Unnamed: 0
int64
0
389k
code
stringlengths
26
79.6k
docstring
stringlengths
1
46.9k
380,600
def insertBefore(self, child: Node, ref_node: Node) -> Node: if self.connected: self._insert_before_web(child, ref_node) return self._insert_before(child, ref_node)
Insert new child node before the reference child node. If the reference node is not a child of this node, raise ValueError. If this instance is connected to the node on browser, the child node is also added to it.
380,601
def buglist(self, from_date=DEFAULT_DATETIME): if not self.version: self.version = self.__fetch_version() if self.version in self.OLD_STYLE_VERSIONS: order = else: order = date = from_date.strftime("%Y-%m-%d %H:%M:%S") params = { self.PCHFIELD_FROM: date, self.PCTYPE: self.CTYPE_CSV, self.PLIMIT: self.max_bugs_csv, self.PORDER: order } response = self.call(self.CGI_BUGLIST, params) return response
Get a summary of bugs in CSV format. :param from_date: retrieve bugs that where updated from that date
380,602
def get_ports(self, id_or_uri, start=0, count=-1): uri = self._client.build_subresource_uri(resource_id_or_uri=id_or_uri, subresource_path="ports") return self._client.get_all(start, count, uri=uri)
Gets all interconnect ports. Args: id_or_uri: Can be either the interconnect id or the interconnect uri. start: The first item to return, using 0-based indexing. If not specified, the default is 0 - start with the first available item. count: The number of resources to return. A count of -1 requests all items. The actual number of items in the response might differ from the requested count if the sum of start and count exceeds the total number of items. Returns: list: All interconnect ports.
380,603
def _update_console(self, value=None): if self._total == 0: frac = 1.0 else: frac = float(value) / float(self._total) file = self._file write = file.write if frac > 1: bar_fill = int(self._bar_length) else: bar_fill = int(float(self._bar_length) * frac) write() color_print( * bar_fill, , file=file, end=) if bar_fill < self._bar_length: color_print(, , file=file, end=) write( * (self._bar_length - bar_fill - 1)) write() if value >= self._total: t = time.time() - self._start_time prefix = elif value <= 0: t = None prefix = else: t = ((time.time() - self._start_time) * (1.0 - frac)) / frac prefix = write(.format( human_file_size(value), self._human_total)) write(.format(.format(frac * 100.0))) write(prefix) if t is not None: write(human_time(t)) self._file.flush()
Update the progress bar to the given value (out of the total given to the constructor).
380,604
def contains_non_repeat_actions(self): for action in self.actions: if not isinstance(action, (int, dynamic.RepeatCommand)): return True return False
Because repeating repeat actions can get ugly real fast
380,605
def udf(f=None, returnType=StringType()): if f is None or isinstance(f, (str, DataType)): return_type = f or returnType return functools.partial(_create_udf, returnType=return_type, evalType=PythonEvalType.SQL_BATCHED_UDF) else: return _create_udf(f=f, returnType=returnType, evalType=PythonEvalType.SQL_BATCHED_UDF)
Creates a user defined function (UDF). .. note:: The user-defined functions are considered deterministic by default. Due to optimization, duplicate invocations may be eliminated or the function may even be invoked more times than it is present in the query. If your function is not deterministic, call `asNondeterministic` on the user defined function. E.g.: >>> from pyspark.sql.types import IntegerType >>> import random >>> random_udf = udf(lambda: int(random.random() * 100), IntegerType()).asNondeterministic() .. note:: The user-defined functions do not support conditional expressions or short circuiting in boolean expressions and it ends up with being executed all internally. If the functions can fail on special rows, the workaround is to incorporate the condition into the functions. .. note:: The user-defined functions do not take keyword arguments on the calling side. :param f: python function if used as a standalone function :param returnType: the return type of the user-defined function. The value can be either a :class:`pyspark.sql.types.DataType` object or a DDL-formatted type string. >>> from pyspark.sql.types import IntegerType >>> slen = udf(lambda s: len(s), IntegerType()) >>> @udf ... def to_upper(s): ... if s is not None: ... return s.upper() ... >>> @udf(returnType=IntegerType()) ... def add_one(x): ... if x is not None: ... return x + 1 ... >>> df = spark.createDataFrame([(1, "John Doe", 21)], ("id", "name", "age")) >>> df.select(slen("name").alias("slen(name)"), to_upper("name"), add_one("age")).show() +----------+--------------+------------+ |slen(name)|to_upper(name)|add_one(age)| +----------+--------------+------------+ | 8| JOHN DOE| 22| +----------+--------------+------------+
380,606
def _cmp(self, other): if self is other: return 0 try: assert isinstance(other, CIMParameter) except AssertionError: raise TypeError( _format("other must be CIMParameter, but is: {0}", type(other))) return (cmpname(self.name, other.name) or cmpitem(self.type, other.type) or cmpname(self.reference_class, other.reference_class) or cmpitem(self.is_array, other.is_array) or cmpitem(self.array_size, other.array_size) or cmpdict(self.qualifiers, other.qualifiers) or cmpitem(self.value, other.value) or cmpitem(self.embedded_object, other.embedded_object))
Comparator function for two :class:`~pywbem.CIMParameter` objects. The comparison is based on their public attributes, in descending precedence: * `name` * `type` * `reference_class` * `is_array` * `array_size` * `qualifiers` * `value` * `embedded_object` The comparison takes into account any case insensitivities described for these attributes. Raises `TypeError', if the `other` object is not a :class:`~pywbem.CIMParameter` object.
380,607
def zip(self, *items): return self.__class__(list(zip(self.items, *items)))
Zip the collection together with one or more arrays. :param items: The items to zip :type items: list :rtype: Collection
380,608
def funnel_rebuild(psg_trm_spec): param_score_gen, top_result_model, specification = psg_trm_spec params, score, gen = param_score_gen model = specification(*params) rmsd = top_result_model.rmsd(model) return rmsd, score, gen
Rebuilds a model and compares it to a reference model. Parameters ---------- psg_trm: (([float], float, int), AMPAL, specification) A tuple containing the parameters, score and generation for a model as well as a model of the best scoring parameters. Returns ------- energy_rmsd_gen: (float, float, int) A triple containing the BUFF score, RMSD to the top model and generation of a model generated during the minimisation.
380,609
def most_recent_common_ancestor(self, *ts): if len(ts) > 200: res = self._large_mrca(ts) else: res = self._small_mrca(ts) if res: (res,), = res else: raise NoAncestor() return res
Find the MRCA of some tax_ids. Returns the MRCA of the specified tax_ids, or raises ``NoAncestor`` if no ancestor of the specified tax_ids could be found.
380,610
def build_sdk_span(self, span): custom_data = CustomData(tags=span.tags, logs=self.collect_logs(span)) sdk_data = SDKData(name=span.operation_name, custom=custom_data, Type=self.get_span_kind_as_string(span)) if "arguments" in span.tags: sdk_data.arguments = span.tags["arguments"] if "return" in span.tags: sdk_data.Return = span.tags["return"] data = Data(service=instana.singletons.agent.sensor.options.service_name, sdk=sdk_data) entity_from = {: instana.singletons.agent.from_.pid, : instana.singletons.agent.from_.agentUuid} json_span = JsonSpan( t=span.context.trace_id, p=span.parent_id, s=span.context.span_id, ts=int(round(span.start_time * 1000)), d=int(round(span.duration * 1000)), k=self.get_span_kind_as_int(span), n="sdk", f=entity_from, data=data) error = span.tags.pop("error", False) ec = span.tags.pop("ec", None) if error and ec: json_span.error = error json_span.ec = ec return json_span
Takes a BasicSpan and converts into an SDK type JsonSpan
380,611
def _load_github_repo(): if in os.environ: raise RuntimeError( ) try: with open(os.path.join(config_dir, ), ) as f: return f.read() except (OSError, IOError): raise RuntimeError( )
Loads the GitHub repository from the users config.
380,612
def get(self): open_tracking = {} if self.enable is not None: open_tracking["enable"] = self.enable if self.substitution_tag is not None: open_tracking["substitution_tag"] = self.substitution_tag.get() return open_tracking
Get a JSON-ready representation of this OpenTracking. :returns: This OpenTracking, ready for use in a request body. :rtype: dict
380,613
def handle(client, request): formaters = request.get(, None) if not formaters: formaters = [{: }] logging.debug( + json.dumps(formaters, indent=4)) data = request.get(, None) if not isinstance(data, str): return send(client, , None) max_line_length = None for formater in formaters: max_line_length = formater.get(, {}).get() if max_line_length: break for formater in formaters: name = formater.get(, None) config = formater.get(, {}) if name not in FORMATERS: return send(client, .format(name), None) formater = FORMATERS[name] if formater is None: return send(client, .format(name), None) if name == and max_line_length: config.setdefault(, max_line_length) data = formater(data, **config) return send(client, None, data)
Handle format request request struct: { 'data': 'data_need_format', 'formaters': [ { 'name': 'formater_name', 'config': {} # None or dict }, ... # formaters ] } if no formaters, use autopep8 formater and it's default config
380,614
def has_perm(self, user_obj, perm, obj=None): if not is_authenticated(user_obj): return False change_permission = self.get_full_permission_string() delete_permission = self.get_full_permission_string() if obj is None: if self.any_permission: return True if self.change_permission and perm == change_permission: return True if self.delete_permission and perm == delete_permission: return True return False elif user_obj.is_active: if obj == user_obj: if self.any_permission: return True if (self.change_permission and perm == change_permission): return True if (self.delete_permission and perm == delete_permission): return True return False
Check if user have permission of himself If the user_obj is not authenticated, it return ``False``. If no object is specified, it return ``True`` when the corresponding permission was specified to ``True`` (changed from v0.7.0). This behavior is based on the django system. https://code.djangoproject.com/wiki/RowLevelPermissions If an object is specified, it will return ``True`` if the object is the user. So users can change or delete themselves (you can change this behavior to set ``any_permission``, ``change_permissino`` or ``delete_permission`` attributes of this instance). Parameters ---------- user_obj : django user model instance A django user model instance which be checked perm : string `app_label.codename` formatted permission string obj : None or django model instance None or django model instance for object permission Returns ------- boolean Whether the specified user have specified permission (of specified object).
380,615
def get(zpool, prop=None, show_source=False, parsable=True): * ret = OrderedDict() value_properties = [, , , ] res = __salt__[]( __utils__[]( command=, flags=[], property_name=prop if prop else , target=zpool, ), python_shell=False, ) if res[] != 0: return __utils__[](res) for line in res[].splitlines(): prop_data = OrderedDict(list(zip( value_properties, [x for x in line.strip().split() if x not in []], ))) del prop_data[] if parsable: prop_data[] = __utils__[](prop_data[], prop_data[]) else: prop_data[] = __utils__[](prop_data[], prop_data[]) if show_source: ret[prop_data[]] = prop_data del ret[prop_data[]][] else: ret[prop_data[]] = prop_data[] return ret
.. versionadded:: 2016.3.0 Retrieves the given list of properties zpool : string Name of storage pool prop : string Optional name of property to retrieve show_source : boolean Show source of property parsable : boolean Display numbers in parsable (exact) values .. versionadded:: 2018.3.0 CLI Example: .. code-block:: bash salt '*' zpool.get myzpool
380,616
def cluster_application_attempts(self, application_id): path = .format( appid=application_id) return self.request(path)
With the application attempts API, you can obtain a collection of resources that represent an application attempt. :param str application_id: The application id :returns: API response object with JSON data :rtype: :py:class:`yarn_api_client.base.Response`
380,617
def page(self, course, task, submission): submission = self.submission_manager.get_input_from_submission(submission) submission = self.submission_manager.get_feedback_from_submission( submission, show_everything=True, translation=self.app._translations.get(self.user_manager.session_language(), gettext.NullTranslations()) ) to_display = { problem.get_id(): { "id": problem.get_id(), "name": problem.get_name(self.user_manager.session_language()), "defined": True } for problem in task.get_problems() } to_display.update({ pid: { "id": pid, "name": pid, "defined": False } for pid in (set(submission["input"]) - set(to_display)) }) return self.template_helper.get_renderer().course_admin.submission(course, task, submission, to_display.values())
Get all data and display the page
380,618
def graph_loads(graph_json): layers = [] for layer in graph_json[]: layer_info = Layer(layer[], layer[], layer[], layer[]) layer_info.is_delete = layer[] layers.append(layer_info) graph = Graph(graph_json[], [], [], []) graph.layers = layers return graph
Load graph
380,619
def _decompose_vectorized_indexer(indexer, shape, indexing_support): assert isinstance(indexer, VectorizedIndexer) if indexing_support is IndexingSupport.VECTORIZED: return indexer, BasicIndexer(()) backend_indexer = [] np_indexer = [] indexer = [np.where(k < 0, k + s, k) if isinstance(k, np.ndarray) else k for k, s in zip(indexer.tuple, shape)] for k, s in zip(indexer, shape): if isinstance(k, slice): bk_slice, np_slice = _decompose_slice(k, s) backend_indexer.append(bk_slice) np_indexer.append(np_slice) else: oind, vind = np.unique(k, return_inverse=True) backend_indexer.append(oind) np_indexer.append(vind.reshape(*k.shape)) backend_indexer = OuterIndexer(tuple(backend_indexer)) np_indexer = VectorizedIndexer(tuple(np_indexer)) if indexing_support is IndexingSupport.OUTER: return backend_indexer, np_indexer backend_indexer, np_indexer1 = _decompose_outer_indexer( backend_indexer, shape, indexing_support) np_indexer = _combine_indexers(np_indexer1, shape, np_indexer) return backend_indexer, np_indexer
Decompose vectorized indexer to the successive two indexers, where the first indexer will be used to index backend arrays, while the second one is used to index loaded on-memory np.ndarray. Parameters ---------- indexer: VectorizedIndexer indexing_support: one of IndexerSupport entries Returns ------- backend_indexer: OuterIndexer or BasicIndexer np_indexers: an ExplicitIndexer (VectorizedIndexer / BasicIndexer) Notes ----- This function is used to realize the vectorized indexing for the backend arrays that only support basic or outer indexing. As an example, let us consider to index a few elements from a backend array with a vectorized indexer ([0, 3, 1], [2, 3, 2]). Even if the backend array only supports outer indexing, it is more efficient to load a subslice of the array than loading the entire array, >>> backend_indexer = OuterIndexer([0, 1, 3], [2, 3]) >>> array = array[backend_indexer] # load subslice of the array >>> np_indexer = VectorizedIndexer([0, 2, 1], [0, 1, 0]) >>> array[np_indexer] # vectorized indexing for on-memory np.ndarray.
380,620
def log(self, text, level=logging.INFO): self._fileStore.logToMaster(text, level)
convenience wrapper for :func:`fileStore.logToMaster`
380,621
def desired_destination(self, network, edge): n = len(network.out_edges[edge[1]]) if n <= 1: return network.out_edges[edge[1]][0] u = uniform() pr = network._route_probs[edge[1]] k = _choice(pr, u, n) return network.out_edges[edge[1]][k]
Returns the agents next destination given their current location on the network. An ``Agent`` chooses one of the out edges at random. The probability that the ``Agent`` will travel along a specific edge is specified in the :class:`QueueNetwork's<.QueueNetwork>` transition matrix. Parameters ---------- network : :class:`.QueueNetwork` The :class:`.QueueNetwork` where the Agent resides. edge : tuple A 4-tuple indicating which edge this agent is located at. The first two slots indicate the current edge's source and target vertices, while the third slot indicates this edges ``edge_index``. The last slot indicates the edge type of that edge Returns ------- out : int Returns an the edge index corresponding to the agents next edge to visit in the network. See Also -------- :meth:`.transitions` : :class:`QueueNetwork's<.QueueNetwork>` method that returns the transition probabilities for each edge in the graph.
380,622
def com_google_fonts_check_family_equal_glyph_names(ttFonts): fonts = list(ttFonts) all_glyphnames = set() for ttFont in fonts: all_glyphnames |= set(ttFont["glyf"].glyphs.keys()) missing = {} available = {} for glyphname in all_glyphnames: missing[glyphname] = [] available[glyphname] = [] failed = False for ttFont in fonts: fontname = ttFont.reader.file.name these_ones = set(ttFont["glyf"].glyphs.keys()) for glyphname in all_glyphnames: if glyphname not in these_ones: failed = True missing[glyphname].append(fontname) else: available[glyphname].append(fontname) for gn in missing.keys(): if missing[gn]: available_styles = [style(k) for k in available[gn]] missing_styles = [style(k) for k in missing[gn]] if None not in available_styles + missing_styles: avail = .join(available_styles) miss = .join(missing_styles) else: avail = .join(available[gn]) miss = .join(missing[gn]) yield FAIL, (f"Glyphname is defined on {avail}" f" but is missing on {miss}.") if not failed: yield PASS, "All font files have identical glyph names."
Fonts have equal glyph names?
380,623
def write_data(self, variable_id, value): i = 0 j = 0 while i < 10: try: self.inst.query() i = 12 j = 1 except: self.connect() time.sleep(1) i += 1 logger.error("AFG1022 connect error i : %s" %i) if j == 0: logger.error("AFG1022-Instrument not connected") return None if variable_id == : try: N = int(RecordedData.objects.last_element(variable_id=Variable.objects.get(name=).id).value()) except: N = 0 logger.error() if N == 0: cwt = DeviceWriteTask(variable_id=Variable.objects.get(name=).id, value=1, start=time.time()) cwt.save() cwt = DeviceWriteTask(variable_id=Variable.objects.get(name=).id, value=1, start=time.time()) cwt.save() return None elif N == 1: self.inst.read_termination = Vepp = RecordedData.objects.last_element(variable_id=Variable.objects.get(name=).id).value() Fmin = RecordedData.objects.last_element(variable_id=Variable.objects.get(name=).id).value() cwt = DeviceWriteTask(variable_id=Variable.objects.get(name=).id, value=Vepp, start=time.time()) cwt.save() cwt = DeviceWriteTask(variable_id=Variable.objects.get(name=).id, value=1, start=time.time()) cwt.save() CMD = str(+str(Vepp)+) self.inst.write(CMD) cwt = DeviceWriteTask(variable_id=Variable.objects.get(name=).id, value=Fmin, start=time.time()) cwt.save() self.write_data("set_freq", Fmin) return True else: cwt = DeviceWriteTask(variable_id=Variable.objects.get(name=).id, value=1, start=time.time()) cwt.save() logger.info("Init GBF - N : %s" %N) return False return None elif variable_id == : self.inst.write(+str(value)) cwt = DeviceWriteTask(variable_id=Variable.objects.get(name=).id, value=1, start=time.time()) cwt.save() return self.parse_value(value) elif variable_id == : self.inst.write(+str(value)+) F = RecordedData.objects.last_element(variable_id=Variable.objects.get(name=).id).value() cwt = DeviceWriteTask(variable_id=Variable.objects.get(name=).id, value=F, start=time.time()) cwt.save() cwt = DeviceWriteTask(variable_id=Variable.objects.get(name=).id, value=F, start=time.time()) cwt.save() return self.parse_value(value) elif variable_id == : return self.parse_value(value) elif variable_id == : import os os.system() return 1 else: return self.parse_value(self.inst.query(str(variable_id)++str(value))) return None
write values to the device
380,624
def purge_db(self): with self.engine.begin() as db: purge_user(db, self.user_id)
Clear all matching our user_id.
380,625
def get_projects(session, query): response = make_get_request(session, , params_data=query) json_data = response.json() if response.status_code == 200: return json_data[] else: raise ProjectsNotFoundException( message=json_data[], error_code=json_data[], request_id=json_data[])
Get one or more projects
380,626
def get_area_def(self, dsid): geocoding = self.root.find() epsg = geocoding.find().text rows = int(geocoding.find( + str(dsid.resolution) + ).text) cols = int(geocoding.find( + str(dsid.resolution) + ).text) geoposition = geocoding.find( + str(dsid.resolution) + ) ulx = float(geoposition.find().text) uly = float(geoposition.find().text) xdim = float(geoposition.find().text) ydim = float(geoposition.find().text) area_extent = (ulx, uly + rows * ydim, ulx + cols * xdim, uly) area = geometry.AreaDefinition( self.tile, "On-the-fly area", self.tile, {: epsg}, cols, rows, area_extent) return area
Get the area definition of the dataset.
380,627
def extant_item(arg, arg_type): if arg_type == "file": if not os.path.isfile(arg): raise argparse.ArgumentError( None, "The file {arg} does not exist.".format(arg=arg)) else: return arg elif arg_type == "directory": if not os.path.isdir(arg): raise argparse.ArgumentError( None, "The directory {arg} does not exist.".format(arg=arg)) else: return arg
Determine if parser argument is an existing file or directory. This technique comes from http://stackoverflow.com/a/11541450/95592 and from http://stackoverflow.com/a/11541495/95592 Args: arg: parser argument containing filename to be checked arg_type: string of either "file" or "directory" Returns: If the file exists, return the filename or directory. Raises: If the file does not exist, raise a parser error.
380,628
def validate_slice_increment(dicoms): first_image_position = numpy.array(dicoms[0].ImagePositionPatient) previous_image_position = numpy.array(dicoms[1].ImagePositionPatient) increment = first_image_position - previous_image_position for dicom_ in dicoms[2:]: current_image_position = numpy.array(dicom_.ImagePositionPatient) current_increment = previous_image_position - current_image_position if not numpy.allclose(increment, current_increment, rtol=0.05, atol=0.1): logger.warning() logger.warning() logger.warning( % (previous_image_position, increment)) logger.warning( % (current_image_position, current_increment)) if in dicom_: logger.warning( % dicom_.InstanceNumber) logger.warning() raise ConversionValidationError() previous_image_position = current_image_position
Validate that the distance between all slices is equal (or very close to) :param dicoms: list of dicoms
380,629
def hot(self, limit=None): return self._reddit.hot(self.display_name, limit=limit)
GETs hot links from this subreddit. Calls :meth:`narwal.Reddit.hot`. :param limit: max number of links to return
380,630
def copy(self): return self.__class__( amount=self["amount"], asset=self["asset"].copy(), blockchain_instance=self.blockchain, )
Copy the instance and make sure not to use a reference
380,631
def score_group(group_name=None): warnings.warn() def _inner(func): def _dec(s, ds): ret_val = func(s, ds) if not isinstance(ret_val, list): ret_val = [ret_val] def dogroup(r): cur_grouping = r.name if isinstance(cur_grouping, tuple): cur_grouping = list(cur_grouping) elif not isinstance(cur_grouping, list): cur_grouping = [cur_grouping] cur_grouping.insert(0, group_name) return Result(r.weight, r.value, tuple(cur_grouping), r.msgs) ret_val = [fix_return_value(x, func.__name__, func, s) for x in ret_val] ret_val = list(map(dogroup, ret_val)) return ret_val return wraps(func)(_dec) return _inner
Warning this is deprecated as of Compliance Checker v3.2! Please do not using scoring groups and update your plugins if necessary
380,632
def inst_matches(self, start, end, instr, target=None, include_beyond_target=False): try: None in instr except: instr = [instr] first = self.offset2inst_index[start] result = [] for inst in self.insts[first:]: if inst.opcode in instr: if target is None: result.append(inst.offset) else: t = self.get_target(inst.offset) if include_beyond_target and t >= target: result.append(inst.offset) elif t == target: result.append(inst.offset) pass pass pass if inst.offset >= end: break pass return result
Find all `instr` in the block from start to end. `instr` is a Python opcode or a list of opcodes If `instr` is an opcode with a target (like a jump), a target destination can be specified which must match precisely. Return a list with indexes to them or [] if none found.
380,633
def fit_general(xy, uv): gxy = uv.astype(ndfloat128) guv = xy.astype(ndfloat128) Sx = gxy[:,0].sum() Sy = gxy[:,1].sum() Su = guv[:,0].sum() Sv = guv[:,1].sum() Sux = np.dot(guv[:,0], gxy[:,0]) Svx = np.dot(guv[:,1], gxy[:,0]) Suy = np.dot(guv[:,0], gxy[:,1]) Svy = np.dot(guv[:,1], gxy[:,1]) Sxx = np.dot(gxy[:,0], gxy[:,0]) Syy = np.dot(gxy[:,1], gxy[:,1]) Sxy = np.dot(gxy[:,0], gxy[:,1]) n = len(xy[:,0]) M = np.array([[Sx, Sy, n], [Sxx, Sxy, Sx], [Sxy, Syy, Sy]]) U = np.array([Su, Sux, Suy]) V = np.array([Sv, Svx, Svy]) try: invM = np.linalg.inv(M.astype(np.float64)) except np.linalg.LinAlgError: raise SingularMatrixError( "Singular matrix: suspected colinear points." ) P = np.dot(invM, U).astype(np.float64) Q = np.dot(invM, V).astype(np.float64) if not (np.all(np.isfinite(P)) and np.all(np.isfinite(Q))): raise ArithmeticError() result = build_fit(P, Q, ) resids = xy - np.dot(uv, result[]) - result[] result[] = resids.std(axis=0) result[] = resids result[] = float(np.sqrt(np.mean(2 * resids**2))) result[] = float(np.mean(np.linalg.norm(resids, axis=1))) return result
Performs a simple fit for the shift only between matched lists of positions 'xy' and 'uv'. Output: (same as for fit_arrays) ================================= DEVELOPMENT NOTE: Checks need to be put in place to verify that enough objects are available for a fit. =================================
380,634
def even_even(self): return self.select(lambda Z, N: not(Z % 2) and not(N % 2), name=self.name)
Selects even-even nuclei from the table
380,635
def copy_path(self): path = cairo.cairo_copy_path(self._pointer) result = list(_iter_path(path)) cairo.cairo_path_destroy(path) return result
Return a copy of the current path. :returns: A list of ``(path_operation, coordinates)`` tuples of a :ref:`PATH_OPERATION` string and a tuple of floats coordinates whose content depends on the operation type: * :obj:`MOVE_TO <PATH_MOVE_TO>`: 1 point ``(x, y)`` * :obj:`LINE_TO <PATH_LINE_TO>`: 1 point ``(x, y)`` * :obj:`CURVE_TO <PATH_CURVE_TO>`: 3 points ``(x1, y1, x2, y2, x3, y3)`` * :obj:`CLOSE_PATH <PATH_CLOSE_PATH>` 0 points ``()`` (empty tuple)
380,636
def plot_latent(self, labels=None, which_indices=None, resolution=60, legend=True, plot_limits=None, updates=False, kern=None, marker=, num_samples=1000, projection=, predict_kwargs={}, scatter_kwargs=None, **imshow_kwargs): from ..plotting.gpy_plot.latent_plots import plot_latent if "Yindex" not in predict_kwargs: predict_kwargs[] = 0 Yindex = predict_kwargs[] self.kern = self.bgplvms[Yindex].kern self.likelihood = self.bgplvms[Yindex].likelihood return plot_latent(self, labels, which_indices, resolution, legend, plot_limits, updates, kern, marker, num_samples, projection, scatter_kwargs)
see plotting.matplot_dep.dim_reduction_plots.plot_latent if predict_kwargs is None, will plot latent spaces for 0th dataset (and kernel), otherwise give predict_kwargs=dict(Yindex='index') for plotting only the latent space of dataset with 'index'.
380,637
def order_by(self, *field_names): if not self._search_ordered: self._search_ordered = len(self._search_terms) > 0 return super(SearchableQuerySet, self).order_by(*field_names)
Mark the filter as being ordered if search has occurred.
380,638
def _process_response(response, save_to): status_code = response.status_code if status_code == 200 and save_to: if save_to.startswith("~"): save_to = os.path.expanduser(save_to) if os.path.isdir(save_to) or save_to.endswith(os.path.sep): dirname = os.path.abspath(save_to) filename = H2OConnection._find_file_name(response) else: dirname, filename = os.path.split(os.path.abspath(save_to)) fullname = os.path.join(dirname, filename) try: if not os.path.exists(dirname): os.makedirs(dirname) with open(fullname, "wb") as f: for chunk in response.iter_content(chunk_size=65536): if chunk: f.write(chunk) except OSError as e: raise H2OValueError("Cannot write to file %s: %s" % (fullname, e)) return fullname content_type = response.headers.get("Content-Type", "") if ";" in content_type: content_type = content_type[:content_type.index(";")] if content_type == "application/json": try: data = response.json(object_pairs_hook=H2OResponse) except (JSONDecodeError, requests.exceptions.ContentDecodingError) as e: raise H2OServerError("Malformed JSON from server (%s):\n%s" % (str(e), response.text)) else: data = response.text if status_code in {200, 201, 202, 204}: return data if status_code in {400, 404, 412} and isinstance(data, (H2OErrorV3, H2OModelBuilderErrorV3)): raise H2OResponseError(data) raise H2OServerError("HTTP %d %s:\n%r" % (status_code, response.reason, data))
Given a response object, prepare it to be handed over to the external caller. Preparation steps include: * detect if the response has error status, and convert it to an appropriate exception; * detect Content-Type, and based on that either parse the response as JSON or return as plain text.
380,639
def save(self, *objs, condition=None, atomic=False): objs = set(objs) validate_not_abstract(*objs) for obj in objs: self.session.save_item({ "TableName": self._compute_table_name(obj.__class__), "Key": dump_key(self, obj), **render(self, obj=obj, atomic=atomic, condition=condition, update=True) }) object_saved.send(self, engine=self, obj=obj) logger.info("successfully saved {} objects".format(len(objs)))
Save one or more objects. :param objs: objects to save. :param condition: only perform each save if this condition holds. :param bool atomic: only perform each save if the local and DynamoDB versions of the object match. :raises bloop.exceptions.ConstraintViolation: if the condition (or atomic) is not met.
380,640
def _read_mode_tsopt(self, size, kind): temp = struct.unpack(, self._read_fileng(size)) data = dict( kind=kind, length=size, val=temp[0], ecr=temp[1], ) return data
Read Timestamps option. Positional arguments: * size - int, length of option * kind - int, 8 (Timestamps) Returns: * dict -- extracted Timestamps (TS) option Structure of TCP TSopt [RFC 7323]: +-------+-------+---------------------+---------------------+ |Kind=8 | 10 | TS Value (TSval) |TS Echo Reply (TSecr)| +-------+-------+---------------------+---------------------+ 1 1 4 4 Octets Bits Name Description 0 0 tcp.ts.kind Kind (8) 1 8 tcp.ts.length Length (10) 2 16 tcp.ts.val Timestamp Value 6 48 tcp.ts.ecr Timestamps Echo Reply
380,641
def entry_detail(request, slug, template=): entry = get_object_or_404(Entry.public, slug=slug) context = { : entry, } return render_to_response( template, context, context_instance=RequestContext(request), )
Returns a response of an individual entry, for the given slug.
380,642
def multi_send(self, template, emails, _vars=None, evars=None, schedule_time=None, options=None): _vars = _vars or {} evars = evars or {} options = options or {} data = {: template, : .join(emails) if isinstance(emails, list) else emails, : _vars.copy(), : evars.copy(), : options.copy()} if schedule_time is not None: data[] = schedule_time return self.api_post(, data)
Remotely send an email template to multiple email addresses. http://docs.sailthru.com/api/send @param template: template string @param emails: List with email values or comma separated email string @param _vars: a key/value hash of the replacement vars to use in the send. Each var may be referenced as {varname} within the template itself @param options: optional dictionary to include replyto and/or test keys @param schedule_time: do not send the email immediately, but at some point in the future. Any date recognized by PHP's strtotime function is valid, but be sure to specify timezone or use a UTC time to avoid confusion
380,643
def draft_context(cls): previous_state = g.get() try: g.draft = True yield finally: g.draft = previous_state
Set the context to draft
380,644
def checkedItems( self ): if not self.isCheckable(): return [] return [nativestring(self.itemText(i)) for i in self.checkedIndexes()]
Returns the checked items for this combobox. :return [<str>, ..]
380,645
def load_var_files(opt, p_obj=None): obj = {} if p_obj: obj = p_obj for var_file in opt.extra_vars_file: LOG.debug("loading vars from %s", var_file) obj = merge_dicts(obj.copy(), load_var_file(var_file, obj)) return obj
Load variable files, merge, return contents
380,646
def interpolate(values, color_map=None, dtype=np.uint8): if color_map is None: cmap = linear_color_map else: from matplotlib.pyplot import get_cmap cmap = get_cmap(color_map) values = np.asanyarray(values, dtype=np.float64).ravel() colors = cmap((values - values.min()) / values.ptp()) rgba = to_rgba(colors, dtype=dtype) return rgba
Given a 1D list of values, return interpolated colors for the range. Parameters --------------- values : (n, ) float Values to be interpolated over color_map : None, or str Key to a colormap contained in: matplotlib.pyplot.colormaps() e.g: 'viridis' Returns ------------- interpolated : (n, 4) dtype Interpolated RGBA colors
380,647
def received_message(self, msg): logger.debug("Received message: %s", msg) if msg.is_binary: raise ValueError("Binary messages not supported") resps = json.loads(msg.data) cmd_group = _get_cmds_id(*resps) if cmd_group: (cmds, promise) = self._cmd_groups[cmd_group] promise.fulfill((cmds, resps)) else: try: self.received_unsolicited(resps) except: logger.exception("Error in unsolicited msg handler") raise
Handle receiving a message by checking whether it is in response to a command or unsolicited, and dispatching it to the appropriate object method.
380,648
def ge(self, other): self._raise_if_null(other) return self.begin >= getattr(other, , other)
Greater than or overlaps. Returns True if no part of this Interval extends lower than other. :raises ValueError: if either self or other is a null Interval :param other: Interval or point :return: True or False :rtype: bool
380,649
def shard_data(self, region): url, query = LolStatusApiV3Urls.shard_data(region=region) return self._raw_request(self.shard_data.__name__, region, url, query)
Get League of Legends status for the given shard. Requests to this API are not counted against the application Rate Limits. :param string region: the region to execute this request on :returns: ShardStatus
380,650
def remove_tiers(self, tiers): for a in tiers: self.remove_tier(a, clean=False) self.clean_time_slots()
Remove multiple tiers, note that this is a lot faster then removing them individually because of the delayed cleaning of timeslots. :param list tiers: Names of the tier to remove. :raises KeyError: If a tier is non existent.
380,651
def close(self): keys = set(self._conns.keys()) for key in keys: self.stop_socket(key) self._conns = {}
Close all connections
380,652
def _do_packet_out(self, datapath, data, in_port, actions): ofproto = datapath.ofproto parser = datapath.ofproto_parser out = parser.OFPPacketOut( datapath=datapath, buffer_id=ofproto.OFP_NO_BUFFER, data=data, in_port=in_port, actions=actions) datapath.send_msg(out)
send a packet.
380,653
def t384(args): p = OptionParser(t384.__doc__) opts, args = p.parse_args(args) plate, splate = get_plate() fw = sys.stdout for i in plate: for j, p in enumerate(i): if j != 0: fw.write() fw.write(p) fw.write()
%prog t384 Print out a table converting between 96 well to 384 well
380,654
def read_adjacency_matrix(file_path, separator): file_row_generator = get_file_row_generator(file_path, separator) row = list() col = list() append_row = row.append append_col = col.append for file_row in file_row_generator: source_node = np.int64(file_row[0]) target_node = np.int64(file_row[1]) append_row(source_node) append_col(target_node) append_row(target_node) append_col(source_node) row = np.array(row, dtype=np.int64) col = np.array(col, dtype=np.int64) data = np.ones_like(row, dtype=np.float64) number_of_nodes = np.max(row) row -= 1 col -= 1 adjacency_matrix = sparse.coo_matrix((data, (row, col)), shape=(number_of_nodes, number_of_nodes)) return adjacency_matrix
Reads an edge list in csv format and returns the adjacency matrix in SciPy Sparse COOrdinate format. Inputs: - file_path: The path where the adjacency matrix is stored. - separator: The delimiter among values (e.g. ",", "\t", " ") Outputs: - adjacency_matrix: The adjacency matrix in SciPy Sparse COOrdinate format.
380,655
def reload_list(self): self.leetcode.load() if self.leetcode.quizzes and len(self.leetcode.quizzes) > 0: self.home_view = self.make_listview(self.leetcode.quizzes) self.view_stack = [] self.goto_view(self.home_view)
Press R in home view to retrieve quiz list
380,656
def _salt_send_event(opaque, conn, data): prefixobjectevent tag_prefix = opaque[] object_type = opaque[] event_type = opaque[] uri = urlparse(conn.getURI()) uri_tag = [uri.scheme] if uri.netloc: uri_tag.append(uri.netloc) path = uri.path.strip() if path: uri_tag.append(path) uri_str = "/".join(uri_tag) all_data = { : conn.getURI() } all_data.update(data) tag = .join((tag_prefix, uri_str, object_type, event_type)) if __opts__.get() == : salt.utils.event.get_master_event( __opts__, __opts__[]).fire_event(all_data, tag) else: __salt__[](tag, all_data)
Convenience function adding common data to the event and sending it on the salt event bus. :param opaque: the opaque data that is passed to the callback. This is a dict with 'prefix', 'object' and 'event' keys. :param conn: libvirt connection :param data: additional event data dict to send
380,657
def set_context_suffix(self, name, suffix): data = self._context(name) data["suffix"] = suffix self._flush_tools()
Set a context's suffix. This will be applied to all wrappers for the tools in this context. For example, a tool called 'foo' would appear as 'foo<suffix>' in the suite's bin path. Args: name (str): Name of the context to suffix. suffix (str): Suffix to apply to tools.
380,658
def _get_course_content(course_id, course_url, sailthru_client, site_code, config): cache_key = "{}:{}".format(site_code, course_url) response = cache.get(cache_key) if not response: try: sailthru_response = sailthru_client.api_get("content", {"id": course_url}) if not sailthru_response.is_ok(): response = {} else: response = sailthru_response.json cache.set(cache_key, response, config.get()) except SailthruClientError: response = {} if not response: logger.error( ) response = _get_course_content_from_ecommerce(course_id, site_code=site_code) if response: cache.set(cache_key, response, config.get()) return response
Get course information using the Sailthru content api or from cache. If there is an error, just return with an empty response. Arguments: course_id (str): course key of the course course_url (str): LMS url for course info page. sailthru_client (object): SailthruClient site_code (str): site code config (dict): config options Returns: course information from Sailthru
380,659
def convert_epoch_to_timestamp(cls, timestamp, tsformat): return time.strftime(tsformat, time.gmtime(timestamp))
Converts the given float representing UNIX-epochs into an actual timestamp. :param float timestamp: Timestamp as UNIX-epochs. :param string tsformat: Format of the given timestamp. This is used to convert the timestamp from UNIX epochs. For valid examples take a look into the :py:func:`time.strptime` documentation. :return: Returns the timestamp as defined in format. :rtype: string
380,660
def DbGetHostServersInfo(self, argin): self._log.debug("In DbGetHostServersInfo()") argin = replace_wildcard(argin) return self.db.get_host_servers_info(argin)
Get info about all servers running on specified host, name, mode and level :param argin: Host name :type: tango.DevString :return: Server info for all servers running on specified host :rtype: tango.DevVarStringArray
380,661
def rename_file(db, user_id, old_api_path, new_api_path): if file_exists(db, user_id, new_api_path): raise FileExists(new_api_path) old_dir, old_name = split_api_filepath(old_api_path) new_dir, new_name = split_api_filepath(new_api_path) if old_dir != new_dir: raise ValueError( dedent( .format( old_api_path=old_api_path, new_api_path=new_api_path ) ) ) db.execute( files.update().where( _file_where(user_id, old_api_path), ).values( name=new_name, created_at=func.now(), ) )
Rename a file.
380,662
def generate_hash(data, algorithm=, hash_fns=(), chd_keys_per_bin=1, chd_load_factor=None, fch_bits_per_key=None, num_graph_vertices=None, brz_memory_size=8, brz_temp_dir=None, brz_max_keys_per_bucket=128, bdz_precomputed_rank=7, chd_avg_keys_per_bucket=4): cfg = _cfg(algorithm, hash_fns, chd_keys_per_bin, chd_load_factor, fch_bits_per_key, num_graph_vertices, brz_memory_size, brz_temp_dir, brz_max_keys_per_bucket, bdz_precomputed_rank, chd_avg_keys_per_bucket) with create_adapter(_cmph, ffi, data) as source: with _create_config(source, cfg) as config: _mph = _cmph.cmph_new(config) if not _mph: raise RuntimeError("MPH generation failed") return MPH(_mph)
Generates a new Minimal Perfect Hash (MPH) Parameters ---------- data : list, array-like, file-like The input that is used to generate the minimal perfect hash. Be aware, in most cases the input is expected to be distinct, and many of the algorithms benefit from the input being sorted. algorithm : string, optional {chd_ph (default), chd, bmz, bmz8, chm, brz, fch, bdz, bdz_ph} The algorithm to use in generating MPH's, choice of: chd / chd_ph - Compress Hash and Displace (default) (http://cmph.sourceforge.net/chd.html) - It is the fastest algorithm to build PHFs and MPHFs in linear time. - It generates the most compact PHFs and MPHFs we know of. - It can generate PHFs with a load factor up to 99 %. - It can be used to generate t-perfect hash functions. A t-perfect hash function allows at most t collisions in a given bin. It is a well-known fact that modern memories are organized as blocks which constitute transfer unit. Example of such blocks are cache lines for internal memory or sectors for hard disks. Thus, it can be very useful for devices that carry out I/O operations in blocks. - It is a two level scheme. It uses a first level hash function to split the key set in buckets of average size determined by a parameter b in the range [1,32]. In the second level it uses displacement values to resolve the collisions that have given rise to the buckets. - It can generate MPHFs that can be stored in approximately 2.07 bits per key. - For a load factor equal to the maximum one that is achieved by the BDZ algorithm (81 %), the resulting PHFs are stored in approximately 1.40 bits per key. bdz - BDZ / BPZ algorithm (http://cmph.sourceforge.net/bdz.html) - It is very simple and efficient. It outperforms all others except CHD. - It constructs both PHFs and MPHFs in linear time. - The maximum load factor one can achieve for a PHF is 1/1.23. - It is based on acyclic random 3-graphs. A 3-graph is a generalization of a graph where each edge connects 3 vertices instead of only 2. - The resulting MPHFs are not order preserving. - The resulting MPHFs can be stored in only (2 + x)cn bits, where c should be larger than or equal to 1.23 and x is a constant larger than 0 (actually, x = 1/b and b is a parameter that should be larger than 2). For c = 1.23 and b = 8, the resulting functions are stored in approximately 2.6 bits per key. - For its maximum load factor (81 %), the resulting PHFs are stored in approximately 1.95 bits per key. bmz - Botelho, Menoti and Ziviani algorithm: (http://cmph.sourceforge.net/bdz.html) - Constructs MPHFs in linear time. - It is based on cyclic random graphs. This makes it faster than the CHM algorithm. - The resulting MPHFs are not order preserving. - The resulting MPHFs are more compact than the ones generated by the CHM algorithm and can be stored in 4cn bytes, where c is in the range [0.93,1.15]. brz - BRZ algorithm: (http://cmph.sourceforge.net/brz.html) - A very fast external memory based algorithm for constructing minimal perfect hash functions for sets in the order of billions of keys. - It works in linear time. - The resulting MPHFs are not order preserving. - The resulting MPHFs can be stored using less than 8.0 bits per key. chm - Czech, Havas and Majewski algorithm: (http://cmph.sourceforge.net/chm.html) - Construct minimal MPHFs in linear time. - It is based on acyclic random graphs - The resulting MPHFs are order preserving. - The resulting MPHFs are stored in 4cn bytes, where c is greater than 2. fch - Fox, Chen and Heath algorithm: (http://cmph.sourceforge.net/chm.html) - Construct minimal perfect hash functions that require less than 4 bits per key to be stored. - The resulting MPHFs are very compact and very efficient at evaluation time - The algorithm is only efficient for small sets. - It is used as internal algorithm in the BRZ algorithm to efficiently solve larger problems and even so to generate MPHFs that require approximately 4.1 bits per key to be stored. For that, you just need to set the parameters -a to brz and -c to a value larger than or equal to 2.6. hash_fns : list {jenkins (default), count} optional Internal hash functions to use inside MPH generation functions, can be multiple fns as a list. chd_keys_per_bin : int [1 to 128], optional Set the number of keys per bin for a t-perfect hashing function. A t-perfect hash function allows at most t collisions in a given bin. This parameter applies only to the `chd` and `chd_ph` algorithms. Its value should be an integer in the range [1, 128]. Default is 1 chd_load_factor : float, optional The load factor used in the `chd_ph` algorithm fch_bits_per_key : int, optional The number of bits per key required in the FCH algorithm num_graph_vertices : int, optional The number of vertices in the graph for the algorithms BMZ and CHM brz_memory_size : int (default 8), optional Main memory availability (in MB) used in BRZ algorithm Default is 8Mb brz_temp_dir : string, optional Temporary directory used in BRZ algorithm brz_max_keys_per_bucket : int [64 to 175] (default 128), optional Used to make the maximal number of keys in a bucket lower than 256. In this case its value should be an integer in the range [64,175]. Default is 128. bdz_precomputed_rank : int [3 to 10] (default 7), optional For BDZ it is used to determine the size of some precomputed rank information and its value should be an integer in the range [3,10]. Default is 7. The larger is this value, the more compact are the resulting functions and the slower are them at evaluation time. chd_avg_keys_per_bucket : int [1 to 32] (default 4), optional For CHD and CHD_PH it is used to set the average number of keys per bucket and its value should be an integer in the range [1,32]. Default is 4. The larger is this value, the slower is the construction of the functions. Returns ------- MPH A wrapper object that represents a minimal perfect hash in memory Raises ------ ValueError If arguments presented are incomplete, or incompatable RuntimeError If the MPH generation fails
380,663
def save(self, dolist=0): quoted = not dolist array_size = 1 for d in self.shape: array_size = d*array_size ndim = len(self.shape) fields = (7+2*ndim+len(self.value))*[""] fields[0] = self.name fields[1] = self.type fields[2] = self.mode fields[3] = str(ndim) next = 4 for d in self.shape: fields[next] = str(d); next += 1 fields[next] = ; next += 1 nvstart = 7+2*ndim if self.choice is not None: schoice = list(map(self.toString, self.choice)) schoice.insert(0,) schoice.append() fields[nvstart-3] = repr(.join(schoice)) elif self.min not in [None,INDEF]: fields[nvstart-3] = self.toString(self.min,quoted=quoted) if quoted: fields[nvstart-3] = + fields[nvstart-3] if self.max not in [None,INDEF]: fields[nvstart-2] = self.toString(self.max,quoted=quoted) if self.prompt: if quoted: sprompt = repr(self.prompt) else: sprompt = self.prompt sprompt = sprompt.replace(r, ) sprompt = sprompt.replace(r, ) fields[nvstart-1] = sprompt for i in range(len(self.value)): fields[nvstart+i] = self.toString(self.value[i],quoted=quoted) if dolist: return fields else: fields[nvstart] = + fields[nvstart] return .join(fields)
Return .par format string for this parameter If dolist is set, returns fields as a list of strings. Default is to return a single string appropriate for writing to a file.
380,664
def vectorize_inhibit(audio: np.ndarray) -> np.ndarray: def samp(x): return int(pr.sample_rate * x) inputs = [] for offset in range(samp(inhibit_t), samp(inhibit_dist_t), samp(inhibit_hop_t)): if len(audio) - offset < samp(pr.buffer_t / 2.): break inputs.append(vectorize(audio[:-offset])) return np.array(inputs) if inputs else np.empty((0, pr.n_features, pr.feature_size))
Returns an array of inputs generated from the wake word audio that shouldn't cause an activation
380,665
def get_definition(self, stmt: Statement, sctx: SchemaContext) -> Tuple[Statement, SchemaContext]: if stmt.keyword == "uses": kw = "grouping" elif stmt.keyword == "type": kw = "typedef" else: raise ValueError("not a or statement") loc, did = self.resolve_pname(stmt.argument, sctx.text_mid) if did == sctx.text_mid: dstmt = stmt.get_definition(loc, kw) if dstmt: return (dstmt, sctx) else: dstmt = self.modules[did].statement.find1(kw, loc) if dstmt: return (dstmt, SchemaContext(sctx.schema_data, sctx.default_ns, did)) for sid in self.modules[did].submodules: dstmt = self.modules[sid].statement.find1(kw, loc) if dstmt: return ( dstmt, SchemaContext(sctx.schema_data, sctx.default_ns, sid)) raise DefinitionNotFound(kw, stmt.argument)
Find the statement defining a grouping or derived type. Args: stmt: YANG "uses" or "type" statement. sctx: Schema context where the definition is used. Returns: A tuple consisting of the definition statement ('grouping' or 'typedef') and schema context of the definition. Raises: ValueError: If `stmt` is neither "uses" nor "type" statement. ModuleNotRegistered: If `mid` is not registered in the data model. UnknownPrefix: If the prefix specified in the argument of `stmt` is not declared. DefinitionNotFound: If the corresponding definition is not found.
380,666
def clear_file(self): if (self.get_file_metadata().is_read_only() or self.get_file_metadata().is_required()): raise NoAccess() if in self.my_osid_object_form._my_map[]: rm = self.my_osid_object_form._get_provider_manager() catalog_id_str = if in self.my_osid_object_form._my_map: catalog_id_str = self.my_osid_object_form._my_map[][0] elif in self.my_osid_object_form._my_map: catalog_id_str = self.my_osid_object_form._my_map[][0] try: try: aas = rm.get_asset_admin_session_for_repository( Id(catalog_id_str), self.my_osid_object_form._proxy) except NullArgument: aas = rm.get_asset_admin_session_for_repository( Id(catalog_id_str)) except AttributeError: try: aas = rm.get_asset_admin_session_for_repository( Id(catalog_id_str), self.my_osid_object_form._proxy) except NullArgument: aas = rm.get_asset_admin_session_for_repository( Id(catalog_id_str)) aas.delete_asset(Id(self.my_osid_object_form._my_map[][])) self.my_osid_object_form._my_map[] = \ dict(self.get_file_metadata().get_default_object_values()[0])
stub
380,667
def availabledirs(self) -> Folder2Path: directories = Folder2Path() for directory in os.listdir(self.basepath): if not directory.startswith(): path = os.path.join(self.basepath, directory) if os.path.isdir(path): directories.add(directory, path) elif directory.endswith(): directories.add(directory[:-4], path) return directories
Names and paths of the available working directories. Available working directories are those beeing stored in the base directory of the respective |FileManager| subclass. Folders with names starting with an underscore are ignored (use this for directories handling additional data files, if you like). Zipped directories, which can be unpacked on the fly, do also count as available directories: >>> from hydpy.core.filetools import FileManager >>> filemanager = FileManager() >>> filemanager.BASEDIR = 'basename' >>> filemanager.projectdir = 'projectname' >>> import os >>> from hydpy import repr_, TestIO >>> TestIO.clear() >>> with TestIO(): ... os.makedirs('projectname/basename/folder1') ... os.makedirs('projectname/basename/folder2') ... open('projectname/basename/folder3.zip', 'w').close() ... os.makedirs('projectname/basename/_folder4') ... open('projectname/basename/folder5.tar', 'w').close() ... filemanager.availabledirs # doctest: +ELLIPSIS Folder2Path(folder1=.../projectname/basename/folder1, folder2=.../projectname/basename/folder2, folder3=.../projectname/basename/folder3.zip)
380,668
def _extract_secrets_from_file(self, f, filename): try: log.info("Checking file: %s", filename) for results, plugin in self._results_accumulator(filename): results.update(plugin.analyze(f, filename)) f.seek(0) except UnicodeDecodeError: log.warning("%s failed to load.", filename)
Extract secrets from a given file object. :type f: File object :type filename: string
380,669
def add_parent(self,node): if not isinstance(node, (CondorDAGNode,CondorDAGManNode) ): raise CondorDAGNodeError, "Parent must be a CondorDAGNode or a CondorDAGManNode" self.__parents.append( node )
Add a parent to this node. This node will not be executed until the parent node has run sucessfully. @param node: CondorDAGNode to add as a parent.
380,670
def get_all_children(self): all_children = set() for parent in self.children: all_children.add(parent.item_id) all_children |= parent.get_all_children() return all_children
Return all children GO IDs.
380,671
def is_valid_catalog(self, catalog=None): catalog = catalog or self return validation.is_valid_catalog(catalog, validator=self.validator)
Valida que un archivo `data.json` cumpla con el schema definido. Chequea que el data.json tiene todos los campos obligatorios y que tanto los campos obligatorios como los opcionales siguen la estructura definida en el schema. Args: catalog (str o dict): Catálogo (dict, JSON o XLSX) a ser validado. Si no se pasa, valida este catálogo. Returns: bool: True si el data.json cumple con el schema, sino False.
380,672
def projects(self): result = set() for todo in self._todos: projects = todo.projects() result = result.union(projects) return result
Returns a set of all projects in this list.
380,673
def get_instance_status(self): status_url = self._get_url() res = self.rest_client.session.get(status_url) _handle_http_errors(res) return res.json()
Get the status the instance for this Streaming Analytics service. Returns: dict: JSON response for the instance status operation.
380,674
def _retry(self, context, backoff): if not hasattr(context, ): context.count = 0 if self._should_retry(context): backoff_interval = backoff(context) context.count += 1 if self.retry_to_secondary: self._set_next_host_location(context) if hasattr(context.request.body, ): if context.body_position is None: return None else: try: context.request.body.seek(context.body_position, SEEK_SET) except UnsupportedOperation: return None return backoff_interval return None
A function which determines whether and how to retry. :param ~azure.storage.models.RetryContext context: The retry context. This contains the request, response, and other data which can be used to determine whether or not to retry. :param function() backoff: A function which returns the backoff time if a retry is to be performed. :return: An integer indicating how long to wait before retrying the request, or None to indicate no retry should be performed. :rtype: int or None
380,675
def recent(self, with_catalog=True, with_date=True): kwd = { : , : , : with_catalog, : with_date, } self.render(, kwd=kwd, view=MPost.query_recent(num=20), postrecs=MPost.query_recent(num=2), format_date=tools.format_date, userinfo=self.userinfo, cfg=CMS_CFG, )
List posts that recent edited.
380,676
def create(self, throw_on_exists=False): if not throw_on_exists and self.exists(): return self resp = self.r_session.put(self.database_url, params={ : TYPE_CONVERTERS.get(bool)(self._partitioned) }) if resp.status_code == 201 or resp.status_code == 202: return self raise CloudantDatabaseException( resp.status_code, self.database_url, resp.text )
Creates a database defined by the current database object, if it does not already exist and raises a CloudantException if the operation fails. If the database already exists then this method call is a no-op. :param bool throw_on_exists: Boolean flag dictating whether or not to throw a CloudantDatabaseException when attempting to create a database that already exists. :returns: The database object
380,677
def before(method_name): def decorator(function): @wraps(function) def wrapper(self, *args, **kwargs): returns = getattr(self, method_name)(*args, **kwargs) if returns is None: return function(self, *args, **kwargs) else: if isinstance(returns, HttpResponse): return returns else: return function(self, *returns) return wrapper return decorator
Run the given method prior to the decorated view. If you return anything besides ``None`` from the given method, its return values will replace the arguments of the decorated view. If you return an instance of ``HttpResponse`` from the given method, Respite will return it immediately without delegating the request to the decorated view. Example usage:: class ArticleViews(Views): @before('_load') def show(self, request, article): return self._render( request = request, template = 'show', context = { 'article': article } ) def _load(self, request, id): try: return request, Article.objects.get(id=id) except Article.DoesNotExist: return self._error(request, 404, message='The article could not be found.') :param method: A string describing a class method.
380,678
def to_report_json(self): return self.reporter.json(self.n_lines, self.n_assocs, self.skipped)
Generate a summary in json format
380,679
def execute(self, fn, *args, **kwargs): if self.in_executor_context(): corofn = asyncio.coroutine(lambda: fn(*args, **kwargs)) return corofn() future = self.submit(fn, *args, **kwargs) return future.result()
Execute an operation and return the result.
380,680
def _gen_exclusion_paths(): yield yield yield if not hasattr(imp, ): return base = os.path.join(, + imp.get_tag()) yield base + yield base + yield base + yield base +
Generate file paths to be excluded for namespace packages (bytecode cache files).
380,681
def autoencoder_residual_text(): hparams = autoencoder_residual() hparams.bottleneck_bits = 32 hparams.batch_size = 1024 hparams.hidden_size = 64 hparams.max_hidden_size = 512 hparams.bottleneck_noise = 0.0 hparams.bottom = { "inputs": modalities.identity_bottom, "targets": modalities.identity_bottom, } hparams.top = { "targets": modalities.identity_top, } hparams.autoregressive_mode = "none" hparams.sample_width = 1 return hparams
Residual autoencoder model for text.
380,682
def setDesigns(self, F, A): F = to_list(F) A = to_list(A) assert len(A) == len(F), n_terms = len(F) n_covs = 0 k = 0 l = 0 for ti in range(n_terms): assert F[ti].shape[0] == self._N, assert A[ti].shape[1] == self._P, n_covs += F[ti].shape[1] * A[ti].shape[0] k += F[ti].shape[1] l += A[ti].shape[0] self._n_terms = n_terms self._n_covs = n_covs self._k = k self._l = l self._F = F self._A = A self._b = sp.zeros((n_covs, 1)) self.clear_cache(, , ) self._notify() self._notify()
set fixed effect designs
380,683
def create_mod_site(self, mc): site_name = get_mod_site_name(mc) (unmod_site_state, mod_site_state) = states[mc.mod_type] self.create_site(site_name, (unmod_site_state, mod_site_state)) site_anns = [Annotation((site_name, mod_site_state), mc.mod_type, )] if mc.residue: site_anns.append(Annotation(site_name, mc.residue, )) if mc.position: site_anns.append(Annotation(site_name, mc.position, )) self.site_annotations += site_anns
Create modification site for the BaseAgent from a ModCondition.
380,684
def shortname(inputid): parsed_id = urllib.parse.urlparse(inputid) if parsed_id.fragment: return parsed_id.fragment.split(u"/")[-1] return parsed_id.path.split(u"/")[-1]
Returns the last segment of the provided fragment or path.
380,685
def maps_get_rules_output_rules_value(self, **kwargs): config = ET.Element("config") maps_get_rules = ET.Element("maps_get_rules") config = maps_get_rules output = ET.SubElement(maps_get_rules, "output") rules = ET.SubElement(output, "rules") value = ET.SubElement(rules, "value") value.text = kwargs.pop() callback = kwargs.pop(, self._callback) return callback(config)
Auto Generated Code
380,686
def cross_validation(scheme_class, num_examples, num_folds, strict=True, **kwargs): if strict and num_examples % num_folds != 0: raise ValueError(("{} examples are not divisible in {} evenly-sized " + "folds. To allow this, have a look at the " + "`strict` argument.").format(num_examples, num_folds)) for i in xrange(num_folds): begin = num_examples * i // num_folds end = num_examples * (i+1) // num_folds train = scheme_class(list(chain(xrange(0, begin), xrange(end, num_examples))), **kwargs) valid = scheme_class(xrange(begin, end), **kwargs) if strict: yield (train, valid) else: yield (train, valid, end - begin)
Return pairs of schemes to be used for cross-validation. Parameters ---------- scheme_class : subclass of :class:`IndexScheme` or :class:`BatchScheme` The type of the returned schemes. The constructor is called with an iterator and `**kwargs` as arguments. num_examples : int The number of examples in the datastream. num_folds : int The number of folds to return. strict : bool, optional If `True`, enforce that `num_examples` is divisible by `num_folds` and so, that all validation sets have the same size. If `False`, the size of the validation set is returned along the iteration schemes. Defaults to `True`. Yields ------ fold : tuple The generator returns `num_folds` tuples. The first two elements of the tuple are the training and validation iteration schemes. If `strict` is set to `False`, the tuple has a third element corresponding to the size of the validation set.
380,687
def request_response(self): a, b, e = self.pmm[3] & 7, self.pmm[3] >> 3 & 7, self.pmm[3] >> 6 timeout = 302E-6 * (b + 1 + a + 1) * 4**e data = self.send_cmd_recv_rsp(0x04, , timeout, check_status=False) if len(data) != 1: log.debug("insufficient data received from tag") raise tt3.Type3TagCommandError(tt3.DATA_SIZE_ERROR) return data[0]
Verify that a card is still present and get its operating mode. The Request Response command returns the current operating state of the card. The operating state changes with the authentication process, a card is in Mode 0 after power-up or a Polling command, transitions to Mode 1 with Authentication1, to Mode 2 with Authentication2, and Mode 3 with any of the card issuance commands. The :meth:`request_response` method returns the mode as an integer. Command execution errors raise :exc:`~nfc.tag.TagCommandError`.
380,688
def compute_batch(self, duplicate_manager=None, context_manager=None): from ...acquisitions import AcquisitionLP assert isinstance(self.acquisition, AcquisitionLP) self.acquisition.update_batches(None,None,None) X_batch = self.acquisition.optimize()[0] k=1 if self.batch_size >1: L = estimate_L(self.acquisition.model.model,self.acquisition.space.get_bounds()) Min = self.acquisition.model.model.Y.min() while k<self.batch_size: self.acquisition.update_batches(X_batch,L,Min) new_sample = self.acquisition.optimize()[0] X_batch = np.vstack((X_batch,new_sample)) k +=1 self.acquisition.update_batches(None,None,None) return X_batch
Computes the elements of the batch sequentially by penalizing the acquisition.
380,689
def filter_incomplete_spectra(self, flimit=1000, percAccept=85): assert percAccept > 0 and percAccept < 100 def _retain_only_complete_spectra(item, fmax, acceptN): frequencies = item[].loc[item[] < fmax] fN = frequencies.size if fN >= acceptN: return True return False group_abmn = self.data.groupby([, , , ]) frequencies = np.array( list(sorted(self.data.groupby().groups.keys())) ) assert flimit >= frequencies.min() and flimit <= frequencies.max() Nlimit = len(np.where(frequencies <= flimit)[0]) Naccept = np.ceil(Nlimit * percAccept / 100.0) self.data = group_abmn.filter( _retain_only_complete_spectra, fmax=flimit, acceptN=Naccept ).copy()
Remove all data points that belong to spectra that did not retain at least **percAccept** percent of the number of data points. ..warning:: This function does not honor additional dimensions (e.g., timesteps) yet!
380,690
def ExportClientsByKeywords(keywords, filename, token=None): r index = client_index.CreateClientIndex(token=token) client_list = index.LookupClients(keywords) logging.info("found %d clients", len(client_list)) if not client_list: return writer = csv.DictWriter([ u"client_id", u"hostname", u"last_seen", u"os", u"os_release", u"os_version", u"users", u"ips", u"macs", ]) writer.WriteHeader() for client in aff4.FACTORY.MultiOpen(client_list, token=token): s = client.Schema writer.WriteRow({ u"client_id": client.urn.Basename(), u"hostname": client.Get(s.HOSTNAME), u"os": client.Get(s.SYSTEM), u"os_release": client.Get(s.OS_RELEASE), u"os_version": client.Get(s.OS_VERSION), u"ips": client.Get(s.HOST_IPS), u"macs": client.Get(s.MAC_ADDRESS), u"users": "\n".join(client.Get(s.USERNAMES, [])), u"last_seen": client.Get(s.PING), }) with io.open(filename, "w") as csv_out: csv_out.write(writer.Content())
r"""A script to export clients summaries selected by a keyword search. This script does a client search for machines matching all of keywords and writes a .csv summary of the results to filename. Multi-value fields are '\n' separated. Args: keywords: a list of keywords to search for filename: the name of the file to write to, will be replaced if already present token: datastore token.
380,691
def on_exception(wait_gen, exception, max_tries=None, jitter=full_jitter, giveup=lambda e: False, on_success=None, on_backoff=None, on_giveup=None, **wait_gen_kwargs): success_hdlrs = _handlers(on_success) backoff_hdlrs = _handlers(on_backoff, _log_backoff) giveup_hdlrs = _handlers(on_giveup, _log_giveup) def decorate(target): @functools.wraps(target) def retry(*args, **kwargs): return ret return retry return decorate
Returns decorator for backoff and retry triggered by exception. Args: wait_gen: A generator yielding successive wait times in seconds. exception: An exception type (or tuple of types) which triggers backoff. max_tries: The maximum number of attempts to make before giving up. Once exhausted, the exception will be allowed to escape. The default value of None means their is no limit to the number of tries. If a callable is passed, it will be evaluated at runtime and its return value used. jitter: A function of the value yielded by wait_gen returning the actual time to wait. This distributes wait times stochastically in order to avoid timing collisions across concurrent clients. Wait times are jittered by default using the full_jitter function. Jittering may be disabled altogether by passing jitter=None. giveup: Function accepting an exception instance and returning whether or not to give up. Optional. The default is to always continue. on_success: Callable (or iterable of callables) with a unary signature to be called in the event of success. The parameter is a dict containing details about the invocation. on_backoff: Callable (or iterable of callables) with a unary signature to be called in the event of a backoff. The parameter is a dict containing details about the invocation. on_giveup: Callable (or iterable of callables) with a unary signature to be called in the event that max_tries is exceeded. The parameter is a dict containing details about the invocation. **wait_gen_kwargs: Any additional keyword args specified will be passed to wait_gen when it is initialized. Any callable args will first be evaluated and their return values passed. This is useful for runtime configuration.
380,692
def randbetween(lower: int, upper: int) -> int: if not isinstance(lower, int) or not isinstance(upper, int): raise TypeError() if lower < 0 or upper <= 0: raise ValueError() return randbelow(upper - lower + 1) + lower
Return a random int in the range [lower, upper]. Raises ValueError if any is lower than 0, and TypeError if any is not an integer.
380,693
def read_frames(self, nframes, dtype=np.float64): return self._sndfile.read_frames(nframes, dtype)
Read nframes frames of the file. :Parameters: nframes : int number of frames to read. dtype : numpy dtype dtype of the returned array containing read data (see note). Notes ----- - read_frames updates the read pointer. - One column is one channel (one row per channel after 0.9) - if float are requested when the file contains integer data, you will get normalized data (that is the max possible integer will be 1.0, and the minimal possible value -1.0). - if integers are requested when the file contains floating point data, it may give wrong results because there is an ambiguity: if the floating data are normalized, you can get a file with only 0 ! Getting integer data from files encoded in normalized floating point is not supported (yet: sndfile supports it).
380,694
def restore_catalog_to_ckan(catalog, origin_portal_url, destination_portal_url, apikey, download_strategy=None, generate_new_access_url=None): catalog[] = catalog.get() or origin_portal_url res = {} origin_portal = RemoteCKAN(origin_portal_url) try: org_list = origin_portal.action.organization_list() except CKANAPIError as e: logger.exception( .format(origin_portal_url, str(e))) print(e) return res for org in org_list: print("Restaurando organizacion {}".format(org)) response = origin_portal.action.organization_show( id=org, include_datasets=True) datasets = [package[] for package in response[]] pushed_datasets = restore_organization_to_ckan( catalog, org, destination_portal_url, apikey, dataset_list=datasets, download_strategy=download_strategy, generate_new_access_url=generate_new_access_url ) res[org] = pushed_datasets return res
Restaura los datasets de un catálogo original al portal pasado por parámetro. Si hay temas presentes en el DataJson que no están en el portal de CKAN, los genera. Args: catalog (DataJson): El catálogo de origen que se restaura. origin_portal_url (str): La URL del portal CKAN de origen. destination_portal_url (str): La URL del portal CKAN de destino. apikey (str): La apikey de un usuario con los permisos que le permitan crear o actualizar el dataset. download_strategy(callable): Una función (catálogo, distribución)-> bool. Sobre las distribuciones que evalúa True, descarga el recurso en el downloadURL y lo sube al portal de destino. Por default no sube ninguna distribución. generate_new_access_url(list): Se pasan los ids de las distribuciones cuyo accessURL se regenerar en el portal de destino. Para el resto, el portal debe mantiene el valor pasado en el DataJson. Returns: dict: Diccionario con key organización y value la lista de ids de datasets subidos a esa organización
380,695
def set_uint_info(self, field, data): _check_call(_LIB.XGDMatrixSetUIntInfo(self.handle, c_str(field), c_array(ctypes.c_uint, data), len(data)))
Set uint type property into the DMatrix. Parameters ---------- field: str The field name of the information data: numpy array The array ofdata to be set
380,696
def resizeEvent(self, event): LOGGER.debug("> Application resize event accepted!") self.size_changed.emit(event) event.accept()
Reimplements the :meth:`QWidget.resizeEvent` method. :param event: QEvent. :type event: QEvent
380,697
def build(self, js_path): super(Script, self).build() self.source = js_path
:param js_path: Javascript source code.
380,698
def PublishMultipleEvents(cls, events, token=None): event_name_map = registry.EventRegistry.EVENT_NAME_MAP for event_name, messages in iteritems(events): if not isinstance(event_name, string_types): raise ValueError( "Event names should be string, got: %s" % type(event_name)) for msg in messages: if not isinstance(msg, rdfvalue.RDFValue): raise ValueError("Can only publish RDFValue instances.") for event_cls in event_name_map.get(event_name, []): event_cls().ProcessMessages(messages, token=token)
Publishes multiple messages at once. Args: events: A dict with keys being event names and values being lists of messages. token: ACL token. Raises: ValueError: If the message is invalid. The message must be a Semantic Value (instance of RDFValue) or a full GrrMessage.
380,699
def isinstance(self, instance, class_name): if isinstance(instance, BaseNode): klass = self.dynamic_node_classes.get(class_name, None) if klass: return isinstance(instance, klass) return False else: raise TypeError("This function can only be used for BaseNode objects")
Check if a BaseNode is an instance of a registered dynamic class