value [0...1] Returns: The color as an (r, g, b) tuple in the range: r[0...1], g[0...1], b[0...1] >>> '({}, {}, {})'.format(*[round(v, 6) for v in yiq_to_rgb(0.592263, 0.458874, -0.0499818)]) '(1.0, 0.5, 1e-06)'
377,747
def write_and_return( command, ack, serial_connection, timeout=DEFAULT_WRITE_TIMEOUT): clear_buffer(serial_connection) with serial_with_temp_timeout( serial_connection, timeout) as device_connection: response = _write_to_device_and_return(command, ack, device_connection) return response
Write a command and return the response
377,748
def _parse_args(self, args): enc = DEFAULT_ENCODING uargs = [py3compat.cast_unicode(a, enc) for a in args] self.parsed_data, self.extra_args = self.parser.parse_known_args(uargs)
self.parser->self.parsed_data
377,749
def process_rule(edges: Edges, ast: Function, rule: Mapping[str, Any], spec: BELSpec): ast_type = ast.__class__.__name__ trigger_functions = rule.get("trigger_function", []) trigger_types = rule.get("trigger_type", []) rule_subject = rule.get("subject") rule_relation = rule.get("relation") rule_object = rule.get("object") log.debug(f"Running {rule_relation} Type: {ast_type}") if isinstance(ast, Function): function_name = ast.name args = ast.args parent_function = ast.parent_function if function_name in trigger_functions: if rule_subject == "trigger_value": subject = ast if rule_object == "args": for arg in args: log.debug(f"1: {subject} {arg}") edge_ast = BELAst(subject, rule_relation, arg, spec) edges.append(edge_ast) elif rule_object == "parent_function" and parent_function: log.debug(f"2: {subject} {parent_function}") edge_ast = BELAst(subject, rule_relation, parent_function, spec) edges.append(edge_ast) elif ast_type in trigger_types: if rule_subject == "trigger_value": subject = ast if rule_object == "args": for arg in args: log.debug(f"3: {subject} {arg}") edge_ast = BELAst(subject, rule_relation, arg, spec) edges.append(edge_ast) elif rule_object == "parent_function" and parent_function: log.debug(f"4: {subject} {parent_function}") edge_ast = BELAst(subject, rule_relation, parent_function, spec) edges.append(edge_ast) if isinstance(ast, NSArg): term = "{}:{}".format(ast.namespace, ast.value) parent_function = ast.parent_function if ast_type in trigger_types: if rule_subject == "trigger_value": subject = term if rule_object == "args": for arg in args: log.debug(f"5: {subject} {arg}") edge_ast = BELAst(subject, rule_relation, arg, spec) edges.append(edge_ast) elif rule_object == "parent_function" and parent_function: log.debug(f"6: {subject} {parent_function}") edge_ast = BELAst(subject, rule_relation, parent_function, spec) edges.append(edge_ast) if hasattr(ast, "args"): for arg in ast.args: process_rule(edges, arg, rule, spec)
Process computed edge rule Recursively processes BELAst versus a single computed edge rule Args: edges (List[Tuple[Union[Function, str], str, Function]]): BEL Edge ASTs ast (Function): BEL Function AST rule (Mapping[str, Any]: computed edge rule
377,750
def get_polygon_pattern_rules(declarations, dirs): property_map = {: , : , : , : , : , : } property_names = property_map.keys() rules = [] for (filter, values) in filtered_property_declarations(declarations, property_names): poly_pattern_file, poly_pattern_type, poly_pattern_width, poly_pattern_height \ = values.has_key() \ and post_process_symbolizer_image_file(str(values[].value), dirs) \ or (None, None, None, None) poly_pattern_width = values.has_key() and values[].value or poly_pattern_width poly_pattern_height = values.has_key() and values[].value or poly_pattern_height symbolizer = poly_pattern_file and output.PolygonPatternSymbolizer(poly_pattern_file, poly_pattern_type, poly_pattern_width, poly_pattern_height) if symbolizer: rules.append(make_rule(filter, symbolizer)) return rules
Given a list of declarations, return a list of output.Rule objects. Optionally provide an output directory for local copies of image files.
377,751
def _lines_only(shape): lines = _explode_lines(shape) if len(lines) == 1: return lines[0] else: return MultiLineString(lines)
Extract the lines (LineString, MultiLineString) from any geometry. We expect the input to be mostly lines, such as the result of an intersection between a line and a polygon. The main idea is to remove points, and any other geometry which might throw a wrench in the works.
377,752
def activate(self): self.open() a = lvm_lv_activate(self.handle) self.close() if a != 0: raise CommitError("Failed to activate LV.")
Activates the logical volume. *Raises:* * HandleError
377,753
def get_emerg(): key = "emerg:{}".format(datetime.datetime.now().date()) cached = cache.get(key) cached = None if cached: logger.debug("Returning emergency info from cache") return cached else: result = get_emerg_result() cache.set(key, result, timeout=settings.CACHE_AGE["emerg"]) return result
Get the cached FCPS emergency page, or check it again. Timeout defined in settings.CACHE_AGE["emerg"]
377,754
def delete(self, membershipId): check_type(membershipId, basestring, may_be_none=False) self._session.delete(API_ENDPOINT + + membershipId)
Delete a team membership, by ID. Args: membershipId(basestring): The team membership ID. Raises: TypeError: If the parameter types are incorrect. ApiError: If the Webex Teams cloud returns an error.
377,755
def fetch(self): tlen = self.end - self.start dfs = [] lrange = [x for x in (self.start + timedelta(n) for n in range(tlen.days))] mrange = [] for dt in lrange: if datetime(dt.year, dt.month, 1) not in mrange: mrange.append(datetime(dt.year, dt.month, 1)) lrange = mrange for date in lrange: self.curr_date = date tdf = super(MonthlySummaryReader, self).fetch() if self.output_format == : if not tdf.empty: tdf[] = date.strftime(self.date_format) dfs.append(tdf) if self.output_format == : result = pd.concat(dfs) if len(dfs) > 0 else pd.DataFrame() return result.set_index() else: return dfs
Unfortunately, IEX's API can only retrieve data one day or one month at a time. Rather than specifying a date range, we will have to run the read function for each date provided. :return: DataFrame
377,756
def set_physical_page_for_file(self, pageId, ocrd_file, order=None, orderlabel=None): for el_fptr in self._tree.getroot().findall( % ocrd_file.ID, namespaces=NS): el_fptr.getparent().remove(el_fptr) el_structmap = self._tree.getroot().find(, NS) if el_structmap is None: el_structmap = ET.SubElement(self._tree.getroot(), TAG_METS_STRUCTMAP) el_structmap.set(, ) el_seqdiv = el_structmap.find(, NS) if el_seqdiv is None: el_seqdiv = ET.SubElement(el_structmap, TAG_METS_DIV) el_seqdiv.set(, ) el_pagediv = el_seqdiv.find( % pageId, NS) if el_pagediv is None: el_pagediv = ET.SubElement(el_seqdiv, TAG_METS_DIV) el_pagediv.set(, ) el_pagediv.set(, pageId) if order: el_pagediv.set(, order) if orderlabel: el_pagediv.set(, orderlabel) el_fptr = ET.SubElement(el_pagediv, TAG_METS_FPTR) el_fptr.set(, ocrd_file.ID)
Create a new physical page
377,757
def play(self): if self.state == PygAnimation.PLAYING: pass elif self.state == PygAnimation.STOPPED: self.index = 0 self.elapsed = 0 self.playingStartTime = time.time() self.elapsedStopTime = self.endTimesList[-1] self.nextElapsedThreshold = self.endTimesList[0] self.nIterationsLeft = self.nTimes elif self.state == PygAnimation.PAUSED: self.playingStartTime = time.time() - self.elapsedAtPause self.elapsed = self.elapsedAtPause self.elapsedStopTime = self.endTimesList[-1] self.nextElapsedThreshold = self.endTimesList[self.index] self.state = PygAnimation.PLAYING
Starts an animation playing.
377,758
def get_dataset(self, dsid, info): dsid_name = dsid.name if dsid_name in self.cache: logger.debug(, dsid_name) return self.cache[dsid_name] if dsid_name in [, ] and dsid_name not in self.nc: dsid_name = dsid_name + logger.debug(, dsid_name) variable = self.nc[dsid_name] variable = self.remove_timedim(variable) variable = self.scale_dataset(dsid, variable, info) if dsid_name.endswith(): self.upsample_geolocation(dsid, info) return self.cache[dsid.name] return variable
Load a dataset.
377,759
def _get_indices(num_results, sequence_indices, dtype, name=None): with tf.compat.v1.name_scope(name, , [num_results, sequence_indices]): if sequence_indices is None: num_results = tf.cast(num_results, dtype=dtype) sequence_indices = tf.range(num_results, dtype=dtype) else: sequence_indices = tf.cast(sequence_indices, dtype) indices = sequence_indices + 1 return tf.reshape(indices, [-1, 1, 1])
Generates starting points for the Halton sequence procedure. The k'th element of the sequence is generated starting from a positive integer which must be distinct for each `k`. It is conventional to choose the starting point as `k` itself (or `k+1` if k is zero based). This function generates the starting integers for the required elements and reshapes the result for later use. Args: num_results: Positive scalar `Tensor` of dtype int32. The number of samples to generate. If this parameter is supplied, then `sequence_indices` should be None. sequence_indices: `Tensor` of dtype int32 and rank 1. The entries index into the Halton sequence starting with 0 and hence, must be whole numbers. For example, sequence_indices=[0, 5, 6] will produce the first, sixth and seventh elements of the sequence. If this parameter is not None then `n` must be None. dtype: The dtype of the sample. One of `float32` or `float64`. Default is `float32`. name: Python `str` name which describes ops created by this function. Returns: indices: `Tensor` of dtype `dtype` and shape = `[n, 1, 1]`.
377,760
def add_variable(self, variable, card=0): if variable not in self.variables: self.variables.append(variable) else: warn(.format(var=variable)) self.cardinalities[variable] = card self.transition_models[variable] = {}
Add a variable to the model. Parameters: ----------- variable: any hashable python object card: int Representing the cardinality of the variable to be added. Examples: --------- >>> from pgmpy.models import MarkovChain as MC >>> model = MC() >>> model.add_variable('x', 4)
377,761
def isdir(self): if self.type == RAR_BLOCK_FILE: return (self.flags & RAR_FILE_DIRECTORY) == RAR_FILE_DIRECTORY return False
Returns True if entry is a directory.
377,762
def _split_classes_by_kind(self, class_name_to_definition): for class_name in class_name_to_definition: inheritance_set = self._inheritance_sets[class_name] is_vertex = ORIENTDB_BASE_VERTEX_CLASS_NAME in inheritance_set is_edge = ORIENTDB_BASE_EDGE_CLASS_NAME in inheritance_set if is_vertex and is_edge: raise AssertionError(u u.format(class_name, inheritance_set)) elif is_vertex: self._vertex_class_names.add(class_name) elif is_edge: self._edge_class_names.add(class_name) else: self._non_graph_class_names.add(class_name) self._vertex_class_names = frozenset(self._vertex_class_names) self._edge_class_names = frozenset(self._edge_class_names) self._non_graph_class_names = frozenset(self._non_graph_class_names)
Assign each class to the vertex, edge or non-graph type sets based on its kind.
377,763
def rebuildDay( self ): scene = self.scene() if ( not scene ): return start_date = self.dateStart() end_date = self.dateEnd() min_date = scene.minimumDate() max_date = scene.maximumDate() if ( not (min_date <= end_date and start_date <= max_date)): self.hide() self.setPath(QPainterPath()) return if ( start_date < min_date ): start_date = min_date start_inrange = False else: start_inrange = True if ( max_date < end_date ): end_date = max_date end_inrange = False else: end_inrange = True path = QPainterPath() self.setPos(0, 0) pad = 2 offset = 18 height = 16 if ( not self.isAllDay() ): start_dtime = QDateTime(self.dateStart(), self.timeStart()) end_dtime = QDateTime(self.dateStart(), self.timeEnd().addSecs(-30*60)) start_rect = scene.dateTimeRect(start_dtime) end_rect = scene.dateTimeRect(end_dtime) left = start_rect.left() + pad top = start_rect.top() + pad right = start_rect.right() - pad bottom = end_rect.bottom() - pad path.moveTo(left, top) path.lineTo(right, top) path.lineTo(right, bottom) path.lineTo(left, bottom) path.lineTo(left, top) data = (left + 6, top + 6, right - left - 12, bottom - top - 12, Qt.AlignTop | Qt.AlignLeft, % (self.timeStart().toString()[:-1], self.timeEnd().toString(), self.title())) self._textData.append(data) self.setPath(path) self.show()
Rebuilds the current item in day mode.
377,764
def get_connection(self, command_name, *keys, **options): self._checkpid() try: connection = self._available_connections[self._pattern_idx].pop() except IndexError: connection = self.make_connection() self._in_use_connections[self._pattern_idx].add(connection) self._next_pattern() return connection
Get a connection from the pool
377,765
def enrich_backend(url, clean, backend_name, backend_params, cfg_section_name, ocean_index=None, ocean_index_enrich=None, db_projects_map=None, json_projects_map=None, db_sortinghat=None, no_incremental=False, only_identities=False, github_token=None, studies=False, only_studies=False, url_enrich=None, events_enrich=False, db_user=None, db_password=None, db_host=None, do_refresh_projects=False, do_refresh_identities=False, author_id=None, author_uuid=None, filter_raw=None, filters_raw_prefix=None, jenkins_rename_file=None, unaffiliated_group=None, pair_programming=False, node_regex=False, studies_args=None, es_enrich_aliases=None, last_enrich_date=None, projects_json_repo=None): backend = None enrich_index = None if ocean_index or ocean_index_enrich: clean = False elastic_ocean = get_elastic(url, ocean_index, clean, ocean_backend) ocean_backend.set_elastic(elastic_ocean) logger.info("Adding enrichment data to %s", enrich_backend.elastic.anonymize_url(enrich_backend.elastic.index_url)) if db_sortinghat and enrich_backend.has_identities(): total_ids = load_identities(ocean_backend, enrich_backend) logger.info("Total identities loaded %i ", total_ids) if only_identities: logger.info("Only SH identities added. Enrich not done!") else: if not events_enrich: enrich_count = enrich_items(ocean_backend, enrich_backend) if enrich_count is not None: logger.info("Total items enriched %i ", enrich_count) else: enrich_count = enrich_items(ocean_backend, enrich_backend, events=True) if enrich_count is not None: logger.info("Total events enriched %i ", enrich_count) if studies: do_studies(ocean_backend, enrich_backend, studies_args) except Exception as ex: if backend: logger.error("Error enriching ocean from %s (%s): %s", backend_name, backend.origin, ex, exc_info=True) else: logger.error("Error enriching ocean %s", ex, exc_info=True) logger.info("Done %s ", backend_name)
Enrich Ocean index
377,766
def get_sources(self, skydir=None, distance=None, cuts=None, minmax_ts=None, minmax_npred=None, exclude=None, square=False, coordsys=, names=None): if skydir is None: skydir = self.skydir if exclude is None: exclude = [] rsrc, srcs = self.get_sources_by_position(skydir, distance, square=square, coordsys=coordsys) o = [] for s in srcs + self.diffuse_sources: if names and s.name not in names: continue if s.name in exclude: continue if not s.check_cuts(cuts): continue ts = s[] npred = s[] if not utils.apply_minmax_selection(ts, minmax_ts): continue if not utils.apply_minmax_selection(npred, minmax_npred): continue o.append(s) return o
Retrieve list of source objects satisfying the following selections: * Angular separation from ``skydir`` or ROI center (if ``skydir`` is None) less than ``distance``. * Cuts on source properties defined in ``cuts`` list. * TS and Npred in range specified by ``minmax_ts`` and ``minmax_npred``. * Name matching a value in ``names`` Sources can be excluded from the selection by adding their name to the ``exclude`` list. Returns ------- srcs : list List of source objects.
377,767
def initialize(self, params, qubits): if isinstance(qubits, QuantumRegister): qubits = qubits[:] else: qubits = _convert_to_bits([qubits], [qbit for qreg in self.qregs for qbit in qreg])[0] return self.append(Initialize(params), qubits)
Apply initialize to circuit.
377,768
def remove_root_bin(self, bin_id): if self._catalog_session is not None: return self._catalog_session.remove_root_catalog(catalog_id=bin_id) return self._hierarchy_session.remove_root(id_=bin_id)
Removes a root bin. arg: bin_id (osid.id.Id): the ``Id`` of a bin raise: NotFound - ``bin_id`` not a root raise: NullArgument - ``bin_id`` is ``null`` raise: OperationFailed - unable to complete request raise: PermissionDenied - authorization failure *compliance: mandatory -- This method must be implemented.*
377,769
def _get_overlaps_tensor(self, L): n, m = L.shape LY = np.array([np.where(L == y, 1, 0) for y in range(self.k_0, self.k + 1)]) O = np.einsum("abc,dbe,fbg->cegadf", LY, LY, LY) / n return torch.from_numpy(O).float()
Transforms the input label matrix to a three-way overlaps tensor. Args: L: (np.array) An n x m array of LF output labels, in {0,...,k} if self.abstains, else in {1,...,k}, generated by m conditionally independent LFs on n data points Outputs: O: (torch.Tensor) A (m, m, m, k, k, k) tensor of the label-specific empirical overlap rates; that is, O[i,j,k,y1,y2,y3] = P(\lf_i = y1, \lf_j = y2, \lf_k = y3) where this quantity is computed empirically by this function, based on the label matrix L.
377,770
def _members(self): return { key: value for key, value in self.__dict__.items() if not key.startswith("_") and not isinstance(value, Model) }
Return a dict of non-private members.
377,771
def execute_command(self, command): self.info_log("executing command: %s" % command) try: ssh = paramiko.SSHClient() ssh.set_missing_host_key_policy(paramiko.AutoAddPolicy()) k = paramiko.RSAKey.from_private_key_file( self.browser_config.get() ) ssh.connect( self.private_ip, username=self.browser_config.get(), pkey=k ) sleep_time = 0.1 stdout = [] stderr = [] ssh_transport = ssh.get_transport() channel = ssh_transport.open_session() channel.setblocking(0) channel.exec_command(command) while True: while channel.recv_ready(): stdout.append(channel.recv(1000)) while channel.recv_stderr_ready(): stderr.append(channel.recv_stderr(1000)) if channel.exit_status_ready(): break sleep(sleep_time) ssh_transport.close() ssh.close() return b.join(stdout), b.join(stderr) except Exception as e: msg = "Execute_command exception: %s" % str(e) self.error_log(msg) raise Exception(msg)
Execute a command on the node Args: command (str)
377,772
def spliced_offset(self, position): assert type(position) == int, \ "Position argument must be an integer, got %s : %s" % ( position, type(position)) if position < self.start or position > self.end: raise ValueError( "Invalid position: %d (must be between %d and %d)" % ( position, self.start, self.end)) unspliced_offset = self.offset(position) total_spliced_offset = 0 for exon in self.exons: exon_unspliced_start, exon_unspliced_end = self.offset_range( exon.start, exon.end) if exon_unspliced_start <= unspliced_offset <= exon_unspliced_end: exon_offset = unspliced_offset - exon_unspliced_start return total_spliced_offset + exon_offset else: exon_length = len(exon) total_spliced_offset += exon_length raise ValueError( "Couldn't find position %d on any exon of %s" % ( position, self.id))
Convert from an absolute chromosomal position to the offset into this transcript"s spliced mRNA. Position must be inside some exon (otherwise raise exception).
377,773
def _parse_ical_string(ical_string): start_time = ical_string.splitlines()[0].replace(DTSTART, ) if "RRULE" in ical_string: days = ical_string.splitlines()[1].replace(REPEAT, ) if days == "RRULE:FREQ=DAILY": days = [] else: days = days.split() else: days = None start_time = start_time.splitlines()[0].split()[1] datetime_object = datetime.strptime(start_time, ) return datetime_object, days
SU,MO,TU,WE,TH,FR,SA DTSTART;TZID=America/New_York:20180804T233251\nRRULE:FREQ=WEEKLY;BYDAY=SA DTSTART;TZID=America/New_York:20180804T233251\nRRULE:FREQ=DAILY DTSTART;TZID=America/New_York:20180804T233251\nRRULE:FREQ=WEEKLY;BYDAY=MO,TU,WE,TH,FR,SA DTSTART;TZID=America/New_York:20180718T174500
377,774
def admm_linearized(x, f, g, L, tau, sigma, niter, **kwargs): r if not isinstance(L, Operator): raise TypeError( .format(L)) if x not in L.domain: raise OpDomainError( .format(x, L.domain)) tau, tau_in = float(tau), tau if tau <= 0: raise ValueError(.format(tau_in)) sigma, sigma_in = float(sigma), sigma if sigma <= 0: raise ValueError(.format(sigma_in)) niter, niter_in = int(niter), niter if niter < 0 or niter != niter_in: raise ValueError( .format(niter_in)) callback = kwargs.pop(, None) if callback is not None and not callable(callback): raise TypeError(.format(callback)) z = L.range.zero() u = L.range.zero() tmp_ran = L(x) tmp_dom = L.domain.element() prox_tau_f = f.proximal(tau) prox_sigma_g = g.proximal(sigma) for _ in range(niter): tmp_ran += u tmp_ran -= z L.adjoint(tmp_ran, out=tmp_dom) x.lincomb(1, x, -tau / sigma, tmp_dom) prox_tau_f(x, out=x) L(x, out=tmp_ran) prox_sigma_g(tmp_ran + u, out=z) u += tmp_ran u -= z if callback is not None: callback(x)
r"""Generic linearized ADMM method for convex problems. ADMM stands for "Alternating Direction Method of Multipliers" and is a popular convex optimization method. This variant solves problems of the form :: min_x [ f(x) + g(Lx) ] with convex ``f`` and ``g``, and a linear operator ``L``. See Section 4.4 of `[PB2014] <http://web.stanford.edu/~boyd/papers/prox_algs.html>`_ and the Notes for more mathematical details. Parameters ---------- x : ``L.domain`` element Starting point of the iteration, updated in-place. f, g : `Functional` The functions ``f`` and ``g`` in the problem definition. They need to implement the ``proximal`` method. L : linear `Operator` The linear operator that is composed with ``g`` in the problem definition. It must fulfill ``L.domain == f.domain`` and ``L.range == g.domain``. tau, sigma : positive float Step size parameters for the update of the variables. niter : non-negative int Number of iterations. Other Parameters ---------------- callback : callable, optional Function called with the current iterate after each iteration. Notes ----- Given :math:`x^{(0)}` (the provided ``x``) and :math:`u^{(0)} = z^{(0)} = 0`, linearized ADMM applies the following iteration: .. math:: x^{(k+1)} &= \mathrm{prox}_{\tau f} \left[ x^{(k)} - \sigma^{-1}\tau L^*\big( L x^{(k)} - z^{(k)} + u^{(k)} \big) \right] z^{(k+1)} &= \mathrm{prox}_{\sigma g}\left( L x^{(k+1)} + u^{(k)} \right) u^{(k+1)} &= u^{(k)} + L x^{(k+1)} - z^{(k+1)} The step size parameters :math:`\tau` and :math:`\sigma` must satisfy .. math:: 0 < \tau < \frac{\sigma}{\|L\|^2} to guarantee convergence. The name "linearized ADMM" comes from the fact that in the minimization subproblem for the :math:`x` variable, this variant uses a linearization of a quadratic term in the augmented Lagrangian of the generic ADMM, in order to make the step expressible with the proximal operator of :math:`f`. Another name for this algorithm is *split inexact Uzawa method*. References ---------- [PB2014] Parikh, N and Boyd, S. *Proximal Algorithms*. Foundations and Trends in Optimization, 1(3) (2014), pp 123-231.
377,775
def com_google_fonts_check_production_glyphs_similarity(ttFont, api_gfonts_ttFont): def glyphs_surface_area(ttFont): from fontTools.pens.areaPen import AreaPen glyphs = {} glyph_set = ttFont.getGlyphSet() area_pen = AreaPen(glyph_set) for glyph in glyph_set.keys(): glyph_set[glyph].draw(area_pen) area = area_pen.value area_pen.value = 0 glyphs[glyph] = area return glyphs bad_glyphs = [] these_glyphs = glyphs_surface_area(ttFont) gfonts_glyphs = glyphs_surface_area(api_gfonts_ttFont) shared_glyphs = set(these_glyphs) & set(gfonts_glyphs) this_upm = ttFont[].unitsPerEm gfonts_upm = api_gfonts_ttFont[].unitsPerEm for glyph in shared_glyphs: this_glyph_area = (these_glyphs[glyph] / this_upm) * gfonts_upm gfont_glyph_area = (gfonts_glyphs[glyph] / gfonts_upm) * this_upm if abs(this_glyph_area - gfont_glyph_area) > 7000: bad_glyphs.append(glyph) if bad_glyphs: yield WARN, ("Following glyphs differ greatly from" " Google Fonts version: [{}]").format(", ".join(bad_glyphs)) else: yield PASS, ("Glyphs are similar in" " comparison to the Google Fonts version.")
Glyphs are similiar to Google Fonts version?
377,776
def backpropagate_3d_tilted(uSin, angles, res, nm, lD=0, tilted_axis=[0, 1, 0], coords=None, weight_angles=True, onlyreal=False, padding=(True, True), padfac=1.75, padval=None, intp_order=2, dtype=None, num_cores=_ncores, save_memory=False, copy=True, count=None, max_count=None, verbose=0): r A = angles.shape[0] if angles.shape not in [(A,), (A, 1), (A, 3)]: raise ValueError("`angles` must have shape (A,) or (A,3)!") if len(uSin.shape) != 3: raise ValueError("Input data `uSin` must have shape (A,Ny,Nx).") if len(uSin) != A: raise ValueError("`len(angles)` must be equal to `len(uSin)`.") if len(list(padding)) != 2: raise ValueError("`padding` must be boolean tuple of length 2!") if np.array(padding).dtype is not np.dtype(bool): raise ValueError("Parameter `padding` must be boolean tuple.") if coords is not None: raise NotImplementedError("Setting coordinates is not yet supported.") if num_cores > _ncores: raise ValueError("`num_cores` must not exceed number " + "of physical cores: {}".format(_ncores)) if dtype is None: dtype = np.float_ dtype = np.dtype(dtype) if dtype.name not in ["float32", "float64"]: raise ValueError("dtype must be float32 or float64!") dtype_complex = np.dtype("complex{}".format( 2 * int(dtype.name.strip("float")))) if max_count is not None: max_count.value += A + 2 ne.set_num_threads(num_cores) uSin = np.array(uSin, copy=copy) angles = np.array(angles, copy=copy) angles = np.squeeze(angles) lny, lnx = uSin.shape[1], uSin.shape[2] ln = lnx orderx = np.int(max(64., 2**np.ceil(np.log(lnx * padfac) / np.log(2)))) ordery = np.int(max(64., 2**np.ceil(np.log(lny * padfac) / np.log(2)))) if padding[0]: padx = orderx - lnx else: padx = 0 if padding[1]: pady = ordery - lny else: pady = 0 padyl = np.int(np.ceil(pady / 2)) padyr = pady - padyl padxl = np.int(np.ceil(padx / 2)) padxr = padx - padxl lNx, lNy = lnx + padx, lny + pady lNz = ln if verbose > 0: print("......Image size (x,y): {}x{}, padded: {}x{}".format( lnx, lny, lNx, lNy)) tilted_axis = norm_vec(tilted_axis) angz = np.arctan2(tilted_axis[0], tilted_axis[1]) rotmat = np.array([ [np.cos(angz), -np.sin(angz), 0], [np.sin(angz), np.cos(angz), 0], [0, 0, 1], ]) tilted_axis_yz = norm_vec(np.dot(rotmat, tilted_axis)) if len(angles.shape) == 1: if weight_angles: weights = util.compute_angle_weights_1d(angles).reshape(-1, 1, 1) angles = sphere_points_from_angles_and_tilt(angles, tilted_axis_yz) else: if weight_angles: warnings.warn("3D angular weighting not yet supported!") weights = 1 for ii in range(angles.shape[0]): angles[ii] = norm_vec(np.dot(rotmat, angles[ii])) if weight_angles: uSin *= weights km = (2 * np.pi * nm) / res fx = np.fft.fftfreq(lNx) fy = np.fft.fftfreq(lNy) kx = 2 * np.pi * fx ky = 2 * np.pi * fy dphi0 = 2 * np.pi / A kx = kx.reshape(1, -1) ky = ky.reshape(-1, 1) filter_klp = (kx**2 + ky**2 < km**2) M = 1. / km * np.sqrt((km**2 - kx**2 - ky**2) * filter_klp) prefactor = -1j * km / (2 * np.pi) prefactor *= dphi0 u, v, _w = tilted_axis filterabs = np.abs(kx*v+ky*u) * filter_klp prefactor *= np.exp(-1j * km * (M-1) * lD) if count is not None: count.value += 1 center = lNz / 2.0 z = np.linspace(-center, center, lNz, endpoint=False) zv = z.reshape(-1, 1, 1) Mp = M.reshape(lNy, lNx) f2_exp_fac = 1j * km * (Mp - 1) if save_memory: pass else: filter2 = ne.evaluate("exp(factor * zv)", local_dict={"factor": f2_exp_fac, "zv": zv}) if count is not None: count.value += 1 if onlyreal: outarr = np.zeros((ln, lny, lnx), dtype=dtype) else: outarr = np.zeros((ln, lny, lnx), dtype=dtype_complex) oneslice = pyfftw.empty_aligned((lNy, lNx), dtype_complex) myfftw_plan = pyfftw.FFTW(oneslice, oneslice, threads=num_cores, flags=["FFTW_ESTIMATE"], axes=(0, 1)) inarr = pyfftw.empty_aligned((lNy, lNx), dtype_complex) myifftw_plan = pyfftw.FFTW(inarr, inarr, threads=num_cores, axes=(0, 1), direction="FFTW_BACKWARD", flags=["FFTW_MEASURE"]) filtered_proj = np.zeros((ln, lny, lnx), dtype=dtype_complex) angles = rotate_points_to_axis(points=angles, axis=tilted_axis_yz) for aa in np.arange(A): if padval is None: oneslice[:] = np.pad(uSin[aa], ((padyl, padyr), (padxl, padxr)), mode="edge") else: oneslice[:] = np.pad(uSin[aa], ((padyl, padyr), (padxl, padxr)), mode="linear_ramp", end_values=(padval,)) myfftw_plan.execute() oneslice *= filterabs * prefactor / (lNx * lNy) for p in range(len(zv)): if save_memory: ne.evaluate("exp(factor * zvp) * projectioni", local_dict={"zvp": zv[p], "projectioni": oneslice, "factor": f2_exp_fac}, out=inarr) else: np.multiply(filter2[p], oneslice, out=inarr) myifftw_plan.execute() filtered_proj[p, :, :] = inarr[padyl:padyl+lny, padxl:padxl+lnx] fil_p_t = filtered_proj.transpose(2, 1, 0)[:, ::-1, :] _drot, drotinv = rotation_matrix_from_point_planerot(angles[aa], plane_angle=angz, ret_inv=True) c = 0.5 * np.array(fil_p_t.shape) - .5 offset = c - np.dot(drotinv, c) outarr.real += scipy.ndimage.interpolation.affine_transform( fil_p_t.real, drotinv, offset=offset, mode="constant", cval=0, order=intp_order).transpose(2, 1, 0)[:, ::-1, :] if not onlyreal: outarr.imag += scipy.ndimage.interpolation.affine_transform( fil_p_t.imag, drotinv, offset=offset, mode="constant", cval=0, order=intp_order).transpose(2, 1, 0)[:, ::-1, :] if count is not None: count.value += 1 return outarr
r"""3D backpropagation with a tilted axis of rotation Three-dimensional diffraction tomography reconstruction algorithm for scattering of a plane wave :math:`u_0(\mathbf{r}) = u_0(x,y,z)` by a dielectric object with refractive index :math:`n(x,y,z)`. This method implements the 3D backpropagation algorithm with a rotational axis that is tilted by :math:`\theta_\mathrm{tilt}` w.r.t. the imaging plane :cite:`Mueller2015tilted`. .. math:: f(\mathbf{r}) = -\frac{i k_\mathrm{m}}{2\pi} \sum_{j=1}^{N} \! \Delta \phi_0 D_{-\phi_j}^\mathrm{tilt} \!\! \left \{ \text{FFT}^{-1}_{\mathrm{2D}} \left \{ \left| k_\mathrm{Dx} \cdot \cos \theta_\mathrm{tilt}\right| \frac{\text{FFT}_{\mathrm{2D}} \left \{ u_{\mathrm{B},\phi_j}(x_\mathrm{D}, y_\mathrm{D}) \right \}} {u_0(l_\mathrm{D})} \exp \! \left[i k_\mathrm{m}(M - 1) \cdot (z_{\phi_j}-l_\mathrm{D}) \right] \right \} \right \} with a modified rotational operator :math:`D_{-\phi_j}^\mathrm{tilt}` and a different filter in Fourier space :math:`|k_\mathrm{Dx} \cdot \cos \theta_\mathrm{tilt}|` when compared to :func:`backpropagate_3d`. .. versionadded:: 0.1.2 Parameters ---------- uSin: (A, Ny, Nx) ndarray Three-dimensional sinogram of plane recordings :math:`u_{\mathrm{B}, \phi_j}(x_\mathrm{D}, y_\mathrm{D})` divided by the incident plane wave :math:`u_0(l_\mathrm{D})` measured at the detector. angles: ndarray of shape (A,3) or 1D array of length A If the shape is (A,3), then `angles` consists of vectors on the unit sphere that correspond to the direction of illumination and acquisition (s₀). If the shape is (A,), then `angles` is a one-dimensional array of angles in radians that determines the angular position :math:`\phi_j`. In both cases, `tilted_axis` must be set according to the tilt of the rotational axis. res: float Vacuum wavelength of the light :math:`\lambda` in pixels. nm: float Refractive index of the surrounding medium :math:`n_\mathrm{m}`. lD: float Distance from center of rotation to detector plane :math:`l_\mathrm{D}` in pixels. tilted_axis: list of floats The coordinates [x, y, z] on a unit sphere representing the tilted axis of rotation. The default is (0,1,0), which corresponds to a rotation about the y-axis and follows the behavior of :func:`odtbrain.backpropagate_3d`. coords: None [(3, M) ndarray] Only compute the output image at these coordinates. This keyword is reserved for future versions and is not implemented yet. weight_angles: bool If `True`, weights each backpropagated projection with a factor proportional to the angular distance between the neighboring projections. .. math:: \Delta \phi_0 \longmapsto \Delta \phi_j = \frac{\phi_{j+1} - \phi_{j-1}}{2} This currently only works when `angles` has the shape (A,). onlyreal: bool If `True`, only the real part of the reconstructed image will be returned. This saves computation time. padding: tuple of bool Pad the input data to the second next power of 2 before Fourier transforming. This reduces artifacts and speeds up the process for input image sizes that are not powers of 2. The default is padding in x and y: `padding=(True, True)`. For padding only in x-direction (e.g. for cylindrical symmetries), set `padding` to `(True, False)`. To turn off padding, set it to `(False, False)`. padfac: float Increase padding size of the input data. A value greater than one will trigger padding to the second-next power of two. For example, a value of 1.75 will lead to a padded size of 256 for an initial size of 144, whereas for it will lead to a padded size of 512 for an initial size of 150. Values geater than 2 are allowed. This parameter may greatly increase memory usage! padval: float The value used for padding. This is important for the Rytov approximation, where an approximat zero in the phase might translate to 2πi due to the unwrapping algorithm. In that case, this value should be a multiple of 2πi. If `padval` is `None`, then the edge values are used for padding (see documentation of :func:`numpy.pad`). intp_order: int between 0 and 5 Order of the interpolation for rotation. See :func:`scipy.ndimage.interpolation.affine_transform` for details. dtype: dtype object or argument for :func:`numpy.dtype` The data type that is used for calculations (float or double). Defaults to `numpy.float_`. num_cores: int The number of cores to use for parallel operations. This value defaults to the number of cores on the system. save_memory: bool Saves memory at the cost of longer computation time. .. versionadded:: 0.1.5 copy: bool Copy input sinogram `uSin` for data processing. If `copy` is set to `False`, then `uSin` will be overridden. .. versionadded:: 0.1.5 count, max_count: multiprocessing.Value or `None` Can be used to monitor the progress of the algorithm. Initially, the value of `max_count.value` is incremented by the total number of steps. At each step, the value of `count.value` is incremented. verbose: int Increment to increase verbosity. Returns ------- f: ndarray of shape (Nx, Ny, Nx), complex if `onlyreal==False` Reconstructed object function :math:`f(\mathbf{r})` as defined by the Helmholtz equation. :math:`f(x,z) = k_m^2 \left(\left(\frac{n(x,z)}{n_m}\right)^2 -1\right)` See Also -------- odt_to_ri: conversion of the object function :math:`f(\mathbf{r})` to refractive index :math:`n(\mathbf{r})` Notes ----- This implementation can deal with projection angles that are not distributed along a circle about the rotational axis. If there are slight deviations from this circle, simply pass the 3D rotational positions instead of the 1D angles to the `angles` argument. In principle, this should improve the reconstruction. The general problem here is that the backpropagation algorithm requires a ramp filter in Fourier space that is oriented perpendicular to the rotational axis. If the sample does not rotate about a single axis, then a 1D parametric representation of this rotation must be found to correctly determine the filter in Fourier space. Such a parametric representation could e.g. be a spiral between the poles of the unit sphere (but this kind of rotation is probably difficult to implement experimentally). If you have input images with rectangular shape, e.g. Nx!=Ny and the rotational axis deviates by approximately PI/2 from the axis (0,1,0), then data might get cropped in the reconstruction volume. You can avoid that by rotating your input data and the rotational axis by PI/2. For instance, change`tilted_axis` from [1,0,0] to [0,1,0] and `np.rot90` the sinogram images. Do not use the parameter `lD` in combination with the Rytov approximation - the propagation is not correctly described. Instead, numerically refocus the sinogram prior to converting it to Rytov data (using e.g. :func:`odtbrain.sinogram_as_rytov`) with a numerical focusing algorithm (available in the Python package :py:mod:`nrefocus`).
377,777
def damping_kraus_map(p=0.10): damping_op = np.sqrt(p) * np.array([[0, 1], [0, 0]]) residual_kraus = np.diag([1, np.sqrt(1 - p)]) return [residual_kraus, damping_op]
Generate the Kraus operators corresponding to an amplitude damping noise channel. :param float p: The one-step damping probability. :return: A list [k1, k2] of the Kraus operators that parametrize the map. :rtype: list
377,778
def trimSegments(self, minPermanence=None, minNumSyns=None): if minPermanence is None: minPermanence = self.connectedPerm if minNumSyns is None: minNumSyns = self.activationThreshold totalSegsRemoved, totalSynsRemoved = 0, 0 for c, i in itertools.product(xrange(self.numberOfCols), xrange(self.cellsPerColumn)): (segsRemoved, synsRemoved) = self._trimSegmentsInCell( colIdx=c, cellIdx=i, segList=self.cells[c][i], minPermanence=minPermanence, minNumSyns=minNumSyns) totalSegsRemoved += segsRemoved totalSynsRemoved += synsRemoved if self.verbosity >= 5: print "Cells, all segments:" self.printCells(predictedOnly=False) return totalSegsRemoved, totalSynsRemoved
This method deletes all synapses whose permanence is less than minPermanence and deletes any segments that have less than minNumSyns synapses remaining. :param minPermanence: (float) Any syn whose permanence is 0 or < ``minPermanence`` will be deleted. If None is passed in, then ``self.connectedPerm`` is used. :param minNumSyns: (int) Any segment with less than ``minNumSyns`` synapses remaining in it will be deleted. If None is passed in, then ``self.activationThreshold`` is used. :returns: (tuple) ``numSegsRemoved``, ``numSynsRemoved``
377,779
def to_holvi_dict(self): self._jsondata["items"] = [] for item in self.items: self._jsondata["items"].append(item.to_holvi_dict()) self._jsondata["issue_date"] = self.issue_date.isoformat() self._jsondata["due_date"] = self.due_date.isoformat() self._jsondata["receiver"] = self.receiver.to_holvi_dict() return {k: v for (k, v) in self._jsondata.items() if k in self._valid_keys}
Convert our Python object to JSON acceptable to Holvi API
377,780
def build_ast(expression, debug = False): G = DiGraph() stack = [] for n in expression: if isinstance(n,OperatorNode): if n.ttype == "operator-infix": arg2 = stack.pop() arg1 = stack.pop() if(n.tvalue == ): if in arg1.tvalue and arg2.ttype == and not in arg2.tvalue: arg2.tvalue = arg1.tvalue.split()[0] + + arg2.tvalue G.add_node(arg1,pos = 1) G.add_node(arg2,pos = 2) G.add_edge(arg1, n) G.add_edge(arg2, n) else: arg1 = stack.pop() G.add_node(arg1,pos = 1) G.add_edge(arg1, n) elif isinstance(n,FunctionNode): args = [] for _ in range(n.num_args): try: args.append(stack.pop()) except: raise Exception() args.reverse() for i,a in enumerate(args): G.add_node(a,pos = i) G.add_edge(a,n) else: G.add_node(n,pos=0) stack.append(n) return G,stack.pop()
build an AST from an Excel formula expression in reverse polish notation
377,781
def fromhdf5sorted(source, where=None, name=None, sortby=None, checkCSI=False, start=None, stop=None, step=None): assert sortby is not None, return HDF5SortedView(source, where=where, name=name, sortby=sortby, checkCSI=checkCSI, start=start, stop=stop, step=step)
Provides access to an HDF5 table, sorted by an indexed column, e.g.:: >>> import petl as etl >>> import tables >>> # set up a new hdf5 table to demonstrate with ... h5file = tables.open_file('example.h5', mode='w', title='Test file') >>> h5file.create_group('/', 'testgroup', 'Test Group') /testgroup (Group) 'Test Group' children := [] >>> class FooBar(tables.IsDescription): ... foo = tables.Int32Col(pos=0) ... bar = tables.StringCol(6, pos=2) ... >>> h5table = h5file.create_table('/testgroup', 'testtable', FooBar, 'Test Table') >>> # load some data into the table ... table1 = (('foo', 'bar'), ... (3, b'asdfgh'), ... (2, b'qwerty'), ... (1, b'zxcvbn')) >>> for row in table1[1:]: ... for i, f in enumerate(table1[0]): ... h5table.row[f] = row[i] ... h5table.row.append() ... >>> h5table.cols.foo.create_csindex() # CS index is required 0 >>> h5file.flush() >>> h5file.close() >>> # ... # access the data, sorted by the indexed column ... table2 = etl.fromhdf5sorted('example.h5', '/testgroup', 'testtable', ... sortby='foo') >>> table2 +-----+-----------+ | foo | bar | +=====+===========+ | 1 | b'zxcvbn' | +-----+-----------+ | 2 | b'qwerty' | +-----+-----------+ | 3 | b'asdfgh' | +-----+-----------+
377,782
def argparser(self): core_parser = self.core_parser core_parser.add_argument(, , type=str, help="The range to search for use") return core_parser
Argparser option with search functionality specific for ranges.
377,783
def update_service(name, service_map): if name in service_map: service = service_map[name] data = service.update() if not data: logger.warning(, name) else: data[] = service.service_name CACHE[name] = dict(data=data, updated=datetime.now()) else: logger.warning(, name) if name in CACHE: return add_time(CACHE[name]) return {}
Get an update from the specified service. Arguments: name (:py:class:`str`): The name of the service. service_map (:py:class:`dict`): A mapping of service names to :py:class:`flash.service.core.Service` instances. Returns: :py:class:`dict`: The updated data.
377,784
def _set_general_compilers(self): for c, c_info in self.compilers.items(): compiler_cls = c_info["cls"](template=c_info["template"]) c_info["channels"] = [] for p in self.processes: if not any([isinstance(p, x) for x in self.skip_class]): if c in p.compiler: channels = ["{}_{}".format(i, p.pid) for i in p.compiler[c]] c_info["channels"].extend(channels) if c_info["channels"]: compiler_cls.set_compiler_channels(c_info["channels"], operator="join") self.processes.append(compiler_cls)
Adds compiler channels to the :attr:`processes` attribute. This method will iterate over the pipeline's processes and check if any process is feeding channels to a compiler process. If so, that compiler process is added to the pipeline and those channels are linked to the compiler via some operator.
377,785
def github_repos(organization, github_url, github_token): headers = {"Authorization": "token {}".format(github_token)} next_cursor = None while next_cursor is not False: params = {: query, : { : organization, : next_cursor}} response = requests.post(github_url, headers=headers, json=params) result = response.json() if response.status_code != 200 or in result: raise ValueError("Github api error %s" % ( response.content.decode(),)) repos = jmespath.search( , result) for r in repos: yield r page_info = jmespath.search( , result) if page_info: next_cursor = (page_info[] and page_info[] or False) else: next_cursor = False
Return all github repositories in an organization.
377,786
def cublasZgbmv(handle, trans, m, n, kl, ku, alpha, A, lda, x, incx, beta, y, incy): status = _libcublas.cublasZgbmv_v2(handle, trans, m, n, kl, ku, ctypes.byref(cuda.cuDoubleComplex(alpha.real, alpha.imag)), int(A), lda, int(x), incx, ctypes.byref(cuda.cuDoubleComplex(beta.real, beta.imag)), int(y), incy) cublasCheckStatus(status)
Matrix-vector product for complex general banded matrix.
377,787
def caesar(shift, data, shift_ranges=(, )): alphabet = dict( (chr(c), chr((c - s + shift) % (e - s + 1) + s)) for s, e in map(lambda r: (ord(r[0]), ord(r[-1])), shift_ranges) for c in range(s, e + 1) ) return .join(alphabet.get(c, c) for c in data)
Apply a caesar cipher to a string. The caesar cipher is a substition cipher where each letter in the given alphabet is replaced by a letter some fixed number down the alphabet. If ``shift`` is ``1``, *A* will become *B*, *B* will become *C*, etc... You can define the alphabets that will be shift by specifying one or more shift ranges. The characters will than be shifted within the given ranges. Args: shift(int): The shift to apply. data(str): The string to apply the cipher to. shift_ranges(list of str): Which alphabets to shift. Returns: str: The string with the caesar cipher applied. Examples: >>> caesar(16, 'Pwnypack') 'Fmdofqsa' >>> caesar(-16, 'Fmdofqsa') 'Pwnypack' >>> caesar(16, 'PWNYpack', shift_ranges=('AZ',)) 'FMDOpack' >>> caesar(16, 'PWNYpack', shift_ranges=('Az',)) '`g^iFqsA'
377,788
def check_file_list_cache(opts, form, list_cache, w_lock): refresh_cache = False save_cache = True serial = salt.payload.Serial(opts) wait_lock(w_lock, list_cache, 5 * 60) if not os.path.isfile(list_cache) and _lock_cache(w_lock): refresh_cache = True else: attempt = 0 while attempt < 11: try: if os.path.exists(w_lock): wait_lock(w_lock, list_cache, 15 * 60) if os.path.exists(list_cache): cache_stat = os.stat(list_cache) current_time = int(time.time()) file_mtime = int(cache_stat.st_mtime) if file_mtime > current_time: log.debug( , list_cache, current_time, file_mtime ) age = 0 else: age = current_time - file_mtime else: age = opts.get(, 20) + 1 if age < 0: log.warning() if 0 <= age < opts.get(, 20): with salt.utils.files.fopen(list_cache, ) as fp_: log.debug( "Returning file list from cache: age=%s cache_time=%s %s", age, opts.get(, 20), list_cache ) return salt.utils.data.decode(serial.load(fp_).get(form, [])), False, False elif _lock_cache(w_lock): refresh_cache = True break except Exception: time.sleep(0.2) attempt += 1 continue if attempt > 10: save_cache = False refresh_cache = True return None, refresh_cache, save_cache
Checks the cache file to see if there is a new enough file list cache, and returns the match (if found, along with booleans used by the fileserver backend to determine if the cache needs to be refreshed/written).
377,789
def get_random(self, size=10): bin_centers_ravel = np.array(np.meshgrid(*self.bin_centers(), indexing=)).reshape(self.dimensions, -1).T hist_ravel = self.histogram.ravel() hist_ravel = hist_ravel.astype(np.float) / np.nansum(hist_ravel) result = bin_centers_ravel[np.random.choice(len(bin_centers_ravel), p=hist_ravel, size=size)] for dim_i in range(self.dimensions): bin_edges = self.bin_edges[dim_i] bin_widths = np.diff(bin_edges) index_of_bin = np.searchsorted(bin_edges, result[:, dim_i]) - 1 result[:, dim_i] += (np.random.rand(size) - 0.5) * bin_widths[index_of_bin] return result
Returns (size, n_dim) array of random variates from the histogram. Inside the bins, a uniform distribution is assumed Note this assumes the histogram is an 'events per bin', not a pdf. TODO: test more.
377,790
def put_attribute(self, id, key, value, **kwargs): kwargs[] = True if kwargs.get(): return self.put_attribute_with_http_info(id, key, value, **kwargs) else: (data) = self.put_attribute_with_http_info(id, key, value, **kwargs) return data
Add attribute to the BuildRecord. This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please define a `callback` function to be invoked when receiving the response. >>> def callback_function(response): >>> pprint(response) >>> >>> thread = api.put_attribute(id, key, value, callback=callback_function) :param callback function: The callback function for asynchronous request. (optional) :param int id: BuildRecord id (required) :param str key: Attribute key (required) :param str value: Attribute value (required) :return: None If the method is called asynchronously, returns the request thread.
377,791
def UNIFAC(T, xs, chemgroups, cached=None, subgroup_data=None, interaction_data=None, modified=False): rs temperature, liquid mole fractions, and optionally the subgroup data and interaction parameter data of your choice. The default is to use the original UNIFAC model, with the latest parameters published by DDBST. The model supports modified forms (Dortmund, NIST) when the `modified` parameter is True. Parameters ---------- T : float Temperature of the system, [K] xs : list[float] Mole fractions of all species in the system in the liquid phase, [-] chemgroups : list[dict] List of dictionaries of subgroup IDs and their counts for all species in the mixture, [-] subgroup_data : dict[UNIFAC_subgroup] UNIFAC subgroup data; available dictionaries in this module are UFSG (original), DOUFSG (Dortmund), or NISTUFSG ([4]_). interaction_data : dict[dict[tuple(a_mn, b_mn, c_mn)]] UNIFAC interaction parameter data; available dictionaries in this module are UFIP (original), DOUFIP2006 (Dortmund parameters as published by 2006), DOUFIP2016 (Dortmund parameters as published by 2016), and NISTUFIP ([4]_). modified : bool True if using the modified form and temperature dependence, otherwise False. Returns ------- gammas : list[float] Activity coefficients of all species in the mixture, [-] Notes ----- The actual implementation of UNIFAC is formulated slightly different than the formulas above for computational efficiency. DDBST switched to using the more efficient forms in their publication, but the numerical results are identical. The model is as follows: .. math:: \ln \gamma_i = \ln \gamma_i^c + \ln \gamma_i^r **Combinatorial component** .. math:: \ln \gamma_i^c = \ln \frac{\phi_i}{x_i} + \frac{z}{2} q_i \ln\frac{\theta_i}{\phi_i} + L_i - \frac{\phi_i}{x_i} \sum_{j=1}^{n} x_j L_j \theta_i = \frac{x_i q_i}{\sum_{j=1}^{n} x_j q_j} \phi_i = \frac{x_i r_i}{\sum_{j=1}^{n} x_j r_j} L_i = 5(r_i - q_i)-(r_i-1) **Residual component** .. math:: \ln \gamma_i^r = \sum_{k}^n \nu_k^{(i)} \left[ \ln \Gamma_k - \ln \Gamma_k^{(i)} \right] \ln \Gamma_k = Q_k \left[1 - \ln \sum_m \Theta_m \Psi_{mk} - \sum_m \frac{\Theta_m \Psi_{km}}{\sum_n \Theta_n \Psi_{nm}}\right] \Theta_m = \frac{Q_m X_m}{\sum_{n} Q_n X_n} X_m = \frac{ \sum_j \nu^j_m x_j}{\sum_j \sum_n \nu_n^j x_j} **R and Q** .. math:: r_i = \sum_{k=1}^{n} \nu_k R_k q_i = \sum_{k=1}^{n}\nu_k Q_k The newer forms of UNIFAC (Dortmund, NIST) calculate the combinatorial part slightly differently: .. math:: \ln \gamma_i^c = 1 - {V}_i) - 5q_i \left(1 - \frac{V_i}{F_i}+ \ln\left(\frac{V_i}{F_i}\right)\right) V cmps = range(len(xs)) if subgroup_data is None: subgroups = UFSG else: subgroups = subgroup_data if interaction_data is None: interactions = UFIP else: interactions = interaction_data if not cached: rs = [] qs = [] for groups in chemgroups: ri = 0. qi = 0. for group, count in groups.items(): ri += subgroups[group].R*count qi += subgroups[group].Q*count rs.append(ri) qs.append(qi) group_counts = {} for groups in chemgroups: for group, count in groups.items(): if group in group_counts: group_counts[group] += count else: group_counts[group] = count else: rs, qs, group_counts = cached group_sum = sum(count*xs[i] for i in cmps for count in chemgroups[i].values()) group_count_xs = {} for group in group_counts: tot_numerator = sum(chemgroups[i][group]*xs[i] for i in cmps if group in chemgroups[i]) group_count_xs[group] = tot_numerator/group_sum rsxs = sum([rs[i]*xs[i] for i in cmps]) Vis = [rs[i]/rsxs for i in cmps] qsxs = sum([qs[i]*xs[i] for i in cmps]) Fis = [qs[i]/qsxs for i in cmps] if modified: rsxs2 = sum([rs[i]**0.75*xs[i] for i in cmps]) Vis2 = [rs[i]**0.75/rsxs2 for i in cmps] loggammacs = [1. - Vis2[i] + log(Vis2[i]) - 5.*qs[i]*(1. - Vis[i]/Fis[i] + log(Vis[i]/Fis[i])) for i in cmps] else: loggammacs = [1. - Vis[i] + log(Vis[i]) - 5.*qs[i]*(1. - Vis[i]/Fis[i] + log(Vis[i]/Fis[i])) for i in cmps] Q_sum_term = sum([subgroups[group].Q*group_count_xs[group] for group in group_counts]) area_fractions = {group: subgroups[group].Q*group_count_xs[group]/Q_sum_term for group in group_counts.keys()} UNIFAC_psis = {k: {m:(UNIFAC_psi(T, m, k, subgroups, interactions, modified=modified)) for m in group_counts} for k in group_counts} loggamma_groups = {} for k in group_counts: sum1, sum2 = 0., 0. for m in group_counts: sum1 += area_fractions[m]*UNIFAC_psis[k][m] sum3 = sum(area_fractions[n]*UNIFAC_psis[m][n] for n in group_counts) sum2 -= area_fractions[m]*UNIFAC_psis[m][k]/sum3 loggamma_groups[k] = subgroups[k].Q*(1. - log(sum1) + sum2) loggammars = [] for groups in chemgroups: chem_loggamma_groups = {} chem_group_sum = sum(groups.values()) chem_group_count_xs = {group: count/chem_group_sum for group, count in groups.items()} Q_sum_term = sum([subgroups[group].Q*chem_group_count_xs[group] for group in groups]) chem_area_fractions = {group: subgroups[group].Q*chem_group_count_xs[group]/Q_sum_term for group in groups.keys()} for k in groups: sum1, sum2 = 0., 0. for m in groups: sum1 += chem_area_fractions[m]*UNIFAC_psis[k][m] sum3 = sum(chem_area_fractions[n]*UNIFAC_psis[m][n] for n in groups) sum2 -= chem_area_fractions[m]*UNIFAC_psis[m][k]/sum3 chem_loggamma_groups[k] = subgroups[k].Q*(1. - log(sum1) + sum2) tot = sum([count*(loggamma_groups[group] - chem_loggamma_groups[group]) for group, count in groups.items()]) loggammars.append(tot) return [exp(loggammacs[i]+loggammars[i]) for i in cmps]
r'''Calculates activity coefficients using the UNIFAC model (optionally modified), given a mixture's temperature, liquid mole fractions, and optionally the subgroup data and interaction parameter data of your choice. The default is to use the original UNIFAC model, with the latest parameters published by DDBST. The model supports modified forms (Dortmund, NIST) when the `modified` parameter is True. Parameters ---------- T : float Temperature of the system, [K] xs : list[float] Mole fractions of all species in the system in the liquid phase, [-] chemgroups : list[dict] List of dictionaries of subgroup IDs and their counts for all species in the mixture, [-] subgroup_data : dict[UNIFAC_subgroup] UNIFAC subgroup data; available dictionaries in this module are UFSG (original), DOUFSG (Dortmund), or NISTUFSG ([4]_). interaction_data : dict[dict[tuple(a_mn, b_mn, c_mn)]] UNIFAC interaction parameter data; available dictionaries in this module are UFIP (original), DOUFIP2006 (Dortmund parameters as published by 2006), DOUFIP2016 (Dortmund parameters as published by 2016), and NISTUFIP ([4]_). modified : bool True if using the modified form and temperature dependence, otherwise False. Returns ------- gammas : list[float] Activity coefficients of all species in the mixture, [-] Notes ----- The actual implementation of UNIFAC is formulated slightly different than the formulas above for computational efficiency. DDBST switched to using the more efficient forms in their publication, but the numerical results are identical. The model is as follows: .. math:: \ln \gamma_i = \ln \gamma_i^c + \ln \gamma_i^r **Combinatorial component** .. math:: \ln \gamma_i^c = \ln \frac{\phi_i}{x_i} + \frac{z}{2} q_i \ln\frac{\theta_i}{\phi_i} + L_i - \frac{\phi_i}{x_i} \sum_{j=1}^{n} x_j L_j \theta_i = \frac{x_i q_i}{\sum_{j=1}^{n} x_j q_j} \phi_i = \frac{x_i r_i}{\sum_{j=1}^{n} x_j r_j} L_i = 5(r_i - q_i)-(r_i-1) **Residual component** .. math:: \ln \gamma_i^r = \sum_{k}^n \nu_k^{(i)} \left[ \ln \Gamma_k - \ln \Gamma_k^{(i)} \right] \ln \Gamma_k = Q_k \left[1 - \ln \sum_m \Theta_m \Psi_{mk} - \sum_m \frac{\Theta_m \Psi_{km}}{\sum_n \Theta_n \Psi_{nm}}\right] \Theta_m = \frac{Q_m X_m}{\sum_{n} Q_n X_n} X_m = \frac{ \sum_j \nu^j_m x_j}{\sum_j \sum_n \nu_n^j x_j} **R and Q** .. math:: r_i = \sum_{k=1}^{n} \nu_k R_k q_i = \sum_{k=1}^{n}\nu_k Q_k The newer forms of UNIFAC (Dortmund, NIST) calculate the combinatorial part slightly differently: .. math:: \ln \gamma_i^c = 1 - {V'}_i + \ln({V'}_i) - 5q_i \left(1 - \frac{V_i}{F_i}+ \ln\left(\frac{V_i}{F_i}\right)\right) V'_i = \frac{r_i^{3/4}}{\sum_j r_j^{3/4}x_j} This is more clear when looking at the full rearranged form as in [3]_. Examples -------- >>> UNIFAC(T=333.15, xs=[0.5, 0.5], chemgroups=[{1:2, 2:4}, {1:1, 2:1, 18:1}]) [1.4276025835624173, 1.3646545010104225] >>> UNIFAC(373.15, [0.2, 0.3, 0.2, 0.2], ... [{9:6}, {78:6}, {1:1, 18:1}, {1:1, 2:1, 14:1}], ... subgroup_data=DOUFSG, interaction_data=DOUFIP2006, modified=True) [1.186431113706829, 1.440280133911197, 1.204479833499608, 1.9720706090299824] References ---------- .. [1] Gmehling, Jurgen. Chemical Thermodynamics: For Process Simulation. Weinheim, Germany: Wiley-VCH, 2012. .. [2] Fredenslund, Aage, Russell L. Jones, and John M. Prausnitz. "Group Contribution Estimation of Activity Coefficients in Nonideal Liquid Mixtures." AIChE Journal 21, no. 6 (November 1, 1975): 1086-99. doi:10.1002/aic.690210607. .. [3] Jakob, Antje, Hans Grensemann, Jürgen Lohmann, and Jürgen Gmehling. "Further Development of Modified UNIFAC (Dortmund):  Revision and Extension 5." Industrial & Engineering Chemistry Research 45, no. 23 (November 1, 2006): 7924-33. doi:10.1021/ie060355c. .. [4] Kang, Jeong Won, Vladimir Diky, and Michael Frenkel. "New Modified UNIFAC Parameters Using Critically Evaluated Phase Equilibrium Data." Fluid Phase Equilibria 388 (February 25, 2015): 128-41. doi:10.1016/j.fluid.2014.12.042.
377,792
def idmap_get_new(connection, old, tbl): cursor = connection.cursor() cursor.execute("SELECT new FROM _idmap_ WHERE old == ?", (old,)) new = cursor.fetchone() if new is not None: return ilwd.ilwdchar(new[0]) new = tbl.get_next_id() cursor.execute("INSERT INTO _idmap_ VALUES (?, ?)", (old, new)) return new
From the old ID string, obtain a replacement ID string by either grabbing it from the _idmap_ table if one has already been assigned to the old ID, or by using the current value of the Table instance's next_id class attribute. In the latter case, the new ID is recorded in the _idmap_ table, and the class attribute incremented by 1. This function is for internal use, it forms part of the code used to re-map row IDs when merging multiple documents.
377,793
def _wait_for_ip(name, session): start_time = datetime.now() status = None while status is None: status = get_vm_ip(name, session) if status is not None: if status.startswith(): status = None check_time = datetime.now() delta = check_time - start_time log.debug( , delta.seconds, name ) if delta.seconds > 180: log.warning() break time.sleep(5)
Wait for IP to be available during create()
377,794
def get_value(self, key, default={}, nested=True, decrypt=True): key = key.lstrip() if key.endswith("."): key = key[:-1] if nested: path = key.split(".") curr = self.settings for p in path[:-1]: curr = curr.get(p, {}) try: value = curr[path[-1]] except KeyError: return default value = self.decrypt(value, path) return value else: return self.settings.get(key, default)
Retrieve a value from the configuration based on its key. The key may be nested. :param str key: A path to the value, with nested levels joined by '.' :param default: Value to return if the key does not exist (defaults to :code:`dict()`) :param bool decrypt: If :code:`True`, decrypt an encrypted value before returning (if encrypted). Defaults to :code:`True`.
377,795
def redirect_stdout(new_stdout): old_stdout, sys.stdout = sys.stdout, new_stdout try: yield None finally: sys.stdout = old_stdout
Redirect the stdout Args: new_stdout (io.StringIO): New stdout to use instead
377,796
def get_datafeeds(self, datafeed_id=None, params=None): return self.transport.perform_request( "GET", _make_path("_ml", "datafeeds", datafeed_id), params=params )
`<http://www.elastic.co/guide/en/elasticsearch/reference/current/ml-get-datafeed.html>`_ :arg datafeed_id: The ID of the datafeeds to fetch :arg allow_no_datafeeds: Whether to ignore if a wildcard expression matches no datafeeds. (This includes `_all` string or when no datafeeds have been specified)
377,797
def tobinary(self): entrylen = struct.calcsize(self.ENTRYSTRUCT) rslt = [] for (dpos, dlen, ulen, flag, typcd, nm) in self.data: nmlen = len(nm) + 1 toclen = nmlen + entrylen if toclen % 16 == 0: pad = else: padlen = 16 - (toclen % 16) pad = *padlen nmlen = nmlen + padlen rslt.append(struct.pack(self.ENTRYSTRUCT+`nmlen`+, nmlen+entrylen, dpos, dlen, ulen, flag, typcd, nm+pad)) return .join(rslt)
Return self as a binary string.
377,798
def rm_env(user, name): * lst = list_tab(user) ret = rm_ = None for ind in range(len(lst[])): if name == lst[][ind][]: rm_ = ind if rm_ is not None: lst[].pop(rm_) ret = comdat = _write_cron_lines(user, _render_tab(lst)) if comdat[]: return comdat[] return ret
Remove cron environment variable for a specified user. CLI Example: .. code-block:: bash salt '*' cron.rm_env root MAILTO
377,799
def add_key(self, key): if key not in self.value: self.value[key] = ReducedMetric(self.reducer)
Adds a new key to this metric