Unnamed: 0
int64 0
389k
| code
stringlengths 26
79.6k
| docstring
stringlengths 1
46.9k
|
---|---|---|
381,400 | def _make_pkh_address(pubkey_hash, witness=False, cashaddr=True):
addr_bytes = bytearray()
if riemann.network.CASHADDR_P2PKH is not None and cashaddr:
addr_bytes.extend(riemann.network.CASHADDR_P2PKH)
addr_bytes.extend(pubkey_hash)
return riemann.network.CASHADDR_ENCODER.encode(addr_bytes)
if witness:
addr_bytes.extend(riemann.network.P2WPKH_PREFIX)
addr_bytes.extend(pubkey_hash)
return riemann.network.SEGWIT_ENCODER.encode(addr_bytes)
else:
addr_bytes.extend(riemann.network.P2PKH_PREFIX)
addr_bytes.extend(pubkey_hash)
return riemann.network.LEGACY_ENCODER.encode(addr_bytes) | bytes, bool -> str |
381,401 | def get_report(self, value):
if self.multiselect:
value = value or []
children = []
for child in value:
children.append(self.cast_to_report(child))
return children
return self.cast_to_report(value) | Return provided field Python value formatted for use in report filter |
381,402 | def request(self, persist_id=None):
node = new_ele("cancel-commit")
if persist_id is not None:
sub_ele(node, "persist-id").text = persist_id
return self._request(node) | Cancel an ongoing confirmed commit. Depends on the `:candidate` and `:confirmed-commit` capabilities.
*persist-id* value must be equal to the value given in the <persist> parameter to the previous <commit> operation. |
381,403 | def plot_spectra_overlapped(ss, title=None, setup=_default_setup):
plt.figure()
draw_spectra_overlapped(ss, title, setup)
plt.show() | Plots one or more spectra in the same plot.
Args:
ss: list of Spectrum objects
title=None: window title
setup: PlotSpectrumSetup object |
381,404 | def attr_case_name(self, name):
lower_name = name.lower()
for i in self.attrs():
if lower_name == i.lower():
return i
for key in self.keys_nD():
for i in self[key].children.attrs():
if lower_name == i.lower():
return i
return name | Returns preserved case name for case insensitive value of name.
Checks first within standard attributes. If not found there, checks
attributes for higher order data structures. If not found, returns
supplied name as it is available for use. Intended to be used to help
ensure that the same case is applied to all repetitions of a given
variable name.
Parameters
----------
name : str
name of variable to get stored case form
Returns
-------
str
name in proper case |
381,405 | def mmapFile(self, addr, size, perms, filename, offset=0):
assert addr is None or isinstance(addr, int),
assert size > 0
self.cpu._publish(, addr, size, perms, filename, offset)
if addr is not None:
assert addr < self.memory_size,
addr = self._floor(addr)
size = self._ceil(size)
addr = self._search(size, addr)
for i in range(self._page(addr), self._page(addr + size)):
assert i not in self._page2map,
m = FileMap(addr, size, perms, filename, offset)
self._add(m)
logger.debug(, addr, size)
self.cpu._publish(, addr, size, perms, filename, offset, addr)
return addr | Creates a new file mapping in the memory address space.
:param addr: the starting address (took as hint). If C{addr} is C{0} the first big enough
chunk of memory will be selected as starting address.
:param size: the contents of a file mapping are initialized using C{size} bytes starting
at offset C{offset} in the file C{filename}.
:param perms: the access permissions to this memory.
:param filename: the pathname to the file to map.
:param offset: the contents of a file mapping are initialized using C{size} bytes starting
at offset C{offset} in the file C{filename}.
:return: the starting address where the file was mapped.
:rtype: int
:raises error:
- 'Address shall be concrete' if C{addr} is not an integer number.
- 'Address too big' if C{addr} goes beyond the limit of the memory.
- 'Map already used' if the piece of memory starting in C{addr} and with length C{size} isn't free. |
381,406 | def jacobian(sess, x, grads, target, X, nb_features, nb_classes, feed=None):
warnings.warn(
"This function is dead code and will be removed on or after 2019-07-18")
feed_dict = {x: X}
if feed is not None:
feed_dict.update(feed)
jacobian_val = np.zeros((nb_classes, nb_features), dtype=np_dtype)
for class_ind, grad in enumerate(grads):
run_grad = sess.run(grad, feed_dict)
jacobian_val[class_ind] = np.reshape(run_grad, (1, nb_features))
other_classes = utils.other_classes(nb_classes, target)
grad_others = np.sum(jacobian_val[other_classes, :], axis=0)
return jacobian_val[target], grad_others | TensorFlow implementation of the foward derivative / Jacobian
:param x: the input placeholder
:param grads: the list of TF gradients returned by jacobian_graph()
:param target: the target misclassification class
:param X: numpy array with sample input
:param nb_features: the number of features in the input
:return: matrix of forward derivatives flattened into vectors |
381,407 | def set_key(self, key):
key_len = len(key)
if key_len not in [16, 24, 32]:
raise KeyError("key must be 16, 24 or 32 bytes")
if key_len % 4:
raise KeyError("key not a multiple of 4")
if key_len > 32:
raise KeyError("key_len > 32")
self.context = TWI()
key_word32 = [0] * 32
i = 0
while key:
key_word32[i] = struct.unpack("<L", key[0:4])[0]
key = key[4:]
i += 1
set_key(self.context, key_word32, key_len) | Init. |
381,408 | def _edges_classify_intersection9():
edges1 = (
bezier.Curve.from_nodes(
np.asfortranarray([[32.0, 30.0], [20.0, 25.0]])
),
bezier.Curve.from_nodes(
np.asfortranarray([[30.0, 25.0, 20.0], [25.0, 20.0, 20.0]])
),
bezier.Curve.from_nodes(
np.asfortranarray([[20.0, 25.0, 30.0], [20.0, 20.0, 15.0]])
),
bezier.Curve.from_nodes(
np.asfortranarray([[30.0, 32.0], [15.0, 20.0]])
),
)
edges2 = (
bezier.Curve.from_nodes(
np.asfortranarray([[8.0, 10.0], [20.0, 15.0]])
),
bezier.Curve.from_nodes(
np.asfortranarray([[10.0, 15.0, 20.0], [15.0, 20.0, 20.0]])
),
bezier.Curve.from_nodes(
np.asfortranarray([[20.0, 15.0, 10.0], [20.0, 20.0, 25.0]])
),
bezier.Curve.from_nodes(
np.asfortranarray([[10.0, 8.0], [25.0, 20.0]])
),
)
return edges1, edges2 | The edges for the curved polygon intersection used below.
Helper for :func:`classify_intersection9`. |
381,409 | def interpolate(self, factor, minLayer, maxLayer, round=True,
suppressError=True):
factor = normalizers.normalizeInterpolationFactor(factor)
if not isinstance(minLayer, BaseLayer):
raise TypeError(("Interpolation to an instance of %r can not be "
"performed from an instance of %r.")
% (self.__class__.__name__, minLayer.__class__.__name__))
if not isinstance(maxLayer, BaseLayer):
raise TypeError(("Interpolation to an instance of %r can not be "
"performed from an instance of %r.")
% (self.__class__.__name__, maxLayer.__class__.__name__))
round = normalizers.normalizeBoolean(round)
suppressError = normalizers.normalizeBoolean(suppressError)
self._interpolate(factor, minLayer, maxLayer,
round=round, suppressError=suppressError) | Interpolate all possible data in the layer. ::
>>> layer.interpolate(0.5, otherLayer1, otherLayer2)
>>> layer.interpolate((0.5, 2.0), otherLayer1, otherLayer2, round=False)
The interpolation occurs on a 0 to 1.0 range where **minLayer**
is located at 0 and **maxLayer** is located at 1.0. **factor**
is the interpolation value. It may be less than 0 and greater
than 1.0. It may be a :ref:`type-int-float` or a tuple of
two :ref:`type-int-float`. If it is a tuple, the first
number indicates the x factor and the second number indicates
the y factor. **round** indicates if the result should be
rounded to integers. **suppressError** indicates if incompatible
data should be ignored or if an error should be raised when
such incompatibilities are found. |
381,410 | def true_num_reactions(model, custom_spont_id=None):
true_num = 0
for rxn in model.reactions:
if len(rxn.genes) == 0:
continue
if len(rxn.genes) == 1 and is_spontaneous(list(rxn.genes)[0], custom_id=custom_spont_id):
continue
else:
true_num += 1
return true_num | Return the number of reactions associated with a gene.
Args:
model (Model):
custom_spont_id (str): Optional custom spontaneous ID if it does not match the regular expression ``[Ss](_|)0001``
Returns:
int: Number of reactions associated with a gene |
381,411 | def mongodump(mongo_user, mongo_password, mongo_dump_directory_path, database=None, silent=False):
if path.exists(mongo_dump_directory_path):
rmtree(mongo_dump_directory_path)
if silent:
dump_command = ("mongodump --quiet -u %s -p %s -o %s"
% (mongo_user, mongo_password, mongo_dump_directory_path))
else:
dump_command = ("mongodump -u %s -p %s -o %s"
% (mongo_user, mongo_password, mongo_dump_directory_path))
if database:
dump_command += (" --db %s" % database)
call(dump_command, silent=silent) | Runs mongodump using the provided credentials on the running mongod
process.
WARNING: This function will delete the contents of the provided
directory before it runs. |
381,412 | def sanitize_capabilities(caps):
platform = caps["platform"]
upper_platform = platform.upper()
if upper_platform.startswith("WINDOWS 8"):
caps["platform"] = "WIN8"
elif upper_platform.startswith("OS X "):
caps["platform"] = "MAC"
elif upper_platform == "WINDOWS 10":
del caps["platform"]
caps["os"] = "Windows"
caps["os_version"] = "10"
if caps["browserName"].upper() == "MICROSOFTEDGE":
caps["version"] = caps["version"].split(".", 1)[0] + ".0"
caps["browser_version"] = caps["version"]
del caps["version"]
return caps | Sanitize the capabilities we pass to Selenic so that they can
be consumed by Browserstack.
:param caps: The capabilities passed to Selenic. This dictionary
is modified.
:returns: The sanitized capabilities. |
381,413 | def choose_parent_view(self, request):
kwargs = {: self}
view_class = self.choose_parent_view_class
return view_class.as_view(**kwargs)(request) | Instantiates a class-based view to provide a view that allows a parent
page to be chosen for a new object, where the assigned model extends
Wagtail's Page model, and there is more than one potential parent for
new instances. The view class used can be overridden by changing the
'choose_parent_view_class' attribute. |
381,414 | def get_or_create(cls, filter_key=None, with_status=False, **kwargs):
was_created = False
if not in kwargs:
raise ElementNotFound(
)
if filter_key:
elements = cls.objects.filter(**filter_key)
element = elements.first() if elements.exists() else None
else:
try:
element = cls.get(kwargs.get())
except ElementNotFound:
if not hasattr(cls, ):
raise CreateElementFailed(
%
(cls.__name__, kwargs[]))
element = None
if not element:
params = {k: v() if callable(v) else v
for k, v in kwargs.items()}
try:
element = cls.create(**params)
was_created = True
except TypeError:
raise CreateElementFailed(
%
(cls.__name__, kwargs[]))
if with_status:
return element, was_created
return element | Convenience method to retrieve an Element or create if it does not
exist. If an element does not have a `create` classmethod, then it
is considered read-only and the request will be redirected to :meth:`~get`.
Any keyword arguments passed except the optional filter_key
will be used in a create() call. If filter_key is provided, this
should define an attribute and value to use for an exact match on
the element. Valid attributes are ones required on the elements
``create`` method or can be viewed by the elements class docs.
If no filter_key is provided, the name field will be used to
find the element.
::
>>> Network.get_or_create(
filter_key={'ipv4_network': '123.123.123.0/24'},
name='mynetwork',
ipv4_network='123.123.123.0/24')
Network(name=mynetwork)
The kwargs should be used to satisfy the elements ``create``
classmethod parameters to create in the event it cannot be found.
:param dict filter_key: filter key represents the data attribute and
value to use to find the element. If none is provided, the name
field will be used.
:param kwargs: keyword arguments mapping to the elements ``create``
method.
:param bool with_status: if set to True, a tuple is returned with
(Element, created), where the second tuple item indicates if
the element has been created or not.
:raises CreateElementFailed: could not create element with reason
:raises ElementNotFound: if read-only element does not exist
:return: element instance by type
:rtype: Element |
381,415 | def process_service_check_result(self, service, return_code, plugin_output):
now = time.time()
cls = service.__class__
if not cls.accept_passive_checks or not service.passive_checks_enabled:
return
try:
plugin_output = plugin_output.decode(, )
logger.debug(,
service.get_full_name(), plugin_output)
except AttributeError:
pass
except UnicodeError:
pass
if self.current_timestamp < service.last_chk:
logger.debug(
,
service.get_full_name(), self.current_timestamp < service.last_chk,
plugin_output)
return
chk = service.launch_check(now, self.hosts, self.services, self.timeperiods,
self.daemon.macromodulations, self.daemon.checkmodulations,
self.daemon.checks, force=True)
chk.set_type_passive()
self.send_an_element(chk)
if self.my_conf.log_passive_checks:
log_level =
if return_code == 1:
log_level =
if return_code == 2:
log_level =
self.send_an_element(make_monitoring_log(
log_level, % (
self.hosts[service.host].get_name(), service.get_name(),
return_code, chk.output, chk.long_output, chk.perf_data))) | Process service check result
Format of the line that triggers function call::
PROCESS_SERVICE_CHECK_RESULT;<host_name>;<service_description>;<return_code>;<plugin_output>
:param service: service to process check to
:type service: alignak.objects.service.Service
:param return_code: exit code of plugin
:type return_code: int
:param plugin_output: plugin output
:type plugin_output: str
:return: None |
381,416 | def grouper(iterable, n, fillvalue=None):
if isinstance(iterable, int):
warnings.warn(
"grouper expects iterable as first parameter",
DeprecationWarning,
)
n, iterable = iterable, n
args = [iter(iterable)] * n
return zip_longest(fillvalue=fillvalue, *args) | Collect data into fixed-length chunks or blocks.
>>> list(grouper('ABCDEFG', 3, 'x'))
[('A', 'B', 'C'), ('D', 'E', 'F'), ('G', 'x', 'x')] |
381,417 | def readline(self, raise_exception=False):
buf = self.buffer
if self.socket:
recv = self.socket.recv
else:
recv = lambda bufsize:
while True:
index = buf.find()
if index >= 0:
break
data = recv(4096)
if not data:
buf += data
self.buffer = buf[index+2:]
return buf[:index] | Read a line and return it. If "raise_exception" is set,
raise _ConnectionDeadError if the read fails, otherwise return
an empty string. |
381,418 | def get_path_variables(**kwargs):
enterprise_customer_uuid = kwargs.get(, )
course_run_id = kwargs.get(, )
course_key = kwargs.get(, )
program_uuid = kwargs.get(, )
return enterprise_customer_uuid, course_run_id, course_key, program_uuid | Get the base variables for any view to route to.
Currently gets:
- `enterprise_uuid` - the UUID of the enterprise customer.
- `course_run_id` - the ID of the course, if applicable.
- `program_uuid` - the UUID of the program, if applicable. |
381,419 | def use_comparative_vault_view(self):
self._catalog_view = COMPARATIVE
if self._catalog_session is not None:
self._catalog_session.use_comparative_catalog_view() | The returns from the lookup methods may omit or translate elements based on this session, such as authorization, and not result in an error.
This view is used when greater interoperability is desired at
the expense of precision.
*compliance: mandatory -- This method is must be implemented.* |
381,420 | def report_device_attributes(self, mode=0, **kwargs):
if mode == 0 and not kwargs.get("private"):
self.write_process_input(ctrl.CSI + "?6c") | Report terminal identity.
.. versionadded:: 0.5.0
.. versionchanged:: 0.7.0
If ``private`` keyword argument is set, the method does nothing.
This behaviour is consistent with VT220 manual. |
381,421 | def list_listeners(self, retrieve_all=True, **_params):
return self.list(, self.lbaas_listeners_path,
retrieve_all, **_params) | Fetches a list of all lbaas_listeners for a project. |
381,422 | def add_service(self, name, long_name, preregistered=False, notify=True):
if name in self.services:
raise ArgumentError("Could not add service because the long_name is taken", long_name=long_name)
serv_state = states.ServiceState(name, long_name, preregistered)
service = {
: serv_state,
: 600
}
self.services[name] = service
if notify:
return self._notify_update(name, , self.service_info(name))
return None | Add a service to the list of tracked services.
Args:
name (string): A unique short service name for the service
long_name (string): A longer, user friendly name for the service
preregistered (bool): Whether this service is an expected preregistered
service.
notify (bool): Send notifications about this service to all clients
Returns:
awaitable: If notify is True, an awaitable for the notifications.
Otherwise None. |
381,423 | def libvlc_media_player_set_media(p_mi, p_md):
f = _Cfunctions.get(, None) or \
_Cfunction(, ((1,), (1,),), None,
None, MediaPlayer, Media)
return f(p_mi, p_md) | Set the media that will be used by the media_player. If any,
previous md will be released.
@param p_mi: the Media Player.
@param p_md: the Media. Afterwards the p_md can be safely destroyed. |
381,424 | def enable_thread_safety(self):
if self.threadsafe:
return
if self._running.isSet():
raise RuntimeError()
def _getattr(obj, name):
if make_threadsafe:
assert not make_threadsafe_blocking
meth = self._make_threadsafe(meth)
setattr(self, name, meth)
elif make_threadsafe_blocking:
meth = self._make_threadsafe_blocking(meth)
setattr(self, name, meth)
self._threadsafe = True | Enable thread-safety features.
Must be called before start(). |
381,425 | def init_tree(self, tree_alias, context):
request = context.get(, None)
if request is None:
raise SiteTreeError(
)
if id(request) != id(self.current_request):
self.init(context)
tree_alias = self.resolve_var(tree_alias)
tree_alias, sitetree_items = self.get_sitetree(tree_alias)
if not sitetree_items:
return None, None
return tree_alias, sitetree_items | Initializes sitetree in memory.
Returns tuple with resolved tree alias and items on success.
On fail returns (None, None).
:param str|unicode tree_alias:
:param Context context:
:rtype: tuple |
381,426 | def views_show_many(self, ids=None, **kwargs):
"https://developer.zendesk.com/rest_api/docs/core/views
api_path = "/api/v2/views/show_many.json"
api_query = {}
if "query" in kwargs.keys():
api_query.update(kwargs["query"])
del kwargs["query"]
if ids:
api_query.update({
"ids": ids,
})
return self.call(api_path, query=api_query, **kwargs) | https://developer.zendesk.com/rest_api/docs/core/views#list-views-by-id |
381,427 | def open_icmp_firewall(host):
with open(os.devnull, ) as DEVNULL:
return subprocess.Popen("ping -4 -w 1 -n 1 %s" % host,
shell=True,
stdout=DEVNULL,
stderr=DEVNULL).wait() | Temporarily open the ICMP firewall. Tricks Windows into allowing
ICMP packets for a short period of time (~ 1 minute) |
381,428 | def load_and_parse(self):
archives = []
to_return = {}
for name, project in self.all_projects.items():
archives = archives + self.parse_archives_from_project(project)
archive = UnparsedNode(**a)
node_path = self.get_path(archive.resource_type,
archive.package_name,
archive.name)
to_return[node_path] = self.parse_node(
archive,
node_path,
self.all_projects.get(archive.package_name),
archive_config=archive_config)
return to_return | Load and parse archives in a list of projects. Returns a dict
that maps unique ids onto ParsedNodes |
381,429 | def download(directory, filename):
filepath = os.path.join(directory, filename)
if tf.gfile.Exists(filepath):
return filepath
if not tf.gfile.Exists(directory):
tf.gfile.MakeDirs(directory)
url = + filename +
_, zipped_filepath = tempfile.mkstemp(suffix=)
print( % (url, zipped_filepath))
urllib.request.urlretrieve(url, zipped_filepath)
with gzip.open(zipped_filepath, ) as f_in, \
tf.gfile.Open(filepath, ) as f_out:
shutil.copyfileobj(f_in, f_out)
os.remove(zipped_filepath)
return filepath | Download (and unzip) a file from the MNIST dataset if not already done. |
381,430 | def list_metrics(ctx):
config = ctx.obj["CONFIG"]
if not exists(config):
handle_no_cache(ctx)
from wily.commands.list_metrics import list_metrics
list_metrics() | List the available metrics. |
381,431 | def plot(self, origin=(0, 0), ax=None, fill=False, **kwargs):
aper = self.to_aperture()
aper.plot(origin=origin, ax=ax, fill=fill, **kwargs) | Plot the `BoundingBox` on a matplotlib `~matplotlib.axes.Axes`
instance.
Parameters
----------
origin : array_like, optional
The ``(x, y)`` position of the origin of the displayed
image.
ax : `matplotlib.axes.Axes` instance, optional
If `None`, then the current `~matplotlib.axes.Axes` instance
is used.
fill : bool, optional
Set whether to fill the aperture patch. The default is
`False`.
kwargs
Any keyword arguments accepted by `matplotlib.patches.Patch`. |
381,432 | def return_or_raise(cls, response, expected_status_code):
try:
if response.status_code in expected_status_code:
return response
except TypeError:
if response.status_code == expected_status_code:
return response
raise cls(response) | Check for ``expected_status_code``. |
381,433 | def create(self, start_date, end_date, include_subaccounts=values.unset,
status_callback=values.unset, status_callback_method=values.unset):
data = values.of({
: serialize.iso8601_date(start_date),
: serialize.iso8601_date(end_date),
: include_subaccounts,
: status_callback,
: status_callback_method,
})
payload = self._version.create(
,
self._uri,
data=data,
)
return FeedbackSummaryInstance(self._version, payload, account_sid=self._solution[], ) | Create a new FeedbackSummaryInstance
:param date start_date: Only include feedback given on or after this date
:param date end_date: Only include feedback given on or before this date
:param bool include_subaccounts: `true` includes feedback from the specified account and its subaccounts
:param unicode status_callback: The URL that we will request when the feedback summary is complete
:param unicode status_callback_method: The HTTP method we use to make requests to the StatusCallback URL
:returns: Newly created FeedbackSummaryInstance
:rtype: twilio.rest.api.v2010.account.call.feedback_summary.FeedbackSummaryInstance |
381,434 | def iter_columns(condition):
visited = set()
for condition in iter_conditions(condition):
if condition.operation in ("and", "or", "not"):
continue
column = proxied(condition.column)
if column is None:
continue
if column not in visited:
visited.add(column)
yield column
for value in condition.values:
if isinstance(value, ComparisonMixin):
if value not in visited:
visited.add(value)
yield value | Yield all columns in the condition or its inner conditions.
Unwraps proxies when the condition's column (or any of its values) include paths. |
381,435 | def get_collection(self, name):
from sregistry.database.models import Collection
return Collection.query.filter(Collection.name == name).first() | get a collection, if it exists, otherwise return None. |
381,436 | def GetRootKey(self):
regf_key = self._regf_file.get_root_key()
if not regf_key:
return None
return REGFWinRegistryKey(regf_key, key_path=self._key_path_prefix) | Retrieves the root key.
Returns:
WinRegistryKey: Windows Registry root key or None if not available. |
381,437 | async def request(self, method, url=None, *, path=, retries=1,
connection_timeout=60, **kwargs):
GETPOSTre
really calling a partial method that has the argument
pre-completed.
timeoutheadersconnectionclose':
sock._active = False
await sock.close()
except KeyError:
pass
await self.return_to_pool(sock)
except ConnectionError as e:
if retries > 0:
retry = True
retries -= 1
else:
raise e
except Exception as e:
if sock:
await self._handle_exception(e, sock)
raise
except BaseException as e:
if sock:
await sock.close()
raise e
if retry:
return (await self.request(method,
url,
path=path,
retries=retries,
headers=headers,
**kwargs))
return r | This is the template for all of the `http method` methods for
the Session.
Args:
method (str): A http method, such as 'GET' or 'POST'.
url (str): The url the request should be made to.
path (str): An optional kw-arg for use in Session method calls,
for specifying a particular path. Usually to be used in
conjunction with the base_location/endpoint paradigm.
kwargs: Any number of the following:
data (dict or str): Info to be processed as a
body-bound query.
params (dict or str): Info to be processed as a
url-bound query.
headers (dict): User HTTP headers to be used in the
request.
encoding (str): The str representation of the codec to
process the request under.
json (dict): A dict to be formatted as json and sent in
the request body.
files (dict): A dict of `filename:filepath`s to be sent
as multipart.
cookies (dict): A dict of `name:value` cookies to be
passed in request.
callback (func): A callback function to be called on
each bytechunk of of the response body.
timeout (int or float): A numeric representation of the
longest time to wait on a complete response once a
request has been sent.
retries (int): The number of attempts to try against
connection errors.
max_redirects (int): The maximum number of redirects
allowed.
persist_cookies (True or None): Passing True
instantiates a CookieTracker object to manage the
return of cookies to the server under the relevant
domains.
auth (child of AuthBase): An object for handling auth
construction.
When you call something like Session.get() or asks.post(), you're
really calling a partial method that has the 'method' argument
pre-completed. |
381,438 | def get_pgid(path, follow_symlinks=True):
*
if not os.path.exists(path):
raise CommandExecutionError(.format(path))
if follow_symlinks and sys.getwindowsversion().major >= 6:
path = _resolve_symlink(path)
group_name = salt.utils.win_dacl.get_primary_group(path)
return salt.utils.win_dacl.get_sid_string(group_name) | Return the id of the primary group that owns a given file (Windows only)
This function will return the rarely used primary group of a file. This
generally has no bearing on permissions unless intentionally configured
and is most commonly used to provide Unix compatibility (e.g. Services
For Unix, NFS services).
Ensure you know what you are doing before using this function.
Args:
path (str): The path to the file or directory
follow_symlinks (bool):
If the object specified by ``path`` is a symlink, get attributes of
the linked file instead of the symlink itself. Default is True
Returns:
str: The gid of the primary group
CLI Example:
.. code-block:: bash
salt '*' file.get_pgid c:\\temp\\test.txt |
381,439 | def execute(self, args):
_run_atstart()
hook_name = os.path.basename(args[0])
if hook_name in self._hooks:
try:
self._hooks[hook_name]()
except SystemExit as x:
if x.code is None or x.code == 0:
_run_atexit()
raise
_run_atexit()
else:
raise UnregisteredHookError(hook_name) | Execute a registered hook based on args[0] |
381,440 | def get_graph_data(self, graph, benchmark):
if benchmark.get():
param_iter = enumerate(zip(itertools.product(*benchmark[]),
graph.get_steps()))
else:
param_iter = [(None, (None, graph.get_steps()))]
for j, (param, steps) in param_iter:
if param is None:
entry_name = benchmark[]
else:
entry_name = benchmark[] + .format(.join(param))
start_revision = self._get_start_revision(graph, benchmark, entry_name)
threshold = self._get_threshold(graph, benchmark, entry_name)
if start_revision is None:
continue
steps = [step for step in steps if step[1] >= start_revision]
yield j, entry_name, steps, threshold | Iterator over graph data sets
Yields
------
param_idx
Flat index to parameter permutations for parameterized benchmarks.
None if benchmark is not parameterized.
entry_name
Name for the data set. If benchmark is non-parameterized, this is the
benchmark name.
steps
Steps to consider in regression detection.
threshold
User-specified threshold for regression detection. |
381,441 | def pop_all(self, priority=None):
output = []
with self.lock:
if not priority:
priority = self.highest_entry()
if priority:
output = list(self.queue[priority].queue)
self.queue[priority].queue.clear()
return output | NON-BLOCKING POP ALL IN QUEUE, IF ANY |
381,442 | def create_lti_session(self, user_id, roles, realname, email, course_id, task_id, consumer_key, outcome_service_url,
outcome_result_id, tool_name, tool_desc, tool_url, context_title, context_label):
self._destroy_session()
session_id = self._session.session_id
self._session.lti = {
"email": email,
"username": user_id,
"realname": realname,
"roles": roles,
"task": (course_id, task_id),
"outcome_service_url": outcome_service_url,
"outcome_result_id": outcome_result_id,
"consumer_key": consumer_key,
"context_title": context_title,
"context_label": context_label,
"tool_description": tool_desc,
"tool_name": tool_name,
"tool_url": tool_url
}
return session_id | Creates an LTI cookieless session. Returns the new session id |
381,443 | def _SetColour(self, value_list):
if value_list is None:
self._color = None
return
colors = []
for color in value_list:
if color in terminal.SGR:
colors.append(color)
elif color in terminal.FG_COLOR_WORDS:
colors += terminal.FG_COLOR_WORDS[color]
elif color in terminal.BG_COLOR_WORDS:
colors += terminal.BG_COLOR_WORDS[color]
else:
raise ValueError("Invalid colour specification.")
self._color = list(set(colors)) | Sets row's colour attributes to a list of values in terminal.SGR. |
381,444 | def n_chunks(self):
return self._data_source.n_chunks(self.chunksize, stride=self.stride, skip=self.skip) | rough estimate of how many chunks will be processed |
381,445 | def equivalence_transform(compound, from_positions, to_positions, add_bond=True):
warn(
, DeprecationWarning)
from mbuild.port import Port
T = None
if isinstance(from_positions, (list, tuple)) and isinstance(to_positions, (list, tuple)):
equivalence_pairs = zip(from_positions, to_positions)
elif isinstance(from_positions, Port) and isinstance(to_positions, Port):
equivalence_pairs, T = _choose_correct_port(from_positions, to_positions)
from_positions.used = True
to_positions.used = True
else:
equivalence_pairs = [(from_positions, to_positions)]
if not T:
T = _create_equivalence_transform(equivalence_pairs)
atom_positions = compound.xyz_with_ports
atom_positions = T.apply_to(atom_positions)
compound.xyz_with_ports = atom_positions
if add_bond:
if isinstance(from_positions, Port) and isinstance(to_positions, Port):
if not from_positions.anchor or not to_positions.anchor:
warn("Attempting to form bond from port that has no anchor")
else:
from_positions.anchor.parent.add_bond((from_positions.anchor, to_positions.anchor))
to_positions.anchor.parent.add_bond((from_positions.anchor, to_positions.anchor)) | Computes an affine transformation that maps the from_positions to the
respective to_positions, and applies this transformation to the compound.
Parameters
----------
compound : mb.Compound
The Compound to be transformed.
from_positions : np.ndarray, shape=(n, 3), dtype=float
Original positions.
to_positions : np.ndarray, shape=(n, 3), dtype=float
New positions. |
381,446 | def _get_all_files(filename_regex,
path,
base_dir,
excluded_paths=None,
excluded_filename_regex=None):
def replace_backslashes(string):
return string.replace(, )
excluded_paths = _normalize_excluded_paths(base_dir, excluded_paths)
if excluded_paths:
logger.info(, excluded_paths)
logger.info(,
filename_regex, os.path.join(base_dir, path))
if excluded_filename_regex:
logger.info(, excluded_filename_regex)
path_expression = re.compile(replace_backslashes(path))
target_files = []
for root, _, files in os.walk(base_dir):
if not root.startswith(tuple(excluded_paths)) \
and path_expression.search(replace_backslashes(root)):
for filename in files:
filepath = os.path.join(root, filename)
is_file, matched, excluded_filename, excluded_path = \
_set_match_parameters(
filename,
filepath,
filename_regex,
excluded_filename_regex,
excluded_paths)
if is_file and matched and not excluded_filename \
and not excluded_path:
logger.debug(,
filepath)
target_files.append(filepath)
return target_files | Get all files for processing.
This starts iterating from `base_dir` and checks for all files
that look like `filename_regex` under `path` regex excluding
all paths under the `excluded_paths` list, whether they are files
or folders. `excluded_paths` are explicit paths, not regex.
`excluded_filename_regex` are files to be excluded as well. |
381,447 | def make_function_value_private(self, value, value_type, function):
value = self.remove_quotes(value)
if function == "base64":
try:
import base64
value = base64.b64decode(value).decode("utf-8")
except TypeError as e:
self.notify_user("base64(..) error %s" % str(e))
if not self.current_module:
self.notify_user("%s(..) used outside of module or section" % function)
return None
module = self.current_module[-1].split()[0]
if module in CONFIG_FILE_SPECIAL_SECTIONS + I3S_MODULE_NAMES:
self.notify_user(
"%s(..) cannot be used outside of py3status module "
"configuration" % function
)
return None
value = self.value_convert(value, value_type)
module_name = self.current_module[-1]
return PrivateHide(value, module_name) | Wraps converted value so that it is hidden in logs etc.
Note this is not secure just reduces leaking info
Allows base 64 encode stuff using base64() or plain hide() in the
config |
381,448 | def write(self, h, txt=, link=):
"Output text in flowing mode"
txt = self.normalize_text(txt)
cw=self.current_font[]
w=self.w-self.r_margin-self.x
wmax=(w-2*self.c_margin)*1000.0/self.font_size
s=txt.replace("\r",)
nb=len(s)
sep=-1
i=0
j=0
l=0
nl=1
while(i<nb):
c=s[i]
if(c=="\n"):
self.cell(w,h,substr(s,j,i-j),0,2,,0,link)
i+=1
sep=-1
j=i
l=0
if(nl==1):
self.x=self.l_margin
w=self.w-self.r_margin-self.x
wmax=(w-2*self.c_margin)*1000.0/self.font_size
nl+=1
continue
if(c==):
sep=i
if self.unifontsubset:
l += self.get_string_width(c) / self.font_size*1000.0
else:
l += cw.get(c,0)
if(l>wmax):
if(sep==-1):
if(self.x>self.l_margin):
self.x=self.l_margin
self.y+=h
w=self.w-self.r_margin-self.x
wmax=(w-2*self.c_margin)*1000.0/self.font_size
i+=1
nl+=1
continue
if(i==j):
i+=1
self.cell(w,h,substr(s,j,i-j),0,2,,0,link)
else:
self.cell(w,h,substr(s,j,sep-j),0,2,,0,link)
i=sep+1
sep=-1
j=i
l=0
if(nl==1):
self.x=self.l_margin
w=self.w-self.r_margin-self.x
wmax=(w-2*self.c_margin)*1000.0/self.font_size
nl+=1
else:
i+=1
if(i!=j):
self.cell(l/1000.0*self.font_size,h,substr(s,j),0,0,,0,link) | Output text in flowing mode |
381,449 | def unique_iter(src, key=None):
if not is_iterable(src):
raise TypeError( % type(src))
if key is None:
key_func = lambda x: x
elif callable(key):
key_func = key
elif isinstance(key, basestring):
key_func = lambda x: getattr(x, key, x)
else:
raise TypeError( % key)
seen = set()
for i in src:
k = key_func(i)
if k not in seen:
seen.add(k)
yield i
return | Yield unique elements from the iterable, *src*, based on *key*,
in the order in which they first appeared in *src*.
>>> repetitious = [1, 2, 3] * 10
>>> list(unique_iter(repetitious))
[1, 2, 3]
By default, *key* is the object itself, but *key* can either be a
callable or, for convenience, a string name of the attribute on
which to uniqueify objects, falling back on identity when the
attribute is not present.
>>> pleasantries = ['hi', 'hello', 'ok', 'bye', 'yes']
>>> list(unique_iter(pleasantries, key=lambda x: len(x)))
['hi', 'hello', 'bye'] |
381,450 | def to_boulderio(infile, outfile):
seq_reader = sequences.file_reader(infile)
f_out = utils.open_file_write(outfile)
for sequence in seq_reader:
print("SEQUENCE_ID=" + sequence.id, file=f_out)
print("SEQUENCE_TEMPLATE=" + sequence.seq, file=f_out)
print("=", file=f_out)
utils.close(f_out) | Converts input sequence file into a "Boulder-IO format", as used by primer3 |
381,451 | def _set_cluster(self, v, load=False):
if hasattr(v, "_utype"):
v = v._utype(v)
try:
t = YANGDynClass(v,base=cluster.cluster, is_container=, presence=False, yang_name="cluster", rest_name="cluster", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u: {u: u, u: None}}, namespace=, defining_module=, yang_type=, is_config=True)
except (TypeError, ValueError):
raise ValueError({
: ,
: "container",
: ,
})
self.__cluster = t
if hasattr(self, ):
self._set() | Setter method for cluster, mapped from YANG variable /mgmt_cluster/cluster (container)
If this variable is read-only (config: false) in the
source YANG file, then _set_cluster is considered as a private
method. Backends looking to populate this variable should
do so via calling thisObj._set_cluster() directly. |
381,452 | def optional(name, default) -> :
return Wildcard(min_count=1, fixed_size=True, variable_name=name, optional=default) | Create a `Wildcard` that matches a single argument with a default value.
If the wildcard does not match, the substitution will contain the
default value instead.
Args:
name:
The name for the wildcard.
default:
The default value of the wildcard.
Returns:
A n optional wildcard. |
381,453 | def train(self, jsondocs, model_dir):
modelUtil = ModelStorageUtil(model_dir)
modelUtil.makedir()
modelUtil.copy_settings(self.settings)
nerdocs = [json_document_to_estner_document(jsondoc)
for jsondoc in jsondocs]
self.fex.prepare(nerdocs)
self.fex.process(nerdocs)
self.trainer.train(nerdocs, modelUtil.model_filename) | Train a NER model using given documents.
Each word in the documents must have a "label" attribute, which
denote the named entities in the documents.
Parameters
----------
jsondocs: list of JSON-style documents.
The documents used for training the CRF model.
model_dir: str
A directory where the model will be saved. |
381,454 | def extend_peaks(self, prop_thresh=50):
temp_peaks = [i + 1200 for i in self.peaks["peaks"][0]]
temp_peaks.extend([i - 1200 for i in self.peaks["peaks"][0]])
extended_peaks = []
extended_peaks.extend(self.peaks["peaks"][0])
for i in temp_peaks:
nearest_ind = slope.find_nearest_index(self.peaks["peaks"][0], i)
diff = abs(self.peaks["peaks"][0][nearest_ind] - i)
diff = np.mod(diff, 1200)
if diff > prop_thresh:
extended_peaks.append(i)
return extended_peaks | Each peak in the peaks of the object is checked for its presence in
other octaves. If it does not exist, it is created.
prop_thresh is the cent range within which the peak in the other octave
is expected to be present, i.e., only if there is a peak within this
cent range in other octaves, then the peak is considered to be present
in that octave.
Note that this does not change the peaks of the object. It just returns
the extended peaks. |
381,455 | def mach2tas(Mach, H):
a = vsound(H)
Vtas = Mach*a
return Vtas | Mach number to True Airspeed |
381,456 | def deploy(verbose, app):
config = PsiturkConfig()
config.load_config()
config.set("Experiment Configuration", "mode", "deploy")
config.set("Server Parameters", "logfile", "-")
config.set("Shell Parameters", "launch_in_sandbox_mode", "false")
deploy_sandbox_shared_setup(verbose=verbose, app=app) | Deploy app using Heroku to MTurk. |
381,457 | def reduce(self, dimensions=[], function=None, spreadfn=None, **reductions):
if any(dim in self.vdims for dim in dimensions):
raise Exception("Reduce cannot be applied to value dimensions")
function, dims = self._reduce_map(dimensions, function, reductions)
dims = [d for d in self.kdims if d not in dims]
return self.aggregate(dims, function, spreadfn) | Applies reduction along the specified dimension(s).
Allows reducing the values along one or more key dimension
with the supplied function. Supports two signatures:
Reducing with a list of dimensions, e.g.:
ds.reduce(['x'], np.mean)
Defining a reduction using keywords, e.g.:
ds.reduce(x=np.mean)
Args:
dimensions: Dimension(s) to apply reduction on
Defaults to all key dimensions
function: Reduction operation to apply, e.g. numpy.mean
spreadfn: Secondary reduction to compute value spread
Useful for computing a confidence interval, spread, or
standard deviation.
**reductions: Keyword argument defining reduction
Allows reduction to be defined as keyword pair of
dimension and function
Returns:
The Dataset after reductions have been applied. |
381,458 | def all_files(models=[]):
rmodels
def nsort(a, b):
fa = os.path.basename(a).split()
fb = os.path.basename(b).split()
elements_to_remove = []
assert len(fa) == len(fb)
for i in range(0, len(fa)):
if fa[i] == fb[i]:
elements_to_remove.append(fa[i])
for e in elements_to_remove:
fa.remove(e)
fb.remove(e)
assert len(fa) == len(fb)
assert len(fa) == 1
fa = keep_only_digits(fa[0])
fb = keep_only_digits(fb[0])
if fa < fb:
return -1
if fa == fb:
return 0
if fa > fb:
return 1
base = list(map(lambda x: os.path.abspath(x), maybe_inspect_zip(models)))
base.sort(cmp=nsort)
return base | r'''
Return a list of full path of files matching 'models', sorted in human
numerical order (i.e., 0 1 2 ..., 10 11 12, ..., 100, ..., 1000).
Files are supposed to be named identically except one variable component
e.g. the list,
test.weights.e5.lstm1200.ldc93s1.pb
test.weights.e5.lstm1000.ldc93s1.pb
test.weights.e5.lstm800.ldc93s1.pb
gets sorted:
test.weights.e5.lstm800.ldc93s1.pb
test.weights.e5.lstm1000.ldc93s1.pb
test.weights.e5.lstm1200.ldc93s1.pb |
381,459 | def verifyUpdatewcs(fname):
updated = True
numsci,extname = count_sci_extensions(fname)
for n in range(1,numsci+1):
hdr = fits.getheader(fname, extname=extname, extver=n, memmap=False)
if not in hdr:
updated = False
break
return updated | Verify the existence of WCSNAME in the file. If it is not present,
report this to the user and raise an exception. Returns True if WCSNAME
was found in all SCI extensions. |
381,460 | def make_action(self, fn, schema_parser, meta):
validate_input = validate_output = None
if "$input" in meta:
with MarkKey("$input"):
validate_input = schema_parser.parse(meta["$input"])
if "$output" in meta:
with MarkKey("$output"):
validate_output = schema_parser.parse(meta["$output"])
def action(data):
if validate_input:
try:
data = validate_input(data)
except Invalid as ex:
return abort(400, "InvalidData", str(ex))
if isinstance(data, dict):
rv = fn(**data)
else:
rv = fn(data)
else:
rv = fn()
rv, status, headers = unpack(rv)
if validate_output:
try:
rv = validate_output(rv)
except Invalid as ex:
return abort(500, "ServerError", str(ex))
return rv, status, headers
return action | Make resource's method an action
Validate input, output by schema in meta.
If no input schema, call fn without params.
If no output schema, will not validate return value.
Args:
fn: resource's method
schema_parser: for parsing schema in meta
meta: meta data of the action |
381,461 | def get_platform():
platform_data = {
: None,
: None
}
os_name = platform.system()
normalize_os = {
: ,
: ,
:
}
if os_name in normalize_os.keys():
platform_data[] = normalize_os[os_name]
else:
raise Exception(.format(os_name))
maxsize = sys.maxsize
if maxsize == EXPECTED_MAXSIZE_32:
platform_data[] =
elif maxsize == EXPECTED_MAXSIZE_64:
platform_data[] =
else:
platform_data[] =
logger.warning()
return platform_data | Get the current platform data.
Returns a dictionary with keys: `os_name`, `os_bits` |
381,462 | def index(self, value, start=0, end=None):
try:
index = self._dict[value]
except KeyError:
raise ValueError
else:
start = self._fix_neg_index(start)
end = self._fix_end_index(end)
if start <= index and index < end:
return index
else:
raise ValueError | Return the index of value between start and end.
By default, the entire setlist is searched.
This runs in O(1)
Args:
value: The value to find the index of
start (int): The index to start searching at (defaults to 0)
end (int): The index to stop searching at (defaults to the end of the list)
Returns:
int: The index of the value
Raises:
ValueError: If the value is not in the list or outside of start - end
IndexError: If start or end are out of range |
381,463 | def fromDataFrameRDD(cls, rdd, sql_ctx):
result = DataFrame(None, sql_ctx)
return result.from_rdd_of_dataframes(rdd) | Construct a DataFrame from an RDD of DataFrames.
No checking or validation occurs. |
381,464 | def load_vm_uuid_by_name(self, si, vcenter_data_model, vm_name):
path = VMLocation.combine([vcenter_data_model.default_datacenter, vm_name])
paths = path.split()
name = paths[len(paths) - 1]
path = VMLocation.combine(paths[:len(paths) - 1])
vm = self.pv_service.find_vm_by_name(si, path, name)
if not vm:
raise ValueError(.format(path, name))
if isinstance(vm, vim.VirtualMachine):
return vm.config.uuid
raise ValueError(.format(path, name)) | Returns the vm uuid
:param si: Service instance to the vcenter
:param vcenter_data_model: vcenter data model
:param vm_name: the vm name
:return: str uuid |
381,465 | def do_wordwrap(s, width=79, break_long_words=True):
import textwrap
return u.join(textwrap.wrap(s, width=width, expand_tabs=False,
replace_whitespace=False,
break_long_words=break_long_words)) | Return a copy of the string passed to the filter wrapped after
``79`` characters. You can override this default using the first
parameter. If you set the second parameter to `false` Jinja will not
split words apart if they are longer than `width`. |
381,466 | def upgrade_plan_list(self, subid, params=None):
params = update_params(params, {: subid})
return self.request(, params, ) | /v1/server/upgrade_plan_list
GET - account
Retrieve a list of the VPSPLANIDs for which a virtual machine
can be upgraded. An empty response array means that there are
currently no upgrades available.
Link: https://www.vultr.com/api/#server_upgrade_plan_list |
381,467 | def _GetDataStreams(self):
if self._data_streams is None:
if self._directory is None:
self._directory = self._GetDirectory()
self._data_streams = []
if not self._directory and not self.link:
data_stream = DataStream()
self._data_streams.append(data_stream)
return self._data_streams | Retrieves the data streams.
Returns:
list[DataStream]: data streams. |
381,468 | def set_options_values(self, options, parse=False, strict=False):
if strict:
for opt_name in options.keys():
if not self.has_option(opt_name):
raise ValueError(" is not a option of the component" % opt_name)
elif self.option_is_hidden(opt_name):
raise ValueError(" is hidden, you can't set it" % opt_name)
for opt_name, opt in self._options.items():
if opt.hidden:
continue
if opt_name in options:
opt.set(options[opt_name], parse=parse) | Set the options from a dict of values (in string).
:param option_values: the values of options (in format `{"opt_name": "new_value"}`)
:type option_values: dict
:param parse: whether to parse the given value
:type parse: bool
:param strict: if True the given `option_values` dict should only
contains existing options (no other key)
:type strict: bool |
381,469 | def write_reaction(self, value_dict):
con = self.connection or self._connect()
self._initialize(con)
cur = con.cursor()
ase_ids = value_dict[]
energy_corrections = value_dict.get(, {})
key_list = get_key_list(start_index=1)
values = [value_dict[key] for key in key_list]
key_str = get_key_str(, start_index=1)
value_str = get_value_str(values)
insert_command = \
\
.format(key_str, value_str)
cur.execute(insert_command)
id = cur.fetchone()[0]
reaction_system_values = []
for name, ase_id in ase_ids.items():
if name in energy_corrections:
energy_correction = energy_corrections[name]
else:
energy_correction = 0
reaction_system_values += [tuple([name, energy_correction,
ase_id, id])]
key_str = get_key_str()
insert_command = .format(key_str)
execute_values(cur=cur, sql=insert_command,
argslist=reaction_system_values, page_size=1000)
if self.connection is None:
con.commit()
con.close()
return id | Write to reaction_system tables |
381,470 | def kill_current_session(ctx: Context_T) -> None:
ctx_id = context_id(ctx)
if ctx_id in _sessions:
del _sessions[ctx_id] | Force kill current session of the given context,
despite whether it is running or not.
:param ctx: message context |
381,471 | def register_postparsing_hook(self, func: Callable[[plugin.PostparsingData], plugin.PostparsingData]) -> None:
self._validate_postparsing_callable(func)
self._postparsing_hooks.append(func) | Register a function to be called after parsing user input but before running the command |
381,472 | def feed(self, pred, label):
assert pred.shape == label.shape, "{} != {}".format(pred.shape, label.shape)
self.nr_pos += (label == 1).sum()
self.nr_neg += (label == 0).sum()
self.nr_pred_pos += (pred == 1).sum()
self.nr_pred_neg += (pred == 0).sum()
self.corr_pos += ((pred == 1) & (pred == label)).sum()
self.corr_neg += ((pred == 0) & (pred == label)).sum() | Args:
pred (np.ndarray): binary array.
label (np.ndarray): binary array of the same size. |
381,473 | def policy_exists(policy_name,
region=None, key=None, keyid=None, profile=None):
conn = _get_conn(region=region, key=key, keyid=keyid, profile=profile)
try:
conn.get_policy(_get_policy_arn(policy_name,
region=region, key=key, keyid=keyid, profile=profile))
return True
except boto.exception.BotoServerError:
return False | Check to see if policy exists.
CLI Example:
.. code-block:: bash
salt myminion boto_iam.instance_profile_exists myiprofile |
381,474 | def fft_coefficient(self, x, param=None):
if param is None:
param = [{: , : 44}, {: , : 63}, {: , : 0},
{: , : 0}, {: , : 23}]
_fft_coef = feature_calculators.fft_coefficient(x, param)
logging.debug("fft coefficient by tsfresh calculated")
return list(_fft_coef) | As in tsfresh `fft_coefficient <https://github.com/blue-yonder/tsfresh/blob/master/tsfresh/feature_extraction/\
feature_calculators.py#L852>`_ \
Calculates the fourier coefficients of the one-dimensional discrete Fourier Transform for real input by fast \
fourier transformation algorithm
.. math::
A_k = \\sum_{m=0}^{n-1} a_m \\exp \\left \\{ -2 \\pi i \\frac{m k}{n} \\right \\}, \\qquad k = 0, \\ldots , n-1.
The resulting coefficients will be complex, this feature calculator can return the real part (attr=="real"), \
the imaginary part (attr=="imag), the absolute value (attr=""abs) and the angle in degrees (attr=="angle).
:param x: the time series to calculate the feature of
:type x: pandas.Series
:param param: contains dictionaries {"coeff": x, "attr": s} with x int and x >= 0, s str and in ["real", "imag"\
, "abs", "angle"]
:type param: list
:return: the different feature values
:rtype: pandas.Series |
381,475 | def handle_stdin_request(self, timeout=0.1):
msg_rep = self.km.stdin_channel.get_msg(timeout=timeout)
self.handle_iopub()
if self.session_id == msg_rep["parent_header"].get("session"):
real_handler = signal.getsignal(signal.SIGINT)
def double_int(sig,frame):
real_handler(sig,frame)
raise KeyboardInterrupt
signal.signal(signal.SIGINT, double_int)
try:
raw_data = raw_input(msg_rep["content"]["prompt"])
except EOFError:
raw_data =
except KeyboardInterrupt:
sys.stdout.write()
return
finally:
signal.signal(signal.SIGINT, real_handler)
if not (self.km.stdin_channel.msg_ready() or self.km.shell_channel.msg_ready()):
self.km.stdin_channel.input(raw_data) | Method to capture raw_input |
381,476 | def modify_content(request, page_id, content_type, language_id):
page = get_object_or_404(Page, pk=page_id)
perm = request.user.has_perm()
if perm and request.method == :
content = request.POST.get(, False)
if not content:
raise Http404
page = Page.objects.get(pk=page_id)
if settings.PAGE_CONTENT_REVISION:
Content.objects.create_content_if_changed(page, language_id,
content_type, content)
else:
Content.objects.set_or_create_content(page, language_id,
content_type, content)
page.invalidate()
page.save()
return HttpResponse()
raise Http404 | Modify the content of a page. |
381,477 | def query_by_postid(postid, limit=5):
recs = TabPostHist.select().where(
TabPostHist.post_id == postid
).order_by(
TabPostHist.time_update.desc()
).limit(limit)
return recs | Query history of certian records. |
381,478 | def dump_viewset(viewset_class, root_folder, folder_fn=lambda i: ".", sample_size=None):
if os.path.exists(root_folder):
shutil.rmtree(root_folder)
os.makedirs(root_folder)
vs = viewset_class()
vs.request = rf.get()
serializer_class = vs.get_serializer_class()
serializer = serializer_class(context={: vs.request, : , : vs})
renderer = PrettyJSONRenderer()
bar = progressbar.ProgressBar()
for instance in bar(vs.get_queryset()[:sample_size]):
dct = serializer.to_representation(instance)
content = renderer.render(dct)
folder = os.path.join(root_folder, folder_fn(instance))
if not os.path.exists(folder):
os.makedirs(folder)
filename = "%s.json" % instance.slug
f = file(os.path.join(folder, filename), )
f.write(content)
f.close() | Dump the contents of a rest-api queryset to a folder structure.
:param viewset_class: A rest-api viewset to iterate through
:param root_folder: The root folder to write results to.
:param folder_fn: A function to generate a subfolder name for the instance.
:param sample_size: Number of items to process, for test purposes.
:return: |
381,479 | def sdiv(a, b):
if len(a) != len(b):
raise ValueError()
idx = 0
ret = matrix(0, (len(a), 1), )
for m, n in zip(a, b):
try:
ret[idx] = m / n
except ZeroDivisionError:
ret[idx] = 1
finally:
idx += 1
return ret | Safe division: if a == b == 0, sdiv(a, b) == 1 |
381,480 | def stepper_step(self, motor_speed, number_of_steps):
task = asyncio.ensure_future(self.core.stepper_step(motor_speed,
number_of_steps))
self.loop.run_until_complete(task) | Move a stepper motor for the number of steps at the specified speed
This is a FirmataPlus feature.
:param motor_speed: 21 bits of data to set motor speed
:param number_of_steps: 14 bits for number of steps & direction
positive is forward, negative is reverse |
381,481 | def absolute(requestContext, seriesList):
for series in seriesList:
series.name = "absolute(%s)" % (series.name)
series.pathExpression = series.name
for i, value in enumerate(series):
series[i] = safeAbs(value)
return seriesList | Takes one metric or a wildcard seriesList and applies the mathematical abs
function to each datapoint transforming it to its absolute value.
Example::
&target=absolute(Server.instance01.threads.busy)
&target=absolute(Server.instance*.threads.busy) |
381,482 | def _create_gates(self, inputs, memory):
num_gates = 2 * self._calculate_gate_size()
memory = tf.tanh(memory)
inputs = basic.BatchFlatten()(inputs)
gate_inputs = basic.BatchApply(basic.Linear(num_gates), n_dims=1)(inputs)
gate_inputs = tf.expand_dims(gate_inputs, axis=1)
gate_memory = basic.BatchApply(basic.Linear(num_gates))(memory)
gates = tf.split(gate_memory + gate_inputs, num_or_size_splits=2, axis=2)
input_gate, forget_gate = gates
input_gate = tf.sigmoid(input_gate + self._input_bias)
forget_gate = tf.sigmoid(forget_gate + self._forget_bias)
return input_gate, forget_gate | Create input and forget gates for this step using `inputs` and `memory`.
Args:
inputs: Tensor input.
memory: The current state of memory.
Returns:
input_gate: A LSTM-like insert gate.
forget_gate: A LSTM-like forget gate. |
381,483 | def light2mass_interpol(lens_light_model_list, kwargs_lens_light, numPix=100, deltaPix=0.05, subgrid_res=5, center_x=0, center_y=0):
x_grid_sub, y_grid_sub = util.make_grid(numPix=numPix*5, deltapix=deltaPix, subgrid_res=subgrid_res)
import lenstronomy.Util.mask as mask_util
mask = mask_util.mask_sphere(x_grid_sub, y_grid_sub, center_x, center_y, r=1)
x_grid, y_grid = util.make_grid(numPix=numPix, deltapix=deltaPix)
lightModel = LightModel(light_model_list=lens_light_model_list)
flux = lightModel.surface_brightness(x_grid_sub, y_grid_sub, kwargs_lens_light)
flux_norm = np.sum(flux[mask == 1]) / np.sum(mask)
flux /= flux_norm
from lenstronomy.LensModel.numerical_profile_integrals import ConvergenceIntegrals
integral = ConvergenceIntegrals()
convergence_sub = flux
f_x_sub, f_y_sub = integral.deflection_from_kappa(convergence_sub, x_grid_sub, y_grid_sub,
deltaPix=deltaPix/float(subgrid_res))
f_sub = integral.potential_from_kappa(convergence_sub, x_grid_sub, y_grid_sub,
deltaPix=deltaPix/float(subgrid_res))
x_axes_sub, y_axes_sub = util.get_axes(x_grid_sub, y_grid_sub)
from lenstronomy.LensModel.Profiles.interpol import Interpol
interp_func = Interpol()
interp_func.do_interp(x_axes_sub, y_axes_sub, f_sub, f_x_sub, f_y_sub)
x_axes, y_axes = util.get_axes(x_grid, y_grid)
f_ = interp_func.function(x_grid, y_grid)
f_x, f_y = interp_func.derivatives(x_grid, y_grid)
from lenstronomy.LensModel.numeric_lens_differentials import NumericLens
lens_differential = NumericLens(lens_model_list=[])
kwargs = [{: x_axes_sub, : y_axes_sub, : f_sub,
: f_x_sub, : f_y_sub}]
f_xx, f_xy, f_yx, f_yy = lens_differential.hessian(x_grid, y_grid, kwargs)
kwargs_interpol = {: x_axes, : y_axes, : util.array2image(f_),
: util.array2image(f_x), : util.array2image(f_y), : util.array2image(f_xx),
: util.array2image(f_xy), : util.array2image(f_yy)}
return kwargs_interpol | takes a lens light model and turns it numerically in a lens model
(with all lensmodel quantities computed on a grid). Then provides an interpolated grid for the quantities.
:param kwargs_lens_light: lens light keyword argument list
:param numPix: number of pixels per axis for the return interpolation
:param deltaPix: interpolation/pixel size
:param center_x: center of the grid
:param center_y: center of the grid
:param subgrid: subgrid for the numerical integrals
:return: |
381,484 | def get_queue(cls, name, priority=0, **fields_if_new):
queue_kwargs = {: name, : priority}
retries = 0
while retries < 10:
retries += 1
try:
queue, created = cls.get_or_connect(**queue_kwargs)
except IndexError:
continue
except ValueError:
try:
queue = cls.collection(**queue_kwargs).instances()[0]
except IndexError:
continue
else:
created = False
break
if created and fields_if_new:
queue.set_fields(**fields_if_new)
return queue | Get, or create, and return the wanted queue.
If the queue is created, fields in fields_if_new will be set for the new
queue. |
381,485 | def destroy(self):
try:
self.lock()
_logger.debug("Unlocked connection %r to close.", self.container_id)
self._close()
finally:
self.release()
uamqp._Platform.deinitialize() | Close the connection, and close any associated
CBS authentication session. |
381,486 | def _fill_levenshtein_table(self, first, second, update_func, add_pred, clear_pred,
threshold=None):
m, n = len(first), len(second)
if threshold is None:
threshold = 0.0
for a, b in zip(first, second):
threshold += self.get_operation_cost(a, b)
if m > n:
for a in first[n: ]:
threshold += self.get_operation_cost(a, )
elif m < n:
for b in second[m: ]:
threshold += self.get_operation_cost(, b)
threshold *= 2
costs = np.zeros(shape=(m + 1, n + 1), dtype=np.float64)
costs[:] = np.inf
backtraces = [None] * (m + 1)
for i in range(m + 1):
backtraces[i] = [[] for j in range(n + 1)]
costs[0][0] = 0.0
for i in range(m + 1):
for i_right in range(i, min(i + self.max_up_length, m) + 1):
up = first[i: i_right]
max_low_length = self.max_low_lengths_by_up.get(up, -1)
if max_low_length == -1:
continue
up_costs = self.operation_costs[up]
for j in range(n + 1):
if costs[i][j] > threshold:
continue
if len(backtraces[i][j]) == 0 and i + j > 0:
continue
for j_right in range((j if i_right > i else j + 1),
min(j + max_low_length, n) + 1):
low = second[j: j_right]
curr_cost = up_costs.get(low, np.inf)
old_cost = costs[i_right][j_right]
new_cost = costs[i][j] + curr_cost
if new_cost > threshold:
continue
if add_pred(new_cost, old_cost):
if clear_pred(new_cost, old_cost):
backtraces[i_right][j_right] = []
costs[i_right][j_right] = update_func(new_cost, old_cost)
backtraces[i_right][j_right].append((i, j))
return costs, backtraces | Функция, динамически заполняющая таблицу costs стоимости трансдукций,
costs[i][j] --- минимальная стоимость трансдукции,
переводящей first[:i] в second[:j]
Аргументы:
----------
first, second : string
Верхний и нижний элементы трансдукции
update_func : callable, float*float -> bool
update_func(x, y) возвращает новое значение в ячейке таблицы costs,
если старое значение --- y, а потенциально новое значение --- x
везде update_func = min
add_pred : callable : float*float -> bool
add_pred(x, y) возвращает, производится ли добавление
нового элемента p стоимости x в ячейку backtraces[i][j]
в зависимости от значения costs[i][j]=y и текущей стоимости x
clear_pred : callable : float*float -> bool
clear_pred(x, y) возвращает, производится ли очистка
ячейки backtraces[i][j] в зависимости от значения costs[i][j]=y
и текущей стоимости x элемента p, добавляемого в эту ячейку
Возвращает:
-----------
costs : array, dtype=float, shape=(len(first)+1, len(second)+1)
массив, в ячейке с индексами i, j которого хранится
минимальная стоимость трансдукции, переводящей first[:i] в second[:j]
backtraces : array, dtype=list, shape=(len(first)+1, len(second)+1)
массив, в ячейке с индексами i, j которого хранятся
обратные ссылки на предыдущую ячейку в оптимальной трансдукции,
приводящей в ячейку backtraces[i][j] |
381,487 | def helioX(self,*args,**kwargs):
out= self._orb.helioX(*args,**kwargs)
if len(out) == 1: return out[0]
else: return out | NAME:
helioX
PURPOSE:
return Heliocentric Galactic rectangular x-coordinate (aka "X")
INPUT:
t - (optional) time at which to get X (can be Quantity)
obs=[X,Y,Z] - (optional) position of observer
in the Galactocentric frame
(in kpc and km/s) (default=[8.0,0.,0.]; entries can be Quantity)
OR Orbit object that corresponds to the orbit
of the observer
Y is ignored and always assumed to be zero
ro= (Object-wide default) physical scale for distances to use to convert (can be Quantity)
OUTPUT:
helioX(t) in kpc
HISTORY:
2011-02-24 - Written - Bovy (NYU) |
381,488 | def processors(self):
return self.preprocessors + list(reversed(self.compilers)) + self.postprocessors | The list of all processors (preprocessors, compilers,
postprocessors) used to build asset. |
381,489 | def decode(string, base):
base = int(base)
code_string = get_code_string(base)
result = 0
if base == 16:
string = string.lower()
while len(string) > 0:
result *= base
result += code_string.find(string[0])
string = string[1:]
return result | Given a string (string) and a numeric base (base),
decode the string into an integer.
Returns the integer |
381,490 | def get_github_login(self, user, rol, commit_hash, repo):
login = None
try:
login = self.github_logins[user]
except KeyError:
GITHUB_API_URL = "https://api.github.com"
commit_url = GITHUB_API_URL + "/repos/%s/commits/%s" % (repo, commit_hash)
headers = {: + self.github_token}
r = self.requests.get(commit_url, headers=headers)
try:
r.raise_for_status()
except requests.exceptions.ConnectionError as ex:
logger.error("CanX-RateLimit-RemainingX-RateLimit-Resett find commit %s %s", commit_url, ex)
return login
commit_json = r.json()
author_login = None
if in commit_json and commit_json[]:
author_login = commit_json[][]
else:
self.github_logins_author_not_found += 1
user_login = None
if in commit_json and commit_json[]:
user_login = commit_json[][]
else:
self.github_logins_committer_not_found += 1
if rol == "author":
login = author_login
elif rol == "committer":
login = user_login
else:
logger.error("Wrong rol: %s" % (rol))
raise RuntimeError
self.github_logins[user] = login
logger.debug("%s is %s in github (not found %i authors %i committers )", user, login,
self.github_logins_author_not_found,
self.github_logins_committer_not_found)
return login | rol: author or committer |
381,491 | def fcoe_get_interface_output_fcoe_intf_list_fcoe_intf_admin_status(self, **kwargs):
config = ET.Element("config")
fcoe_get_interface = ET.Element("fcoe_get_interface")
config = fcoe_get_interface
output = ET.SubElement(fcoe_get_interface, "output")
fcoe_intf_list = ET.SubElement(output, "fcoe-intf-list")
fcoe_intf_fcoe_port_id_key = ET.SubElement(fcoe_intf_list, "fcoe-intf-fcoe-port-id")
fcoe_intf_fcoe_port_id_key.text = kwargs.pop()
fcoe_intf_admin_status = ET.SubElement(fcoe_intf_list, "fcoe-intf-admin-status")
fcoe_intf_admin_status.text = kwargs.pop()
callback = kwargs.pop(, self._callback)
return callback(config) | Auto Generated Code |
381,492 | def execute(mp):
with mp.open("file1", resampling="bilinear") as raster_file:
if raster_file.is_empty():
return "empty"
dem = raster_file.read()
return dem | Example process for testing.
Inputs:
-------
file1
raster file
Parameters:
-----------
Output:
-------
np.ndarray |
381,493 | def hide_routemap_holder_route_map_content_match_metric_metric_rmm(self, **kwargs):
config = ET.Element("config")
hide_routemap_holder = ET.SubElement(config, "hide-routemap-holder", xmlns="urn:brocade.com:mgmt:brocade-ip-policy")
route_map = ET.SubElement(hide_routemap_holder, "route-map")
name_key = ET.SubElement(route_map, "name")
name_key.text = kwargs.pop()
action_rm_key = ET.SubElement(route_map, "action-rm")
action_rm_key.text = kwargs.pop()
instance_key = ET.SubElement(route_map, "instance")
instance_key.text = kwargs.pop()
content = ET.SubElement(route_map, "content")
match = ET.SubElement(content, "match")
metric = ET.SubElement(match, "metric")
metric_rmm = ET.SubElement(metric, "metric-rmm")
metric_rmm.text = kwargs.pop()
callback = kwargs.pop(, self._callback)
return callback(config) | Auto Generated Code |
381,494 | def create_from_tuples(self, tuples, **args):
amap = {}
subject_label_map = {}
for a in tuples:
subj = a[0]
subject_label_map[subj] = a[1]
if subj not in amap:
amap[subj] = []
amap[subj].append(a[2])
aset = AssociationSet(subject_label_map=subject_label_map, association_map=amap, **args)
return aset | Creates from a list of (subj,subj_name,obj) tuples |
381,495 | def prepare_queues(queues, lock):
for queue in queues:
queue._pebble_lock = lock
with queue.mutex:
queue._pebble_old_method = queue._put
queue._put = MethodType(new_method, queue) | Replaces queue._put() method in order to notify the waiting Condition. |
381,496 | def _BuildMessageFromTypeName(type_name, descriptor_pool):
from google.protobuf import symbol_database
database = symbol_database.Default()
try:
message_descriptor = descriptor_pool.FindMessageTypeByName(type_name)
except KeyError:
return None
message_type = database.GetPrototype(message_descriptor)
return message_type() | Returns a protobuf message instance.
Args:
type_name: Fully-qualified protobuf message type name string.
descriptor_pool: DescriptorPool instance.
Returns:
A Message instance of type matching type_name, or None if the a Descriptor
wasn't found matching type_name. |
381,497 | def add_arguments(self, parser):
test_command = TestCommand()
test_command.add_arguments(parser)
for option in OPTIONS:
parser.add_argument(*option[0], **option[1]) | Command line arguments for Django 1.8+ |
381,498 | def load(self):
self.meta.resolved_path = self.find_data(self.meta.path)
if not self.meta.resolved_path:
raise ImproperlyConfigured("Data file not found".format(self.meta.path))
print("Loading:", self.meta.path)
with open(self.meta.resolved_path, ) as fd:
return fd.read() | Load a file in text mode |
381,499 | def fit(self, X, y, groups=None, **fit_params):
self.scorer_ = check_scoring(self.estimator, scoring=self.scoring)
if pandas_available and isinstance(X, pd.DataFrame):
self.scorer_ = self._wrap_scorer(self.scorer_, X.columns)
if self.cv != "prefit" and self.refit:
self.estimator_ = clone(self.estimator)
self.estimator_.fit(X, y, **fit_params)
X = check_array(X)
if self.cv not in (None, "prefit"):
si = self._cv_scores_importances(X, y, groups=groups, **fit_params)
else:
si = self._non_cv_scores_importances(X, y)
scores, results = si
self.scores_ = np.array(scores)
self.results_ = results
self.feature_importances_ = np.mean(results, axis=0)
self.feature_importances_std_ = np.std(results, axis=0)
return self | Compute ``feature_importances_`` attribute and optionally
fit the base estimator.
Parameters
----------
X : array-like of shape (n_samples, n_features)
The training input samples.
y : array-like, shape (n_samples,)
The target values (integers that correspond to classes in
classification, real numbers in regression).
groups : array-like, with shape (n_samples,), optional
Group labels for the samples used while splitting the dataset into
train/test set.
**fit_params : Other estimator specific parameters
Returns
-------
self : object
Returns self. |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.