Unnamed: 0
int64 0
389k
| code
stringlengths 26
79.6k
| docstring
stringlengths 1
46.9k
|
---|---|---|
383,700 | def main(argv=None):
try:
colorama.init()
if argv is None:
argv = sys.argv[1:]
_main(argv)
except RuntimeError as e:
print(colorama.Fore.RED + +
str(e) + colorama.Style.RESET_ALL)
sys.exit(1)
else:
sys.exit(0) | Main entry point when the user runs the `trytravis` command. |
383,701 | def num_rings(self):
num = self._libinput.libinput_device_tablet_pad_get_num_rings(
self._handle)
if num < 0:
raise AttributeError()
return num | The number of rings a device with
the :attr:`~libinput.constant.DeviceCapability.TABLET_PAD`
capability provides.
Returns:
int: The number of rings or 0 if the device has no rings.
Raises:
AttributeError |
383,702 | def open_interpreter(self, fnames):
for path in sorted(fnames):
self.sig_open_interpreter.emit(path) | Open interpreter |
383,703 | def write_early_data(self, data: bytes) -> int:
if self._is_handshake_completed:
raise IOError()
self._ssl.write_early_data(data)
final_length = self._flush_ssl_engine()
return final_length | Returns the number of (encrypted) bytes sent. |
383,704 | def getsize(store, path=None):
path = normalize_storage_path(path)
if hasattr(store, ):
return store.getsize(path)
elif isinstance(store, dict):
if path in store:
v = store[path]
size = buffer_size(v)
else:
members = listdir(store, path)
prefix = _path_to_prefix(path)
size = 0
for k in members:
try:
v = store[prefix + k]
except KeyError:
pass
else:
try:
size += buffer_size(v)
except TypeError:
return -1
return size
else:
return -1 | Compute size of stored items for a given path. If `store` provides a `getsize`
method, this will be called, otherwise will return -1. |
383,705 | def param(f):
s abc attribute being set to the
value of type(imm).abc(x).
Params may not accept variable, variadic keyword, or default argumentsParameter transformation functions must take exactly one argumentis_paramname'] = f.__name__
f = staticmethod(f)
return f | The @param decorator, usable in an immutable class (see immutable), specifies that the following
function is actually a transformation on an input parameter; the parameter is required, and is
set to the value returned by the function decorated by the parameter; i.e., if you decorate the
function abc with @param, then imm.abc = x will result in imm's abc attribute being set to the
value of type(imm).abc(x). |
383,706 | def submit_sample(self, filepath, filename, tags=[]):
apiurl =
params = {: base64.b64encode(filename.encode()),
: self.reanalyze}
if tags:
params[] = .join(tags)
if os.path.isfile(filepath):
res = self.session.post(url=self.url + apiurl,
files=[(, open(filepath, mode=))],
params=params)
if res.status_code == 200:
return json.loads(res.text)
else:
raise BadResponseError(
.format(res.status_code, res.text))
else:
raise SampleFileNotFoundError() | Uploads a new sample to VMRay api. Filename gets sent base64 encoded.
:param filepath: path to sample
:type filepath: str
:param filename: filename of the original file
:type filename: str
:param tags: List of tags to apply to the sample
:type tags: list(str)
:returns: Dictionary of results
:rtype: dict |
383,707 | def contains_key(self, key):
check_not_none(key, "key can't be None")
key_data = self._to_data(key)
return self._encode_invoke_on_key(multi_map_contains_key_codec, key_data, key=key_data,
thread_id=thread_id()) | Determines whether this multimap contains an entry with the key.
**Warning: This method uses __hash__ and __eq__ methods of binary form of the key, not the actual implementations
of __hash__ and __eq__ defined in key's class.**
:param key: (object), the specified key.
:return: (bool), ``true`` if this multimap contains an entry for the specified key. |
383,708 | def chop(self, bits=1):
s = len(self)
if s % bits != 0:
raise ValueError("expression length (%d) should be a multiple of (%d)" % (len(self), bits))
elif s == bits:
return [ self ]
else:
return list(reversed([ self[(n+1)*bits - 1:n*bits] for n in range(0, s // bits) ])) | Chops a BV into consecutive sub-slices. Obviously, the length of this BV must be a multiple of bits.
:returns: A list of smaller bitvectors, each ``bits`` in length. The first one will be the left-most (i.e.
most significant) bits. |
383,709 | def hook_point(self, hook_name):
self.my_daemon.hook_point(hook_name=hook_name, handle=self) | Generic function to call modules methods if such method is avalaible
:param hook_name: function name to call
:type hook_name: str
:return:None |
383,710 | def to_date(value, default=None):
if isinstance(value, DateTime):
return value
if not value:
if default is None:
return None
return to_date(default)
try:
if isinstance(value, str) and in value:
return DateTime(value, datefmt=)
return DateTime(value)
except (TypeError, ValueError, DateTimeError):
return to_date(default) | Tries to convert the passed in value to Zope's DateTime
:param value: The value to be converted to a valid DateTime
:type value: str, DateTime or datetime
:return: The DateTime representation of the value passed in or default |
383,711 | def _raw_sql(self, values):
if isinstance(self.model._meta.pk, CharField):
when_clauses = " ".join(
[self._when("".format(x), y) for (x, y) in values]
)
else:
when_clauses = " ".join([self._when(x, y) for (x, y) in values])
table_name = self.model._meta.db_table
primary_key = self.model._meta.pk.column
return .format(
table_name, primary_key, when_clauses
) | Prepare SQL statement consisting of a sequence of WHEN .. THEN statements. |
383,712 | def build_from_info(cls, info):
info = deepcopy(info)
if in info:
cls_ = TERMS[info.pop()]
if issubclass(cls_, MetaTermMixin):
return cls_.build_from_info(info)
else:
cls_ = cls
return cls_(**info) | build a Term instance from a dict
Parameters
----------
cls : class
info : dict
contains all information needed to build the term
Return
------
Term instance |
383,713 | def _compute_soil_linear_factor(cls, pga_rock, imt):
if imt.period >= 1:
return np.ones_like(pga_rock)
else:
sl = np.zeros_like(pga_rock)
pga_between_100_500 = (pga_rock > 100) & (pga_rock < 500)
pga_greater_equal_500 = pga_rock >= 500
is_SA_between_05_1 = 0.5 < imt.period < 1
is_SA_less_equal_05 = imt.period <= 0.5
if is_SA_between_05_1:
sl[pga_between_100_500] = (1 - (1. / imt.period - 1) *
(pga_rock[pga_between_100_500] -
100) / 400)
sl[pga_greater_equal_500] = 1 - (1. / imt.period - 1)
if is_SA_less_equal_05 or imt.period == 0:
sl[pga_between_100_500] = (1 - (pga_rock[pga_between_100_500] -
100) / 400)
sl[pga_rock <= 100] = 1
return sl | Compute soil linear factor as explained in paragraph 'Functional
Form', page 1706. |
383,714 | def find_root( self, rows ):
maxes = sorted( rows.values(), key = lambda x: x.cumulative )
if not maxes:
raise RuntimeError( )
root = maxes[-1]
roots = [root]
for key,value in rows.items():
if not value.parents:
log.debug( , value )
if value not in roots:
roots.append( value )
if len(roots) > 1:
root = PStatGroup(
directory=,
filename=,
name=_("<profiling run>"),
children= roots,
)
root.finalize()
self.rows[ root.key ] = root
self.roots[] = root
return root | Attempt to find/create a reasonable root node from list/set of rows
rows -- key: PStatRow mapping
TODO: still need more robustness here, particularly in the case of
threaded programs. Should be tracing back each row to root, breaking
cycles by sorting on cumulative time, and then collecting the traced
roots (or, if they are all on the same root, use that). |
383,715 | def genestats(args):
p = OptionParser(genestats.__doc__)
p.add_option("--groupby", default="conf_class",
help="Print separate stats groupby")
p.set_outfile()
opts, args = p.parse_args(args)
if len(args) != 1:
sys.exit(not p.print_help())
gff_file, = args
gb = opts.groupby
g = make_index(gff_file)
tf = "transcript.sizes"
if need_update(gff_file, tf):
fw = open(tf, "w")
for feat in g.features_of_type("mRNA"):
fid = feat.id
conf_class = feat.attributes.get(gb, "all")
tsize = sum((c.stop - c.start + 1) for c in g.children(fid, 1) \
if c.featuretype == "exon")
print("\t".join((fid, str(tsize), conf_class)), file=fw)
fw.close()
tsizes = DictFile(tf, cast=int)
conf_classes = DictFile(tf, valuepos=2)
logging.debug("A total of {0} transcripts populated.".format(len(tsizes)))
genes = []
for feat in g.features_of_type("gene"):
fid = feat.id
transcripts = [c.id for c in g.children(fid, 1) \
if c.featuretype == "mRNA"]
transcript_sizes = [tsizes[x] for x in transcripts]
exons = set((c.chrom, c.start, c.stop) for c in g.children(fid, 2) \
if c.featuretype == "exon")
conf_class = conf_classes[transcripts[0]]
gs = GeneStats(feat, conf_class, transcript_sizes, exons)
genes.append(gs)
r = {}
distinct_groups = set(conf_classes.values())
for g in distinct_groups:
num_genes = num_single_exon_genes = num_multi_exon_genes = 0
num_genes_with_alts = num_transcripts = num_exons = max_transcripts = 0
cum_locus_size = cum_transcript_size = cum_exon_size = 0
for gs in genes:
if gs.conf_class != g:
continue
num_genes += 1
if gs.num_exons == 1:
num_single_exon_genes += 1
else:
num_multi_exon_genes += 1
num_exons += gs.num_exons
if gs.num_transcripts > 1:
num_genes_with_alts += 1
if gs.num_transcripts > max_transcripts:
max_transcripts = gs.num_transcripts
num_transcripts += gs.num_transcripts
cum_locus_size += gs.locus_size
cum_transcript_size += gs.cum_transcript_size
cum_exon_size += gs.cum_exon_size
mean_num_exons = num_exons * 1. / num_genes
mean_num_transcripts = num_transcripts * 1. / num_genes
mean_locus_size = cum_locus_size * 1. / num_genes
mean_transcript_size = cum_transcript_size * 1. / num_transcripts
mean_exon_size = cum_exon_size * 1. / num_exons
r[("Number of genes", g)] = num_genes
r[("Number of single-exon genes", g)] = \
percentage(num_single_exon_genes, num_genes, mode=1)
r[("Number of multi-exon genes", g)] = \
percentage(num_multi_exon_genes, num_genes, mode=1)
r[("Number of distinct exons", g)] = num_exons
r[("Number of genes with alternative transcript variants", g)] = \
percentage(num_genes_with_alts, num_genes, mode=1)
r[("Number of predicted transcripts", g)] = num_transcripts
r[("Mean number of distinct exons per gene", g)] = mean_num_exons
r[("Mean number of transcripts per gene", g)] = mean_num_transcripts
r[("Max number of transcripts per gene", g)] = max_transcripts
r[("Mean gene locus size (first to last exon)", g)] = mean_locus_size
r[("Mean transcript size (UTR, CDS)", g)] = mean_transcript_size
r[("Mean exon size", g)] = mean_exon_size
fw = must_open(opts.outfile, "w")
print(tabulate(r), file=fw)
fw.close() | %prog genestats gffile
Print summary stats, including:
- Number of genes
- Number of single-exon genes
- Number of multi-exon genes
- Number of distinct exons
- Number of genes with alternative transcript variants
- Number of predicted transcripts
- Mean number of distinct exons per gene
- Mean number of transcripts per gene
- Mean gene locus size (first to last exon)
- Mean transcript size (UTR, CDS)
- Mean exon size
Stats modeled after barley genome paper Table 1.
A physical, genetic and functional sequence assembly of the barley genome |
383,716 | def check_perplexities(self, perplexities):
usable_perplexities = []
for perplexity in sorted(perplexities):
if 3 * perplexity > self.n_samples - 1:
new_perplexity = (self.n_samples - 1) / 3
if new_perplexity in usable_perplexities:
log.warning(
"Perplexity value %d is too high. Dropping "
"because the max perplexity is already in the "
"list." % perplexity
)
else:
usable_perplexities.append(new_perplexity)
log.warning(
"Perplexity value %d is too high. Using "
"perplexity %.2f instead" % (perplexity, new_perplexity)
)
else:
usable_perplexities.append(perplexity)
return usable_perplexities | Check and correct/truncate perplexities.
If a perplexity is too large, it is corrected to the largest allowed
value. It is then inserted into the list of perplexities only if that
value doesn't already exist in the list. |
383,717 | def train(self, x = None, y = None, training_frame = None, fold_column = None,
weights_column = None, validation_frame = None, leaderboard_frame = None, blending_frame = None):
ncols = training_frame.ncols
names = training_frame.names
if self.project_name is None:
self.project_name = "automl_" + training_frame.frame_id
self.build_control["project_name"] = self.project_name
if y is None:
raise ValueError()
else:
assert_is_type(y,int,str)
if is_type(y, int):
if not (-ncols <= y < ncols):
raise H2OValueError("Column %d does not exist in the training frame" % y)
y = names[y]
else:
if y not in names:
raise H2OValueError("Column %s does not exist in the training frame" % y)
input_spec = {
: y,
}
if training_frame is None:
raise ValueError()
else:
assert_is_type(training_frame, H2OFrame)
input_spec[] = training_frame.frame_id
if fold_column is not None:
assert_is_type(fold_column,int,str)
input_spec[] = fold_column
if weights_column is not None:
assert_is_type(weights_column,int,str)
input_spec[] = weights_column
if validation_frame is not None:
assert_is_type(validation_frame, H2OFrame)
input_spec[] = validation_frame.frame_id
if leaderboard_frame is not None:
assert_is_type(leaderboard_frame, H2OFrame)
input_spec[] = leaderboard_frame.frame_id
if blending_frame is not None:
assert_is_type(blending_frame, H2OFrame)
input_spec[] = blending_frame.frame_id
if self.sort_metric is not None:
assert_is_type(self.sort_metric, str)
sort_metric = self.sort_metric.lower()
self._job.poll()
self._fetch() | Begins an AutoML task, a background task that automatically builds a number of models
with various algorithms and tracks their performance in a leaderboard. At any point
in the process you may use H2O's performance or prediction functions on the resulting
models.
:param x: A list of column names or indices indicating the predictor columns.
:param y: An index or a column name indicating the response column.
:param fold_column: The name or index of the column in training_frame that holds per-row fold
assignments.
:param weights_column: The name or index of the column in training_frame that holds per-row weights.
:param training_frame: The H2OFrame having the columns indicated by x and y (as well as any
additional columns specified by fold_column or weights_column).
:param validation_frame: H2OFrame with validation data. This argument is ignored unless the user sets
nfolds = 0. If cross-validation is turned off, then a validation frame can be specified and used
for early stopping of individual models and early stopping of the grid searches. By default and
when nfolds > 1, cross-validation metrics will be used for early stopping and thus validation_frame will be ignored.
:param leaderboard_frame: H2OFrame with test data for scoring the leaderboard. This is optional and
if this is set to None (the default), then cross-validation metrics will be used to generate the leaderboard
rankings instead.
:param blending_frame: H2OFrame used to train the the metalearning algorithm in Stacked Ensembles (instead of relying on cross-validated predicted values).
This is optional, but when provided, it is also recommended to disable cross validation
by setting `nfolds=0` and to provide a leaderboard frame for scoring purposes.
:returns: An H2OAutoML object.
:examples:
>>> # Set up an H2OAutoML object
>>> aml = H2OAutoML(max_runtime_secs=30)
>>> # Launch an AutoML run
>>> aml.train(y=y, training_frame=train) |
383,718 | def start_new_log(self):
filename = self.new_log_filepath()
self.block_cnt = 0
self.logfile = open(filename, )
print("DFLogger: logging started (%s)" % (filename))
self.prev_cnt = 0
self.download = 0
self.prev_download = 0
self.last_idle_status_printed_time = time.time()
self.last_status_time = time.time()
self.missing_blocks = {}
self.acking_blocks = {}
self.blocks_to_ack_and_nack = []
self.missing_found = 0
self.abandoned = 0 | open a new dataflash log, reset state |
383,719 | def readline(self):
line = self.file.readline()
if self.grammar and line:
try:
return self.grammar.parseString(line).asDict()
except ParseException:
return self.readline()
else:
return line | Reads (and optionally parses) a single line. |
383,720 | def to_netflux(flux):
r
if issparse(flux):
return sparse.tpt.to_netflux(flux)
elif isdense(flux):
return dense.tpt.to_netflux(flux)
else:
raise _type_not_supported | r"""Compute the netflux from the gross flux.
Parameters
----------
flux : (M, M) ndarray
Matrix of flux values between pairs of states.
Returns
-------
netflux : (M, M) ndarray
Matrix of netflux values between pairs of states.
Notes
-----
The netflux or effective current is defined as
.. math:: f_{ij}^{+}=\max \{ f_{ij}-f_{ji}, 0 \}
:math:`f_{ij}` is the flux for the transition from :math:`A` to
:math:`B`.
References
----------
.. [1] P. Metzner, C. Schuette and E. Vanden-Eijnden.
Transition Path Theory for Markov Jump Processes.
Multiscale Model Simul 7: 1192-1219 (2009) |
383,721 | def pick(self):
v = random.uniform(0, self.ub)
d = self.dist
c = self.vc - 1
s = self.vc
while True:
s = s / 2
if s == 0:
break
if v <= d[c][1]:
c -= s
else:
c += s
while len(d) <= c:
s = s / 2
c -= s
if s == 0:
break
if c == len(d) or v <= d[c][1]:
c -= 1
return d[c][0] | picks a value accoriding to the given density |
383,722 | def find_signature_input_colocation_error(signature_name, inputs):
for input_name, tensor in inputs.items():
expected_colocation_groups = [tf.compat.as_bytes("loc:@" + tensor.op.name)]
if tensor.op.colocation_groups() != expected_colocation_groups:
return (
"A tensor x used as input in a signature must not be subject to a "
"tf.colocate_with(y) constraint. (The reverse would be allowed.)\n"
"Details: tensor appears as input of signature "
"but has Tensor.op.colocation_groups() == %s" %
(tensor, input_name, signature_name, tensor.op.colocation_groups()))
return None | Returns error message for colocation of signature inputs, or None if ok. |
383,723 | def correct_dmdt(d, dmind, dtind, blrange):
data = numpyview(data_mem, , datashape(d))
data_resamp = numpyview(data_resamp_mem, , datashape(d))
bl0,bl1 = blrange
data_resamp[:, bl0:bl1] = data[:, bl0:bl1]
rtlib.dedisperse_resample(data_resamp, d[], d[], d[][dmind], d[][dtind], blrange, verbose=0) | Dedisperses and resamples data *in place*.
Drops edges, since it assumes that data is read with overlapping chunks in time. |
383,724 | def process_edge_dijkstra(self, current, neighbor, pred, q, component):
Dijkstras algorithm. User does not need to call this
method directly.
Input:
current: Name of the current node.
neighbor: Name of the neighbor node.
pred: Predecessor tree.
q: Data structure that holds nodes to be processed in a queue.
component: component number.
Post:
attribute of nodes and edges may change.
colorredlabelcolorblackcostcolorredlabelcolorblack') | API: process_edge_dijkstra(self, current, neighbor, pred, q, component)
Description:
Used by search() method if the algo argument is 'Dijkstra'. Processes
edges along Dijkstra's algorithm. User does not need to call this
method directly.
Input:
current: Name of the current node.
neighbor: Name of the neighbor node.
pred: Predecessor tree.
q: Data structure that holds nodes to be processed in a queue.
component: component number.
Post:
'color' attribute of nodes and edges may change. |
383,725 | def generateExecutable(self, outpath=, signed=False):
if not (self.runtime() or self.specfile()):
return True
if not self.distributionPath():
return True
if os.path.exists(self.distributionPath()):
shutil.rmtree(self.distributionPath())
if os.path.isfile(self.sourcePath()):
basepath = os.path.normpath(os.path.dirname(self.sourcePath()))
else:
basepath = os.path.normpath(self.sourcePath())
self.generatePlugins(basepath)
specfile = self.specfile()
opts = {
: self.name(),
: self.executableName(),
: self.productName(),
: self.runtime(),
: self.sourcePath(),
: self.buildPath(),
: .join(wrap_str(self.hookPaths())),
: .join(wrap_str(self.hiddenImports())),
: self.distributionPath(),
: sys.platform,
: .join(wrap_str(self.executableExcludes()))
}
if not specfile:
datasets = []
for typ, data in self.executableData():
if typ == :
args = {
: data[0],
: data[1],
: .join(wrap_str(data[2]))
}
datasets.append(templ.SPECTREE.format(**args))
else:
args = {}
args.update(data)
args.setdefault(, typ)
datasets.append(templ.SPECDATA.format(**args))
opts[] = .join(datasets)
opts.update(self._executableOptions)
if self.executableCliName():
opts[] = self.executableCliName()
opts[] = templ.SPECFILE_CLI.format(**opts)
else:
opts[] = templ.SPECFILE_COLLECT.format(**opts)
if opts[]:
data = templ.SPECFILE_ONEFILE.format(**opts)
else:
data = templ.SPECFILE.format(**opts)
specfile = os.path.join(self.buildPath(), self.name() + )
f = open(specfile, )
f.write(data)
f.close()
cmd = os.path.expandvars(self.executableOption())
success = cmdexec(cmd.format(spec=specfile)) == 0
if signed:
binfile = os.path.join(opts[],
opts[],
opts[] + )
self.sign(binfile)
return success | Generates the executable for this builder in the output path.
:param outpath | <str> |
383,726 | def set_background_corpus(self, background):
if issubclass(type(background), TermDocMatrixWithoutCategories):
self._background_corpus = pd.DataFrame(background
.get_term_freq_df()
.sum(axis=1),
columns=[]).reset_index()
self._background_corpus.columns = [, ]
elif (type(background) == pd.DataFrame
and set(background.columns) == set([, ])):
self._background_corpus = background
else:
raise Exception( \
+ \
+ ) | Parameters
----------
background |
383,727 | def get_generator(tweet):
if is_original_format(tweet):
if sys.version_info[0] == 3 and sys.version_info[1] >= 4:
parser = GeneratorHTMLParser(convert_charrefs=True)
else:
parser = GeneratorHTMLParser()
parser.feed(tweet["source"])
return {"link": parser.generator_link,
"name": parser.generator_name}
else:
return {"link": tweet["generator"]["link"],
"name": tweet["generator"]["displayName"]} | Get information about the application that generated the Tweet
Args:
tweet (Tweet): A Tweet object (or a dictionary)
Returns:
dict: keys are 'link' and 'name', the web link and the name
of the application
Example:
>>> from tweet_parser.getter_methods.tweet_generator import get_generator
>>> original_format_dict = {
... "created_at": "Wed May 24 20:17:19 +0000 2017",
... "source": '<a href="http://twitter.com" rel="nofollow">Twitter Web Client</a>'
... }
>>> get_generator(original_format_dict)
{'link': 'http://twitter.com', 'name': 'Twitter Web Client'}
>>> activity_streams_format_dict = {
... "postedTime": "2017-05-24T20:17:19.000Z",
... "generator":
... {"link": "http://twitter.com",
... "displayName": "Twitter Web Client"}
... }
>>> get_generator(activity_streams_format_dict)
{'link': 'http://twitter.com', 'name': 'Twitter Web Client'} |
383,728 | def _leapfrog_integrator_one_step(
target_log_prob_fn,
independent_chain_ndims,
step_sizes,
current_momentum_parts,
current_state_parts,
current_target_log_prob,
current_target_log_prob_grad_parts,
state_gradients_are_stopped=False,
name=None):
current_state_parts,
proposed_state_parts,
proposed_target_log_prob_grad_parts))
proposed_momentum_parts = [
v + 0.5 * tf.cast(eps, v.dtype) * g
for v, eps, g
in zip(proposed_momentum_parts,
step_sizes,
proposed_target_log_prob_grad_parts)]
return [
proposed_momentum_parts,
proposed_state_parts,
proposed_target_log_prob,
proposed_target_log_prob_grad_parts,
] | Applies `num_leapfrog_steps` of the leapfrog integrator.
Assumes a simple quadratic kinetic energy function: `0.5 ||momentum||**2`.
#### Examples:
##### Simple quadratic potential.
```python
import matplotlib.pyplot as plt
%matplotlib inline
import numpy as np
import tensorflow as tf
from tensorflow_probability.python.mcmc.hmc import _leapfrog_integrator_one_step # pylint: disable=line-too-long
tfd = tfp.distributions
dims = 10
num_iter = int(1e3)
dtype = np.float32
position = tf.placeholder(np.float32)
momentum = tf.placeholder(np.float32)
target_log_prob_fn = tfd.MultivariateNormalDiag(
loc=tf.zeros(dims, dtype)).log_prob
def _leapfrog_one_step(*args):
# Closure representing computation done during each leapfrog step.
return _leapfrog_integrator_one_step(
target_log_prob_fn=target_log_prob_fn,
independent_chain_ndims=0,
step_sizes=[0.1],
current_momentum_parts=args[0],
current_state_parts=args[1],
current_target_log_prob=args[2],
current_target_log_prob_grad_parts=args[3])
# Do leapfrog integration.
[
[next_momentum],
[next_position],
next_target_log_prob,
next_target_log_prob_grad_parts,
] = tf.while_loop(
cond=lambda *args: True,
body=_leapfrog_one_step,
loop_vars=[
[momentum],
[position],
target_log_prob_fn(position),
tf.gradients(target_log_prob_fn(position), position),
],
maximum_iterations=3)
momentum_ = np.random.randn(dims).astype(dtype)
position_ = np.random.randn(dims).astype(dtype)
positions = np.zeros([num_iter, dims], dtype)
with tf.Session() as sess:
for i in xrange(num_iter):
position_, momentum_ = sess.run(
[next_momentum, next_position],
feed_dict={position: position_, momentum: momentum_})
positions[i] = position_
plt.plot(positions[:, 0]); # Sinusoidal.
```
Args:
target_log_prob_fn: Python callable which takes an argument like
`*current_state_parts` and returns its (possibly unnormalized) log-density
under the target distribution.
independent_chain_ndims: Scalar `int` `Tensor` representing the number of
leftmost `Tensor` dimensions which index independent chains.
step_sizes: Python `list` of `Tensor`s representing the step size for the
leapfrog integrator. Must broadcast with the shape of
`current_state_parts`. Larger step sizes lead to faster progress, but
too-large step sizes make rejection exponentially more likely. When
possible, it's often helpful to match per-variable step sizes to the
standard deviations of the target distribution in each variable.
current_momentum_parts: Tensor containing the value(s) of the momentum
variable(s) to update.
current_state_parts: Python `list` of `Tensor`s representing the current
state(s) of the Markov chain(s). The first `independent_chain_ndims` of
the `Tensor`(s) index different chains.
current_target_log_prob: `Tensor` representing the value of
`target_log_prob_fn(*current_state_parts)`. The only reason to specify
this argument is to reduce TF graph size.
current_target_log_prob_grad_parts: Python list of `Tensor`s representing
gradient of `target_log_prob_fn(*current_state_parts`) wrt
`current_state_parts`. Must have same shape as `current_state_parts`. The
only reason to specify this argument is to reduce TF graph size.
state_gradients_are_stopped: Python `bool` indicating that the proposed new
state be run through `tf.stop_gradient`. This is particularly useful when
combining optimization over samples from the HMC chain.
Default value: `False` (i.e., do not apply `stop_gradient`).
name: Python `str` name prefixed to Ops created by this function.
Default value: `None` (i.e., 'hmc_leapfrog_integrator').
Returns:
proposed_momentum_parts: Updated value of the momentum.
proposed_state_parts: Tensor or Python list of `Tensor`s representing the
state(s) of the Markov chain(s) at each result step. Has same shape as
input `current_state_parts`.
proposed_target_log_prob: `Tensor` representing the value of
`target_log_prob_fn` at `next_state`.
proposed_target_log_prob_grad_parts: Gradient of `proposed_target_log_prob`
wrt `next_state`.
Raises:
ValueError: if `len(momentum_parts) != len(state_parts)`.
ValueError: if `len(state_parts) != len(step_sizes)`.
ValueError: if `len(state_parts) != len(grads_target_log_prob)`.
TypeError: if `not target_log_prob.dtype.is_floating`. |
383,729 | def find_mutant_amino_acid_interval(
cdna_sequence,
cdna_first_codon_offset,
cdna_variant_start_offset,
cdna_variant_end_offset,
n_ref,
n_amino_acids):
cdna_alt_nucleotides = cdna_sequence[
cdna_variant_start_offset:cdna_variant_end_offset]
n_alt = len(cdna_alt_nucleotides)
cdna_coding_prefix = cdna_sequence[cdna_first_codon_offset:cdna_variant_start_offset]
n_coding_nucleotides_before_variant = len(cdna_coding_prefix)
n_complete_prefix_codons = n_coding_nucleotides_before_variant // 3
frame_of_variant_nucleotides = n_coding_nucleotides_before_variant % 3
frameshift = abs(n_ref - n_alt) % 3 != 0
indel = n_ref != n_alt
variant_aa_interval_start = n_complete_prefix_codons
if frameshift:
variant_aa_interval_end = n_amino_acids
else:
n_alt_codons = int(math.ceil(n_alt / 3.0))
if indel:
extra_affected_codon = int(frame_of_variant_nucleotides != 0)
variant_aa_interval_end = (
variant_aa_interval_start + n_alt_codons + extra_affected_codon)
else:
variant_aa_interval_end = variant_aa_interval_start + n_alt_codons
return variant_aa_interval_start, variant_aa_interval_end, frameshift | Parameters
----------
cdna_sequence : skbio.DNA or str
cDNA sequence found in RNAseq data
cdna_first_codon_offset : int
Offset into cDNA sequence to first complete codon, lets us skip
past UTR region and incomplete codons.
cdna_variant_start_offset : int
Interbase start offset into cDNA sequence for selecting mutant
nucleotides.
cdna_variant_end_offset : int
Interbase end offset into cDNA sequence for selecting mutant
nucleotides.
n_ref : int
Number of reference nucleotides
n_amino_acids : int
Number of translated amino acids
Returns tuple with three fields:
1) Start offset for interval of mutant amino acids in translated sequence
2) End offset for interval of mutant amino acids in translated sequence
3) Boolean flag indicating whether the variant was a frameshift. |
383,730 | def on_message(self, websocket, msg):
if msg:
lines = []
for li in msg.split():
li = li.strip()
if li:
lines.append(li)
msg = .join(lines)
if msg:
return self.pubsub.publish(self.channel, msg) | When a new message arrives, it publishes to all listening clients. |
383,731 | def random_string(length, charset):
n = len(charset)
return .join(charset[random.randrange(n)] for _ in range(length)) | Return a random string of the given length from the
given character set.
:param int length: The length of string to return
:param str charset: A string of characters to choose from
:returns: A random string
:rtype: str |
383,732 | def set_post_data(self):
self.form.data = self.post_data_dict
for field_key, field in self.form.fields.items():
if has_digit(field_key):
base_key = make_key(field_key, exclude_last_string=True)
for key in self.post_data_dict.keys():
if base_key in key:
self.form.fields.update({key: field}) | Need to set form data so that validation on all post data occurs and
places newly entered form data on the form object. |
383,733 | def create(**kwargs):
secType = kwargs.get(, )
cls = {
: Contract,
: Stock,
: Option,
: Future,
: ContFuture,
: Forex,
: Index,
: CFD,
: Bond,
: Commodity,
: FuturesOption,
: MutualFund,
: Warrant,
: Warrant,
: Bag,
: Contract
}.get(secType, Contract)
if cls is not Contract:
kwargs.pop(, )
return cls(**kwargs) | Create and a return a specialized contract based on the given secType,
or a general Contract if secType is not given. |
383,734 | def Flush(self):
if self.locked and self.CheckLease() == 0:
self._RaiseLockError("Flush")
self._WriteAttributes()
self._SyncAttributes()
if self.parent:
self.parent.Flush() | Syncs this object with the data store, maintaining object validity. |
383,735 | def onDragSelection(self, event):
if self.grid.GetSelectionBlockTopLeft():
bottom_right = eval(repr(self.grid.GetSelectionBlockBottomRight()).replace("GridCellCoordsArray: ", "").replace("GridCellCoords", ""))
top_left = eval(repr(self.grid.GetSelectionBlockTopLeft()).replace("GridCellCoordsArray: ", "").replace("GridCellCoords", ""))
top_left = top_left[0]
bottom_right = bottom_right[0]
else:
return
min_col = top_left[1]
max_col = bottom_right[1]
min_row = top_left[0]
max_row = bottom_right[0]
self.df_slice = self.contribution.tables[self.grid_type].df.iloc[min_row:max_row+1, min_col:max_col+1] | Set self.df_slice based on user's selection |
383,736 | def salt_master(project, target, module, args=None, kwargs=None):
client = project.cluster.head.ssh_client
cmd = []
cmd.extend(generate_salt_cmd(target, module, args, kwargs))
cmd.append()
cmd.append()
cmd = .join(cmd)
output = client.exec_command(cmd, sudo=True)
if output[] == 0:
return output[]
else:
return output[] | Execute a `salt` command in the head node |
383,737 | def create_as_library(cls, url):
site = {
"crawler": "Download",
"url": url
}
cfg_file_path = os.path.dirname(__file__) + os.path.sep + + os.path.sep +
return cls(cfg_file_path, site, 0, False, False, True) | Creates a single crawler as in library mode. Crawling will start immediately.
:param url:
:return: |
383,738 | def delete_page_property(self, page_id, page_property):
url = .format(page_id=page_id,
page_property=str(page_property))
return self.delete(path=url) | Delete the page (content) property e.g. delete key of hash
:param page_id: content_id format
:param page_property: key of property
:return: |
383,739 | def calculate_perf_100nsec_timer(previous, current, property_name):
n0 = previous[property_name]
n1 = current[property_name]
d0 = previous["Timestamp_Sys100NS"]
d1 = current["Timestamp_Sys100NS"]
if n0 is None or n1 is None:
return
return (n1 - n0) / (d1 - d0) * 100 | PERF_100NSEC_TIMER
https://technet.microsoft.com/en-us/library/cc728274(v=ws.10).aspx |
383,740 | def unmarshal(self, v):
try:
return self.choices[v]
except KeyError:
self.log.warning("No such choice {0} for field {1}.".format(v, self))
return v | Convert the value from Strava API format to useful python representation.
If the value does not appear in the choices attribute we log an error rather
than raising an exception as this may be caused by a change to the API upstream
so we want to fail gracefully. |
383,741 | def unique_identifier(self):
for t in IDENTIFIER_PRIORITY:
found = self._tree.getroot().find( % t, NS)
if found is not None:
return found.text | Get the unique identifier by looking through ``mods:identifier``
See `specs <https://ocr-d.github.io/mets#unique-id-for-the-document-processed>`_ for details. |
383,742 | def create_container_definition(container_name, image, port=80, cpu=1.0, memgb=1.5,
environment=None):
nameenvnamevalueenvvalue
container = {: container_name}
container_properties = {: image}
container_properties[] = [{: port}]
container_properties[] = {
: {: cpu, : memgb}}
container[] = container_properties
if environment is not None:
container_properties[] = environment
return container | Makes a python dictionary of container properties.
Args:
container_name: The name of the container.
image (str): Container image string. E.g. nginx.
port (int): TCP port number. E.g. 8080.
cpu (float): Amount of CPU to allocate to container. E.g. 1.0.
memgb (float): Memory in GB to allocate to container. E.g. 1.5.
environment (list): A list of [{'name':'envname', 'value':'envvalue'}].
Sets environment variables in the container.
Returns:
A Python dictionary of container properties, pass a list of these to
create_container_group(). |
383,743 | def main():
col1,col2=0,1
sym,size = ,20
xlab,ylab=,
lines=0
if in sys.argv:
print(main.__doc__)
sys.exit()
if in sys.argv:
ind=sys.argv.index()
file=sys.argv[ind+1]
else:
print(main.__doc__)
sys.exit()
if in sys.argv:
ind=sys.argv.index()
col1=sys.argv[ind+1]
col2=sys.argv[ind+2]
else:
print(main.__doc__)
sys.exit()
if in sys.argv:
ind=sys.argv.index()
xlab=sys.argv[ind+1]
if in sys.argv:
ind=sys.argv.index()
ylab=sys.argv[ind+1]
if in sys.argv:
ind=sys.argv.index()
xmin=float(sys.argv[ind+1])
xmax=float(sys.argv[ind+2])
ymin=float(sys.argv[ind+3])
ymax=float(sys.argv[ind+4])
if in sys.argv:
ind=sys.argv.index()
sym=sys.argv[ind+1]
size=int(sys.argv[ind+2])
if in sys.argv: lines=1
if in sys.argv: sym=
X,Y=[],[]
data,file_type=pmag.magic_read(file)
print(file_type)
for rec in data:
if col1 not in list(rec.keys()) or col2 not in list(rec.keys()):
print(col1,,col2, )
print()
sys.exit()
if rec[col1]!= and rec[col2]!=:
skip=0
if in sys.argv:
for crit in bounds:
crits=crit.split()
crit_key=crits[0]
crit_min=crits[1]
crit_max=crits[2]
if rec[crit_key]=="":
skip=1
else:
if crit_min!="" and float(rec[crit_key])<float(crit_min):skip=1
if crit_max!="" and float(rec[crit_key])>float(crit_min):skip=1
if skip==0:
X.append(float(rec[col1]))
Y.append(float(rec[col2]))
if len(X)==0:
print(col1,,col2, )
print()
sys.exit()
else:
print(len(X),)
if sym!=:pylab.scatter(X,Y,c=sym[0],marker=sym[1],s=size)
if xlab!=:pylab.xlabel(xlab)
if ylab!=:pylab.ylabel(ylab)
if lines==1:pylab.plot(X,Y,)
if in sys.argv:pylab.axis([xmin,xmax,ymin,ymax])
pylab.draw()
ans=input("Press return to quit ")
sys.exit() | NAME
plotxy_magic.py
DESCRIPTION
Makes simple X,Y plots
INPUT FORMAT
Any MagIC formatted file
SYNTAX
plotxy_magic.py [command line options]
OPTIONS
-h prints this help message
-f FILE to set file name on command rec
-c col1 col2 specify columns names to plot
-sym SYM SIZE specify symbol and size to plot: default is red dots
-S don't plot symbols
-xlab XLAB
-ylab YLAB
-l connect symbols with lines
-b xmin xmax ymin ymax, sets bounds
# -b [key:max:min,key:max:min,etc.] leave or min blank for no cutoff |
383,744 | def store(self):
if msgpack is None:
log.error()
else:
try:
with salt.utils.files.fopen(self._path, ) as fp_:
cache = {
"CacheDisk_data": self._dict,
"CacheDisk_cachetime": self._key_cache_time
}
msgpack.dump(cache, fp_, use_bin_type=True)
except (IOError, OSError) as err:
log.error(, err) | Write content of the entire cache to disk |
383,745 | def copy(self):
tokens = ([t for t in self.tokens]
if isinstance(self.tokens, list) else self.tokens)
return Identifier(tokens, 0) | Return copy of self
Returns:
Identifier object |
383,746 | def add_group_members(self, members):
if not isinstance(members, list):
members = [members]
if not getattr(self, , None):
self.group_members = members
else:
self.group_members.extend(members) | Add a new group member to the groups list
:param members: member name
:type members: str
:return: None |
383,747 | def _bubbleP(cls, T):
c = cls._blend["bubble"]
Tj = cls._blend["Tj"]
Pj = cls._blend["Pj"]
Tita = 1-T/Tj
suma = 0
for i, n in zip(c["i"], c["n"]):
suma += n*Tita**(i/2.)
P = Pj*exp(Tj/T*suma)
return P | Using ancillary equation return the pressure of bubble point |
383,748 | def run(self, agent_host):
total_reward = 0
self.prev_s = None
self.prev_a = None
is_first_action = True
world_state = agent_host.getWorldState()
while world_state.is_mission_running:
current_r = 0
if is_first_action:
while True:
time.sleep(0.1)
world_state = agent_host.getWorldState()
for error in world_state.errors:
self.logger.error("Error: %s" % error.text)
for reward in world_state.rewards:
current_r += reward.getValue()
if world_state.is_mission_running and len(world_state.observations)>0 and not world_state.observations[-1].text=="{}":
total_reward += self.act(world_state, agent_host, current_r)
break
if not world_state.is_mission_running:
break
is_first_action = False
else:
while world_state.is_mission_running and current_r == 0:
time.sleep(0.1)
world_state = agent_host.getWorldState()
for error in world_state.errors:
self.logger.error("Error: %s" % error.text)
for reward in world_state.rewards:
current_r += reward.getValue()
while True:
time.sleep(0.1)
world_state = agent_host.getWorldState()
for error in world_state.errors:
self.logger.error("Error: %s" % error.text)
for reward in world_state.rewards:
current_r += reward.getValue()
if world_state.is_mission_running and len(world_state.observations)>0 and not world_state.observations[-1].text=="{}":
total_reward += self.act(world_state, agent_host, current_r)
break
if not world_state.is_mission_running:
break
self.logger.debug("Final reward: %d" % current_r)
total_reward += current_r
if self.prev_s is not None and self.prev_a is not None:
self.updateQTableFromTerminatingState( current_r )
self.drawQ()
return total_reward | run the agent on the world |
383,749 | def mk_function(metamodel, s_sync):
action = s_sync.Action_Semantics_internal
label = s_sync.Name
return lambda **kwargs: interpret.run_function(metamodel, label,
action, kwargs) | Create a python function from a BridgePoint function. |
383,750 | def pad_to_size(text, x, y):
input_lines = text.rstrip().split("\n")
longest_input_line = max(map(len, input_lines))
number_of_input_lines = len(input_lines)
x = max(x, longest_input_line)
y = max(y, number_of_input_lines)
output = ""
padding_top = int((y - number_of_input_lines) / 2)
padding_bottom = y - number_of_input_lines - padding_top
padding_left = int((x - longest_input_line) / 2)
output += padding_top * (" " * x + "\n")
for line in input_lines:
output += padding_left * " " + line + " " * (x - padding_left - len(line)) + "\n"
output += padding_bottom * (" " * x + "\n")
return output | Adds whitespace to text to center it within a frame of the given
dimensions. |
383,751 | def get_breadcrumbs(self):
if not self.breadcrumbs:
return None
else:
allowed_breadcrumbs = []
for breadcrumb in self.breadcrumbs:
if breadcrumb[1] is not None and not view_from_url(
breadcrumb[1]
).has_permission(self.request.user):
continue
obj = self if not hasattr(self, "object") else self.object
url = (
None
if not breadcrumb[1]
else reverse_url(breadcrumb[1], obj)
)
allowed_breadcrumbs.append({"name": breadcrumb[0], "url": url})
return allowed_breadcrumbs | Breadcrumb format: (('name', 'url'), ...) or None if not used. |
383,752 | def update(self):
if not self._queue:
return
dim, widget_type, attr, old, new = self._queue[-1]
self._queue = []
dim_label = dim.pprint_label
label, widget = self.widgets[dim_label]
if widget_type == :
if isinstance(label, AutocompleteInput):
value = [new]
widget.value = value
else:
widget.value = float(new)
elif label:
lookups = self.lookups.get(dim_label)
if not self.editable:
if lookups:
new = lookups[widget.value][1]
label.text = % dim.pprint_value_string(new)
elif isinstance(label, AutocompleteInput):
text = lookups[new][1]
label.value = text
else:
label.value = dim.pprint_value(new)
key = []
for dim, (label, widget) in self.widgets.items():
lookups = self.lookups.get(dim)
if label and lookups:
val = lookups[widget.value][0]
else:
val = widget.value
key.append(val)
key = wrap_tuple_streams(tuple(key), self.plot.dimensions,
self.plot.streams)
self.plot.update(key)
self._active = False | Handle update events on bokeh server. |
383,753 | def is_list_like(obj, allow_sets=True):
return (isinstance(obj, abc.Iterable) and
not isinstance(obj, (str, bytes)) and
not (isinstance(obj, np.ndarray) and obj.ndim == 0) and
not (allow_sets is False and isinstance(obj, abc.Set))) | Check if the object is list-like.
Objects that are considered list-like are for example Python
lists, tuples, sets, NumPy arrays, and Pandas Series.
Strings and datetime objects, however, are not considered list-like.
Parameters
----------
obj : The object to check
allow_sets : boolean, default True
If this parameter is False, sets will not be considered list-like
.. versionadded:: 0.24.0
Returns
-------
is_list_like : bool
Whether `obj` has list-like properties.
Examples
--------
>>> is_list_like([1, 2, 3])
True
>>> is_list_like({1, 2, 3})
True
>>> is_list_like(datetime(2017, 1, 1))
False
>>> is_list_like("foo")
False
>>> is_list_like(1)
False
>>> is_list_like(np.array([2]))
True
>>> is_list_like(np.array(2)))
False |
383,754 | def _calculate_Hfr(self, T):
if self.isCoal:
return self._calculate_Hfr_coal(T)
Hfr = 0.0
for compound in self.material.compounds:
index = self.material.get_compound_index(compound)
dHfr = thermo.H(compound, T, self._compound_mfrs[index])
Hfr = Hfr + dHfr
return Hfr | Calculate the enthalpy flow rate of the stream at the specified
temperature.
:param T: Temperature. [°C]
:returns: Enthalpy flow rate. [kWh/h] |
383,755 | def channels(self):
if not self._channels:
self._channels = self._call_api()[]
return self._channels | List of channels of this slack team |
383,756 | def _handle_get(self, request_data):
der = base64.b64decode(request_data)
ocsp_request = self._parse_ocsp_request(der)
return self._build_http_response(ocsp_request) | An OCSP GET request contains the DER-in-base64 encoded OCSP request in the
HTTP request URL. |
383,757 | def setLength(self, personID, length):
self._connection._sendDoubleCmd(
tc.CMD_SET_PERSON_VARIABLE, tc.VAR_LENGTH, personID, length) | setLength(string, double) -> None
Sets the length in m for the given person. |
383,758 | def aggregate(input, **params):
PARAM_CFG_EXTRACT =
PARAM_CFG_SUBSTITUTE =
PARAM_CFG_AGGREGATE =
AGGR_FIELD =
AGGR_FUNC =
extract_params = params.get(PARAM_CFG_EXTRACT)
extract_params.update({AccessParams.KEY_TYPE: AccessParams.TYPE_MULTI})
dataset = __extract(input, extract_params)
if PARAM_CFG_SUBSTITUTE in params:
dataset = __substitute(input, dataset, params.get(PARAM_CFG_SUBSTITUTE))
cfg = params.get(PARAM_CFG_AGGREGATE)
res = Aggregator.agg_single_func(dataset, cfg[AGGR_FIELD], cfg[AGGR_FUNC])
return res | Returns aggregate
:param input:
:param params:
:return: |
383,759 | def metapolicy(self, permitted):
if permitted not in VALID_SITE_CONTROL:
raise TypeError(SITE_CONTROL_ERROR.format(permitted))
if permitted == SITE_CONTROL_NONE:
self.domains = {}
self.header_domains = {}
self.identities = []
self.site_control = permitted | Sets metapolicy to ``permitted``. (only applicable to master
policy files). Acceptable values correspond to those listed in
Section 3(b)(i) of the crossdomain.xml specification, and are
also available as a set of constants defined in this module.
By default, Flash assumes a value of ``master-only`` for all
policies except socket policies, (which assume a default of
``all``) so if this is desired (and, for security, it
typically is), this method does not need to be called.
Note that a metapolicy of ``none`` forbids **all** access,
even if one or more domains, headers or identities have
previously been specified as allowed. As such, setting the
metapolicy to ``none`` will remove all access previously
granted by ``allow_domain``, ``allow_headers`` or
``allow_identity``. Additionally, attempting to grant access
via ``allow_domain``, ``allow_headers`` or ``allow_identity``
will, when the metapolicy is ``none``, raise ``TypeError``. |
383,760 | async def connect(self) -> None:
def protocol_factory() -> Protocol:
return Protocol(client=self)
_, protocol = await self.loop.create_connection(
protocol_factory,
host=self.host,
port=self.port,
ssl=self.ssl
)
if self.protocol:
self.protocol.close()
self.protocol = protocol
protocol.client = self
self.trigger("client_connect") | Open a connection to the defined server. |
383,761 | def bisect(func, a, b, xtol=1e-6, errorcontrol=True,
testkwargs=dict(), outside=,
ascending=None,
disp=False):
search = True
if ascending is None:
if errorcontrol:
testkwargs.update(dict(type_=, force=True))
fa = func.test0(a, **testkwargs)
fb = func.test0(b, **testkwargs)
else:
fa = func(a) < 0
fb = func(b) < 0
if fa and not fb:
ascending = True
elif fb and not fa:
ascending = False
else:
if disp:
print()
if outside == :
raise BisectException()
search = False
while (b-a > xtol) and search:
mid = (a+b)/2.0
if ascending:
if ((not errorcontrol) and (func(mid) < 0)) or \
(errorcontrol and func.test0(mid, **testkwargs)):
a = mid
else:
b = mid
else:
if ((not errorcontrol) and (func(mid) < 0)) or \
(errorcontrol and func.test0(mid, **testkwargs)):
b = mid
else:
a = mid
if disp:
print(, a, b)
if errorcontrol:
ya, yb = func(a)[0], func(b)[0]
else:
ya, yb = func(a), func(b)
m = (yb-ya) / (b-a)
res = a-ya/m
if disp:
print(, res)
return res | Find root by bysection search.
If the function evaluation is noisy then use `errorcontrol=True` for adaptive
sampling of the function during the bisection search.
Parameters
----------
func: callable
Function of which the root should be found. If `errorcontrol=True`
then the function should be derived from `AverageBase`.
a, b: float
initial interval
xtol: float
target tolerance for interval size
errorcontrol: boolean
if true, assume that function is derived from `AverageBase`.
testkwargs: only for `errorcontrol=True`
see `AverageBase.test0`
outside: ['extrapolate', 'raise']
How to handle the case where f(a) and f(b) have same sign,
i.e. where the root lies outside of the interval.
If 'raise' throws a `BisectException`.
ascending: allow passing in directly whether function is ascending or not
if ascending=True then it is assumed without check that f(a) < 0 and f(b) > 0
if ascending=False then it is assumed without check that f(a) > 0 and f(b) < 0
Returns
-------
float, root of function |
383,762 | def getAllSavedQueries(self, projectarea_id=None, projectarea_name=None,
creator=None, saved_query_name=None):
pa_id = (self.rtc_obj
._pre_get_resource(projectarea_id=projectarea_id,
projectarea_name=projectarea_name))
filter_rule = None
if creator is not None:
fcreator = self.rtc_obj.getOwnedBy(creator).url
filter_rule = [("dc:creator", "@rdf:resource",
fcreator)]
self.log.debug("Add rules for fetching all saved queries: "
"created by %s", creator)
if saved_query_name is not None:
ftitle_rule = ("dc:title", None, saved_query_name)
if filter_rule is None:
filter_rule = [ftitle_rule]
else:
filter_rule.append(ftitle_rule)
self.log.debug("Add rules for fetching all saved queries: "
"saved query title is %s", saved_query_name)
return (self.rtc_obj
._get_paged_resources("SavedQuery",
projectarea_id=pa_id,
page_size="100",
filter_rule=filter_rule)) | Get all saved queries created by somebody (optional)
in a certain project area (optional, either `projectarea_id`
or `projectarea_name` is needed if specified)
If `saved_query_name` is specified, only the saved queries match the
name will be fetched.
Note: only if `creator` is added as a member, the saved queries
can be found. Otherwise None will be returned.
WARNING: now the RTC server cannot correctly list all the saved queries
It seems to be a bug of RTC. Recommend using `runSavedQueryByUrl` to
query all the workitems if the query is saved.
Note: It will run faster when more attributes are specified.
:param projectarea_id: the :class:`rtcclient.project_area.ProjectArea`
id
:param projectarea_name: the
:class:`rtcclient.project_area.ProjectArea` name
:param creator: the creator email address
:param saved_query_name: the saved query name
:return: a :class:`list` that contains the saved queried
:class:`rtcclient.models.SavedQuery` objects
:rtype: list |
383,763 | def pre_parse_and_validate_signavio(self, bpmn, filename):
self._check_for_disconnected_boundary_events_signavio(bpmn, filename)
self._fix_call_activities_signavio(bpmn, filename)
return bpmn | This is the Signavio specific editor hook for pre-parsing and
validation.
A subclass can override this method to provide additional parseing or
validation. It should call the parent method first.
:param bpmn: an lxml tree of the bpmn content
:param filename: the source file name
This must return the updated bpmn object (or a replacement) |
383,764 | def previous_row(self):
row = self.currentIndex().row()
rows = self.source_model.rowCount()
if row == 0:
row = rows
self.selectRow(row - 1) | Move to previous row from currently selected row. |
383,765 | def refresh_modules(self, module_string=None, exact=True):
if not module_string:
if time.time() > (self.last_refresh_ts + 0.1):
self.last_refresh_ts = time.time()
else:
return
update_i3status = False
for name, module in self.output_modules.items():
if (
module_string is None
or (exact and name == module_string)
or (not exact and name.startswith(module_string))
):
if module["type"] == "py3status":
if self.config["debug"]:
self.log("refresh py3status module {}".format(name))
module["module"].force_update()
else:
if self.config["debug"]:
self.log("refresh i3status module {}".format(name))
update_i3status = True
if update_i3status:
self.i3status_thread.refresh_i3status() | Update modules.
if module_string is None all modules are refreshed
if module_string then modules with the exact name or those starting
with the given string depending on exact parameter will be refreshed.
If a module is an i3status one then we refresh i3status.
To prevent abuse, we rate limit this function to 100ms for full
refreshes. |
383,766 | def get_register_func(base_class, nickname):
if base_class not in _REGISTRY:
_REGISTRY[base_class] = {}
registry = _REGISTRY[base_class]
def register(klass, name=None):
assert issubclass(klass, base_class), \
"Can only register subclass of %s"%base_class.__name__
if name is None:
name = klass.__name__
name = name.lower()
if name in registry:
warnings.warn(
"\033[91mNew %s %s.%s registered with name %s is"
"overriding existing %s %s.%s\033[0m"%(
nickname, klass.__module__, klass.__name__, name,
nickname, registry[name].__module__, registry[name].__name__),
UserWarning, stacklevel=2)
registry[name] = klass
return klass
register.__doc__ = "Register %s to the %s factory"%(nickname, nickname)
return register | Get registrator function.
Parameters
----------
base_class : type
base class for classes that will be reigstered
nickname : str
nickname of base_class for logging
Returns
-------
a registrator function |
383,767 | def get_default_config(self):
config = super(NetworkCollector, self).get_default_config()
config.update({
: ,
: [, , , , , , ,
],
: [, ],
: ,
})
return config | Returns the default collector settings |
383,768 | def add_exception_handler(self, exception_handler):
if exception_handler is None:
raise RuntimeConfigException(
"Valid Exception Handler instance to be provided")
if not isinstance(exception_handler, AbstractExceptionHandler):
raise RuntimeConfigException(
"Input should be an ExceptionHandler instance")
self.exception_handlers.append(exception_handler) | Register input to the exception handlers list.
:param exception_handler: Exception Handler instance to be
registered.
:type exception_handler: AbstractExceptionHandler
:return: None |
383,769 | def _get_asset_urls(self, asset_id):
dom = get_page(self._session, OPENCOURSE_ASSETS_URL,
json=True, id=asset_id)
logging.debug(, asset_id)
urls = []
for element in dom[]:
typeName = element[]
definition = element[]
if typeName == :
open_course_asset_id = definition[]
for asset in self._asset_retriever([open_course_asset_id],
download=False):
urls.append({: asset.name, : asset.url})
elif typeName == :
urls.append({: definition[].strip(),
: definition[].strip()})
else:
logging.warning(
,
typeName, json.dumps(dom, indent=4))
return urls | Get list of asset urls and file names. This method may internally
use AssetRetriever to extract `asset` element types.
@param asset_id: Asset ID.
@type asset_id: str
@return List of dictionaries with asset file names and urls.
@rtype [{
'name': '<filename.ext>'
'url': '<url>'
}] |
383,770 | async def create_local_did(self, seed: str = None, loc_did: str = None, metadata: dict = None) -> DIDInfo:
LOGGER.debug(, loc_did, metadata)
cfg = {}
if seed:
cfg[] = seed
if loc_did:
cfg[] = loc_did
if not self.handle:
LOGGER.debug(, self.name)
raise WalletState(.format(self.name))
try:
(created_did, verkey) = await did.create_and_store_my_did(self.handle, json.dumps(cfg))
except IndyError as x_indy:
if x_indy.error_code == ErrorCode.DidAlreadyExistsError:
LOGGER.debug(, loc_did, self.name)
raise ExtantRecord(.format(loc_did, self.name))
LOGGER.debug(, x_indy.error_code)
raise
now = int(time())
loc_did_metadata = {**(metadata or {}), : now, : now}
await did.set_did_metadata(self.handle, created_did, json.dumps(loc_did_metadata))
rv = DIDInfo(created_did, verkey, loc_did_metadata)
LOGGER.debug(, rv)
return rv | Create and store a new local DID for use in pairwise DID relations.
:param seed: seed from which to create (default random)
:param loc_did: local DID value (default None to let indy-sdk generate)
:param metadata: metadata to associate with the local DID
(operation always sets 'since', 'modified' epoch timestamps)
:return: DIDInfo for new local DID |
383,771 | def service_group(self, service_name):
for group in EFConfig.SERVICE_GROUPS:
if self.services(group).has_key(service_name):
return group
return None | Args:
service_name: the name of the service in the service registry
Returns:
the name of the group the service is in, or None of the service was not found |
383,772 | def summarize(self):
data = [
[, self.seqrecord.id],
[, .join(self.gdomain_regions) if self.gdomain_regions else None],
[, self.evalue_bh_rabs],
[, self.evalue_bh_non_rabs],
[, .join(map(str, self.rabf_motifs)) if self.rabf_motifs else None],
[, self.is_rab()]
]
summary =
for name, value in data:
summary += .format(name, value)
if self.is_rab():
summary += .format(,
.join(.format(name, score) for name, score
in self.rab_subfamily_top5))
return summary | G protein annotation summary in a text format
:return: A string summary of the annotation
:rtype: str |
383,773 | def decode(self, encoded):
if self.enforce_reversible:
self.enforce_reversible = False
if self.encode(self.decode(encoded)) != encoded:
raise ValueError( % encoded)
self.enforce_reversible = True
return encoded | Decodes an object.
Args:
object_ (object): Encoded object.
Returns:
object: Object decoded. |
383,774 | def fetch_pillar(self):
log.debug(, self.ext)
fresh_pillar = Pillar(self.opts,
self.grains,
self.minion_id,
self.saltenv,
ext=self.ext,
functions=self.functions,
pillarenv=self.pillarenv)
return fresh_pillar.compile_pillar() | In the event of a cache miss, we need to incur the overhead of caching
a new pillar. |
383,775 | def stop_change(self):
self.logger.info("Dimmer %s stop_change", self.device_id)
self.hub.direct_command(self.device_id, , )
success = self.hub.check_success(self.device_id, , )
if success:
self.logger.info("Dimmer %s stop_change: Light stopped changing successfully",
self.device_id)
self.hub.clear_device_command_cache(self.device_id)
else:
self.logger.error("Dimmer %s stop_change: Light did not stop",
self.device_id)
return success | Stop changing light level manually |
383,776 | def load(stream, Loader=None):
if Loader is None:
load_warning()
Loader = FullLoader
loader = Loader(stream)
try:
return loader.get_single_data()
finally:
loader.dispose() | Parse the first YAML document in a stream
and produce the corresponding Python object. |
383,777 | def extract_tar (archive, compression, cmd, verbosity, interactive, outdir):
try:
with tarfile.open(archive) as tfile:
tfile.extractall(path=outdir)
except Exception as err:
msg = "error extracting %s: %s" % (archive, err)
raise util.PatoolError(msg)
return None | Extract a TAR archive with the tarfile Python module. |
383,778 | def migrate_file(src_id, location_name, post_fixity_check=False):
location = Location.get_by_name(location_name)
f_src = FileInstance.get(src_id)
f_dst = FileInstance.create()
db.session.commit()
try:
f_dst.copy_contents(
f_src,
progress_callback=progress_updater,
default_location=location.uri,
)
db.session.commit()
except Exception:
db.session.delete(f_dst)
db.session.commit()
raise
ObjectVersion.relink_all(f_src, f_dst)
db.session.commit()
if post_fixity_check:
verify_checksum.delay(str(f_dst.id)) | Task to migrate a file instance to a new location.
.. note:: If something goes wrong during the content copy, the destination
file instance is removed.
:param src_id: The :class:`invenio_files_rest.models.FileInstance` ID.
:param location_name: Where to migrate the file.
:param post_fixity_check: Verify checksum after migration.
(Default: ``False``) |
383,779 | def cli(ctx, ftdi_enable, ftdi_disable, serial_enable, serial_disable):
exit_code = 0
if ftdi_enable:
exit_code = Drivers().ftdi_enable()
elif ftdi_disable:
exit_code = Drivers().ftdi_disable()
elif serial_enable:
exit_code = Drivers().serial_enable()
elif serial_disable:
exit_code = Drivers().serial_disable()
else:
click.secho(ctx.get_help())
ctx.exit(exit_code) | Manage FPGA boards drivers. |
383,780 | def _got_srv(self, addrs):
with self.lock:
if not addrs:
self._dst_service = None
if self._dst_port:
self._dst_nameports = [(self._dst_name, self._dst_port)]
else:
self._dst_nameports = []
self._set_state("aborted")
raise DNSError("Could not resolve SRV for service {0!r}"
" on host {1!r} and fallback port number not given"
.format(self._dst_service, self._dst_name))
elif addrs == [(".", 0)]:
self._dst_nameports = []
self._set_state("aborted")
raise DNSError("Service {0!r} not available on host {1!r}"
.format(self._dst_service, self._dst_name))
else:
self._dst_nameports = addrs
self._set_state("resolve-hostname") | Handle SRV lookup result.
:Parameters:
- `addrs`: properly sorted list of (hostname, port) tuples |
383,781 | def min_ems(self, value: float) -> :
raise_not_number(value)
self.minimum = .format(value)
return self | Set the minimum size in ems. |
383,782 | def recode(self, table: pd.DataFrame, validate=False) -> pd.DataFrame:
series = table[self.name]
self._check_series_name(series)
col = self.name
data = series.copy()
for recoder in self.recoders.values():
try:
data = recoder(data)
except (BaseException) as err:
raise RecodingError(col, recoder, err)
if validate:
failed_rows = find_failed_rows(self.validate(data.to_frame()))
if failed_rows.shape[0] > 0:
raise ValidationError(f"Rows that failed to validate for column :\n{failed_rows}")
return data.to_frame() | Pass the provided series obj through each recoder function sequentially and return the final result.
Args:
table (pd.DataFrame): A dataframe on which to apply recoding logic.
validate (bool): If ``True``, recoded table must pass validation tests. |
383,783 | def _compose_mro(cls, types):
bases = set(cls.__mro__)
def is_related(_type):
return (
_type not in bases and
hasattr(_type, ) and
issubclass(cls, _type)
)
types = [n for n in types if is_related(n)]
def is_strict_base(_typ):
for other in types:
if _typ != other and _typ in other.__mro__:
return True
return False
types = [n for n in types if not is_strict_base(n)]
type_set = set(types)
mro = []
for typ in types:
found = []
for sub in typ.__subclasses__():
if sub not in bases and issubclass(cls, sub):
found.append([s for s in sub.__mro__ if s in type_set])
if not found:
mro.append(typ)
continue
found.sort(key=len, reverse=True)
for sub in found:
for subcls in sub:
if subcls not in mro:
mro.append(subcls)
return _c3_mro(cls, abcs=mro) | Calculates the method resolution order for a given class *cls*.
Includes relevant abstract base classes (with their respective bases) from
the *types* iterable. Uses a modified C3 linearization algorithm. |
383,784 | def burn(self):
if not self.data:
raise ValueError("No data available")
if hasattr(self, ):
self.calculations()
self.start_svg()
self.calculate_graph_dimensions()
self.foreground = etree.Element("g")
self.draw_graph()
self.draw_titles()
self.draw_legend()
self.draw_data()
self.graph.append(self.foreground)
self.render_inline_styles()
return self.render(self.root) | Process the template with the data and
config which has been set and return the resulting SVG.
Raises ValueError when no data set has
been added to the graph object. |
383,785 | def VerifyStructure(self, parser_mediator, line):
try:
structure = self._DPKG_LOG_LINE.parseString(line)
except pyparsing.ParseException as exception:
logger.debug(
.format(
exception))
return False
return in structure and in structure | Verifies if a line from a text file is in the expected format.
Args:
parser_mediator (ParserMediator): parser mediator.
line (str): line from a text file.
Returns:
bool: True if the line is in the expected format, False if not. |
383,786 | def get_relationships_by_query(self, relationship_query):
and_list = list()
or_list = list()
for term in relationship_query._query_terms:
if in relationship_query._query_terms[term] and in relationship_query._query_terms[term]:
and_list.append(
{: [{term: {: relationship_query._query_terms[term][]}},
{term: {: relationship_query._query_terms[term][]}}]})
else:
and_list.append({term: relationship_query._query_terms[term]})
for term in relationship_query._keyword_terms:
or_list.append({term: relationship_query._keyword_terms[term]})
if or_list:
and_list.append({: or_list})
view_filter = self._view_filter()
if view_filter:
and_list.append(view_filter)
if and_list:
query_terms = {: and_list}
collection = JSONClientValidated(,
collection=,
runtime=self._runtime)
result = collection.find(query_terms).sort(, DESCENDING)
else:
result = []
return objects.RelationshipList(result, runtime=self._runtime, proxy=self._proxy) | Gets a list of ``Relationships`` matching the given relationship query.
arg: relationship_query
(osid.relationship.RelationshipQuery): the relationship
query
return: (osid.relationship.RelationshipList) - the returned
``RelationshipList``
raise: NullArgument - ``relationship_query`` is ``null``
raise: OperationFailed - unable to complete request
raise: PermissionDenied - authorization failure
raise: Unsupported - ``relationship_query`` is not of this
service
*compliance: mandatory -- This method must be implemented.* |
383,787 | def fit(self, matrix, epochs=5, no_threads=2, verbose=False):
shape = matrix.shape
if (len(shape) != 2 or
shape[0] != shape[1]):
raise Exception()
if not sp.isspmatrix_coo(matrix):
raise Exception()
random_state = check_random_state(self.random_state)
self.word_vectors = ((random_state.rand(shape[0],
self.no_components) - 0.5)
/ self.no_components)
self.word_biases = np.zeros(shape[0],
dtype=np.float64)
self.vectors_sum_gradients = np.ones_like(self.word_vectors)
self.biases_sum_gradients = np.ones_like(self.word_biases)
shuffle_indices = np.arange(matrix.nnz, dtype=np.int32)
if verbose:
print(
% (epochs, no_threads))
for epoch in range(epochs):
if verbose:
print( % epoch)
random_state.shuffle(shuffle_indices)
fit_vectors(self.word_vectors,
self.vectors_sum_gradients,
self.word_biases,
self.biases_sum_gradients,
matrix.row,
matrix.col,
matrix.data,
shuffle_indices,
self.learning_rate,
self.max_count,
self.alpha,
self.max_loss,
int(no_threads))
if not np.isfinite(self.word_vectors).all():
raise Exception(
) | Estimate the word embeddings.
Parameters:
- scipy.sparse.coo_matrix matrix: coocurrence matrix
- int epochs: number of training epochs
- int no_threads: number of training threads
- bool verbose: print progress messages if True |
383,788 | def get_messages(session, query, limit=10, offset=0):
query[] = limit
query[] = offset
response = make_get_request(session, , params_data=query)
json_data = response.json()
if response.status_code == 200:
return json_data[]
else:
raise MessagesNotFoundException(
message=json_data[],
error_code=json_data[],
request_id=json_data[]
) | Get one or more messages |
383,789 | def __reset_crosshair(self):
self.lhor.set_ydata(self.y_coord)
self.lver.set_xdata(self.x_coord) | redraw the cross-hair on the horizontal slice plot
Parameters
----------
x: int
the x image coordinate
y: int
the y image coordinate
Returns
------- |
383,790 | def remove(self, value):
ret = libxml2mod.xmlACatalogRemove(self._o, value)
return ret | Remove an entry from the catalog |
383,791 | def get_dimension_type(self, dim):
dim = self.get_dimension(dim)
if dim is None:
return None
elif dim.type is not None:
return dim.type
elif dim in self.vdims:
return np.float64
return self.interface.dimension_type(self, dim) | Get the type of the requested dimension.
Type is determined by Dimension.type attribute or common
type of the dimension values, otherwise None.
Args:
dimension: Dimension to look up by name or by index
Returns:
Declared type of values along the dimension |
383,792 | def _validate_param(param):
detail = None
if param.oper not in goldman.config.QUERY_FILTERS:
detail = \
\
.format(param.oper, param)
elif param.oper in goldman.config.GEO_FILTERS:
try:
if not isinstance(param.val, list) or len(param.val) <= 2:
raise ValueError
else:
param.val = [float(i) for i in param.val]
except ValueError:
detail = \
\
.format(param)
elif param.oper in goldman.config.ENUM_FILTERS:
if not isinstance(param.val, list):
param.val = [param.val]
param.val = tuple(param.val)
elif isinstance(param.val, list):
detail = \
\
.format(param)
elif param.oper in goldman.config.BOOL_FILTERS:
try:
param.val = str_to_bool(param.val)
except ValueError:
detail = \
\
.format(param)
elif param.oper in goldman.config.DATE_FILTERS:
try:
param.val = str_to_dt(param.val)
except ValueError:
detail = \
\
.format(param)
elif param.oper in goldman.config.NUM_FILTERS:
try:
param.val = int(param.val)
except ValueError:
detail = \
\
.format(param)
if detail:
raise InvalidQueryParams(**{
: detail,
: LINK,
: PARAM,
}) | Ensure the filter cast properly according to the operator |
383,793 | def get_power_status() -> SystemPowerStatus:
get_system_power_status = ctypes.windll.kernel32.GetSystemPowerStatus
get_system_power_status.argtypes = [ctypes.POINTER(SystemPowerStatus)]
get_system_power_status.restype = wintypes.BOOL
status = SystemPowerStatus()
if not get_system_power_status(ctypes.pointer(status)):
raise ctypes.WinError()
else:
return status | Retrieves the power status of the system.
The status indicates whether the system is running on AC or DC power,
whether the battery is currently charging, how much battery life remains,
and if battery saver is on or off.
:raises OSError: if the call to GetSystemPowerStatus fails
:return: the power status
:rtype: SystemPowerStatus |
383,794 | def poll(self):
if not self.pod_reflector.first_load_future.done():
yield self.pod_reflector.first_load_future
data = self.pod_reflector.pods.get(self.pod_name, None)
if data is not None:
if data.status.phase == :
return None
ctr_stat = data.status.container_statuses
if ctr_stat is None:
return 1
for c in ctr_stat:
if c.name == :
if c.state.terminated:
if self.delete_stopped_pods:
yield self.stop(now=True)
return c.state.terminated.exit_code
break
return None
return 1 | Check if the pod is still running.
Uses the same interface as subprocess.Popen.poll(): if the pod is
still running, returns None. If the pod has exited, return the
exit code if we can determine it, or 1 if it has exited but we
don't know how. These are the return values JupyterHub expects.
Note that a clean exit will have an exit code of zero, so it is
necessary to check that the returned value is None, rather than
just Falsy, to determine that the pod is still running. |
383,795 | def _finish_progress(self):
if self._show_progressbar:
if self._progressbar is None:
self._initialize_progressbar()
if self._progressbar is not None:
self._progressbar.finish()
if self._progress_callback is not None:
self._progress_callback(100.0) | Mark the progressbar as finished.
:return: None |
383,796 | def validate(self):
required = [, ]
valid_data = {
: ([, ], ,
),
: ([, , , ],
, ),
: ([], ,
),
: ([, , ], ,
),
: ([, , ], ,
),
: ([, , ], ,
),
: ([], ,
),
: ([], ,
),
: ([], ,
),
: ([], ,
),
: ([], ,
),
: ([], ,
)
}
extra, req_content, err_msg = valid_data[self.type]
required.extend(extra)
required = set(required)
pl_keys = set(self.payload.keys())
if not set(required) <= pl_keys:
not_pre = required - pl_keys
raise RCAPIError("Required keys: %s" % .join(not_pre))
try:
if self.payload[] != req_content:
raise RCAPIError(err_msg)
except KeyError:
raise RCAPIError() | Checks that at least required params exist |
383,797 | def encrypt(s, base64 = False):
e = _cipher().encrypt(s)
return base64 and b64encode(e) or e | 对称加密函数 |
383,798 | def get_parser(parser=None):
from argparse import ArgumentParser, ArgumentDefaultsHelpFormatter
if parser is None:
parser = ArgumentParser(description=__doc__,
formatter_class=ArgumentDefaultsHelpFormatter)
subparsers = parser.add_subparsers()
pkg_init_parser = subparsers.add_parser()
pkg_init_parser.add_argument("root",
nargs=,
help="project root - should be empty")
pkg_init_parser.set_defaults(func=run_init)
return parser | Get parser for mpu. |
383,799 | def setRepoData(self, searchString, category="", extension="", math=False, game=False, searchFiles=False):
self.searchString = searchString
self.category = category
self.math = math
self.game = game
self.searchFiles = searchFiles
self.extension = extension | Call this function with all the settings to use for future operations on a repository, must be called FIRST |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.