Unnamed: 0
int64 0
389k
| code
stringlengths 26
79.6k
| docstring
stringlengths 1
46.9k
|
---|---|---|
384,900 | def _cache_key(self, attr_name):
dn = self._ldap_user.dn
return valid_cache_key(
"auth_ldap.{}.{}.{}".format(self.__class__.__name__, attr_name, dn)
) | Memcache keys can't have spaces in them, so we'll remove them from the
DN for maximum compatibility. |
384,901 | def _update_record(self, record_id, name, address, ttl):
data = json.dumps({: {: name,
: address,
: ttl}})
headers = {: }
request = self._session.put(self._baseurl + % record_id,
data=data, headers=headers)
if not request.ok:
raise RuntimeError( %
(self._format_hostname(name), request.json()))
record = request.json()
if not in record or not in record[]:
raise RuntimeError( %
(self._format_hostname(name), request.json()))
return record[] | Updates an existing record. |
384,902 | def _get_bandgap_from_bands(energies, nelec):
nelec = int(nelec)
valence = [x[nelec-1] for x in energies]
conduction = [x[nelec] for x in energies]
return max(min(conduction) - max(valence), 0.0) | Compute difference in conduction band min and valence band max |
384,903 | def file_download_using_requests(self,url):
file_name=url.split()[-1]
if os.path.exists(os.path.join(os.getcwd(),file_name)):
print
return
try:
r=requests.get(url,stream=True,timeout=200)
except requests.exceptions.SSLError:
try:
response=requests.get(url,stream=True,verify=False,timeout=200)
except requests.exceptions.RequestException as e:
print e
quit()
except requests.exceptions.RequestException as e:
print e
quit()
chunk_size = 1024
total_size = int(r.headers[])
total_chunks = total_size/chunk_size
file_iterable = r.iter_content(chunk_size = chunk_size)
tqdm_iter = tqdm(iterable = file_iterable,total = total_chunks,unit = ,
leave = False
)
with open(file_name,) as f:
for data in tqdm_iter:
f.write(data)
Total size of file to be downloaded %.2f MB wb{0:.0%} Downloaded
print %file_name | It will download file specified by url using requests module |
384,904 | def _copy_dist_from_dir(link_path, location):
if os.path.isdir(location):
rmtree(location)
setup_py =
sdist_args = [sys.executable]
sdist_args.append()
sdist_args.append(SETUPTOOLS_SHIM % setup_py)
sdist_args.append()
sdist_args += [, location]
logger.info(, link_path)
with indent_log():
call_subprocess(sdist_args, cwd=link_path, show_stdout=False)
sdist = os.path.join(location, os.listdir(location)[0])
logger.info(, sdist, location)
unpack_file(sdist, location, content_type=None, link=None) | Copy distribution files in `link_path` to `location`.
Invoked when user requests to install a local directory. E.g.:
pip install .
pip install ~/dev/git-repos/python-prompt-toolkit |
384,905 | async def eventuallyAll(*coroFuncs: FlexFunc,
totalTimeout: float,
retryWait: float=0.1,
acceptableExceptions=None,
acceptableFails: int=0,
override_timeout_limit=False):
start = time.perf_counter()
def remaining():
return totalTimeout + start - time.perf_counter()
funcNames = []
others = 0
fails = 0
rem = None
for cf in coroFuncs:
if len(funcNames) < 2:
funcNames.append(get_func_name(cf))
else:
others += 1
try:
rem = remaining()
if rem <= 0:
break
await eventually(cf,
retryWait=retryWait,
timeout=rem,
acceptableExceptions=acceptableExceptions,
verbose=True,
override_timeout_limit=override_timeout_limit)
except Exception as ex:
if acceptableExceptions and type(ex) not in acceptableExceptions:
raise
fails += 1
logger.debug("a coro {} with args {} timed out without succeeding; fail count: "
"{}, acceptable: {}".
format(get_func_name(cf), get_func_args(cf), fails, acceptableFails))
if fails > acceptableFails:
raise
if rem is not None and rem <= 0:
fails += 1
if fails > acceptableFails:
err = \
.format(-1 * rem if rem < 0 else 0)
raise EventuallyTimeoutException(err)
if others:
funcNames.append("and {} others".format(others))
desc = ", ".join(funcNames)
logger.debug("{} succeeded with {:.2f} seconds to spare".
format(desc, remaining())) | :param coroFuncs: iterable of no-arg functions
:param totalTimeout:
:param retryWait:
:param acceptableExceptions:
:param acceptableFails: how many of the passed in coroutines can
ultimately fail and still be ok
:return: |
384,906 | def getmembers(object, predicate=None):
if inspect.isclass(object):
mro = (object,) + inspect.getmro(object)
else:
mro = ()
results = []
processed = set()
names = dir(object)
try:
for base in object.__bases__:
for k, v in base.__dict__.items():
if isinstance(v, types.DynamicClassAttribute):
names.append(k)
except AttributeError:
pass
for key in names:
try:
value = getattr(object, key)
if key in processed:
raise AttributeError
except AttributeError:
for base in mro:
if key in base.__dict__:
value = base.__dict__[key]
break
else:
continue
except Exception as e:
value = (RAISES_EXCEPTION, e)
if not predicate or predicate(value):
results.append((key, value))
processed.add(key)
results.sort(key=lambda pair: pair[0])
return results | Return all members of an object as (name, value) pairs sorted by name.
Optionally, only return members that satisfy a given predicate. |
384,907 | def sr(x, promisc=None, filter=None, iface=None, nofilter=0, *args, **kargs):
s = conf.L3socket(promisc=promisc, filter=filter,
iface=iface, nofilter=nofilter)
result = sndrcv(s, x, *args, **kargs)
s.close()
return result | Send and receive packets at layer 3 |
384,908 | def _ensure_api_keys(task_desc, failure_ret=None):
def check_func_wrapper(func):
@wraps(func)
def check_api_keys(*args, **kwargs):
global ELSEVIER_KEYS
if ELSEVIER_KEYS is None:
ELSEVIER_KEYS = {}
if not has_config(INST_KEY_ENV_NAME):
logger.warning(
% (INST_KEY_ENV_NAME, task_desc))
ELSEVIER_KEYS[] = get_config(INST_KEY_ENV_NAME)
if not has_config(API_KEY_ENV_NAME):
logger.error(
% (API_KEY_ENV_NAME, task_desc))
return failure_ret
ELSEVIER_KEYS[] = get_config(API_KEY_ENV_NAME)
elif not in ELSEVIER_KEYS.keys():
logger.error(
% (API_KEY_ENV_NAME, task_desc))
return failure_ret
return func(*args, **kwargs)
return check_api_keys
return check_func_wrapper | Wrap Elsevier methods which directly use the API keys.
Ensure that the keys are retrieved from the environment or config file when
first called, and store global scope. Subsequently use globally stashed
results and check for required ids. |
384,909 | def multi_reciprocal_extra(xs, ys, noise=False):
ns = np.linspace(0.5, 6.0, num=56)
best = [, np.inf]
fit_results = {}
weights = get_weights(xs, ys)
for n in ns:
popt = extrapolate_reciprocal(xs, ys, n, noise)
m = measure(reciprocal, xs, ys, popt, weights)
pcov = []
fit_results.update({n: {: m, : popt, : pcov}})
for n in fit_results:
if fit_results[n][] <= best[1]:
best = reciprocal, fit_results[n][], n
return fit_results[best[2]][], fit_results[best[2]][], best | Calculates for a series of powers ns the parameters for which the last two points are at the curve.
With these parameters measure how well the other data points fit.
return the best fit. |
384,910 | def p_param_args_noname(self, p):
p[0] = p[1] + (p[3],)
p.set_lineno(0, p.lineno(1)) | param_args_noname : param_args_noname COMMA param_arg_noname |
384,911 | def set_pos(self, pos):
self.pos = pos
if pos is not None and self.typ is not None:
self.typ._v_pos = pos
return self | set the position of this column in the Table |
384,912 | def construct_infrastructure_factory(self, *args, **kwargs):
factory_class = self.infrastructure_factory_class
assert issubclass(factory_class, InfrastructureFactory)
return factory_class(
record_manager_class=self.record_manager_class,
integer_sequenced_record_class=self.stored_event_record_class,
sequenced_item_class=self.sequenced_item_class,
contiguous_record_ids=self.contiguous_record_ids,
application_name=self.name,
pipeline_id=self.pipeline_id,
snapshot_record_class=self.snapshot_record_class,
*args, **kwargs
) | :rtype: InfrastructureFactory |
384,913 | def to_html(self):
id, classes, kvs = self.id, self.classes, self.kvs
id_str = .format(id) if id else
class_str = .format(.join(classes)) if classes else
key_str = .join(.format(k, v) for k, v in kvs.items())
return .join((id_str, class_str, key_str)).strip() | Returns attributes formatted as html. |
384,914 | def update_location(self, text=):
self.text_project_name.setEnabled(self.radio_new_dir.isChecked())
name = self.text_project_name.text().strip()
if name and self.radio_new_dir.isChecked():
path = osp.join(self.location, name)
self.button_create.setDisabled(os.path.isdir(path))
elif self.radio_from_dir.isChecked():
self.button_create.setEnabled(True)
path = self.location
else:
self.button_create.setEnabled(False)
path = self.location
self.text_location.setText(path) | Update text of location. |
384,915 | def go_to_place(self, place, weight=):
if hasattr(place, ):
placen = place.name
else:
placen = place
curloc = self["location"]
orm = self.character.engine
turns = self.engine._portal_objs[
(self.character.name, curloc, place)].get(weight, 1)
with self.engine.plan():
orm.turn += turns
self[] = placen
return turns | Assuming I'm in a :class:`Place` that has a :class:`Portal` direct
to the given :class:`Place`, schedule myself to travel to the
given :class:`Place`, taking an amount of time indicated by
the ``weight`` stat on the :class:`Portal`, if given; else 1
turn.
Return the number of turns the travel will take. |
384,916 | def _twofilter_smoothing_ON(self, t, ti, info, phi, lwinfo, return_ess,
modif_forward, modif_info):
if modif_info is not None:
lwinfo += modif_info
Winfo = rs.exp_and_normalise(lwinfo)
I = rs.multinomial(Winfo)
if modif_forward is not None:
lw = self.wgt[t].lw + modif_forward
W = rs.exp_and_normalise(lw)
else:
W = self.wgt[t].W
J = rs.multinomial(W)
log_omega = self.model.logpt(t + 1, self.X[t][J], info.hist.X[ti][I])
if modif_forward is not None:
log_omega -= modif_forward[J]
if modif_info is not None:
log_omega -= modif_info[I]
Om = rs.exp_and_normalise(log_omega)
est = np.average(phi(self.X[t][J], info.hist.X[ti][I]), axis=0,
weights=Om)
if return_ess:
return (est, 1. / np.sum(Om**2))
else:
return est | O(N) version of two-filter smoothing.
This method should not be called directly, see twofilter_smoothing. |
384,917 | def download_object(self, container, obj, directory, structure=True):
return container.download(obj, directory, structure=structure) | Fetches the object from storage, and writes it to the specified
directory. The directory must exist before calling this method.
If the object name represents a nested folder structure, such as
"foo/bar/baz.txt", that folder structure will be created in the target
directory by default. If you do not want the nested folders to be
created, pass `structure=False` in the parameters. |
384,918 | def iftrain(self, then_branch, else_branch):
return ifelse(self._training_flag, then_branch, else_branch, name="iftrain") | Execute `then_branch` when training. |
384,919 | def console(loop, log):
parser = argparse.ArgumentParser(description=console.__doc__)
parser.add_argument(, default=, help=)
parser.add_argument(, default=, help=)
parser.add_argument(, , action=)
args = parser.parse_args()
if args.verbose:
level = logging.DEBUG
else:
level = logging.INFO
logging.basicConfig(level=level)
def log_callback(message):
log.info( % message)
host = args.host
port = int(args.port)
log.info( % (host, port))
conn = yield from anthemav.Connection.create(
host=host, port=port, loop=loop, update_callback=log_callback)
log.info(+str(conn.protocol.power))
conn.protocol.power = True
log.info(+str(conn.protocol.power))
yield from asyncio.sleep(10, loop=loop)
log.info(+str(conn.protocol.panel_brightness))
log.info(+str(conn.protocol.panel_brightness_text)) | Connect to receiver and show events as they occur.
Pulls the following arguments from the command line (not method arguments):
:param host:
Hostname or IP Address of the device.
:param port:
TCP port number of the device.
:param verbose:
Show debug logging. |
384,920 | def sample_stats_to_xarray(self):
rename_key = {"model_logp": "lp"}
data = {}
for stat in self.trace.stat_names:
name = rename_key.get(stat, stat)
data[name] = np.array(self.trace.get_sampler_stats(stat, combine=False))
log_likelihood, dims = self._extract_log_likelihood()
if log_likelihood is not None:
data["log_likelihood"] = log_likelihood
dims = {"log_likelihood": dims}
else:
dims = None
return dict_to_dataset(data, library=self.pymc3, dims=dims, coords=self.coords) | Extract sample_stats from PyMC3 trace. |
384,921 | def container_running(self, container_name):
filters = {
"name": container_name,
"status": "running",
}
for container in self.client.containers.list(filters=filters):
if container_name == container.name:
return container
return None | Finds out if a container with name ``container_name`` is running.
:return: :class:`Container <docker.models.containers.Container>` if it's running, ``None`` otherwise.
:rtype: Optional[docker.models.container.Container] |
384,922 | def list(self, request, *args, **kwargs):
return super(ServiceSettingsViewSet, self).list(request, *args, **kwargs) | To get a list of service settings, run **GET** against */api/service-settings/* as an authenticated user.
Only settings owned by this user or shared settings will be listed.
Supported filters are:
- ?name=<text> - partial matching used for searching
- ?type=<type> - choices: OpenStack, DigitalOcean, Amazon, JIRA, GitLab, Oracle
- ?state=<state> - choices: New, Creation Scheduled, Creating, Sync Scheduled, Syncing, In Sync, Erred
- ?shared=<bool> - allows to filter shared service settings |
384,923 | def add_ephemeral_listener(self, callback, event_type=None):
listener_id = uuid4()
self.ephemeral_listeners.append(
{
: listener_id,
: callback,
: event_type
}
)
return listener_id | Add a callback handler for ephemeral events going to this room.
Args:
callback (func(room, event)): Callback called when an ephemeral event arrives.
event_type (str): The event_type to filter for.
Returns:
uuid.UUID: Unique id of the listener, can be used to identify the listener. |
384,924 | def top_segment_proportions(mtx, ns):
if not (max(ns) <= mtx.shape[1] and min(ns) > 0):
raise IndexError("Positions outside range of features.")
if issparse(mtx):
if not isspmatrix_csr(mtx):
mtx = csr_matrix(mtx)
return top_segment_proportions_sparse_csr(mtx.data, mtx.indptr,
np.array(ns, dtype=np.int))
else:
return top_segment_proportions_dense(mtx, ns) | Calculates total percentage of counts in top ns genes.
Parameters
----------
mtx : `Union[np.array, sparse.spmatrix]`
Matrix, where each row is a sample, each column a feature.
ns : `Container[Int]`
Positions to calculate cumulative proportion at. Values are considered
1-indexed, e.g. `ns=[50]` will calculate cumulative proportion up to
the 50th most expressed gene. |
384,925 | def next_history(self, e):
u
self._history.next_history(self.l_buffer)
self.finalize() | u'''Move forward through the history list, fetching the next
command. |
384,926 | def getTextBlocks(page, images=False):
CheckParent(page)
dl = page.getDisplayList()
flags = TEXT_PRESERVE_LIGATURES | TEXT_PRESERVE_WHITESPACE
if images:
flags |= TEXT_PRESERVE_IMAGES
tp = dl.getTextPage(flags)
l = tp._extractTextBlocks_AsList()
del tp
del dl
return l | Return the text blocks on a page.
Notes:
Lines in a block are concatenated with line breaks.
Args:
images: (bool) also return meta data of any images.
Image data are never returned with this method.
Returns:
A list of the blocks. Each item contains the containing rectangle coordinates,
text lines, block type and running block number. |
384,927 | def crc16(data):
m_crc = 0xffff
for this in data:
m_crc ^= ord_byte(this)
for _ in range(8):
j = m_crc & 1
m_crc >>= 1
if j:
m_crc ^= 0x8408
return m_crc | Calculate an ISO13239 CRC checksum of the input buffer (bytestring). |
384,928 | def get_list_information(self, query_params=None):
return self.fetch_json(
uri_path=self.base_uri,
query_params=query_params or {}
) | Get information for this list. Returns a dictionary of values. |
384,929 | def previous_sibling(self):
stmts = self.parent.child_sequence(self)
index = stmts.index(self)
if index >= 1:
return stmts[index - 1]
return None | The previous sibling statement.
:returns: The previous sibling statement node.
:rtype: NodeNG or None |
384,930 | def write_molden(*args, **kwargs):
message =
with warnings.catch_warnings():
warnings.simplefilter("always")
warnings.warn(message, DeprecationWarning)
return to_molden(*args, **kwargs) | Deprecated, use :func:`~chemcoord.xyz_functions.to_molden` |
384,931 | def observer(self, component_type=ComponentType):
def inner(func):
self.add_observer(func, component_type)
return func
return inner | You can use ``@broker.observer()`` as a decorator to your callback
instead of :func:`Broker.add_observer`. |
384,932 | def dictmerge(x, y):
z = x.copy()
z.update(y)
return z | merge two dictionaries |
384,933 | def interact(self, banner=None):
sys.ps1 = getattr(sys, , )
sys.ps2 = getattr(sys, , )
if banner is None:
print ( %
(sys.version_info.major, sys.version_info.minor,
sys.version_info.micro, sys.platform, _WELCOME_MSG))
else:
print banner
more = False
while True:
try:
if more:
prompt = sys.ps2
else:
prompt = self.StatusLine() + + sys.ps1
try:
line = self.raw_input(prompt)
except EOFError:
print
break
else:
more = self.push(line)
except KeyboardInterrupt:
print
self.resetbuffer()
more = False | Closely emulate the interactive Python console.
This method overwrites its superclass' method to specify a different help
text and to enable proper handling of the debugger status line.
Args:
banner: Text to be displayed on interpreter startup. |
384,934 | def _prob_match(self, features):
probs = self.kernel.predict_proba(features)
classes = list(self.kernel.classes_)
match_class_position = classes.index(1)
return probs[:, match_class_position] | Compute match probabilities.
Parameters
----------
features : numpy.ndarray
The data to train the model on.
Returns
-------
numpy.ndarray
The match probabilties. |
384,935 | def kernel_restarted_message(self, msg):
if not self.is_error_shown:
else:
self.shellwidget._append_html("<br>%s<hr><br>" % msg,
before_prompt=False) | Show kernel restarted/died messages. |
384,936 | def digest(self, elimseq=False, notrunc=False):
if self._state == ffi.NULL:
raise InternalError("State object is NULL")
flags = (binding.lib.FUZZY_FLAG_ELIMSEQ if elimseq else 0) | \
(binding.lib.FUZZY_FLAG_NOTRUNC if notrunc else 0)
result = ffi.new("char[]", binding.lib.FUZZY_MAX_RESULT)
if binding.lib.fuzzy_digest(self._state, result, flags) != 0:
raise InternalError("Function returned an unexpected error code")
return ffi.string(result).decode("ascii") | Obtain the fuzzy hash.
This operation does not change the state at all. It reports the hash
for the concatenation of the data previously fed using update().
:return: The fuzzy hash
:rtype: String
:raises InternalError: If lib returns an internal error |
384,937 | def voip_play2(s1, **kargs):
dsp, rd = os.popen2(sox_base % "-c 2")
global x1, x2
x1 = ""
x2 = ""
def play(pkt):
global x1, x2
if not pkt:
return
if not pkt.haslayer(UDP) or not pkt.haslayer(IP):
return
ip = pkt.getlayer(IP)
if s1 in [ip.src, ip.dst]:
if ip.dst == s1:
x1 += pkt.getlayer(conf.raw_layer).load[12:]
else:
x2 += pkt.getlayer(conf.raw_layer).load[12:]
x1, x2, r = _merge_sound_bytes(x1, x2)
dsp.write(r)
sniff(store=0, prn=play, **kargs) | Same than voip_play, but will play
both incoming and outcoming packets.
The sound will surely suffer distortion.
Only supports sniffing.
.. seealso:: voip_play
to play only incoming packets. |
384,938 | def directions(self, origin, destination, mode=None, alternatives=None,
waypoints=None, optimize_waypoints=False,
avoid=None, language=None, units=None,
region=None, departure_time=None,
arrival_time=None, sensor=None):
if optimize_waypoints:
waypoints.insert(0, "optimize:true")
parameters = dict(
origin=self.assume_latlon_or_address(origin),
destination=self.assume_latlon_or_address(destination),
mode=mode,
alternatives=alternatives,
waypoints=waypoints or [],
avoid=avoid,
language=language,
units=units,
region=region,
departure_time=departure_time,
arrival_time=arrival_time,
sensor=sensor,
)
return self._make_request(self.DIRECTIONS_URL, parameters, "routes") | Get directions between locations
:param origin: Origin location - string address; (latitude, longitude)
two-tuple, dict with ("lat", "lon") keys or object with (lat, lon)
attributes
:param destination: Destination location - type same as origin
:param mode: Travel mode as string, defaults to "driving".
See `google docs details <https://developers.google.com/maps/documentation/directions/#TravelModes>`_
:param alternatives: True if provide it has to return more then one
route alternative
:param waypoints: Iterable with set of intermediate stops,
like ("Munich", "Dallas")
See `google docs details <https://developers.google.com/maps/documentation/javascript/reference#DirectionsRequest>`_
:param optimize_waypoints: if true will attempt to re-order supplied
waypoints to minimize overall cost of the route. If waypoints are
optimized, the route returned will show the optimized order under
"waypoint_order". See `google docs details <https://developers.google.com/maps/documentation/javascript/reference#DirectionsRequest>`_
:param avoid: Iterable with set of restrictions,
like ("tolls", "highways"). For full list refer to
`google docs details <https://developers.google.com/maps/documentation/directions/#Restrictions>`_
:param language: The language in which to return results.
See `list of supported languages <https://developers.google.com/maps/faq#languagesupport>`_
:param units: Unit system for result. Defaults to unit system of
origin's country.
See `google docs details <https://developers.google.com/maps/documentation/directions/#UnitSystems>`_
:param region: The region code. Affects geocoding of origin and
destination (see `gmaps.Geocoding.geocode` region parameter)
:param departure_time: Desired time of departure as
seconds since midnight, January 1, 1970 UTC
:param arrival_time: Desired time of arrival for transit directions as
seconds since midnight, January 1, 1970 UTC. |
384,939 | def shift(self, modelResult):
inferencesToWrite = {}
if self._inferenceBuffer is None:
maxDelay = InferenceElement.getMaxDelay(modelResult.inferences)
self._inferenceBuffer = collections.deque(maxlen=maxDelay + 1)
self._inferenceBuffer.appendleft(copy.deepcopy(modelResult.inferences))
for inferenceElement, inference in modelResult.inferences.iteritems():
if isinstance(inference, dict):
inferencesToWrite[inferenceElement] = {}
for key, _ in inference.iteritems():
delay = InferenceElement.getTemporalDelay(inferenceElement, key)
if len(self._inferenceBuffer) > delay:
prevInference = self._inferenceBuffer[delay][inferenceElement][key]
inferencesToWrite[inferenceElement][key] = prevInference
else:
inferencesToWrite[inferenceElement][key] = None
else:
delay = InferenceElement.getTemporalDelay(inferenceElement)
if len(self._inferenceBuffer) > delay:
inferencesToWrite[inferenceElement] = (
self._inferenceBuffer[delay][inferenceElement])
else:
if type(inference) in (list, tuple):
inferencesToWrite[inferenceElement] = [None] * len(inference)
else:
inferencesToWrite[inferenceElement] = None
shiftedResult = ModelResult(rawInput=modelResult.rawInput,
sensorInput=modelResult.sensorInput,
inferences=inferencesToWrite,
metrics=modelResult.metrics,
predictedFieldIdx=modelResult.predictedFieldIdx,
predictedFieldName=modelResult.predictedFieldName)
return shiftedResult | Shift the model result and return the new instance.
Queues up the T(i+1) prediction value and emits a T(i)
input/prediction pair, if possible. E.g., if the previous T(i-1)
iteration was learn-only, then we would not have a T(i) prediction in our
FIFO and would not be able to emit a meaningful input/prediction pair.
:param modelResult: A :class:`~.nupic.frameworks.opf.opf_utils.ModelResult`
instance to shift.
:return: A :class:`~.nupic.frameworks.opf.opf_utils.ModelResult` instance that
has been shifted |
384,940 | def create(self, validated_data):
email_query = models.EmailAddress.objects.filter(
email=self.validated_data["email"]
)
if email_query.exists():
email = email_query.get()
email.send_duplicate_notification()
else:
email = super(EmailSerializer, self).create(validated_data)
email.send_confirmation()
user = validated_data.get("user")
query = models.EmailAddress.objects.filter(
is_primary=True, user=user
)
if not query.exists():
email.set_primary()
return email | Create a new email and send a confirmation to it.
Returns:
The newly creating ``EmailAddress`` instance. |
384,941 | def htmlFormat(output, pathParts = (), statDict = None, query = None):
statDict = statDict or scales.getStats()
if query:
statDict = runQuery(statDict, query)
_htmlRenderDict(pathParts, statDict, output) | Formats as HTML, writing to the given object. |
384,942 | def get_variable_scope_name(value):
value = getattr(value, "variable_scope", value)
if isinstance(value, tf.VariableScope):
return value.name
elif isinstance(value, six.string_types):
return value
else:
raise ValueError("Not a variable scope: {}".format(value)) | Returns the name of the variable scope indicated by the given value.
Args:
value: String, variable scope, or object with `variable_scope` attribute
(e.g., Sonnet module).
Returns:
The name (a string) of the corresponding variable scope.
Raises:
ValueError: If `value` does not identify a variable scope. |
384,943 | def formfield_for_dbfield(self, db_field, **kwargs):
if db_field.name == "gradings":
request=kwargs[]
try:
obj=resolve(request.path).args[0]
filterexpr=Q(schemes=obj) | Q(schemes=None)
kwargs[] = Grading.objects.filter(filterexpr).distinct()
except:
pass
return super(GradingSchemeAdmin, self).formfield_for_dbfield(db_field, **kwargs) | Offer only gradings that are not used by other schemes, which means they are used by this scheme or not at all. |
384,944 | def add_filehandler(level, fmt, filename, mode, backup_count, limit, when):
kwargs = {}
if filename is None:
filename = getattr(sys.modules[], , )
filename = os.path.basename(filename.replace(, ))
filename = os.path.join(, filename)
if not os.path.exists(os.path.dirname(filename)):
os.mkdir(os.path.dirname(filename))
kwargs[] = filename
if backup_count == 0:
cls = logging.FileHandler
kwargs[] = mode
elif when is None:
cls = logging.handlers.RotatingFileHandler
kwargs[] = limit
kwargs[] = backup_count
kwargs[] = mode
else:
cls = logging.handlers.TimedRotatingFileHandler
kwargs[] = when
kwargs[] = limit
kwargs[] = backup_count
return add_handler(cls, level, fmt, False, **kwargs) | Add a file handler to the global logger. |
384,945 | def svd_convolution(inp, outmaps, kernel, r, pad=None, stride=None,
dilation=None, uv_init=None, b_init=None, base_axis=1,
fix_parameters=False, rng=None, with_bias=True):
assert r > 0, "svd_convolution: The rank must larger than zero"
if uv_init is None:
uv_init = UniformInitializer(
calc_uniform_lim_glorot(inp.shape[base_axis], outmaps,
tuple(kernel)), rng=rng)
if type(uv_init) is np.ndarray:
uv = uv_init
else:
uv = uv_init((outmaps, inp.shape[base_axis]) + tuple(kernel))
uv = uv.reshape((outmaps, inp.shape[base_axis], np.prod(kernel)))
u = get_parameter()
v = get_parameter()
if (u is None) or (v is None):
inmaps = inp.shape[base_axis]
u_low_rank = np.zeros((inmaps, np.prod(kernel), r))
v_low_rank = np.zeros((inmaps, r, outmaps))
for i in range(inmaps):
K = np.transpose(uv[:, i, :])
u_, s_, v_ = np.linalg.svd(K, full_matrices=False)
u_low_rank[i, :, :] = np.dot(u_[:, :r], np.diag(s_[:r]))
v_low_rank[i, :, :] = v_[:r, :]
u = nn.Variable((inmaps * r,) + tuple(kernel),
need_grad=True)
u.d = (np.transpose(u_low_rank, axes=(0, 2, 1))
.reshape((inmaps * r,) + tuple(kernel)))
nn.parameter.set_parameter("U", u)
kernel_one = (1,) * len(kernel)
v = nn.Variable((outmaps, inmaps * r) + kernel_one,
need_grad=True)
v.d = (np.transpose(v_low_rank, axes=(2, 0, 1))
.reshape((outmaps, inmaps * r) + kernel_one))
nn.parameter.set_parameter("V", v)
if fix_parameters == u.need_grad:
u = u.get_unlinked_variable(need_grad=not fix_parameters)
if fix_parameters == v.need_grad:
v = v.get_unlinked_variable(need_grad=not fix_parameters)
if with_bias and b_init is None:
b_init = ConstantInitializer()
b = None
if with_bias:
b = get_parameter_or_create(
"b", (outmaps,), b_init, True, not fix_parameters)
y = F.depthwise_convolution(inp, u, bias=None, base_axis=base_axis,
pad=pad, stride=stride, dilation=dilation,
multiplier=r)
y = F.convolution(y, v, bias=b, base_axis=base_axis, pad=None,
stride=None, dilation=None, group=1)
return y | SVD convolution is a low rank approximation of the convolution
layer. It can be seen as a depth wise convolution followed by a
1x1 convolution.
The flattened kernels for the i-th input map are expressed by
their low rank approximation. The kernels for the i-th input
:math:`{\\mathbf W_i}` are approximated with the singular value
decomposition (SVD) and by selecting the :math:`{R}` dominant
singular values and the corresponding singular vectors.
.. math::
{\\mathbf W_{:,i,:}} ~ {\\mathbf U_i} {\\mathbf V_i}.
:math:`{\\mathbf U}` contains the weights of the depthwise
convolution with multiplier :math:`{R}` and :math:`{\\mathbf V}`
contains the weights of the 1x1 convolution.
If `uv_init` is a numpy array, :math:`{\\mathbf U}` and
:math:`{\\mathbf V}` are computed such that `uv_init` is
approximated by :math:`{\\mathbf{UV}}`. If `uv_init` is `None` or
an initializer, the product of :math:`{\\mathbf U}` and
:math:`{\\mathbf V}` approximates the random initialization.
If :math:`{\\mathbf U}` and :math:`{\\mathbf V}` exist in the
context, they take precedence over `uv_init`.
Suppose the kernel tensor of the convolution is of :math:`{O \\times I \\times K \\times K}` and
the compression rate you want to specify is :math:`{CR}`, then you
set :math:`{R}` as
.. math::
R = \\left\\lfloor \\frac{(1 - CR)OIK^2}{I(O + K^2)} \\right\\rfloor.
Args:
inp (~nnabla.Variable): N-D array.
outmaps (int): Number of convolution kernels (which is equal
to the number of output channels). For example, to apply
convolution on an input with 16 types of filters, specify
16.
kernel (tuple): Convolution kernel size. For example,
to apply convolution on an image with a 3 (height) by 5
(width) two-dimensional kernel, specify (3, 5).
r (int): Rank of the factorized layer.
pad (tuple): Padding sizes (`int`) for dimensions.
stride (tuple): Stride sizes (`int`) for dimensions.
dilation (tuple): Dilation sizes (`int`) for dimensions.
uv_init (:obj:`nnabla.initializer.BaseInitializer` or :obj:`numpy.ndarray`):
Initializer for weight. By default, it is initialized with :obj:`nnabla.initializer.UniformInitializer` within the range determined by :obj:`nnabla.initializer.calc_uniform_lim_glorot`.
b_init (:obj:`nnabla.initializer.BaseInitializer` or :obj:`numpy.ndarray`): Initializer for bias. By default, it is initialized with zeros if `with_bias` is `True`.
base_axis (int): Dimensions up to `base_axis` are treated as the
sample dimensions.
fix_parameters (bool): When set to `True`, the weights and
biases will not be updated.
rng (numpy.random.RandomState): Random generator for Initializer.
with_bias (bool): Specify whether to include the bias term.
Returns:
:class:`~nnabla.Variable`: :math:`(B + 1)`-D array.
(:math:`M_0 \\times \ldots \\times M_{B-1} \\times L`) |
384,946 | def _merge_statement_lists(stmsA: List["HdlStatement"], stmsB: List["HdlStatement"])\
-> List["HdlStatement"]:
if stmsA is None and stmsB is None:
return None
tmp = []
a_it = iter(stmsA)
b_it = iter(stmsB)
a = None
b = None
a_empty = False
b_empty = False
while not a_empty and not b_empty:
while not a_empty:
a = next(a_it, None)
if a is None:
a_empty = True
break
elif a.rank == 0:
tmp.append(a)
a = None
else:
break
while not b_empty:
b = next(b_it, None)
if b is None:
b_empty = True
break
elif b.rank == 0:
tmp.append(b)
b = None
else:
break
if a is not None or b is not None:
a._merge_with_other_stm(b)
tmp.append(a)
a = None
b = None
return tmp | Merge two lists of statements into one
:return: list of merged statements |
384,947 | def get_new_call(group_name, app_name, search_path, filename, require_load,
version, secure):
new_call_kwargs = {
: group_name,
: filename
}
new_call_lookup_options = {}
new_call_lookup_options[] = secure
if search_path:
new_call_lookup_options[] = search_path
if require_load:
new_call_lookup_options[] = require_load
if version:
new_call_lookup_options[] = version
if new_call_lookup_options:
new_call_kwargs[] = new_call_lookup_options
output = build_call_str(, (app_name,), new_call_kwargs)
return output | Build a call to use the new ``get_config`` function from args passed to
``Config.__init__``. |
384,948 | def from_rgb(cls, r: int, g: int, b: int) -> :
c = cls()
c._init_rgb(r, g, b)
return c | Return a ColorCode from a RGB tuple. |
384,949 | def verify(self, type_):
raw_missing, mistyped, mismatched = self._diff_signatures(type_)
missing = []
defaults_to_use = {}
for name in raw_missing:
try:
defaults_to_use[name] = self._defaults[name].implementation
except KeyError:
missing.append(name)
if not any((missing, mistyped, mismatched)):
return defaults_to_use
raise self._invalid_implementation(type_, missing, mistyped, mismatched) | Check whether a type implements ``self``.
Parameters
----------
type_ : type
The type to check.
Raises
------
TypeError
If ``type_`` doesn't conform to our interface.
Returns
-------
None |
384,950 | def pix2canvas(self, pt):
x, y = pt[:2]
mm = gl.glGetDoublev(gl.GL_MODELVIEW_MATRIX)
pm = gl.glGetDoublev(gl.GL_PROJECTION_MATRIX)
vp = gl.glGetIntegerv(gl.GL_VIEWPORT)
win_x, win_y = float(x), float(vp[3] - y)
win_z = gl.glReadPixels(int(win_x), int(win_y), 1, 1,
gl.GL_DEPTH_COMPONENT, gl.GL_FLOAT)
pos = glu.gluUnProject(win_x, win_y, win_z, mm, pm, vp)
return pos | Takes a 2-tuple of (x, y) in window coordinates and gives
the (cx, cy, cz) coordinates on the canvas. |
384,951 | def get_parser():
from argparse import ArgumentParser, ArgumentDefaultsHelpFormatter
parser = ArgumentParser(description=__doc__,
formatter_class=ArgumentDefaultsHelpFormatter)
parser.add_argument("-m", "--model",
dest="model",
help="where is the model folder (with a info.yml)?",
metavar="FOLDER",
type=lambda x: utils.is_valid_folder(parser, x),
default=utils.default_model())
return parser | Return the parser object for this script. |
384,952 | def real_time_statistics(self):
if self._real_time_statistics is None:
self._real_time_statistics = TaskQueueRealTimeStatisticsList(
self._version,
workspace_sid=self._solution[],
task_queue_sid=self._solution[],
)
return self._real_time_statistics | Access the real_time_statistics
:returns: twilio.rest.taskrouter.v1.workspace.task_queue.task_queue_real_time_statistics.TaskQueueRealTimeStatisticsList
:rtype: twilio.rest.taskrouter.v1.workspace.task_queue.task_queue_real_time_statistics.TaskQueueRealTimeStatisticsList |
384,953 | def from_cmdstan(
posterior=None,
*,
posterior_predictive=None,
prior=None,
prior_predictive=None,
observed_data=None,
observed_data_var=None,
log_likelihood=None,
coords=None,
dims=None
):
return CmdStanConverter(
posterior=posterior,
posterior_predictive=posterior_predictive,
prior=prior,
prior_predictive=prior_predictive,
observed_data=observed_data,
observed_data_var=observed_data_var,
log_likelihood=log_likelihood,
coords=coords,
dims=dims,
).to_inference_data() | Convert CmdStan data into an InferenceData object.
Parameters
----------
posterior : List[str]
List of paths to output.csv files.
CSV file can be stacked csv containing all the chains
cat output*.csv > combined_output.csv
posterior_predictive : str, List[Str]
Posterior predictive samples for the fit. If endswith ".csv" assumes file.
prior : List[str]
List of paths to output.csv files
CSV file can be stacked csv containing all the chains.
cat output*.csv > combined_output.csv
prior_predictive : str, List[Str]
Prior predictive samples for the fit. If endswith ".csv" assumes file.
observed_data : str
Observed data used in the sampling. Path to data file in Rdump format.
observed_data_var : str, List[str]
Variable(s) used for slicing observed_data. If not defined, all
data variables are imported.
log_likelihood : str
Pointwise log_likelihood for the data.
coords : dict[str, iterable]
A dictionary containing the values that are used as index. The key
is the name of the dimension, the values are the index values.
dims : dict[str, List(str)]
A mapping from variables to a list of coordinate names for the variable.
Returns
-------
InferenceData object |
384,954 | def get_path(self, path, query=None):
return self.get(self.url_path(path), query) | Make a GET request, optionally including a query, to a relative path.
The path of the request includes a path on top of the base URL
assigned to the endpoint.
Parameters
----------
path : str
The path to request, relative to the endpoint
query : DataQuery, optional
The query to pass when making the request
Returns
-------
resp : requests.Response
The server's response to the request
See Also
--------
get_query, get, url_path |
384,955 | def mapfi(ol,map_func_args,**kwargs):
diff_funcs_arr = kwargs[]
lngth = ol.__len__()
rslt = []
for i in range(0,lngth):
index = i
value = ol[i]
func = diff_funcs_arr[i]
args = map_func_args
ele = func(index,*args)
rslt.append(ele)
return(rslt) | #mapfi 共享相同的o,v不作为map_func参数
# share common other_args,NOT take value as a param for map_func
#map_func diff_func(index,*common_args) |
384,956 | def update():
branch = git.current_branch(refresh=True)
develop = conf.get(, )
common.assert_branch_type()
common.git_checkout(develop)
common.git_pull(develop)
common.git_checkout(branch.name)
common.git_merge(branch.name, develop) | Update the feature with updates committed to develop.
This will merge current develop into the current branch. |
384,957 | def copyText( self ):
view = self.currentWebView()
QApplication.clipboard().setText(view.page().selectedText()) | Copies the selected text to the clipboard. |
384,958 | def setupTable_head(self):
if "head" not in self.tables:
return
self.otf["head"] = head = newTable("head")
font = self.ufo
head.checkSumAdjustment = 0
head.tableVersion = 1.0
head.magicNumber = 0x5F0F3CF5
versionMajor = getAttrWithFallback(font.info, "versionMajor")
versionMinor = getAttrWithFallback(font.info, "versionMinor")
fullFontRevision = float("%d.%03d" % (versionMajor, versionMinor))
head.fontRevision = round(fullFontRevision, 3)
if head.fontRevision != fullFontRevision:
logger.warning(
"Minor version in %s has too many digits and wons fontRevision field; rounded to %s.",
fullFontRevision, head.fontRevision)
head.unitsPerEm = otRound(getAttrWithFallback(font.info, "unitsPerEm"))
head.created = dateStringToTimeValue(getAttrWithFallback(font.info, "openTypeHeadCreated")) - mac_epoch_diff
head.modified = dateStringToTimeValue(dateStringForNow()) - mac_epoch_diff
xMin, yMin, xMax, yMax = self.fontBoundingBox
head.xMin = otRound(xMin)
head.yMin = otRound(yMin)
head.xMax = otRound(xMax)
head.yMax = otRound(yMax)
styleMapStyleName = getAttrWithFallback(font.info, "styleMapStyleName")
macStyle = []
if styleMapStyleName == "bold":
macStyle = [0]
elif styleMapStyleName == "bold italic":
macStyle = [0, 1]
elif styleMapStyleName == "italic":
macStyle = [1]
head.macStyle = intListToNum(macStyle, 0, 16)
head.flags = intListToNum(getAttrWithFallback(font.info, "openTypeHeadFlags"), 0, 16)
head.lowestRecPPEM = otRound(getAttrWithFallback(font.info, "openTypeHeadLowestRecPPEM"))
head.fontDirectionHint = 2
head.indexToLocFormat = 0
head.glyphDataFormat = 0 | Make the head table.
**This should not be called externally.** Subclasses
may override or supplement this method to handle the
table creation in a different way if desired. |
384,959 | def reserve(self, doc):
try:
self.pid.reserve()
self.api.metadata_post(doc)
except (DataCiteError, HttpError):
logger.exception("Failed to reserve in DataCite",
extra=dict(pid=self.pid))
raise
logger.info("Successfully reserved in DataCite",
extra=dict(pid=self.pid))
return True | Reserve a DOI (amounts to upload metadata, but not to mint).
:param doc: Set metadata for DOI.
:returns: `True` if is reserved successfully. |
384,960 | def get_current_structure(self):
struct = self.__class__.get_structure()
struct.update(self.__field_types__)
return struct | Returns a dictionary with model field objects.
:return: dict |
384,961 | def ticket_tags(self, id, **kwargs):
"https://developer.zendesk.com/rest_api/docs/core/tags
api_path = "/api/v2/tickets/{id}/tags.json"
api_path = api_path.format(id=id)
return self.call(api_path, **kwargs) | https://developer.zendesk.com/rest_api/docs/core/tags#show-tags |
384,962 | def _estimate_centers_widths(
self,
unique_R,
inds,
X,
W,
init_centers,
init_widths,
template_centers,
template_widths,
template_centers_mean_cov,
template_widths_mean_var_reci):
init_estimate = np.hstack(
(init_centers.ravel(), init_widths.ravel()))
data_sigma = 1.0 / math.sqrt(2.0) * np.std(X)
final_estimate = least_squares(
self._residual_multivariate,
init_estimate,
args=(
unique_R,
inds,
X,
W,
template_centers,
template_widths,
template_centers_mean_cov,
template_widths_mean_var_reci,
data_sigma),
method=self.nlss_method,
loss=self.nlss_loss,
bounds=self.bounds,
verbose=0,
x_scale=self.x_scale,
tr_solver=self.tr_solver)
return final_estimate.x, final_estimate.cost | Estimate centers and widths
Parameters
----------
unique_R : a list of array,
Each element contains unique value in one dimension of
coordinate matrix R.
inds : a list of array,
Each element contains the indices to reconstruct one
dimension of original cooridnate matrix from the unique
array.
X : 2D array, with shape [n_voxel, n_tr]
fMRI data from one subject.
W : 2D array, with shape [K, n_tr]
The weight matrix.
init_centers : 2D array, with shape [K, n_dim]
The initial values of centers.
init_widths : 1D array
The initial values of widths.
template_centers: 1D array
The template prior on centers
template_widths: 1D array
The template prior on widths
template_centers_mean_cov: 2D array, with shape [K, cov_size]
The template prior on centers' mean
template_widths_mean_var_reci: 1D array
The reciprocal of template prior on variance of widths' mean
Returns
-------
final_estimate.x: 1D array
The newly estimated centers and widths.
final_estimate.cost: float
The cost value. |
384,963 | def run(self):
try:
self.listen()
except Exception as e:
logger.critical("JobListener instence crashed. Error: %s", str(e))
logger.critical(traceback.format_exc()) | Run thread to listen for jobs and reschedule successful ones. |
384,964 | def merge_tops(self, tops):
top = collections.defaultdict(OrderedDict)
orders = collections.defaultdict(OrderedDict)
for ctops in six.itervalues(tops):
for ctop in ctops:
for saltenv, targets in six.iteritems(ctop):
if saltenv == :
continue
for tgt in targets:
matches = []
states = OrderedDict()
orders[saltenv][tgt] = 0
ignore_missing = False
if isinstance(ctop[saltenv][tgt], six.string_types):
ctop[saltenv][tgt] = [ctop[saltenv][tgt]]
for comp in ctop[saltenv][tgt]:
if isinstance(comp, dict):
if in comp:
matches.append(comp)
if in comp:
order = comp[]
if not isinstance(order, int):
try:
order = int(order)
except ValueError:
order = 0
orders[saltenv][tgt] = order
if comp.get(, False):
ignore_missing = True
if isinstance(comp, six.string_types):
states[comp] = True
if ignore_missing:
if saltenv not in self.ignored_pillars:
self.ignored_pillars[saltenv] = []
self.ignored_pillars[saltenv].extend(states.keys())
top[saltenv][tgt] = matches
top[saltenv][tgt].extend(states)
return self.sort_top_targets(top, orders) | Cleanly merge the top files |
384,965 | def _compile_models(models):
tasklist = []
for m in models:
if isinstance(m, MultiFitterModel):
tasklist += [(, [m])]
tasklist += [(, None)]
elif hasattr(m, ):
tasklist += [(, m)]
elif isinstance(m, tuple):
tasklist += [(, list(m))]
tasklist += [(, None)]
elif isinstance(m, list):
for sm in m:
if isinstance(sm, MultiFitterModel):
tasklist += [(, [sm])]
elif isinstance(sm, tuple):
tasklist += [(, list(sm))]
else:
raise ValueError(
.format(
str(type(sm))
)
)
tasklist += [(, len(m))]
tasklist += [(, None)]
else:
raise RuntimeError()
return tasklist | Convert ``models`` into a list of tasks.
Each task is tuple ``(name, data)`` where ``name`` indicates the task
task and ``data`` is the relevant data for that task.
Supported tasks and data:
- ``'fit'`` and list of models
- ``'update-kargs'`` and ``None``
- ``'update-prior'`` and ``None``
- ``'wavg'`` and number of (previous) fits to average |
384,966 | def polygon(self):
points = []
for fp in self.points[1:]:
points.append((fp.lat, fp.lng))
return points | return a polygon for the fence |
384,967 | def backoff(
max_tries=constants.BACKOFF_DEFAULT_MAXTRIES,
delay=constants.BACKOFF_DEFAULT_DELAY,
factor=constants.BACKOFF_DEFAULT_FACTOR,
exceptions=None):
if max_tries <= 0:
raise ValueError(.format(max_tries))
if delay <= 0:
raise ValueError(.format(delay))
if factor <= 1:
raise ValueError(.format(factor))
def outter(f):
def inner(*args, **kwargs):
m_max_tries, m_delay = max_tries, delay
while m_max_tries > 0:
try:
retval = f(*args, **kwargs)
except exceptions:
logger.exception(
, f, max_tries, delay, factor, exceptions)
m_max_tries -= 1
if m_max_tries <= 0:
raise
time.sleep(m_delay)
m_delay *= factor
else:
return retval
return inner
return outter | Implements an exponential backoff decorator which will retry decorated
function upon given exceptions. This implementation is based on
`Retry <https://wiki.python.org/moin/PythonDecoratorLibrary#Retry>`_ from
the *Python Decorator Library*.
:param int max_tries: Number of tries before give up. Defaults to
:const:`~escpos.constants.BACKOFF_DEFAULT_MAXTRIES`.
:param int delay: Delay between retries (in seconds). Defaults to
:const:`~escpos.constants.BACKOFF_DEFAULT_DELAY`.
:param int factor: Multiply factor in which delay will be increased for the
next retry. Defaults to :const:`~escpos.constants.BACKOFF_DEFAULT_FACTOR`.
:param exceptions: Tuple of exception types to catch that triggers retry.
Any exception not listed will break the decorator and retry routines
will not run.
:type exceptions: tuple[Exception] |
384,968 | def _proxy(self):
if self._context is None:
self._context = FeedbackContext(
self._version,
account_sid=self._solution[],
call_sid=self._solution[],
)
return self._context | Generate an instance context for the instance, the context is capable of
performing various actions. All instance actions are proxied to the context
:returns: FeedbackContext for this FeedbackInstance
:rtype: twilio.rest.api.v2010.account.call.feedback.FeedbackContext |
384,969 | def get_or_create_candidate(self, row, party, race):
person = self.get_or_create_person(row)
id_components = row["id"].split("-")
candidate_id = "{0}-{1}".format(id_components[1], id_components[2])
defaults = {"party": party, "incumbent": row.get("incumbent")}
if person.last_name == "None of these candidates":
candidate_id = "{0}-{1}".format(id_components[0], candidate_id)
candidate, created = election.Candidate.objects.update_or_create(
person=person,
race=race,
ap_candidate_id=candidate_id,
defaults=defaults,
)
return candidate | Gets or creates the Candidate object for the given row of AP data.
In order to tie with live data, this will synthesize the proper
AP candidate id.
This function also calls `get_or_create_person` to get a Person
object to pass to Django. |
384,970 | def find_related(self, fullname):
stack = [fullname]
found = set()
while stack:
name = stack.pop(0)
names = self.find_related_imports(name)
stack.extend(set(names).difference(set(found).union(stack)))
found.update(names)
found.discard(fullname)
return sorted(found) | Return a list of non-stdlib modules that are imported directly or
indirectly by `fullname`, plus their parents.
This method is like :py:meth:`find_related_imports`, but also
recursively searches any modules which are imported by `fullname`.
:param fullname: Fully qualified name of an _already imported_ module
for which source code can be retrieved
:type fullname: str |
384,971 | def set_release_description(self, description, **kwargs):
id = self.get_id().replace(, )
path = % (self.manager.path, id)
data = {: description}
if self.release is None:
try:
server_data = self.manager.gitlab.http_post(path,
post_data=data,
**kwargs)
except exc.GitlabHttpError as e:
raise exc.GitlabCreateError(e.response_code, e.error_message)
else:
try:
server_data = self.manager.gitlab.http_put(path,
post_data=data,
**kwargs)
except exc.GitlabHttpError as e:
raise exc.GitlabUpdateError(e.response_code, e.error_message)
self.release = server_data | Set the release notes on the tag.
If the release doesn't exist yet, it will be created. If it already
exists, its description will be updated.
Args:
description (str): Description of the release.
**kwargs: Extra options to send to the server (e.g. sudo)
Raises:
GitlabAuthenticationError: If authentication is not correct
GitlabCreateError: If the server fails to create the release
GitlabUpdateError: If the server fails to update the release |
384,972 | def with_metaclass(meta, *bases):
class metaclass(meta):
__call__ = type.__call__
__init__ = type.__init__
def __new__(cls, name, this_bases, d):
if this_bases is None:
return type.__new__(cls, name, (), d)
return meta(name, bases, d)
return metaclass("NewBase", None, {}) | Create a base class with a metaclass.
For example, if you have the metaclass
>>> class Meta(type):
... pass
Use this as the metaclass by doing
>>> from symengine.compatibility import with_metaclass
>>> class MyClass(with_metaclass(Meta, object)):
... pass
This is equivalent to the Python 2::
class MyClass(object):
__metaclass__ = Meta
or Python 3::
class MyClass(object, metaclass=Meta):
pass
That is, the first argument is the metaclass, and the remaining arguments
are the base classes. Note that if the base class is just ``object``, you
may omit it.
>>> MyClass.__mro__
(<class 'MyClass'>, <... 'object'>)
>>> type(MyClass)
<class 'Meta'> |
384,973 | def _find_v1_settings(self, settings):
if in settings:
modname = settings[]
if not in settings or len(settings[]) == 0:
raise DataError("No modules defined in module_settings.json file")
elif len(settings[]) > 1:
raise DataError("Multiple modules defined in module_settings.json file",
modules=[x for x in settings[]])
else:
modname = list(settings[])[0]
if modname not in settings[]:
raise DataError("Module name does not correspond with an entry in the modules directory",
name=modname, modules=[x for x in settings[]])
release_info = self._load_release_info(settings)
modsettings = settings[][modname]
architectures = settings.get(, {})
target_defs = settings.get(, {})
targets = target_defs.get(modname, [])
return TileInfo(modname, modsettings, architectures, targets, release_info) | Parse a v1 module_settings.json file.
V1 is the older file format that requires a modules dictionary with a
module_name and modules key that could in theory hold information on
multiple modules in a single directory. |
384,974 | def _create(self):
from samplerate.lowlevel import ffi, src_callback_new, src_delete
from samplerate.exceptions import ResamplingError
state, handle, error = src_callback_new(
self._callback, self._converter_type.value, self._channels)
if error != 0:
raise ResamplingError(error)
self._state = ffi.gc(state, src_delete)
self._handle = handle | Create new callback resampler. |
384,975 | def setcontents(source, identifier, pointer):
record = Record.get_record(identifier)
Document(record, pointer).setcontents(source) | Patch existing bibliographic record. |
384,976 | def get_nn_info(self, structure, n):
vire = ValenceIonicRadiusEvaluator(structure)
site = vire.structure[n]
neighs_dists = vire.structure.get_neighbors(site, self.cutoff)
rn = vire.radii[vire.structure[n].species_string]
reldists_neighs = []
for neigh, dist in neighs_dists:
reldists_neighs.append([dist / (
vire.radii[neigh.species_string] + rn), neigh])
siw = []
min_reldist = min([reldist for reldist, neigh in reldists_neighs])
for reldist, s in reldists_neighs:
if reldist < (1.0 + self.tol) * min_reldist:
w = min_reldist / reldist
siw.append({: s,
: self._get_image(vire.structure, s),
: w,
: self._get_original_site(
vire.structure, s)})
return siw | Get all near-neighbor sites as well as the associated image locations
and weights of the site with index n using the closest relative
neighbor distance-based method with VIRE atomic/ionic radii.
Args:
structure (Structure): input structure.
n (integer): index of site for which to determine near
neighbors.
Returns:
siw (list of tuples (Site, array, float)): tuples, each one
of which represents a neighbor site, its image location,
and its weight. |
384,977 | def convert_table(self, block):
lines_orig = block.split()
lines_orig.pop()
widest_cell = []
widest_word = []
widths = []
rows = []
lines = []
has_border = False
width_unit = 0.0
if not self.test(None, block):
return lines_orig
if lines_orig[0].startswith():
has_border = True
for i in range(0, len(self._split_row(lines_orig[0], has_border))):
widest_cell.append(0)
widest_word.append(0)
widths.append(0)
for line in lines_orig:
row = self._split_row(line, has_border)
for i in range(0, len(row) - len(widest_cell)):
widest_cell.append(0)
widest_word.append(0)
widths.append(0)
for i in range(0, len(row)):
if len(row[i]) > widest_cell[i]:
widest_cell[i] = len(row[i])
words = row[i].split()
for word in words:
match = re.match(r, word)
if match:
word = match.group(1)
if len(word) > widest_word[i]:
widest_word[i] = len(word)
rows.append(row)
rows.pop(1)
for width in widest_cell:
width_unit += float(width)
width_unit = self.width / width_unit
for i in range(0, len(widest_cell)):
widths[i] = int(widest_cell[i] * width_unit)
if sum(widths) < self.width:
widths[widths.index(min(widths))] += self.width - sum(widths)
return lines | Converts a table to grid table format |
384,978 | def dev_null_wrapper(func, *a, **kwargs):
os.dup2(dev_null, sys.stdout.fileno())
return_object = func(*a, **kwargs)
sys.stdout.flush()
os.dup2(tmp_stdout, sys.stdout.fileno())
return return_object | Temporarily swap stdout with /dev/null, and execute given function while stdout goes to /dev/null.
This is useful because netsnmp writes to stdout and disturbes Icinga result in some cases. |
384,979 | def prepare(self):
if settings[]:
log_request(self)
for i in self.PREPARES:
getattr(self, + i)()
if self._finished:
return | Behaves like a middleware between raw request and handling process,
If `PREPARES` is defined on handler class, which should be
a list, for example, ['auth', 'context'], method whose name
is constitute by prefix '_prepare_' and string in this list
will be executed by sequence. In this example, those methods are
`_prepare_auth` and `_prepare_context` |
384,980 | def randstr(self):
return gen_rand_str(
4, 10, use=self.random, keyspace=list(string.ascii_letters)) | -> #str result of :func:gen_rand_str |
384,981 | def ceilpow2(n):
signif,exponent = frexp(n)
if (signif < 0):
return 1;
if (signif == 0.5):
exponent -= 1;
return (1) << exponent; | convenience function to determine a power-of-2 upper frequency limit |
384,982 | def lint(filename, options=()):
full_path = osp.abspath(filename)
parent_path = osp.dirname(full_path)
child_path = osp.basename(full_path)
while parent_path != "/" and osp.exists(osp.join(parent_path, "__init__.py")):
child_path = osp.join(osp.basename(parent_path), child_path)
parent_path = osp.dirname(parent_path)
run_cmd = "import sys; from pylint.lint import Run; Run(sys.argv[1:])"
cmd = (
[sys.executable, "-c", run_cmd]
+ [
"--msg-template",
"{path}:{line}: {category} ({msg_id}, {symbol}, {obj}) {msg}",
"-r",
"n",
child_path,
]
+ list(options)
)
process = Popen(
cmd, stdout=PIPE, cwd=parent_path, env=_get_env(), universal_newlines=True
)
for line in process.stdout:
if line.startswith("No config file found"):
continue
parts = line.split(":")
if parts and parts[0] == child_path:
line = ":".join([filename] + parts[1:])
print(line, end=" ")
process.wait()
return process.returncode | Pylint the given file.
When run from emacs we will be in the directory of a file, and passed its
filename. If this file is part of a package and is trying to import other
modules from within its own package or another package rooted in a directory
below it, pylint will classify it as a failed import.
To get around this, we traverse down the directory tree to find the root of
the package this module is in. We then invoke pylint from this directory.
Finally, we must correct the filenames in the output generated by pylint so
Emacs doesn't become confused (it will expect just the original filename,
while pylint may extend it with extra directories if we've traversed down
the tree) |
384,983 | def _start_element (self, tag, attrs, end):
tag = tag.encode(self.encoding, "ignore")
self.fd.write("<%s" % tag.replace("/", ""))
for key, val in attrs.items():
key = key.encode(self.encoding, "ignore")
if val is None:
self.fd.write(" %s" % key)
else:
val = val.encode(self.encoding, "ignore")
self.fd.write( % (key, quote_attrval(val)))
self.fd.write(end) | Print HTML element with end string.
@param tag: tag name
@type tag: string
@param attrs: tag attributes
@type attrs: dict
@param end: either > or />
@type end: string
@return: None |
384,984 | def cee_map_priority_table_map_cos1_pgid(self, **kwargs):
config = ET.Element("config")
cee_map = ET.SubElement(config, "cee-map", xmlns="urn:brocade.com:mgmt:brocade-cee-map")
name_key = ET.SubElement(cee_map, "name")
name_key.text = kwargs.pop()
priority_table = ET.SubElement(cee_map, "priority-table")
map_cos1_pgid = ET.SubElement(priority_table, "map-cos1-pgid")
map_cos1_pgid.text = kwargs.pop()
callback = kwargs.pop(, self._callback)
return callback(config) | Auto Generated Code |
384,985 | def members(self):
if self._members is None:
self._members = MemberList(
self._version,
service_sid=self._solution[],
channel_sid=self._solution[],
)
return self._members | Access the members
:returns: twilio.rest.chat.v1.service.channel.member.MemberList
:rtype: twilio.rest.chat.v1.service.channel.member.MemberList |
384,986 | def get_folders(self):
path =
response = self.request(path)
items = response[]
folders = []
for item in items:
if item.get() == :
raise Exception(item.get())
elif item.get() == :
folders.append(Folder(self, **item))
return folders | Return list of user's folders.
:rtype: list |
384,987 | def _set_offset_base1(self, v, load=False):
if hasattr(v, "_utype"):
v = v._utype(v)
try:
t = YANGDynClass(v,base=RestrictedClassType(base_type=unicode, restriction_type="dict_key", restriction_arg={u: {: 1}, u: {: 0}, u: {: 4}, u: {: 2}, u: {: 3}},), is_leaf=True, yang_name="offset-base1", rest_name="offset-base1", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u: {u: None, u: None, u: None}}, namespace=, defining_module=, yang_type=, is_config=True)
except (TypeError, ValueError):
raise ValueError({
: ,
: "brocade-uda-access-list:uda-offset-base-type",
: ,
})
self.__offset_base1 = t
if hasattr(self, ):
self._set() | Setter method for offset_base1, mapped from YANG variable /uda_key/profile/uda_profile_offsets/offset_base1 (uda-offset-base-type)
If this variable is read-only (config: false) in the
source YANG file, then _set_offset_base1 is considered as a private
method. Backends looking to populate this variable should
do so via calling thisObj._set_offset_base1() directly. |
384,988 | def setBackground(self,bg):
self.bg = bg
if isinstance(bg,list) or isinstance(bg,tuple):
if len(bg)==3 and isinstance(bg,list):
bg.append(255)
self.bg_vlist.colors = bg*4
elif bg in ["flat","gradient","oldshadow","material"]:
self.bg = ContainerButtonBackground(self,borderstyle=bg,batch=self.batch2d)
self.redraw() | Sets the background of the Container.
Similar to :py:meth:`peng3d.gui.SubMenu.setBackground()`\ , but only effects the region covered by the Container. |
384,989 | def check_style(value):
if sys.version_info[:2] >= (3, 2):
if value not in FORMAT_STYLE_PATTERNS:
msg = "Unsupported logging format style! (%r)"
raise ValueError(format(msg, value))
elif value != DEFAULT_FORMAT_STYLE:
msg = "Format string styles other than %r require Python 3.2+!"
raise ValueError(msg, DEFAULT_FORMAT_STYLE)
return value | Validate a logging format style.
:param value: The logging format style to validate (any value).
:returns: The logging format character (a string of one character).
:raises: :exc:`~exceptions.ValueError` when the given style isn't supported.
On Python 3.2+ this function accepts the logging format styles ``%``, ``{``
and ``$`` while on older versions only ``%`` is accepted (because older
Python versions don't support alternative logging format styles). |
384,990 | def detect_complexity(bam_in, genome, out):
if not genome:
logger.info("No genome given. skipping.")
return None
out_file = op.join(out, op.basename(bam_in) + "_cov.tsv")
if file_exists(out_file):
return None
fai = genome + ".fai"
cov = pybedtools.BedTool(bam_in).genome_coverage(g=fai, max=1)
cov.saveas(out_file)
total = 0
for region in cov:
if region[0] == "genome" and int(region[1]) != 0:
total += float(region[4])
logger.info("Total genome with sequences: %s " % total) | genome coverage of small RNA |
384,991 | def sign_decorated(self, data):
signature = self.sign(data)
hint = self.signature_hint()
return Xdr.types.DecoratedSignature(hint, signature) | Sign a bytes-like object and return the decorated signature.
Sign a bytes-like object by signing the data using the signing
(private) key, and return a decorated signature, which includes the
last four bytes of the public key as a signature hint to go along with
the signature as an XDR DecoratedSignature object.
:param bytes data: A sequence of bytes to sign, typically a
transaction. |
384,992 | def lookup_ids(self, keys):
keys_len = len(keys)
ids = {namespace_key: None for namespace_key in keys}
start = 0
bulk_insert = self.bulk_insert
query =
check =
cursor = self.cursor
execute = cursor.execute
while start < keys_len:
rows = keys[start:start+bulk_insert]
params = [param for params in rows for param in params]
id_query = query + (check + ) * (len(rows) - 1) + check
execute(id_query, params)
for namespace, key, id_ in cursor:
ids[(namespace, key)] = id_
start += bulk_insert
return ids | Lookup the integer ID associated with each (namespace, key) in the
keys list |
384,993 | def column_coordinates(self, X):
utils.validation.check_is_fitted(self, )
_, _, _, col_names = util.make_labels_and_names(X)
if isinstance(X, pd.SparseDataFrame):
X = X.to_coo()
elif isinstance(X, pd.DataFrame):
X = X.to_numpy()
if self.copy:
X = X.copy()
if isinstance(X, np.ndarray):
X = X.T / X.T.sum(axis=1)[:, None]
else:
X = X.T / X.T.sum(axis=1)
return pd.DataFrame(
data=X @ sparse.diags(self.row_masses_.to_numpy() ** -0.5) @ self.U_,
index=col_names
) | The column principal coordinates. |
384,994 | def from_frame(klass, frame, connection):
event = frame.headers[]
data = json.loads(frame.body)
info = data[]
build = Build.fromDict(info)
build.connection = connection
return klass(build, event) | Create a new BuildStateChange event from a Stompest Frame. |
384,995 | def _buildvgrid(self,R,phi,nsigma,t,sigmaR1,sigmaT1,meanvR,meanvT,
gridpoints,print_progress,integrate_method,deriv):
out= evolveddiskdfGrid()
out.sigmaR1= sigmaR1
out.sigmaT1= sigmaT1
out.meanvR= meanvR
out.meanvT= meanvT
out.vRgrid= nu.linspace(meanvR-nsigma*sigmaR1,meanvR+nsigma*sigmaR1,
gridpoints)
out.vTgrid= nu.linspace(meanvT-nsigma*sigmaT1,meanvT+nsigma*sigmaT1,
gridpoints)
if isinstance(t,(list,nu.ndarray)):
nt= len(t)
out.df= nu.zeros((gridpoints,gridpoints,nt))
for ii in range(gridpoints):
for jj in range(gridpoints-1,-1,-1):
if print_progress:
sys.stdout.write(+"Velocity gridpoint %i out of %i" % \
(jj+ii*gridpoints+1,gridpoints*gridpoints))
sys.stdout.flush()
thiso= Orbit([R,out.vRgrid[ii],out.vTgrid[jj],phi])
out.df[ii,jj,:]= self(thiso,nu.array(t).flatten(),
integrate_method=integrate_method,
deriv=deriv,use_physical=False)
out.df[ii,jj,nu.isnan(out.df[ii,jj,:])]= 0.
if print_progress: sys.stdout.write()
else:
out.df= nu.zeros((gridpoints,gridpoints))
for ii in range(gridpoints):
for jj in range(gridpoints):
if print_progress:
sys.stdout.write(+"Velocity gridpoint %i out of %i" % \
(jj+ii*gridpoints+1,gridpoints*gridpoints))
sys.stdout.flush()
thiso= Orbit([R,out.vRgrid[ii],out.vTgrid[jj],phi])
out.df[ii,jj]= self(thiso,t,
integrate_method=integrate_method,
deriv=deriv,use_physical=False)
if nu.isnan(out.df[ii,jj]): out.df[ii,jj]= 0.
if print_progress: sys.stdout.write()
return out | Internal function to grid the vDF at a given location |
384,996 | def routes(family=None):
*
if family != and family != and family is not None:
raise CommandExecutionError(.format(family))
if __grains__[] == :
if not salt.utils.path.which():
routes_ = _ip_route_linux()
else:
routes_ = _netstat_route_linux()
elif __grains__[] == :
routes_ = _netstat_route_sunos()
elif __grains__[] in [, , ]:
routes_ = _netstat_route_freebsd()
elif __grains__[] in []:
routes_ = _netstat_route_netbsd()
elif __grains__[] in []:
routes_ = _netstat_route_openbsd()
elif __grains__[] in []:
routes_ = _netstat_route_aix()
else:
raise CommandExecutionError()
if not family:
return routes_
else:
ret = [route for route in routes_ if route[] == family]
return ret | Return currently configured routes from routing table
.. versionchanged:: 2015.8.0
Added support for SunOS (Solaris 10, Illumos, SmartOS)
.. versionchanged:: 2016.11.4
Added support for AIX
CLI Example:
.. code-block:: bash
salt '*' network.routes |
384,997 | def report_parsing_problems(parsing_out):
_, empty, faulty = parsing_out
if CONFIG_FILE in empty or CONFIG_FILE in faulty:
print(, CONFIG_FILE,
file=sys.stderr)
print(,
sep=, end=, file=sys.stderr)
if CONFIG_LOCAL in faulty:
print(, CONFIG_LOCAL,
file=sys.stderr)
print(,
sep=, end=, file=sys.stderr) | Output message about potential parsing problems. |
384,998 | def set_locs(self, locs):
_check_implicitly_registered()
self.locs = locs
(vmin, vmax) = vi = tuple(self.axis.get_view_interval())
if vi != self.plot_obj.view_interval:
self.plot_obj.date_axis_info = None
self.plot_obj.view_interval = vi
if vmax < vmin:
(vmin, vmax) = (vmax, vmin)
self._set_default_format(vmin, vmax) | Sets the locations of the ticks |
384,999 | def get(self, key, value):
if key == :
response = self._swimlane.request(, "app/{0}/record/{1}".format(self._app.id, value))
return Record(self._app, response.json())
if key == :
response = self._swimlane.request(, "app/{0}/record/tracking/{1}".format(self._app.id, value))
return Record(self._app, response.json()) | Get a single record by id
Supports resource cache
.. versionchanged:: 2.17.0
Added option to retrieve record by tracking_id
Keyword Args:
id (str): Full record ID
tracking_id (str): Record Tracking ID
Returns:
Record: Matching Record instance returned from API
Raises:
TypeError: No id argument provided |
Subsets and Splits
No saved queries yet
Save your SQL queries to embed, download, and access them later. Queries will appear here once saved.