Unnamed: 0
int64 0
389k
| code
stringlengths 26
79.6k
| docstring
stringlengths 1
46.9k
|
---|---|---|
381,800 | def cache_control_expires(num_hours):
num_seconds = int(num_hours * 60 * 60)
def decorator(func):
@wraps(func)
def inner(request, *args, **kwargs):
response = func(request, *args, **kwargs)
patch_response_headers(response, num_seconds)
return response
return inner
return decorator | Set the appropriate Cache-Control and Expires headers for the given
number of hours. |
381,801 | def to_meshpoint(meshcode, lat_multiplier, lon_multiplier):
def mesh_cord(func_higher_cord, func_unit_cord, func_multiplier):
return func_higher_cord() + func_unit_cord() * func_multiplier()
lat_multiplier_lv = lambda: lat_multiplier
lon_multiplier_lv = lambda: lon_multiplier
lat_multiplier_lv1 = _functools.partial(
lambda meshcode: int(meshcode[0:2]), meshcode=meshcode)
lon_multiplier_lv1 = _functools.partial(
lambda meshcode: int(meshcode[2:4]), meshcode=meshcode)
lat_multiplier_40000 = _functools.partial(
lambda meshcode: int(bin(int(meshcode[4:5])-1)[2:].zfill(2)[0:1]), meshcode=meshcode)
lon_multiplier_40000 = _functools.partial(
lambda meshcode: int(bin(int(meshcode[4:5])-1)[2:].zfill(2)[1:2]), meshcode=meshcode)
lat_multiplier_20000 = _functools.partial(
lambda meshcode: int(bin(int(meshcode[5:6])-1)[2:].zfill(2)[0:1]), meshcode=meshcode)
lon_multiplier_20000 = _functools.partial(
lambda meshcode: int(bin(int(meshcode[5:6])-1)[2:].zfill(2)[1:2]), meshcode=meshcode)
lat_multiplier_16000 = _functools.partial(
lambda meshcode: int(meshcode[4:5])/2, meshcode=meshcode)
lon_multiplier_16000 = _functools.partial(
lambda meshcode: int(meshcode[5:6])/2, meshcode=meshcode)
lat_multiplier_lv2 = _functools.partial(
lambda meshcode: int(meshcode[4:5]), meshcode=meshcode)
lon_multiplier_lv2 = _functools.partial(
lambda meshcode: int(meshcode[5:6]), meshcode=meshcode)
lat_multiplier_8000 = _functools.partial(
lambda meshcode: int(meshcode[4:5]), meshcode=meshcode)
lon_multiplier_8000 = _functools.partial(
lambda meshcode: int(meshcode[5:6]), meshcode=meshcode)
lat_multiplier_5000 = _functools.partial(
lambda meshcode: int(bin(int(meshcode[6:7])-1)[2:].zfill(2)[0:1]), meshcode=meshcode)
lon_multiplier_5000 = _functools.partial(
lambda meshcode: int(bin(int(meshcode[6:7])-1)[2:].zfill(2)[1:2]), meshcode=meshcode)
lat_multiplier_4000 = _functools.partial(
lambda meshcode: int(bin(int(meshcode[7:8])-1)[2:].zfill(2)[0:1]), meshcode=meshcode)
lon_multiplier_4000 = _functools.partial(
lambda meshcode: int(bin(int(meshcode[7:8])-1)[2:].zfill(2)[1:2]), meshcode=meshcode)
lat_multiplier_2500 = _functools.partial(
lambda meshcode: int(bin(int(meshcode[7:8])-1)[2:].zfill(2)[0:1]), meshcode=meshcode)
lon_multiplier_2500 = _functools.partial(
lambda meshcode: int(bin(int(meshcode[7:8])-1)[2:].zfill(2)[1:2]), meshcode=meshcode)
lat_multiplier_2000 = _functools.partial(
lambda meshcode: int(meshcode[6:7])/2, meshcode=meshcode)
lon_multiplier_2000 = _functools.partial(
lambda meshcode: int(meshcode[7:8])/2, meshcode=meshcode)
lat_multiplier_lv3 = _functools.partial(
lambda meshcode: int(meshcode[6:7]), meshcode=meshcode)
lon_multiplier_lv3 = _functools.partial(
lambda meshcode: int(meshcode[7:8]), meshcode=meshcode)
lat_multiplier_lv4 = _functools.partial(
lambda meshcode: int(bin(int(meshcode[8:9])-1)[2:].zfill(2)[0:1]), meshcode=meshcode)
lon_multiplier_lv4 = _functools.partial(
lambda meshcode: int(bin(int(meshcode[8:9])-1)[2:].zfill(2)[1:2]), meshcode=meshcode)
lat_multiplier_lv5 = _functools.partial(
lambda meshcode: int(bin(int(meshcode[9:10])-1)[2:].zfill(2)[0:1]), meshcode=meshcode)
lon_multiplier_lv5 = _functools.partial(
lambda meshcode: int(bin(int(meshcode[9:10])-1)[2:].zfill(2)[1:2]), meshcode=meshcode)
lat_multiplier_lv6 = _functools.partial(
lambda meshcode: int(bin(int(meshcode[10:11])-1)[2:].zfill(2)[0:1]), meshcode=meshcode)
lon_multiplier_lv6 = _functools.partial(
lambda meshcode: int(bin(int(meshcode[10:11])-1)[2:].zfill(2)[1:2]), meshcode=meshcode)
mesh_lv1_default_lat = _functools.partial(
mesh_cord,
func_higher_cord=lambda: 0,
func_unit_cord=_unit_lat_lv1,
func_multiplier=lat_multiplier_lv1)
mesh_lv1_default_lon = _functools.partial(
mesh_cord,
func_higher_cord=lambda: 100,
func_unit_cord=_unit_lon_lv1,
func_multiplier=lon_multiplier_lv1)
mesh_40000_default_lat = _functools.partial(
mesh_cord,
func_higher_cord=mesh_lv1_default_lat,
func_unit_cord=_unit_lat_40000,
func_multiplier=lat_multiplier_40000)
mesh_40000_default_lon = _functools.partial(
mesh_cord,
func_higher_cord=mesh_lv1_default_lon,
func_unit_cord=_unit_lon_40000,
func_multiplier=lon_multiplier_40000)
mesh_20000_default_lat = _functools.partial(
mesh_cord,
func_higher_cord=mesh_40000_default_lat,
func_unit_cord=_unit_lat_20000,
func_multiplier=lat_multiplier_20000)
mesh_20000_default_lon = _functools.partial(
mesh_cord,
func_higher_cord=mesh_40000_default_lon,
func_unit_cord=_unit_lon_20000,
func_multiplier=lon_multiplier_20000)
mesh_16000_default_lat = _functools.partial(
mesh_cord,
func_higher_cord=mesh_lv1_default_lat,
func_unit_cord=_unit_lat_16000,
func_multiplier=lat_multiplier_16000)
mesh_16000_default_lon = _functools.partial(
mesh_cord,
func_higher_cord=mesh_lv1_default_lon,
func_unit_cord=_unit_lon_16000,
func_multiplier=lon_multiplier_16000)
mesh_lv2_default_lat = _functools.partial(
mesh_cord,
func_higher_cord=mesh_lv1_default_lat,
func_unit_cord=_unit_lat_lv2,
func_multiplier=lat_multiplier_lv2)
mesh_lv2_default_lon = _functools.partial(
mesh_cord,
func_higher_cord=mesh_lv1_default_lon,
func_unit_cord=_unit_lon_lv2,
func_multiplier=lon_multiplier_lv2)
mesh_8000_default_lat = _functools.partial(
mesh_cord,
func_higher_cord=mesh_lv1_default_lat,
func_unit_cord=_unit_lat_8000,
func_multiplier=lat_multiplier_8000)
mesh_8000_default_lon = _functools.partial(
mesh_cord,
func_higher_cord=mesh_lv1_default_lon,
func_unit_cord=_unit_lon_8000,
func_multiplier=lon_multiplier_8000)
mesh_5000_default_lat = _functools.partial(
mesh_cord,
func_higher_cord=mesh_lv2_default_lat,
func_unit_cord=_unit_lat_5000,
func_multiplier=lat_multiplier_5000)
mesh_5000_default_lon = _functools.partial(
mesh_cord,
func_higher_cord=mesh_lv2_default_lon,
func_unit_cord=_unit_lon_5000,
func_multiplier=lon_multiplier_5000)
mesh_4000_default_lat = _functools.partial(
mesh_cord,
func_higher_cord=mesh_8000_default_lat,
func_unit_cord=_unit_lat_4000,
func_multiplier=lat_multiplier_4000)
mesh_4000_default_lon = _functools.partial(
mesh_cord,
func_higher_cord=mesh_8000_default_lon,
func_unit_cord=_unit_lon_4000,
func_multiplier=lon_multiplier_4000)
mesh_2500_default_lat = _functools.partial(
mesh_cord,
func_higher_cord=mesh_5000_default_lat,
func_unit_cord=_unit_lat_2500,
func_multiplier=lat_multiplier_2500)
mesh_2500_default_lon = _functools.partial(
mesh_cord,
func_higher_cord=mesh_5000_default_lon,
func_unit_cord=_unit_lon_2500,
func_multiplier=lon_multiplier_2500)
mesh_2000_default_lat = _functools.partial(
mesh_cord,
func_higher_cord=mesh_lv2_default_lat,
func_unit_cord=_unit_lat_2000,
func_multiplier=lat_multiplier_2000)
mesh_2000_default_lon = _functools.partial(
mesh_cord,
func_higher_cord=mesh_lv2_default_lon,
func_unit_cord=_unit_lon_2000,
func_multiplier=lon_multiplier_2000)
mesh_lv3_default_lat = _functools.partial(
mesh_cord,
func_higher_cord=mesh_lv2_default_lat,
func_unit_cord=_unit_lat_lv3,
func_multiplier=lat_multiplier_lv3)
mesh_lv3_default_lon = _functools.partial(
mesh_cord,
func_higher_cord=mesh_lv2_default_lon,
func_unit_cord=_unit_lon_lv3,
func_multiplier=lon_multiplier_lv3)
mesh_lv4_default_lat = _functools.partial(
mesh_cord,
func_higher_cord=mesh_lv3_default_lat,
func_unit_cord=_unit_lat_lv4,
func_multiplier=lat_multiplier_lv4)
mesh_lv4_default_lon = _functools.partial(
mesh_cord,
func_higher_cord=mesh_lv3_default_lon,
func_unit_cord=_unit_lon_lv4,
func_multiplier=lon_multiplier_lv4)
mesh_lv5_default_lat = _functools.partial(
mesh_cord,
func_higher_cord=mesh_lv4_default_lat,
func_unit_cord=_unit_lat_lv5,
func_multiplier=lat_multiplier_lv5)
mesh_lv5_default_lon = _functools.partial(
mesh_cord,
func_higher_cord=mesh_lv4_default_lon,
func_unit_cord=_unit_lon_lv5,
func_multiplier=lon_multiplier_lv5)
mesh_lv6_default_lat = _functools.partial(
mesh_cord,
func_higher_cord=mesh_lv5_default_lat,
func_unit_cord=_unit_lat_lv6,
func_multiplier=lat_multiplier_lv6)
mesh_lv6_default_lon = _functools.partial(
mesh_cord,
func_higher_cord=mesh_lv5_default_lon,
func_unit_cord=_unit_lon_lv6,
func_multiplier=lon_multiplier_lv6)
mesh_lv1_lat = _functools.partial(
mesh_cord,
func_higher_cord=mesh_lv1_default_lat,
func_unit_cord=_unit_lat_lv1,
func_multiplier=lat_multiplier_lv)
mesh_lv1_lon = _functools.partial(
mesh_cord,
func_higher_cord=mesh_lv1_default_lon,
func_unit_cord=_unit_lon_lv1,
func_multiplier=lon_multiplier_lv)
mesh_40000_lat = _functools.partial(
mesh_cord,
func_higher_cord=mesh_40000_default_lat,
func_unit_cord=_unit_lat_40000,
func_multiplier=lat_multiplier_lv)
mesh_40000_lon = _functools.partial(
mesh_cord,
func_higher_cord=mesh_40000_default_lon,
func_unit_cord=_unit_lon_40000,
func_multiplier=lon_multiplier_lv)
mesh_20000_lat = _functools.partial(
mesh_cord,
func_higher_cord=mesh_20000_default_lat,
func_unit_cord=_unit_lat_20000,
func_multiplier=lat_multiplier_lv)
mesh_20000_lon = _functools.partial(
mesh_cord,
func_higher_cord=mesh_20000_default_lon,
func_unit_cord=_unit_lon_20000,
func_multiplier=lon_multiplier_lv)
mesh_16000_lat = _functools.partial(
mesh_cord,
func_higher_cord=mesh_16000_default_lat,
func_unit_cord=_unit_lat_16000,
func_multiplier=lat_multiplier_lv)
mesh_16000_lon = _functools.partial(
mesh_cord,
func_higher_cord=mesh_16000_default_lon,
func_unit_cord=_unit_lon_16000,
func_multiplier=lon_multiplier_lv)
mesh_lv2_lat = _functools.partial(
mesh_cord,
func_higher_cord=mesh_lv2_default_lat,
func_unit_cord=_unit_lat_lv2,
func_multiplier=lat_multiplier_lv)
mesh_lv2_lon = _functools.partial(
mesh_cord,
func_higher_cord=mesh_lv2_default_lon,
func_unit_cord=_unit_lon_lv2,
func_multiplier=lon_multiplier_lv)
mesh_8000_lat = _functools.partial(
mesh_cord,
func_higher_cord=mesh_8000_default_lat,
func_unit_cord=_unit_lat_8000,
func_multiplier=lat_multiplier_lv)
mesh_8000_lon = _functools.partial(
mesh_cord,
func_higher_cord=mesh_8000_default_lon,
func_unit_cord=_unit_lon_8000,
func_multiplier=lon_multiplier_lv)
mesh_5000_lat = _functools.partial(
mesh_cord,
func_higher_cord=mesh_5000_default_lat,
func_unit_cord=_unit_lat_5000,
func_multiplier=lat_multiplier_lv)
mesh_5000_lon = _functools.partial(
mesh_cord,
func_higher_cord=mesh_5000_default_lon,
func_unit_cord=_unit_lon_5000,
func_multiplier=lon_multiplier_lv)
mesh_4000_lat = _functools.partial(
mesh_cord,
func_higher_cord=mesh_4000_default_lat,
func_unit_cord=_unit_lat_4000,
func_multiplier=lat_multiplier_lv)
mesh_4000_lon = _functools.partial(
mesh_cord,
func_higher_cord=mesh_4000_default_lon,
func_unit_cord=_unit_lon_4000,
func_multiplier=lon_multiplier_lv)
mesh_2500_lat = _functools.partial(
mesh_cord,
func_higher_cord=mesh_2500_default_lat,
func_unit_cord=_unit_lat_2500,
func_multiplier=lat_multiplier_lv)
mesh_2500_lon = _functools.partial(
mesh_cord,
func_higher_cord=mesh_2500_default_lon,
func_unit_cord=_unit_lon_2500,
func_multiplier=lon_multiplier_lv)
mesh_2000_lat = _functools.partial(
mesh_cord,
func_higher_cord=mesh_2000_default_lat,
func_unit_cord=_unit_lat_2000,
func_multiplier=lat_multiplier_lv)
mesh_2000_lon = _functools.partial(
mesh_cord,
func_higher_cord=mesh_2000_default_lon,
func_unit_cord=_unit_lon_2000,
func_multiplier=lon_multiplier_lv)
mesh_lv3_lat = _functools.partial(
mesh_cord,
func_higher_cord=mesh_lv3_default_lat,
func_unit_cord=_unit_lat_lv3,
func_multiplier=lat_multiplier_lv)
mesh_lv3_lon = _functools.partial(
mesh_cord,
func_higher_cord=mesh_lv3_default_lon,
func_unit_cord=_unit_lon_lv3,
func_multiplier=lon_multiplier_lv)
mesh_lv4_lat = _functools.partial(
mesh_cord,
func_higher_cord=mesh_lv4_default_lat,
func_unit_cord=_unit_lat_lv4,
func_multiplier=lat_multiplier_lv)
mesh_lv4_lon = _functools.partial(
mesh_cord,
func_higher_cord=mesh_lv4_default_lon,
func_unit_cord=_unit_lon_lv4,
func_multiplier=lon_multiplier_lv)
mesh_lv5_lat = _functools.partial(
mesh_cord,
func_higher_cord=mesh_lv5_default_lat,
func_unit_cord=_unit_lat_lv5,
func_multiplier=lat_multiplier_lv)
mesh_lv5_lon = _functools.partial(
mesh_cord,
func_higher_cord=mesh_lv5_default_lon,
func_unit_cord=_unit_lon_lv5,
func_multiplier=lon_multiplier_lv)
mesh_lv6_lat = _functools.partial(
mesh_cord,
func_higher_cord=mesh_lv6_default_lat,
func_unit_cord=_unit_lat_lv6,
func_multiplier=lat_multiplier_lv)
mesh_lv6_lon = _functools.partial(
mesh_cord,
func_higher_cord=mesh_lv6_default_lon,
func_unit_cord=_unit_lon_lv6,
func_multiplier=lon_multiplier_lv)
level = to_meshlevel(meshcode)
if level == 1:
return mesh_lv1_lat(), mesh_lv1_lon()
if level == 40000:
return mesh_40000_lat(), mesh_40000_lon()
if level == 20000:
return mesh_20000_lat(), mesh_20000_lon()
if level == 16000:
return mesh_16000_lat(), mesh_16000_lon()
if level == 2:
return mesh_lv2_lat(), mesh_lv2_lon()
if level == 8000:
return mesh_8000_lat(), mesh_8000_lon()
if level == 5000:
return mesh_5000_lat(), mesh_5000_lon()
if level == 4000:
return mesh_4000_lat(), mesh_4000_lon()
if level == 2500:
return mesh_2500_lat(), mesh_2500_lon()
if level == 2000:
return mesh_2000_lat(), mesh_2000_lon()
if level == 3:
return mesh_lv3_lat(), mesh_lv3_lon()
if level == 4:
return mesh_lv4_lat(), mesh_lv4_lon()
if level == 5:
return mesh_lv5_lat(), mesh_lv5_lon()
if level == 6:
return mesh_lv6_lat(), mesh_lv6_lon()
raise ValueError("the level is unsupported.") | 地域メッシュコードから緯度経度を算出する。
下記のメッシュに対応している。
1次(80km四方):1
40倍(40km四方):40000
20倍(20km四方):20000
16倍(16km四方):16000
2次(10km四方):2
8倍(8km四方):8000
5倍(5km四方):5000
4倍(4km四方):4000
2.5倍(2.5km四方):2500
2倍(2km四方):2000
3次(1km四方):3
4次(500m四方):4
5次(250m四方):5
6次(125m四方):6
Args:
meshcode: 指定次の地域メッシュコード
lat_multiplier: 当該メッシュの基準点(南西端)から、緯度座標上の点の位置を当該メッシュの単位緯度の倍数で指定
lon_multiplier: 当該メッシュの基準点(南西端)から、経度座標上の点の位置を当該メッシュの単位経度の倍数で指定
Return:
lat: 世界測地系の緯度(度単位)
lon: 世界測地系の経度(度単位) |
381,802 | def MCLA(hdf5_file_name, cluster_runs, verbose = False, N_clusters_max = None):
print()
print()
if N_clusters_max == None:
N_clusters_max = int(np.nanmax(cluster_runs)) + 1
N_runs = cluster_runs.shape[0]
N_samples = cluster_runs.shape[1]
print("INFO: Cluster_Ensembles: MCLA: preparing graph for meta-clustering.")
hypergraph_adjacency = load_hypergraph_adjacency(hdf5_file_name)
w = hypergraph_adjacency.sum(axis = 1)
N_rows = hypergraph_adjacency.shape[0]
print("INFO: Cluster_Ensembles: MCLA: done filling hypergraph adjacency matrix. "
"Starting computation of Jaccard similarity matrix.")
with tables.open_file(hdf5_file_name, ) as fileh:
FILTERS = get_compression_filter(4 * (N_rows ** 2))
similarities_MCLA = fileh.create_carray(fileh.root.consensus_group,
, tables.Float32Atom(),
(N_rows, N_rows), "Matrix of pairwise Jaccard "
"similarity scores", filters = FILTERS)
scale_factor = 100.0
print("INFO: Cluster_Ensembles: MCLA: "
"starting computation of Jaccard similarity matrix.")
squared_MCLA = hypergraph_adjacency.dot(hypergraph_adjacency.transpose())
squared_sums = hypergraph_adjacency.sum(axis = 1)
squared_sums = np.squeeze(np.asarray(squared_sums))
chunks_size = get_chunk_size(N_rows, 7)
for i in range(0, N_rows, chunks_size):
n_dim = min(chunks_size, N_rows - i)
temp = squared_MCLA[i:min(i+chunks_size, N_rows), :].todense()
temp = np.squeeze(np.asarray(temp))
x = squared_sums[i:min(i+chunks_size, N_rows)]
x = x.reshape(-1, 1)
x = np.dot(x, np.ones((1, squared_sums.size)))
y = np.dot(np.ones((n_dim, 1)), squared_sums.reshape(1, -1))
temp = np.divide(temp, x + y - temp)
temp *= scale_factor
Jaccard_matrix = np.rint(temp)
similarities_MCLA[i:min(i+chunks_size, N_rows)] = Jaccard_matrix
del Jaccard_matrix, temp, x, y
gc.collect()
print("INFO: Cluster_Ensembles: MCLA: done computing the matrix of "
"pairwise Jaccard similarity scores.")
cluster_labels = cmetis(hdf5_file_name, N_clusters_max, w)
cluster_labels = one_to_max(cluster_labels)
N_consensus = np.amax(cluster_labels) + 1
fileh = tables.open_file(hdf5_file_name, )
FILTERS = get_compression_filter(4 * N_consensus * N_samples)
clb_cum = fileh.create_carray(fileh.root.consensus_group, ,
tables.Float32Atom(), (N_consensus, N_samples),
,
filters = FILTERS)
chunks_size = get_chunk_size(N_samples, 7)
for i in range(0, N_consensus, chunks_size):
x = min(chunks_size, N_consensus - i)
matched_clusters = np.where(cluster_labels == np.reshape(np.arange(i, min(i + chunks_size, N_consensus)), newshape = (x, 1)))
M = np.zeros((x, N_samples))
for j in range(x):
coord = np.where(matched_clusters[0] == j)[0]
M[j] = np.asarray(hypergraph_adjacency[matched_clusters[1][coord], :].mean(axis = 0))
clb_cum[i:min(i+chunks_size, N_consensus)] = M
del hypergraph_adjacency
gc.collect()
chunks_size = get_chunk_size(N_consensus, 4)
N_chunks, remainder = divmod(N_samples, chunks_size)
if N_chunks == 0:
null_columns = np.where(clb_cum[:].sum(axis = 0) == 0)[0]
else:
szumsz = np.zeros(0)
for i in range(N_chunks):
M = clb_cum[:, i*chunks_size:(i+1)*chunks_size]
szumsz = np.append(szumsz, M.sum(axis = 0))
if remainder != 0:
M = clb_cum[:, N_chunks*chunks_size:N_samples]
szumsz = np.append(szumsz, M.sum(axis = 0))
null_columns = np.where(szumsz == 0)[0]
if null_columns.size != 0:
print("INFO: Cluster_Ensembles: MCLA: {} objects with all zero associations "
"in matrix of meta-clusters.".format(null_columns.size))
clb_cum[:, null_columns] = np.random.rand(N_consensus, null_columns.size)
random_state = np.random.RandomState()
tmp = fileh.create_carray(fileh.root.consensus_group, , tables.Float32Atom(),
(N_consensus, N_samples), "Temporary matrix to help with "
"collapsing to meta-hyper-edges", filters = FILTERS)
chunks_size = get_chunk_size(N_samples, 2)
N_chunks, remainder = divmod(N_consensus, chunks_size)
if N_chunks == 0:
tmp[:] = random_state.rand(N_consensus, N_samples)
else:
for i in range(N_chunks):
tmp[i*chunks_size:(i+1)*chunks_size] = random_state.rand(chunks_size, N_samples)
if remainder !=0:
tmp[N_chunks*chunks_size:N_consensus] = random_state.rand(remainder, N_samples)
expr = tables.Expr("clb_cum + (tmp / 10000)")
expr.set_output(clb_cum)
expr.eval()
expr = tables.Expr("abs(tmp)")
expr.set_output(tmp)
expr.eval()
chunks_size = get_chunk_size(N_consensus, 2)
N_chunks, remainder = divmod(N_samples, chunks_size)
if N_chunks == 0:
sum_diag = tmp[:].sum(axis = 0)
else:
sum_diag = np.empty(0)
for i in range(N_chunks):
M = tmp[:, i*chunks_size:(i+1)*chunks_size]
sum_diag = np.append(sum_diag, M.sum(axis = 0))
if remainder != 0:
M = tmp[:, N_chunks*chunks_size:N_samples]
sum_diag = np.append(sum_diag, M.sum(axis = 0))
fileh.remove_node(fileh.root.consensus_group, "tmp")
inv_sum_diag = np.reciprocal(sum_diag.astype(float))
if N_chunks == 0:
clb_cum *= inv_sum_diag
max_entries = np.amax(clb_cum, axis = 0)
else:
max_entries = np.zeros(N_samples)
for i in range(N_chunks):
clb_cum[:, i*chunks_size:(i+1)*chunks_size] *= inv_sum_diag[i*chunks_size:(i+1)*chunks_size]
max_entries[i*chunks_size:(i+1)*chunks_size] = np.amax(clb_cum[:, i*chunks_size:(i+1)*chunks_size], axis = 0)
if remainder != 0:
clb_cum[:, N_chunks*chunks_size:N_samples] *= inv_sum_diag[N_chunks*chunks_size:N_samples]
max_entries[N_chunks*chunks_size:N_samples] = np.amax(clb_cum[:, N_chunks*chunks_size:N_samples], axis = 0)
cluster_labels = np.zeros(N_samples, dtype = int)
winner_probabilities = np.zeros(N_samples)
chunks_size = get_chunk_size(N_samples, 2)
for i in reversed(range(0, N_consensus, chunks_size)):
ind = np.where(np.tile(max_entries, (min(chunks_size, N_consensus - i), 1)) == clb_cum[i:min(i+chunks_size, N_consensus)])
cluster_labels[ind[1]] = i + ind[0]
winner_probabilities[ind[1]] = clb_cum[(ind[0] + i, ind[1])]
cluster_labels = one_to_max(cluster_labels)
print("INFO: Cluster_Ensembles: MCLA: delivering "
"{} clusters.".format(np.unique(cluster_labels).size))
print("INFO: Cluster_Ensembles: MCLA: average posterior "
"probability is {}".format(np.mean(winner_probabilities)))
if cluster_labels.size <= 7:
print("INFO: Cluster_Ensembles: MCLA: the winning posterior probabilities are:")
print(winner_probabilities)
print("'INFO: Cluster_Ensembles: MCLA: the full posterior probabilities are:")
print(clb_cum)
fileh.remove_node(fileh.root.consensus_group, "clb_cum")
fileh.close()
return cluster_labels | Meta-CLustering Algorithm for a consensus function.
Parameters
----------
hdf5_file_name : file handle or string
cluster_runs : array of shape (n_partitions, n_samples)
verbose : bool, optional (default = False)
N_clusters_max : int, optional (default = None)
Returns
-------
A vector specifying the cluster label to which each sample has been assigned
by the MCLA approximation algorithm for consensus clustering.
Reference
---------
A. Strehl and J. Ghosh, "Cluster Ensembles - A Knowledge Reuse Framework
for Combining Multiple Partitions".
In: Journal of Machine Learning Research, 3, pp. 583-617. 2002 |
381,803 | def restore_data(self, data_dict):
session[self._base_key] = data_dict
self._data_dict = session[self._base_key] | Restore the data dict - update the flask session and this object |
381,804 | def add_copies(self, node, parent, elem, minel):
rep = 0 if minel is None else int(minel.arg) - 1
for i in range(rep):
parent.append(copy.deepcopy(elem)) | Add appropriate number of `elem` copies to `parent`. |
381,805 | def get_service_status(service):
dbs = db.get_session()
srvs = dbs.query(db.ServiceStates).filter(db.ServiceStates.type == service)
if srvs.count():
return srvs[0].status
return db.ServiceStatus.STOPPED | Update the status of a particular service in the database. |
381,806 | def incr(self, field, by=1):
return self._client.hincrby(self.key_prefix, field, by) | :see::meth:RedisMap.incr |
381,807 | def decode_address(self, addr):
if _debug: Address._debug("decode_address %r (%s)", addr, type(addr))
self.addrType = Address.localStationAddr
self.addrNet = None
if addr == "*":
if _debug: Address._debug(" - localBroadcast")
self.addrType = Address.localBroadcastAddr
self.addrNet = None
self.addrAddr = None
self.addrLen = None
elif addr == "*:*":
if _debug: Address._debug(" - globalBroadcast")
self.addrType = Address.globalBroadcastAddr
self.addrNet = None
self.addrAddr = None
self.addrLen = None
elif isinstance(addr, int):
if _debug: Address._debug(" - int")
if (addr < 0) or (addr >= 256):
raise ValueError("address out of range")
self.addrAddr = struct.pack(, addr)
self.addrLen = 1
elif isinstance(addr, basestring):
if _debug: Address._debug(" - str")
m = ip_address_mask_port_re.match(addr)
if m:
if _debug: Address._debug(" - IP address")
net, addr, mask, port = m.groups()
if not mask: mask =
if not port: port =
if _debug: Address._debug(" - net, addr, mask, port: %r, %r, %r, %r", net, addr, mask, port)
if net:
net = int(net)
if (net >= 65535):
raise ValueError("network out of range")
self.addrType = Address.remoteStationAddr
self.addrNet = net
self.addrPort = int(port)
self.addrTuple = (addr, self.addrPort)
addrstr = socket.inet_aton(addr)
self.addrIP = struct.unpack(, addrstr)[0]
self.addrMask = (_long_mask << (32 - int(mask))) & _long_mask
self.addrHost = (self.addrIP & ~self.addrMask)
self.addrSubnet = (self.addrIP & self.addrMask)
bcast = (self.addrSubnet | ~self.addrMask)
self.addrBroadcastTuple = (socket.inet_ntoa(struct.pack(, bcast & _long_mask)), self.addrPort)
self.addrAddr = addrstr + struct.pack(, self.addrPort & _short_mask)
self.addrLen = 6
elif ethernet_re.match(addr):
if _debug: Address._debug(" - ethernet")
self.addrAddr = xtob(addr, )
self.addrLen = len(self.addrAddr)
elif re.match(r"^\d+$", addr):
if _debug: Address._debug(" - int")
addr = int(addr)
if (addr > 255):
raise ValueError("address out of range")
self.addrAddr = struct.pack(, addr)
self.addrLen = 1
elif re.match(r"^\d+:[*]$", addr):
if _debug: Address._debug(" - remote broadcast")
addr = int(addr[:-2])
if (addr >= 65535):
raise ValueError("network out of range")
self.addrType = Address.remoteBroadcastAddr
self.addrNet = addr
self.addrAddr = None
self.addrLen = None
elif re.match(r"^\d+:\d+$",addr):
if _debug: Address._debug(" - remote station")
net, addr = addr.split()
net = int(net)
addr = int(addr)
if (net >= 65535):
raise ValueError("network out of range")
if (addr > 255):
raise ValueError("address out of range")
self.addrType = Address.remoteStationAddr
self.addrNet = net
self.addrAddr = struct.pack(, addr)
self.addrLen = 1
elif re.match(r"^0x([0-9A-Fa-f][0-9A-Fa-f])+$",addr):
if _debug: Address._debug(" - modern hex string")
self.addrAddr = xtob(addr[2:])
self.addrLen = len(self.addrAddr)
elif re.match(r"^X$",addr):
if _debug: Address._debug(" - old school hex string")
self.addrAddr = xtob(addr[2:-1])
self.addrLen = len(self.addrAddr)
elif re.match(r"^\d+:0x([0-9A-Fa-f][0-9A-Fa-f])+$",addr):
if _debug: Address._debug(" - remote station with modern hex string")
net, addr = addr.split()
net = int(net)
if (net >= 65535):
raise ValueError("network out of range")
self.addrType = Address.remoteStationAddr
self.addrNet = net
self.addrAddr = xtob(addr[2:])
self.addrLen = len(self.addrAddr)
elif re.match(r"^\d+:X$",addr):
if _debug: Address._debug(" - remote station with old school hex string")
net, addr = addr.split()
net = int(net)
if (net >= 65535):
raise ValueError("network out of range")
self.addrType = Address.remoteStationAddr
self.addrNet = net
self.addrAddr = xtob(addr[2:-1])
self.addrLen = len(self.addrAddr)
elif netifaces and interface_re.match(addr):
if _debug: Address._debug(" - interface name with optional port")
interface, port = interface_re.match(addr).groups()
if port is not None:
self.addrPort = int(port)
else:
self.addrPort = 47808
interfaces = netifaces.interfaces()
if interface not in interfaces:
raise ValueError("not an interface: %s" % (interface,))
if _debug: Address._debug(" - interfaces: %r", interfaces)
ifaddresses = netifaces.ifaddresses(interface)
if netifaces.AF_INET not in ifaddresses:
raise ValueError("interface does not support IPv4: %s" % (interface,))
ipv4addresses = ifaddresses[netifaces.AF_INET]
if len(ipv4addresses) > 1:
raise ValueError("interface supports multiple IPv4 addresses: %s" % (interface,))
ifaddress = ipv4addresses[0]
if _debug: Address._debug(" - ifaddress: %r", ifaddress)
addr = ifaddress[]
self.addrTuple = (addr, self.addrPort)
if _debug: Address._debug(" - addrTuple: %r", self.addrTuple)
addrstr = socket.inet_aton(addr)
self.addrIP = struct.unpack(, addrstr)[0]
if in ifaddress:
maskstr = socket.inet_aton(ifaddress[])
self.addrMask = struct.unpack(, maskstr)[0]
else:
self.addrMask = _long_mask
self.addrHost = (self.addrIP & ~self.addrMask)
self.addrSubnet = (self.addrIP & self.addrMask)
if in ifaddress:
self.addrBroadcastTuple = (ifaddress[], self.addrPort)
else:
self.addrBroadcastTuple = None
if _debug: Address._debug(" - addrBroadcastTuple: %r", self.addrBroadcastTuple)
self.addrAddr = addrstr + struct.pack(, self.addrPort & _short_mask)
self.addrLen = 6
else:
raise ValueError("unrecognized format")
elif isinstance(addr, tuple):
addr, port = addr
self.addrPort = int(port)
if isinstance(addr, basestring):
if not addr:
addrstr =
else:
addrstr = socket.inet_aton(addr)
self.addrTuple = (addr, self.addrPort)
elif isinstance(addr, (int, long)):
addrstr = struct.pack(, addr & _long_mask)
self.addrTuple = (socket.inet_ntoa(addrstr), self.addrPort)
else:
raise TypeError("tuple must be (string, port) or (long, port)")
if _debug: Address._debug(" - addrstr: %r", addrstr)
self.addrIP = struct.unpack(, addrstr)[0]
self.addrMask = _long_mask
self.addrHost = None
self.addrSubnet = None
self.addrBroadcastTuple = self.addrTuple
self.addrAddr = addrstr + struct.pack(, self.addrPort & _short_mask)
self.addrLen = 6
else:
raise TypeError("integer, string or tuple required") | Initialize the address from a string. Lots of different forms are supported. |
381,808 | def get_config_from_file(conf_properties_files):
config = ExtendedConfigParser()
logger = logging.getLogger(__name__)
found = False
files_list = conf_properties_files.split()
for conf_properties_file in files_list:
result = config.read(conf_properties_file)
if len(result) == 0:
message =
if len(files_list) == 1:
logger.error(message, conf_properties_file)
raise Exception(message % conf_properties_file)
else:
logger.debug(message, conf_properties_file)
else:
logger.debug(, conf_properties_file)
found = True
if not found:
message =
logger.error(message)
raise Exception(message)
return config | Reads properties files and saves them to a config object
:param conf_properties_files: comma-separated list of properties files
:returns: config object |
381,809 | def write_th(self, s, header=False, indent=0, tags=None):
if header and self.fmt.col_space is not None:
tags = (tags or "")
tags += (
.format(colspace=self.fmt.col_space))
return self._write_cell(s, kind=, indent=indent, tags=tags) | Method for writting a formatted <th> cell.
If col_space is set on the formatter then that is used for
the value of min-width.
Parameters
----------
s : object
The data to be written inside the cell.
header : boolean, default False
Set to True if the <th> is for use inside <thead>. This will
cause min-width to be set if there is one.
indent : int, default 0
The indentation level of the cell.
tags : string, default None
Tags to include in the cell.
Returns
-------
A written <th> cell. |
381,810 | def callback(self):
if self._callback_func and callable(self._callback_func):
self._callback_func(self) | Run callback. |
381,811 | def _retrieve_session(self, session_key):
session_id = session_key.session_id
if (session_id is None):
msg = ("Unable to resolve session ID from SessionKey [{0}]."
"Returning null to indicate a session could not be "
"found.".format(session_key))
logger.debug(msg)
return None
session = self.session_store.read(session_id)
if (session is None):
msg2 = "Could not find session with ID [{0}]".format(session_id)
raise ValueError(msg2)
return session | :type session_key: SessionKey
:returns: SimpleSession |
381,812 | def messages(self):
offset = self.LENGTH
while offset < len(self.mmap):
yield Message(mm=self.mmap, offset=offset)
offset += Message.LENGTH | a generator yielding the :class:`Message` structures in the index |
381,813 | def from_yaml(cls, yaml_str=None, str_or_buffer=None):
cfg = yamlio.yaml_to_dict(yaml_str, str_or_buffer)
default_model_expr = cfg[][]
default_ytransform = cfg[][]
seg = cls(
cfg[], cfg[],
cfg[], default_model_expr,
YTRANSFORM_MAPPING[default_ytransform], cfg[],
cfg[])
if "models" not in cfg:
cfg["models"] = {}
for name, m in cfg[].items():
m[] = m.get(
, default_model_expr)
m[] = m.get(, default_ytransform)
m[] = None
m[] = None
reg = RegressionModel.from_yaml(yamlio.convert_to_yaml(m, None))
seg._group.add_model(reg)
logger.debug(
.format(seg.name))
return seg | Create a SegmentedRegressionModel instance from a saved YAML
configuration. Arguments are mutally exclusive.
Parameters
----------
yaml_str : str, optional
A YAML string from which to load model.
str_or_buffer : str or file like, optional
File name or buffer from which to load YAML.
Returns
-------
SegmentedRegressionModel |
381,814 | def Barr_1981(Re, eD):
r
fd = (-2*log10(eD/3.7 + 4.518*log10(Re/7.)/(Re*(1+Re**0.52/29*eD**0.7))))**-2
return fd | r'''Calculates Darcy friction factor using the method in Barr (1981) [2]_
as shown in [1]_.
.. math::
\frac{1}{\sqrt{f_d}} = -2\log\left\{\frac{\epsilon}{3.7D} +
\frac{4.518\log(\frac{Re}{7})}{Re\left[1+\frac{Re^{0.52}}{29}
\left(\frac{\epsilon}{D}\right)^{0.7}\right]}\right\}
Parameters
----------
Re : float
Reynolds number, [-]
eD : float
Relative roughness, [-]
Returns
-------
fd : float
Darcy friction factor [-]
Notes
-----
No range of validity specified for this equation.
Examples
--------
>>> Barr_1981(1E5, 1E-4)
0.01849836032779929
References
----------
.. [1] Winning, H. and T. Coole. "Explicit Friction Factor Accuracy and
Computational Efficiency for Turbulent Flow in Pipes." Flow, Turbulence
and Combustion 90, no. 1 (January 1, 2013): 1-27.
doi:10.1007/s10494-012-9419-7
.. [2] Barr, Dih, and Colebrook White."Technical Note. Solutions Of The
Colebrook-White Function For Resistance To Uniform Turbulent Flow."
ICE Proceedings 71, no. 2 (January 6, 1981): 529-35.
doi:10.1680/iicep.1981.1895. |
381,815 | def block_idxmat_shuffle(numdraws, numblocks, random_state=None):
import numpy as np
blocksize = int(numdraws / numblocks)
if random_state:
np.random.seed(random_state)
obsidx = np.random.permutation(numdraws)
numdrop = numdraws % numblocks
dropped = obsidx[:numdrop]
obsidx = obsidx[numdrop:]
idxmat = obsidx.reshape((blocksize, numblocks))
return idxmat, dropped | Create K columns with unique random integers from 0 to N-1
Purpose:
--------
- Create K blocks for k-fold cross-validation
Parameters:
-----------
numdraws : int
number of observations N or sample size N
numblocks : int
number of blocks K
Example:
--------
import pandas as pd
import numpy as np
import oxyba as ox
X = np.random.normal(size=(7,5), scale=50).round(1)
N,_ = X.shape
K = 3; #number of blocks
idxmat, dropped = ox.block_idxmat_shuffle(N,K)
for b in range(K):
print('\nBlock:',b)
print(pd.DataFrame(X[idxmat[:,b],:], index=idxmat[:,b]))
print('\nDropped observations\n', X[dropped,:] )
print('\nrow indicies of dropped observations:', dropped, '\')
Why is this useful?
-------------------
- Avoid creating copies of dataset X during run time
- Shuffle the indicies of a data point rather than the
data points themselve
Links:
------
- How numpy's permutation works, https://stackoverflow.com/a/15474335 |
381,816 | def do_mo(self):
log.debug("Start updating mo files ...")
for po_dir_path in self._iter_po_dir():
po_path = (po_dir_path / self._basename).with_suffix(".po")
lc_path = self._mo_path / po_dir_path.name / "LC_MESSAGES"
lc_path.mkdir(parents=True, exist_ok=True)
mo_path = (lc_path / self._basename).with_suffix(".mo")
log.debug("Creating from {po}: {mo}".format(po=str(po_path), mo=str(mo_path)))
check_call(["msgfmt", str(po_path), "-o", str(mo_path)])
log.debug("All mo files updated") | Generate mo files for all po files. |
381,817 | def ndfrom2d(xtr, rsi):
xts = rsi[0]
prm = rsi[1]
xt = xtr.reshape(xts)
x = np.transpose(xt, np.argsort(prm))
return x | Undo the array shape conversion applied by :func:`ndto2d`,
returning the input 2D array to its original shape.
Parameters
----------
xtr : array_like
Two-dimensional input array
rsi : tuple
A tuple containing the shape of the axis-permuted array and the
permutation order applied in :func:`ndto2d`.
Returns
-------
x : ndarray
Multi-dimensional output array |
381,818 | def mktime_tz(data):
if data[9] is None:
return time.mktime(data[:8] + (-1,))
else:
t = calendar.timegm(data)
return t - data[9] | Turn a 10-tuple as returned by parsedate_tz() into a POSIX timestamp. |
381,819 | def validated_value(self, raw_value):
value = self.value(raw_value)
try:
for validator in self.validators:
validator(value)
except:
raise
else:
return value | Return parsed parameter value and run validation handlers.
Error message included in exception will be included in http error
response
Args:
value: raw parameter value to parse validate
Returns:
None
Note:
Concept of validation for params is understood here as a process
of checking if data of valid type (successfully parsed/processed by
``.value()`` handler) does meet some other constraints
(lenght, bounds, uniqueness, etc.). It will internally call its
``value()`` handler. |
381,820 | def inject_settings(mixed: Union[str, Settings],
context: MutableMapping[str, Any],
fail_silently: bool = False) -> None:
if isinstance(mixed, str):
try:
mixed = import_module(mixed)
except Exception:
if fail_silently:
return
raise
for key, value in iter_settings(mixed):
context[key] = value | Inject settings values to given context.
:param mixed:
Settings can be a string (that it will be read from Python path),
Python module or dict-like instance.
:param context:
Context to assign settings key values. It should support dict-like item
assingment.
:param fail_silently:
When enabled and reading settings from Python path ignore errors if
given Python path couldn't be loaded. |
381,821 | def get_posts_with_limits(self, include_draft=False, **limits):
filter_funcs = []
for attr in (, , ,
, , ):
if limits.get(attr):
filter_set = set(to_list(limits.get(attr)))
def get_filter_func(filter_set_, attr_):
return lambda p: filter_set_.intersection(
to_list(getattr(p, attr_)))
filter_funcs.append(get_filter_func(filter_set, attr))
for attr in (, ):
interval = limits.get(attr)
if isinstance(interval, (list, tuple)) and len(interval) == 2 \
and isinstance(interval[0], date) and isinstance(
interval[1], date):
start, end = interval
start = to_datetime(start)
if not isinstance(end, datetime):
end = datetime.strptime(
% (end.year, end.month, end.day),
)
end += timedelta(days=1)
def get_filter_func(attr_, start_dt, end_dt):
return lambda p: start_dt <= getattr(p, attr_) < end_dt
filter_funcs.append(get_filter_func(attr, start, end))
return self.get_posts(include_draft=include_draft,
filter_functions=filter_funcs) | Get all posts and filter them as needed.
:param include_draft: return draft posts or not
:param limits: other limits to the attrs of the result,
should be a dict with string or list values
:return: an iterable of Post objects |
381,822 | def fol_fc_ask(KB, alpha):
while True:
new = {}
for r in KB.clauses:
ps, q = parse_definite_clause(standardize_variables(r))
raise NotImplementedError | Inefficient forward chaining for first-order logic. [Fig. 9.3]
KB is a FolKB and alpha must be an atomic sentence. |
381,823 | def validate_schema(schema_name):
def decorator(f):
@wraps(f)
def wrapper(*args, **kw):
instance = args[0]
try:
instance.validator(instance.schemas[schema_name]).validate(request.get_json())
except ValidationError, e:
ret_dict = instance._create_ret_object(instance.FAILURE,
None, True,
instance.BAD_SCHEMA,
e.message)
instance.logger.error("Invalid Schema", ret_dict)
return jsonify(ret_dict), 400
instance.logger.debug("Schema is valid")
return f(*args, **kw)
return wrapper
return decorator | Validate the JSON against a required schema_name. |
381,824 | def release():
with settings(warn_only=True):
r = local(clom.git[](, , ))
if r.return_code != 0:
abort()
version = open().read().strip()
existing_tag = local(clom.git.tag(, version), capture=True)
if not existing_tag.strip():
print( % version)
local(clom.git.tag(version))
if confirm( % version, default=True):
local(clom.git.push(, ))
local(clom.git.push(, version))
local(clom.python(, , )) | Release current version to pypi |
381,825 | def _iupac_ambiguous_equal(ambig_base, unambig_base):
iupac_translation = {
: ,
: ,
: ,
: ,
: ,
: ,
: ,
: ,
: ,
: ,
: ,
: ,
: ,
: ,
: ,
: ,
:
}
for i in (ambig_base, unambig_base):
if not len(i) == 1:
raise ValueError("only one base may be passed.")
return unambig_base.upper() in iupac_translation[ambig_base.upper()] | Tests two bases for equality, accounting for IUPAC ambiguous DNA
ambiguous base may be IUPAC ambiguous, unambiguous must be one of ACGT |
381,826 | def predict_epitopes_from_args(args):
mhc_model = mhc_binding_predictor_from_args(args)
variants = variant_collection_from_args(args)
gene_expression_dict = rna_gene_expression_dict_from_args(args)
transcript_expression_dict = rna_transcript_expression_dict_from_args(args)
predictor = TopiaryPredictor(
mhc_model=mhc_model,
padding_around_mutation=args.padding_around_mutation,
ic50_cutoff=args.ic50_cutoff,
percentile_cutoff=args.percentile_cutoff,
min_transcript_expression=args.rna_min_transcript_expression,
min_gene_expression=args.rna_min_gene_expression,
only_novel_epitopes=args.only_novel_epitopes,
raise_on_error=not args.skip_variant_errors)
return predictor.predict_from_variants(
variants=variants,
transcript_expression_dict=transcript_expression_dict,
gene_expression_dict=gene_expression_dict) | Returns an epitope collection from the given commandline arguments.
Parameters
----------
args : argparse.Namespace
Parsed commandline arguments for Topiary |
381,827 | def set_h264_frm_ref_mode(self, mode=1, callback=None):
params = {: mode}
return self.execute_command(, params, callback) | Set frame shipping reference mode of H264 encode stream.
params:
`mode`: see docstr of meth::get_h264_frm_ref_mode |
381,828 | def get_fun(fun):
conn = _get_conn(ret=None)
cur = conn.cursor()
sql =
cur.execute(sql, (fun,))
data = cur.fetchall()
ret = {}
if data:
for minion, _, retval in data:
ret[minion] = salt.utils.json.loads(retval)
_close_conn(conn)
return ret | Return a dict of the last function called for all minions |
381,829 | def find_pattern_on_line(lines, n, max_wrap_lines):
for typ, regexes in COMPILED_PATTERN_MAP.items():
for regex in regexes:
for m in range(max_wrap_lines):
match_line = join_wrapped_lines(lines[n:n+1+m])
if match_line.startswith():
match_line = match_line[1:].strip()
if regex.match(match_line.strip()):
return n+m, typ
return None, None | Finds a forward/reply pattern within the given lines on text on the given
line number and returns a tuple with the type ('reply' or 'forward') and
line number of where the pattern ends. The returned line number may be
different from the given line number in case the pattern wraps over
multiple lines.
Returns (None, None) if no pattern was found. |
381,830 | def get_nested_schema_object(self, fully_qualified_parent_name: str,
nested_item_name: str) -> Optional[]:
return self.get_schema_object(
self.get_fully_qualified_name(fully_qualified_parent_name, nested_item_name)) | Used to generate a schema object from the given fully_qualified_parent_name
and the nested_item_name.
:param fully_qualified_parent_name: The fully qualified name of the parent.
:param nested_item_name: The nested item name.
:return: An initialized schema object of the nested item. |
381,831 | def _set_fcoe_intf_enode_bind_type(self, v, load=False):
if hasattr(v, "_utype"):
v = v._utype(v)
try:
t = YANGDynClass(v,base=RestrictedClassType(base_type=unicode, restriction_type="dict_key", restriction_arg={u: {: 2}, u: {: 1}, u: {: 3}},), is_leaf=True, yang_name="fcoe-intf-enode-bind-type", rest_name="fcoe-intf-enode-bind-type", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=False, namespace=, defining_module=, yang_type=, is_config=True)
except (TypeError, ValueError):
raise ValueError({
: ,
: "brocade-fcoe-ext:fcoe-binding-type",
: ,
})
self.__fcoe_intf_enode_bind_type = t
if hasattr(self, ):
self._set() | Setter method for fcoe_intf_enode_bind_type, mapped from YANG variable /brocade_fcoe_ext_rpc/fcoe_get_interface/output/fcoe_intf_list/fcoe_intf_enode_bind_type (fcoe-binding-type)
If this variable is read-only (config: false) in the
source YANG file, then _set_fcoe_intf_enode_bind_type is considered as a private
method. Backends looking to populate this variable should
do so via calling thisObj._set_fcoe_intf_enode_bind_type() directly.
YANG Description: This indicates if the enode is statically bound to
the fcoe interface or not i.e. if statically bound
this enode's mac will always login on the same fcoe
port. |
381,832 | def validate_blob_uri_contents(contents: bytes, blob_uri: str) -> None:
blob_path = parse.urlparse(blob_uri).path
blob_hash = blob_path.split("/")[-1]
contents_str = to_text(contents)
content_length = len(contents_str)
hashable_contents = "blob " + str(content_length) + "\0" + contents_str
hash_object = hashlib.sha1(to_bytes(text=hashable_contents))
if hash_object.hexdigest() != blob_hash:
raise ValidationError(
f"Hash of contents fetched from {blob_uri} do not match its hash: {blob_hash}."
) | Raises an exception if the sha1 hash of the contents does not match the hash found in te
blob_uri. Formula for how git calculates the hash found here:
http://alblue.bandlem.com/2011/08/git-tip-of-week-objects.html |
381,833 | def modify_target(self, to_state, to_outcome=None):
if not (to_state is None and (to_outcome is not int and to_outcome is not None)):
if not isinstance(to_state, string_types):
raise ValueError("Invalid transition target port: to_state must be a string")
if not isinstance(to_outcome, int) and to_outcome is not None:
raise ValueError("Invalid transition target port: to_outcome must be of type int or None (if to_state "
"is of type str)")
old_to_state = self.to_state
old_to_outcome = self.to_outcome
self._to_state = to_state
self._to_outcome = to_outcome
valid, message = self._check_validity()
if not valid:
self._to_state = old_to_state
self._to_outcome = old_to_outcome
raise ValueError("The transition target could not be changed: {0}".format(message)) | Set both to_state and to_outcome at the same time to modify transition target
:param str to_state: State id of the target state
:param int to_outcome: Outcome id of the target port
:raises exceptions.ValueError: If parameters have wrong types or the new transition is not valid |
381,834 | def set_attribute_mapping(resource_attr_a, resource_attr_b, **kwargs):
user_id = kwargs.get()
ra_1 = get_resource_attribute(resource_attr_a)
ra_2 = get_resource_attribute(resource_attr_b)
mapping = ResourceAttrMap(resource_attr_id_a = resource_attr_a,
resource_attr_id_b = resource_attr_b,
network_a_id = ra_1.get_network().id,
network_b_id = ra_2.get_network().id )
db.DBSession.add(mapping)
db.DBSession.flush()
return mapping | Define one resource attribute from one network as being the same as
that from another network. |
381,835 | def color(out_string, color=):
c = {
: Fore.BLACK,
: Fore.BLUE,
: Fore.CYAN,
: Fore.GREEN,
: Fore.MAGENTA,
: Fore.RED,
: Fore.WHITE,
: Fore.YELLOW,
}
try:
init()
return (c[color] + Style.BRIGHT + out_string + Fore.RESET + Style.NORMAL)
except AttributeError:
return out_string | Highlight string for terminal color coding.
Purpose: We use this utility function to insert a ANSI/win32 color code
| and Bright style marker before a string, and reset the color and
| style after the string. We then return the string with these
| codes inserted.
@param out_string: the string to be colored
@type out_string: str
@param color: a string signifying which color to use. Defaults to 'grn'.
| Accepts the following colors:
| ['blk', 'blu', 'cyn', 'grn', 'mag', 'red', 'wht', 'yel']
@type color: str
@returns: the modified string, including the ANSI/win32 color codes.
@rtype: str |
381,836 | def get_endpoint_descriptor(self, dev, ep, intf, alt, config):
r
_not_implemented(self.get_endpoint_descriptor) | r"""Return an endpoint descriptor of the given device.
The object returned is required to have all the Endpoint Descriptor
fields acessible as member variables. They must be convertible (but
not required to be equal) to the int type.
The ep parameter is the endpoint logical index (not the bEndpointAddress
field) of the endpoint descriptor desired. dev, intf, alt and config are the same
values already described in the get_interface_descriptor() method. |
381,837 | def trainingDataLink(data_1, data_2, common_key, training_size=50000):
identified_records = collections.defaultdict(lambda: [[], []])
matched_pairs = set()
distinct_pairs = set()
for record_id, record in data_1.items():
identified_records[record[common_key]][0].append(record_id)
for record_id, record in data_2.items():
identified_records[record[common_key]][1].append(record_id)
for keys_1, keys_2 in identified_records.values():
if keys_1 and keys_2:
matched_pairs.update(itertools.product(keys_1, keys_2))
keys_1 = list(data_1.keys())
keys_2 = list(data_2.keys())
random_pairs = [(keys_1[i], keys_2[j])
for i, j
in randomPairsMatch(len(data_1), len(data_2),
training_size)]
distinct_pairs = (
pair for pair in random_pairs if pair not in matched_pairs)
matched_records = [(data_1[key_1], data_2[key_2])
for key_1, key_2 in matched_pairs]
distinct_records = [(data_1[key_1], data_2[key_2])
for key_1, key_2 in distinct_pairs]
training_pairs = {: matched_records,
: distinct_records}
return training_pairs | Construct training data for consumption by the ActiveLearning
markPairs method from already linked datasets.
Arguments :
data_1 -- Dictionary of records from first dataset, where the keys
are record_ids and the values are dictionaries with the
keys being field names
data_2 -- Dictionary of records from second dataset, same form as
data_1
common_key -- The name of the record field that uniquely identifies
a match
training_size -- the rough limit of the number of training examples,
defaults to 50000
Warning:
Every match must be identified by the sharing of a common key.
This function assumes that if two records do not share a common key
then they are distinct records. |
381,838 | def css( self, filelist ):
if isinstance( filelist, basestring ):
self.link( href=filelist, rel=, type=, media= )
else:
for file in filelist:
self.link( href=file, rel=, type=, media= ) | This convenience function is only useful for html.
It adds css stylesheet(s) to the document via the <link> element. |
381,839 | def check_token(self, respond):
if respond.status_code == 401:
self.credential.obtain_token(config=self.config)
return False
return True | Check is the user's token is valid |
381,840 | def find_studies(self, query_dict=None, exact=False, verbose=False, **kwargs):
if self.use_v1:
uri = .format(p=self.query_prefix)
else:
uri = .format(p=self.query_prefix)
return self._do_query(uri,
query_dict=query_dict,
exact=exact,
verbose=verbose,
valid_keys=self.study_search_term_set,
kwargs=kwargs) | Query on study properties. See documentation for _OTIWrapper class. |
381,841 | def html_path(builder, pagename=None):
return builder.get_relative_uri(
pagename or builder.current_docname,
os.path.join(
builder.app.config.slide_html_relative_path,
pagename or builder.current_docname,
)) | Calculate the relative path to the Slides for pagename. |
381,842 | def copy_SRM_file(destination=None, config=):
conf = read_configuration()
src = pkgrs.resource_filename(, conf[])
if destination is None:
destination = + conf[] +
if os.path.isdir(destination):
destination += + conf[] +
copyfile(src, destination)
print(src + + destination)
return | Creates a copy of the default SRM table at the specified location.
Parameters
----------
destination : str
The save location for the SRM file. If no location specified,
saves it as 'LAtools_[config]_SRMTable.csv' in the current working
directory.
config : str
It's possible to set up different configurations with different
SRM files. This specifies the name of the configuration that you
want to copy the SRM file from. If not specified, the 'DEFAULT'
configuration is used. |
381,843 | def create_label(self, label, doc=None, callback=dummy_progress_cb):
if doc:
clone = doc.clone()
r = self.index.create_label(label, doc=clone)
return r | Create a new label
Arguments:
doc --- first document on which the label must be added (required
for now) |
381,844 | def get_operation_full_job_id(op):
job_id = op.get_field()
task_id = op.get_field()
if task_id:
return % (job_id, task_id)
else:
return job_id | Returns the job-id or job-id.task-id for the operation. |
381,845 | def log_once(key):
global _last_logged
if _disabled:
return False
elif key not in _logged:
_logged.add(key)
_last_logged = time.time()
return True
elif _periodic_log and time.time() - _last_logged > 60.0:
_logged.clear()
_last_logged = time.time()
return False
else:
return False | Returns True if this is the "first" call for a given key.
Various logging settings can adjust the definition of "first".
Example:
>>> if log_once("some_key"):
... logger.info("Some verbose logging statement") |
381,846 | def OnNodeSelected(self, event):
try:
node = self.sorted[event.GetIndex()]
except IndexError, err:
log.warn(_(),
index=event.GetIndex())
else:
if node is not self.selected_node:
wx.PostEvent(
self,
squaremap.SquareSelectionEvent(node=node, point=None,
map=None)
) | We have selected a node with the list control, tell the world |
381,847 | def parallel_map(func, *arg_iterable, **kwargs):
chunksize = kwargs.pop(, 1)
func_pre_args = kwargs.pop(, ())
func_kwargs = kwargs.pop(, {})
max_workers = kwargs.pop(, None)
parallel = kwargs.pop(, True)
parallel_warning = kwargs.pop(, True)
if kwargs:
raise TypeError(.format(kwargs))
func_to_map = functools.partial(func, *func_pre_args, **func_kwargs)
if parallel:
pool = concurrent.futures.ProcessPoolExecutor(max_workers=max_workers)
return list(pool.map(func_to_map, *arg_iterable, chunksize=chunksize))
else:
if parallel_warning:
warnings.warn((
),
UserWarning)
return list(map(func_to_map, *arg_iterable)) | Apply function to iterable with parallel map, and hence returns
results in order. functools.partial is used to freeze func_pre_args and
func_kwargs, meaning that the iterable argument must be the last positional
argument.
Roughly equivalent to
>>> [func(*func_pre_args, x, **func_kwargs) for x in arg_iterable]
Parameters
----------
func: function
Function to apply to list of args.
arg_iterable: iterable
argument to iterate over.
chunksize: int, optional
Perform function in batches
func_pre_args: tuple, optional
Positional arguments to place before the iterable argument in func.
func_kwargs: dict, optional
Additional keyword arguments for func.
parallel: bool, optional
To turn off parallelisation if needed.
parallel_warning: bool, optional
To turn off warning for no parallelisation if needed.
max_workers: int or None, optional
Number of processes.
If max_workers is None then concurrent.futures.ProcessPoolExecutor
defaults to using the number of processors of the machine.
N.B. If max_workers=None and running on supercomputer clusters with
multiple nodes, this may default to the number of processors on a
single node.
Returns
-------
results_list: list of function outputs |
381,848 | def on_sdl_keydown ( self, event ):
"press ESCAPE to quit the application"
key = event.key.keysym.sym
if key == SDLK_ESCAPE:
self.running = False | press ESCAPE to quit the application |
381,849 | def folderitem(self, obj, item, index):
url = item.get("url")
title = item.get("Title")
creator = obj.Creator()
item["replace"]["Title"] = get_link(url, value=title)
item["created"] = self.localize_date(obj.created())
item["getType"] = _(obj.getType()[0])
item["creator"] = ""
if creator:
props = api.get_user_properties(creator)
name = props.get("fullname", creator)
item["creator"] = name
return item | Augment folder listing item |
381,850 | def clear(self, payload):
self.logger.rotate(self.queue)
self.queue.clear()
self.logger.write(self.queue)
answer = {: , : }
return answer | Clear queue from any `done` or `failed` entries.
The log will be rotated once. Otherwise we would loose all logs from
thoes finished processes. |
381,851 | def get_all_items_of_credit_note(self, credit_note_id):
return self._iterate_through_pages(
get_function=self.get_items_of_credit_note_per_page,
resource=CREDIT_NOTE_ITEMS,
**{: credit_note_id}
) | Get all items of credit note
This will iterate over all pages until it gets all elements.
So if the rate limit exceeded it will throw an Exception and you will get nothing
:param credit_note_id: the credit note id
:return: list |
381,852 | def findAllBycolumn(self, target):
column_matches = []
for column_index in range(self._raster[1]):
column = self.getRow(column_index)
column_matches[column_index] = column.findAll(target)
return column_matches | Returns an array of columns in the region (defined by the raster), each
column containing all matches in that column for the target pattern. |
381,853 | def enable_branching_model(self, project, repository):
default_model_data = {: {: None, : True},
: [{: ,
: True,
: ,
: },
{: ,
: True,
: ,
: },
{: ,
: True,
: ,
: },
{: ,
: True,
: ,
: }]}
return self.set_branching_model(project,
repository,
default_model_data) | Enable branching model by setting it with default configuration
:param project:
:param repository:
:return: |
381,854 | def nla_put_nested(msg, attrtype, nested):
_LOGGER.debug(, id(msg), attrtype, id(nested))
return nla_put(msg, attrtype, nlmsg_datalen(nested.nm_nlh), nlmsg_data(nested.nm_nlh)) | Add nested attributes to Netlink message.
https://github.com/thom311/libnl/blob/libnl3_2_25/lib/attr.c#L772
Takes the attributes found in the `nested` message and appends them to the message `msg` nested in a container of
the type `attrtype`. The `nested` message may not have a family specific header.
Positional arguments:
msg -- Netlink message (nl_msg class instance).
attrtype -- attribute type (integer).
nested -- message containing attributes to be nested (nl_msg class instance).
Returns:
0 on success or a negative error code. |
381,855 | def export_html(html, filename, image_tag = None, inline = True):
if image_tag is None:
image_tag = default_image_tag
else:
image_tag = ensure_utf8(image_tag)
if inline:
path = None
else:
root,ext = os.path.splitext(filename)
path = root + "_files"
if os.path.isfile(path):
raise OSError("%s exists, but is not a directory." % path)
with open(filename, ) as f:
html = fix_html(html)
f.write(IMG_RE.sub(lambda x: image_tag(x, path = path, format = "png"),
html)) | Export the contents of the ConsoleWidget as HTML.
Parameters:
-----------
html : str,
A utf-8 encoded Python string containing the Qt HTML to export.
filename : str
The file to be saved.
image_tag : callable, optional (default None)
Used to convert images. See ``default_image_tag()`` for information.
inline : bool, optional [default True]
If True, include images as inline PNGs. Otherwise, include them as
links to external PNG files, mimicking web browsers' "Web Page,
Complete" behavior. |
381,856 | def cancel_all_linking(self):
self.logger.info("Cancel_all_linking for device %s", self.device_id)
self.hub.direct_command(self.device_id, , ) | Cancel all linking |
381,857 | def switch_from_external_to_main_wf(self):
self.run() | Main workflow switcher.
This method recreates main workflow from `main wf` dict which
was set by external workflow swicther previously. |
381,858 | def which(name,
env_path=ENV_PATH,
env_path_ext=ENV_PATHEXT,
is_executable_fnc=isexec,
path_join_fnc=os.path.join,
os_name=os.name):
for path in env_path:
for suffix in env_path_ext:
exe_file = path_join_fnc(path, name) + suffix
if is_executable_fnc(exe_file):
return exe_file
return None | Get command absolute path.
:param name: name of executable command
:type name: str
:param env_path: OS environment executable paths, defaults to autodetected
:type env_path: list of str
:param is_executable_fnc: callable will be used to detect if path is
executable, defaults to `isexec`
:type is_executable_fnc: Callable
:param path_join_fnc: callable will be used to join path components
:type path_join_fnc: Callable
:param os_name: os name, defaults to os.name
:type os_name: str
:return: absolute path
:rtype: str or None |
381,859 | def fit(self, X, y):
word_vector_transformer = WordVectorTransformer(padding=)
X = word_vector_transformer.fit_transform(X)
X = LongTensor(X)
self.word_vector_transformer = word_vector_transformer
y_transformer = LabelEncoder()
y = y_transformer.fit_transform(y)
y = torch.from_numpy(y)
self.y_transformer = y_transformer
dataset = CategorizedDataset(X, y)
dataloader = DataLoader(dataset,
batch_size=self.batch_size,
shuffle=True,
num_workers=4)
KERNEL_SIZES = self.kernel_sizes
NUM_KERNEL = self.num_kernel
EMBEDDING_DIM = self.embedding_dim
model = TextCNN(
vocab_size=word_vector_transformer.get_vocab_size(),
embedding_dim=EMBEDDING_DIM,
output_size=len(self.y_transformer.classes_),
kernel_sizes=KERNEL_SIZES,
num_kernel=NUM_KERNEL)
if USE_CUDA:
model = model.cuda()
EPOCH = self.epoch
LR = self.lr
loss_function = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=LR)
for epoch in range(EPOCH):
losses = []
for i, data in enumerate(dataloader):
X, y = data
X, y = Variable(X), Variable(y)
optimizer.zero_grad()
model.train()
output = model(X)
loss = loss_function(output, y)
losses.append(loss.data.tolist()[0])
loss.backward()
optimizer.step()
if i % 100 == 0:
print("[%d/%d] mean_loss : %0.2f" % (
epoch, EPOCH, np.mean(losses)))
losses = []
self.model = model | Fit KimCNNClassifier according to X, y
Parameters
----------
X : list of string
each item is a raw text
y : list of string
each item is a label |
381,860 | def dispatch(self):
parser = argparse.ArgumentParser(description=)
parser.add_argument(, metavar=, type=str, help=)
parser.add_argument(, metavar=, type=int, help=)
args = parser.parse_args()
self.serve(port=args.port, address=args.addr) | Command-line dispatch. |
381,861 | def draw(self):
self.ax.plot(self.k_values_, self.k_scores_, marker="D")
if self.locate_elbow and self.elbow_value_!=None:
elbow_label = "$elbow\ at\ k={}, score={:0.3f}$".format(self.elbow_value_, self.elbow_score_)
self.ax.axvline(self.elbow_value_, c=LINE_COLOR, linestyle="--", label=elbow_label)
)
return self.ax | Draw the elbow curve for the specified scores and values of K. |
381,862 | def print(*a):
try:
_print(*a)
return a[0] if len(a) == 1 else a
except:
_print(*a) | print just one that returns what you give it instead of None |
381,863 | def _get (self, timeout):
if timeout is None:
while self._empty():
self.not_empty.wait()
else:
if timeout < 0:
raise ValueError(" must be a positive number")
endtime = _time() + timeout
while self._empty():
remaining = endtime - _time()
if remaining <= 0.0:
raise Empty()
self.not_empty.wait(remaining)
self.in_progress += 1
return self.queue.popleft() | Non thread-safe utility function of self.get() doing the real
work. |
381,864 | def snapshot(self, name):
return self.get_data(
"volumes/%s/snapshots/" % self.id,
type=POST,
params={"name": name}
) | Create a snapshot of the volume.
Args:
name: string - a human-readable name for the snapshot |
381,865 | def cmp(self, other):
if isinstance(other, Range):
start = self.start.replace(tzinfo=other.start.tz) if other.start.tz and self.start.tz is None else self.start
end = self.end.replace(tzinfo=other.end.tz) if other.end.tz and self.end.tz is None else self.end
if start == other.start and end == other.end:
return 0
elif start < other.start:
return -1
else:
return 1
elif isinstance(other, Date):
if other.tz and self.start.tz is None:
return 0 if other == self.start.replace(tzinfo=other.tz) else -1 if other > self.start.replace(tzinfo=other.start.tz) else 1
return 0 if other == self.start else -1 if other > self.start else 1
else:
return self.cmp(Range(other, tz=self.start.tz)) | *Note: checks Range.start() only*
Key: self = [], other = {}
* [ {----]----} => -1
* {---[---} ] => 1
* [---] {---} => -1
* [---] same as {---} => 0
* [--{-}--] => -1 |
381,866 | def cli(wio, send):
s AP.
\b
EXAMPLE:
wio udp --send [command], send UPD command
'
command = send
click.echo("UDP command: {}".format(command))
result = udp.common_send(command)
if result is None:
return debug_error()
else:
click.echo(result) | Sends a UDP command to the wio device.
\b
DOES:
Support "VERSION", "SCAN", "Blank?", "DEBUG", "ENDEBUG: 1", "ENDEBUG: 0"
"APCFG: AP\\tPWDs\\tTOKENs\\tSNs\\tSERVER_Domains\\tXSERVER_Domain\\t\\r\\n",
Note:
1. Ensure your device is Configure Mode.
2. Change your computer network to Wio's AP.
\b
EXAMPLE:
wio udp --send [command], send UPD command |
381,867 | def code(self):
def uniq(seq):
seen = set()
seen_add = seen.add
return [x for x in seq if x not in seen and not seen_add(x)]
data_set = uniq(i for i in self.autos if i is not None)
error_list = uniq(i for i in self.errors if i is not None)
if error_list:
return "\n".join(error_list)
return "\n".join(data_set) | Removes duplicates values in auto and error list.
parameters. |
381,868 | def get_name(self, tag):
s output can be controlled through
keyword arguments that are provided when initializing a
TagProcessor. For instance, a member of a class or namespace can have
its parent scope included in the name by passing
include_parent_scopes=True to __init__().
Args:
tag: A BeautifulSoup Tag that satisfies match_criterion.
Returns:
A string that would be appropriate to use as an entry name in a
Zeal database.
namekindclassstructnamespacename::' + name
return name | Extract and return a representative "name" from a tag.
Override as necessary. get_name's output can be controlled through
keyword arguments that are provided when initializing a
TagProcessor. For instance, a member of a class or namespace can have
its parent scope included in the name by passing
include_parent_scopes=True to __init__().
Args:
tag: A BeautifulSoup Tag that satisfies match_criterion.
Returns:
A string that would be appropriate to use as an entry name in a
Zeal database. |
381,869 | def keep_negative_mask(X, y, model_generator, method_name, num_fcounts=11):
return __run_measure(measures.keep_mask, X, y, model_generator, method_name, -1, num_fcounts, __mean_pred) | Keep Negative (mask)
xlabel = "Max fraction of features kept"
ylabel = "Negative mean model output"
transform = "negate"
sort_order = 5 |
381,870 | def query_cached_package_list(self):
if self.debug:
self.logger.debug("DEBUG: reading pickled cache file")
return cPickle.load(open(self.pkg_cache_file, "r")) | Return list of pickled package names from PYPI |
381,871 | def check_parallel_run(self):
if os.name == :
logger.warning("The parallel daemon check is not available on Windows")
self.__open_pidfile(write=True)
return
self.__open_pidfile()
try:
pid_var = self.fpid.readline().strip()
if pid_var:
pid = int(pid_var)
logger.info("Found an existing pid (%s): ", self.pid_filename, pid_var)
else:
logger.debug("Not found an existing pid: %s", self.pid_filename)
return
except (IOError, ValueError) as err:
logger.warning("PID file is empty or has an invalid content: %s", self.pid_filename)
return
if pid == os.getpid():
self.pid = pid
return
try:
logger.debug("Testing if the process is running: ", pid)
os.kill(pid, 0)
except OSError:
self.pre_log.append(("DEBUG", "No former instance to replace"))
logger.info("A stale pid file exists, reusing the same file")
return
if not self.do_replace:
self.exit_on_error("A valid pid file still exists (pid=%s) and "
"I am not allowed to replace. Exiting!" % pid, exit_code=3)
self.pre_log.append(("DEBUG", "Replacing former instance: %d" % pid))
try:
pgid = os.getpgid(pid)
os.killpg(pgid, signal.SIGQUIT)
except os.error as err:
if err.errno != errno.ESRCH:
raise
self.fpid.close()
time.sleep(1)
self.__open_pidfile(write=True) | Check (in pid file) if there isn't already a daemon running.
If yes and do_replace: kill it.
Keep in self.fpid the File object to the pid file. Will be used by writepid.
:return: None |
381,872 | def size(ctx, dataset, kwargs):
"Show dataset size"
kwargs = parse_kwargs(kwargs)
(print)(data(dataset, **ctx.obj).get(**kwargs).complete_set.size) | Show dataset size |
381,873 | def all(self):
tests = list()
for testclass in self.classes:
tests.extend(self.classes[testclass].cases)
return tests | Return all testcases
:return: |
381,874 | def _build_zmat(self, construction_table):
c_table = construction_table
default_cols = [, , , , , , ]
optional_cols = list(set(self.columns) - {, , , })
zmat_frame = pd.DataFrame(columns=default_cols + optional_cols,
dtype=, index=c_table.index)
zmat_frame.loc[:, optional_cols] = self.loc[c_table.index,
optional_cols]
zmat_frame.loc[:, ] = self.loc[c_table.index, ]
zmat_frame.loc[:, [, , ]] = c_table
zmat_values = self._calculate_zmat_values(c_table)
zmat_frame.loc[:, [, , ]] = zmat_values
zmatrix = Zmat(zmat_frame, metadata=self.metadata,
_metadata={: self.copy()})
return zmatrix | Create the Zmatrix from a construction table.
Args:
Construction table (pd.DataFrame):
Returns:
Zmat: A new instance of :class:`Zmat`. |
381,875 | def fetch(self, **kwargs) -> :
GETGET
assert self.method in self._allowed_methods, \
.format(self.method)
self.date = datetime.now(tzutc())
self.headers[] = self.date.isoformat()
if self.content_type is not None:
self.headers[] = self.content_type
full_url = self._build_url()
self._sign(full_url.relative())
rqst_ctx = self.session.aiohttp_session.request(
self.method,
str(full_url),
data=self._pack_content(),
timeout=_default_request_timeout,
headers=self.headers)
return FetchContextManager(self.session, rqst_ctx, **kwargs) | Sends the request to the server and reads the response.
You may use this method either with plain synchronous Session or
AsyncSession. Both the followings patterns are valid:
.. code-block:: python3
from ai.backend.client.request import Request
from ai.backend.client.session import Session
with Session() as sess:
rqst = Request(sess, 'GET', ...)
with rqst.fetch() as resp:
print(resp.text())
.. code-block:: python3
from ai.backend.client.request import Request
from ai.backend.client.session import AsyncSession
async with AsyncSession() as sess:
rqst = Request(sess, 'GET', ...)
async with rqst.fetch() as resp:
print(await resp.text()) |
381,876 | def get_geo_info(filename, band=1):
sourceds = gdal.Open(filename, GA_ReadOnly)
ndv = sourceds.GetRasterBand(band).GetNoDataValue()
xsize = sourceds.RasterXSize
ysize = sourceds.RasterYSize
geot = sourceds.GetGeoTransform()
projection = osr.SpatialReference()
projection.ImportFromWkt(sourceds.GetProjectionRef())
datatype = sourceds.GetRasterBand(band).DataType
datatype = gdal.GetDataTypeName(datatype)
return ndv, xsize, ysize, geot, projection, datatype | Gets information from a Raster data set |
381,877 | def face_adjacency_radius(self):
radii, span = graph.face_adjacency_radius(mesh=self)
self._cache[] = span
return radii | The approximate radius of a cylinder that fits inside adjacent faces.
Returns
------------
radii : (len(self.face_adjacency),) float
Approximate radius formed by triangle pair |
381,878 | def sibling(self, offs=1):
indx = self.pindex + offs
if indx < 0:
return None
if indx >= len(self.parent.kids):
return None
return self.parent.kids[indx] | Return sibling node by relative offset from self. |
381,879 | def image(
self,
url,
title="",
width=800):
title = title.strip()
caption = title
now = datetime.now()
figId = now.strftime("%Y%m%dt%H%M%S.%f")
if len(title):
figId = "%(title)s %(figId)s" % locals()
imageLink = % locals()
return imageLink | *create MMD image link*
**Key Arguments:**
- ``title`` -- the title for the image
- ``url`` -- the image URL
- ``width`` -- the width in pixels of the image. Default *800*
**Return:**
- ``imageLink`` -- the MMD image link
**Usage:**
To create a MMD image link:
.. code-block:: python
imageLink = md.image(
"http://www.thespacedoctor.co.uk/images/thespacedoctor_icon_white_circle.png", "thespacedoctor icon", 400)
print imageLink
# OUTPUT:
# ![thespacedoctor icon][thespacedoctor icon 20170228t130146.472262]
#
# [thespacedoctor icon 20170228t130146.472262]: http://www.thespacedoctor.co.uk/images/thespacedoctor_icon_white_circle.png "thespacedoctor icon" width=400px
# |
381,880 | def create_identity(user_id, curve_name):
result = interface.Identity(identity_str=, curve_name=curve_name)
result.identity_dict[] = user_id
return result | Create GPG identity for hardware device. |
381,881 | def compare_mean_curves(calc_ref, calc, nsigma=3):
dstore_ref = datastore.read(calc_ref)
dstore = datastore.read(calc)
imtls = dstore_ref[].imtls
if dstore[].imtls != imtls:
raise RuntimeError(
% (calc_ref, calc))
sitecol_ref = dstore_ref[]
sitecol = dstore[]
site_id_ref = {(lon, lat): sid for sid, lon, lat in zip(
sitecol_ref.sids, sitecol_ref.lons, sitecol_ref.lats)}
site_id = {(lon, lat): sid for sid, lon, lat in zip(
sitecol.sids, sitecol.lons, sitecol.lats)}
common = set(site_id_ref) & set(site_id)
if not common:
raise RuntimeError(
% (calc_ref, calc))
pmap_ref = PmapGetter(dstore_ref, sids=[site_id_ref[lonlat]
for lonlat in common]).get_mean()
pmap = PmapGetter(dstore, sids=[site_id[lonlat]
for lonlat in common]).get_mean()
for lonlat in common:
mean, std = pmap[site_id[lonlat]].array.T
mean_ref, std_ref = pmap_ref[site_id_ref[lonlat]].array.T
err = numpy.sqrt(std**2 + std_ref**2)
for imt in imtls:
sl = imtls(imt)
ok = (numpy.abs(mean[sl] - mean_ref[sl]) < nsigma * err[sl]).all()
if not ok:
md = (numpy.abs(mean[sl] - mean_ref[sl])).max()
plt.title( % (lonlat, imt, md))
plt.loglog(imtls[imt], mean_ref[sl] + std_ref[sl],
label=str(calc_ref), color=)
plt.loglog(imtls[imt], mean_ref[sl] - std_ref[sl],
color=)
plt.loglog(imtls[imt], mean[sl] + std[sl], label=str(calc),
color=)
plt.loglog(imtls[imt], mean[sl] - std[sl], color=)
plt.legend()
plt.show() | Compare the hazard curves coming from two different calculations. |
381,882 | def create_from_request_pdu(pdu):
_, address, value = struct.unpack(, pdu)
value = 1 if value == 0xFF00 else value
instance = WriteSingleCoil()
instance.address = address
instance.value = value
return instance | Create instance from request PDU.
:param pdu: A response PDU. |
381,883 | def execute_wait(self, cmd, walltime=2, envs={}):
stdin, stdout, stderr = self.ssh_client.exec_command(
self.prepend_envs(cmd, envs), bufsize=-1, timeout=walltime
)
exit_status = stdout.channel.recv_exit_status()
return exit_status, stdout.read().decode("utf-8"), stderr.read().decode("utf-8") | Synchronously execute a commandline string on the shell.
Args:
- cmd (string) : Commandline string to execute
- walltime (int) : walltime in seconds
Kwargs:
- envs (dict) : Dictionary of env variables
Returns:
- retcode : Return code from the execution, -1 on fail
- stdout : stdout string
- stderr : stderr string
Raises:
None. |
381,884 | def stop_sync(self):
if self.scanning:
self.stop_scan()
for connection_id in list(self.connections.get_connections()):
self.disconnect_sync(connection_id)
self.bable.stop()
self.connections.stop()
self.stopped = True | Safely stop this BLED112 instance without leaving it in a weird state |
381,885 | def personByEmailAddress(self, address):
email = self.store.findUnique(EmailAddress,
EmailAddress.address == address,
default=None)
if email is not None:
return email.person | Retrieve the L{Person} item for the given email address
(or return None if no such person exists)
@type name: C{unicode} |
381,886 | async def write_and_drain(self, data: bytes, timeout: NumType = None) -> None:
if self._stream_writer is None:
raise SMTPServerDisconnected("Client not connected")
self._stream_writer.write(data)
async with self._io_lock:
await self._drain_writer(timeout) | Format a command and send it to the server. |
381,887 | def get_requests_request_name(self, request_name):
query_parameters = {}
if request_name is not None:
query_parameters[] = self._serialize.query(, request_name, )
response = self._send(http_method=,
location_id=,
version=,
query_parameters=query_parameters)
return self._deserialize(, response) | GetRequestsRequestName.
[Preview API] Get a symbol request by request name.
:param str request_name:
:rtype: :class:`<Request> <azure.devops.v5_0.symbol.models.Request>` |
381,888 | def logSumExp(A, B, out=None):
if out is None:
out = numpy.zeros(A.shape)
indicator1 = A >= B
indicator2 = numpy.logical_not(indicator1)
out[indicator1] = A[indicator1] + numpy.log1p(numpy.exp(B[indicator1]-A[indicator1]))
out[indicator2] = B[indicator2] + numpy.log1p(numpy.exp(A[indicator2]-B[indicator2]))
return out | returns log(exp(A) + exp(B)). A and B are numpy arrays |
381,889 | def BytesDecoder(field_number, is_repeated, is_packed, key, new_default):
local_DecodeVarint = _DecodeVarint
assert not is_packed
if is_repeated:
tag_bytes = encoder.TagBytes(field_number,
wire_format.WIRETYPE_LENGTH_DELIMITED)
tag_len = len(tag_bytes)
def DecodeRepeatedField(buffer, pos, end, message, field_dict):
value = field_dict.get(key)
if value is None:
value = field_dict.setdefault(key, new_default(message))
while 1:
(size, pos) = local_DecodeVarint(buffer, pos)
new_pos = pos + size
if new_pos > end:
raise _DecodeError()
value.append(buffer[pos:new_pos])
pos = new_pos + tag_len
if buffer[new_pos:pos] != tag_bytes or new_pos == end:
return new_pos
return DecodeRepeatedField
else:
def DecodeField(buffer, pos, end, message, field_dict):
(size, pos) = local_DecodeVarint(buffer, pos)
new_pos = pos + size
if new_pos > end:
raise _DecodeError()
field_dict[key] = buffer[pos:new_pos]
return new_pos
return DecodeField | Returns a decoder for a bytes field. |
381,890 | def graph_query(kind, source, target=None, neighbor_limit=1,
database_filter=None):
default_databases = [, , , , , ,
, , , , ,
, , , ,
, , ]
if not database_filter:
query_databases = default_databases
else:
query_databases = database_filter
params = {}
params[] =
params[] =
params[] = query_databases
kind_str = kind.lower()
if kind not in [, , ]:
logger.warn( % kind_str)
return None
params[] = kind_str
if isinstance(source, basestring):
source_str = source
else:
source_str = .join(source)
params[] = source_str
try:
neighbor_limit = int(neighbor_limit)
params[] = neighbor_limit
except (TypeError, ValueError):
logger.warn( % neighbor_limit)
return None
if target is not None:
if isinstance(target, basestring):
target_str = target
else:
target_str = .join(target)
params[] = target_str
logger.info()
for k, v in params.items():
logger.info( % (k, v))
logger.info()
res = requests.get(pc2_url + , params=params)
if not res.status_code == 200:
logger.error( % res.status_code)
if res.status_code == 500:
logger.error(
)
return None
return model | Perform a graph query on PathwayCommons.
For more information on these queries, see
http://www.pathwaycommons.org/pc2/#graph
Parameters
----------
kind : str
The kind of graph query to perform. Currently 3 options are
implemented, 'neighborhood', 'pathsbetween' and 'pathsfromto'.
source : list[str]
A list of gene names which are the source set for the graph query.
target : Optional[list[str]]
A list of gene names which are the target set for the graph query.
Only needed for 'pathsfromto' queries.
neighbor_limit : Optional[int]
This limits the length of the longest path considered in
the graph query. Default: 1
Returns
-------
model : org.biopax.paxtools.model.Model
A BioPAX model (java object). |
381,891 | def add_parameter(self, name, value, meta=None):
parameter = Parameter(name, value)
if meta: parameter.meta = meta
self.parameters.append(parameter) | Add a parameter to the parameter list.
:param name: New parameter's name.
:type name: str
:param value: New parameter's value.
:type value: float
:param meta: New parameter's meta property.
:type meta: dict |
381,892 | def open_file(self, info):
if not info.initialized: return
dlg = FileDialog( action = "open",
wildcard = "Graphviz Files (*.dot, *.xdot, *.txt)|"
"*.dot;*.xdot;*.txt|Dot Files (*.dot)|*.dot|"
"All Files (*.*)|*.*|")
if dlg.open() == OK:
parser = GodotDataParser()
model = parser.parse_dot_file(dlg.path)
if model is not None:
self.model = model
else:
print "error parsing: %s" % dlg.path
self.save_file = dlg.path
del dlg | Handles the open action. |
381,893 | def _connect(self, database=None):
conn_args = {
: self.config[],
: self.config[],
: self.config[],
: self.config[],
: self.config[],
}
if database:
conn_args[] = database
else:
conn_args[] =
if self.config[] == :
del conn_args[]
try:
conn = psycopg2.connect(**conn_args)
except Exception as e:
self.log.error(e)
raise e
conn.set_isolation_level(0)
return conn | Connect to given database |
381,894 | def insert_before(self, text):
selection_state = self.selection
if selection_state:
selection_state = SelectionState(
original_cursor_position=selection_state.original_cursor_position + len(text),
type=selection_state.type)
return Document(
text=text + self.text,
cursor_position=self.cursor_position + len(text),
selection=selection_state) | Create a new document, with this text inserted before the buffer.
It keeps selection ranges and cursor position in sync. |
381,895 | def trigger_event(self, event, client, args, force_dispatch=False):
self.controller.process_event(event, client, args, force_dispatch=force_dispatch) | Trigger a new event that will be dispatched to all modules. |
381,896 | def rand_bytes(length):
if not isinstance(length, int_types):
raise TypeError(pretty_message(
,
type_name(length)
))
if length < 1:
raise ValueError()
if length > 1024:
raise ValueError()
buffer = buffer_from_bytes(length)
result = Security.SecRandomCopyBytes(Security.kSecRandomDefault, length, buffer)
if result != 0:
raise OSError(_extract_error())
return bytes_from_buffer(buffer) | Returns a number of random bytes suitable for cryptographic purposes
:param length:
The desired number of bytes
:raises:
ValueError - when any of the parameters contain an invalid value
TypeError - when any of the parameters are of the wrong type
OSError - when an error is returned by the OS crypto library
:return:
A byte string |
381,897 | def ntowfv2(domain, user, password):
md4 = hashlib.new()
md4.update(password)
hmac_context = hmac.HMAC(md4.digest(), hashes.MD5(), backend=default_backend())
hmac_context.update(user.upper().encode())
hmac_context.update(domain.encode())
return hmac_context.finalize() | NTOWFv2() Implementation
[MS-NLMP] v20140502 NT LAN Manager (NTLM) Authentication Protocol
3.3.2 NTLM v2 Authentication
:param domain: The windows domain name
:param user: The windows username
:param password: The users password
:return: Hash Data |
381,898 | def clear(self):
not_removed = []
for fn in os.listdir(self.base):
fn = os.path.join(self.base, fn)
try:
if os.path.islink(fn) or os.path.isfile(fn):
os.remove(fn)
elif os.path.isdir(fn):
shutil.rmtree(fn)
except Exception:
not_removed.append(fn)
return not_removed | Clear the cache. |
381,899 | def store_drop(cls, resource: str, session: Optional[Session] = None) -> :
action = cls.make_drop(resource)
_store_helper(action, session=session)
return action | Store a "drop" event.
:param resource: The normalized name of the resource to store
Example:
>>> from bio2bel.models import Action
>>> Action.store_drop('hgnc') |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.