Unnamed: 0
int64 0
389k
| code
stringlengths 26
79.6k
| docstring
stringlengths 1
46.9k
|
---|---|---|
386,200 | def debug(self, message, *args, **kwargs):
self._log(logging.DEBUG, message, *args, **kwargs) | Debug level to use and abuse when coding |
386,201 | def _set_fcoe_max_enode(self, v, load=False):
if hasattr(v, "_utype"):
v = v._utype(v)
try:
t = YANGDynClass(v,base=RestrictedClassType(base_type=RestrictedClassType(base_type=long, restriction_dict={: []}, int_size=32), restriction_dict={: [u]}), is_leaf=True, yang_name="fcoe-max-enode", rest_name="fcoe-enodes", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u: {u: u, u: None, u: u, u: u, u: u}}, namespace=, defining_module=, yang_type=, is_config=True)
except (TypeError, ValueError):
raise ValueError({
: ,
: "brocade-fcoe:fcoe-max-enodes-per-rbridge-type",
: ,
})
self.__fcoe_max_enode = t
if hasattr(self, ):
self._set() | Setter method for fcoe_max_enode, mapped from YANG variable /rbridge_id/fcoe_config/fcoe_max_enode (fcoe-max-enodes-per-rbridge-type)
If this variable is read-only (config: false) in the
source YANG file, then _set_fcoe_max_enode is considered as a private
method. Backends looking to populate this variable should
do so via calling thisObj._set_fcoe_max_enode() directly.
YANG Description: This specifies the Number of the FCoE Enodes. |
386,202 | def generate_html_documentation(self):
methods = {}
for method_name in self.system_listMethods():
if method_name in self.funcs:
method = self.funcs[method_name]
elif self.instance is not None:
method_info = [None, None]
if hasattr(self.instance, ):
method_info[0] = self.instance._get_method_argstring(method_name)
if hasattr(self.instance, ):
method_info[1] = self.instance._methodHelp(method_name)
method_info = tuple(method_info)
if method_info != (None, None):
method = method_info
elif not hasattr(self.instance, ):
try:
method = resolve_dotted_attribute(
self.instance,
method_name
)
except AttributeError:
method = method_info
else:
method = method_info
else:
assert 0, "Could not find method in self.functions and no "\
"instance installed"
methods[method_name] = method
documenter = ServerHTMLDoc()
documentation = documenter.docserver(
self.server_name,
self.server_documentation,
methods
)
return documenter.page(self.server_title, documentation) | generate_html_documentation() => html documentation for the server
Generates HTML documentation for the server using introspection for
installed functions and instances that do not implement the
_dispatch method. Alternatively, instances can choose to implement
the _get_method_argstring(method_name) method to provide the
argument string used in the documentation and the
_methodHelp(method_name) method to provide the help text used
in the documentation. |
386,203 | def _parse_migrate_output(self, output):
failed = None
succeeded = []
for line in output.split():
line = _remove_escape_characters(line).strip()
line_match = self.migration_regex.match(line)
if line_match:
migration = (line_match.group(), line_match.group())
if line_match.group() == :
succeeded.append(migration)
else:
failed = migration
break
return succeeded, failed | Args:
output: str, output of "manage.py migrate"
Returns (succeeded: list(tuple), failed: tuple or None)
Both tuples are of the form (app, migration) |
386,204 | def get_directory(db, user_id, api_dirname, content):
db_dirname = from_api_dirname(api_dirname)
if not _dir_exists(db, user_id, db_dirname):
raise NoSuchDirectory(api_dirname)
if content:
files = files_in_directory(
db,
user_id,
db_dirname,
)
subdirectories = directories_in_directory(
db,
user_id,
db_dirname,
)
else:
files, subdirectories = None, None
return {
: db_dirname,
: files,
: subdirectories,
} | Return the names of all files/directories that are direct children of
api_dirname.
If content is False, return a bare model containing just a database-style
name. |
386,205 | def _zforce(self,R,z,phi=0,t=0):
r= numpy.sqrt(R**2.+z**2.)
out= self._scf.zforce(R,z,phi=phi,use_physical=False)
for a,s,ds,H,dH in zip(self._Sigma_amp,self._Sigma,self._dSigmadR,
self._Hz,self._dHzdz):
out-= 4.*numpy.pi*a*(ds(r)*H(z)*z/r+s(r)*dH(z))
return out | NAME:
_zforce
PURPOSE:
evaluate the vertical force at (R,z, phi)
INPUT:
R - Cylindrical Galactocentric radius
z - vertical height
phi - azimuth
t - time
OUTPUT:
vertical force at (R,z, phi)
HISTORY:
2016-12-26 - Written - Bovy (UofT/CCA) |
386,206 | def __filterItems(self,
terms,
autoExpand=True,
caseSensitive=False,
parent=None,
level=0):
if key in generic:
generic_found[key] = True
if key in specific:
col_found[column] = True
mfound = all(col_found.values()) and \
all(generic_found.values())
if mfound:
break
if not mfound and (autoExpand or item.isExpanded()):
mfound = self.__filterItems(terms,
autoExpand,
caseSensitive,
item,
level + 1)
item.setHidden(not mfound)
if mfound:
found = True
if mfound and autoExpand and item.childCount():
item.setExpanded(True)
return found | Filters the items in this tree based on the inputed keywords.
:param terms | {<int> column: [<str> term, ..], ..}
autoExpand | <bool>
caseSensitive | <bool>
parent | <QtGui.QTreeWidgetItem> || None
:return <bool> | found |
386,207 | def organismsKEGG():
organisms=urlopen("http://rest.kegg.jp/list/organism").read()
organisms=organisms.split("\n")
organisms=[ s.split("\t") for s in organisms ]
organisms=pd.DataFrame(organisms)
return organisms | Lists all organisms present in the KEGG database.
:returns: a dataframe containing one organism per row. |
386,208 | def sequential_connect(self):
try:
mappings = sequential_bind(self.mapping_no + 1, self.interface)
con = self.server_connect(mappings[0]["sock"])
except Exception as e:
log.debug(e)
log.debug("this err")
return None
mappings.remove(mappings[0])
msg = "SOURCE TCP %s" % (str(mappings[0]["source"]))
con.send_line(msg)
reply = con.recv_line(timeout=2)
remote_port = self.parse_remote_port(reply)
if not remote_port:
return None
predictions = ""
if self.nat_type != "random":
mappings = self.predict_mappings(mappings)
for mapping in mappings:
predictions += str(mapping["remote"]) + " "
predictions = predictions.rstrip()
else:
predictions = "1337"
return [con, mappings, predictions] | Sequential connect is designed to return a connection to the
Rendezvous Server but it does so in a way that the local port
ranges (both for the server and used for subsequent hole
punching) are allocated sequentially and predictably. This is
because Delta+1 type NATs only preserve the delta value when
the source ports increase by one. |
386,209 | def request(self, url, *,
method=, headers=None, data=None, result_callback=None):
url = self._make_full_url(url)
self._log.debug(, method, url)
return self._request(url, method=method, headers=headers, data=data,
result_callback=result_callback) | Perform request.
:param str url: request URL.
:param str method: request method.
:param dict headers: request headers.
:param object data: request data.
:param object -> object result_callback: result callback.
:rtype: dict
:raise: APIError |
386,210 | def _list_itemstrs(list_, **kwargs):
items = list(list_)
kwargs[] = True
_tups = [repr2(item, **kwargs) for item in items]
itemstrs = [t[0] for t in _tups]
max_height = max([t[1][] for t in _tups]) if _tups else 0
_leaf_info = {
: max_height + 1,
}
sort = kwargs.get(, None)
if sort is None:
sort = isinstance(list_, (set, frozenset))
if sort:
itemstrs = _sort_itemstrs(items, itemstrs)
return itemstrs, _leaf_info | Create a string representation for each item in a list. |
386,211 | def design_expparams_field(self,
guess, field,
cost_scale_k=1.0, disp=False,
maxiter=None, maxfun=None,
store_guess=False, grad_h=None, cost_mult=False
):
r
up = self._updater
m = up.model
if isinstance(guess, Heuristic):
raise NotImplementedError("Not yet implemented.")
elif callable(guess):
ep = guess(
idx_exp=len(up.data_record),
mean=up.est_mean(),
cov=up.est_covariance_mtx()
)
else:
ep = np.copy(guess)
if (cost_mult==False):
def objective_function(x):
ep[field] = x
return up.bayes_risk(ep) + cost_scale_k * m.experiment_cost(ep)
else:
def objective_function(x):
ep[field] = x
return up.bayes_risk(ep)* m.experiment_cost(ep)**cost_scale_k
d_dx_objective = FiniteDifference(objective_function, ep[field].size)
if self._opt_algo == OptimizationAlgorithms.NULL:
x_opt = guess[0][field]
elif self._opt_algo == OptimizationAlgorithms.CG:
opt_options = {}
if maxiter is not None:
opt_options[] = maxiter
x_opt, f_opt, func_calls, grad_calls, warnflag = opt.fmin_cg(
objective_function, guess[0][field],
disp=disp, full_output=True, **opt_options
)
elif self._opt_algo == OptimizationAlgorithms.NCG:
opt_options = {}
if maxfun is not None:
opt_options[] = maxfun
if grad_h is not None:
opt_options[] = grad_h
if f_opt is None:
guess_qual = objective_function(x_opt)
if self.__best_cost is None or (self.__best_cost > f_opt):
ep[field] = x_opt
return ep | r"""
Designs a new experiment by varying a single field of a shape ``(1,)``
record array and minimizing the objective function
.. math::
O(\vec{e}) = r(\vec{e}) + k \$(\vec{e}),
where :math:`r` is the Bayes risk as calculated by the updater, and
where :math:`\$` is the cost function specified by the model. Here,
:math:`k` is a parameter specified to relate the units of the risk and
the cost. See :ref:`expdesign` for more details.
:param guess: Either a record array with a single guess, or
a callable function that generates guesses.
:type guess: Instance of :class:`~Heuristic`, `callable`
or :class:`~numpy.ndarray` of ``dtype``
:attr:`~qinfer.abstract_model.Simulatable.expparams_dtype`
:param str field: The name of the ``expparams`` field to be optimized.
All other fields of ``guess`` will be held constant.
:param float cost_scale_k: A scale parameter :math:`k` relating the
Bayes risk to the experiment cost.
See :ref:`expdesign`.
:param bool disp: If `True`, the optimization will print additional
information as it proceeds.
:param int maxiter: For those optimization algorithms which support
it (currently, only CG and NELDER_MEAD), limits the number of
optimization iterations used for each guess.
:param int maxfun: For those optimization algorithms which support it
(currently, only NCG and NELDER_MEAD), limits the number of
objective calls that can be made.
:param bool store_guess: If ``True``, will compare the outcome of this
guess to previous guesses and then either store the optimization of
this experiment, or the previous best-known experiment design.
:param float grad_h: Step size to use in estimating gradients. Used
only if ``opt_algo`` is NCG.
:return: An array representing the best experiment design found so
far for the current experiment. |
386,212 | def remove(self, child):
for i in range(len(self)):
if self[i] == child:
del self[i] | Remove a child element. |
386,213 | def netconf_state_schemas_schema_identifier(self, **kwargs):
config = ET.Element("config")
netconf_state = ET.SubElement(config, "netconf-state", xmlns="urn:ietf:params:xml:ns:yang:ietf-netconf-monitoring")
schemas = ET.SubElement(netconf_state, "schemas")
schema = ET.SubElement(schemas, "schema")
version_key = ET.SubElement(schema, "version")
version_key.text = kwargs.pop()
format_key = ET.SubElement(schema, "format")
format_key.text = kwargs.pop()
identifier = ET.SubElement(schema, "identifier")
identifier.text = kwargs.pop()
callback = kwargs.pop(, self._callback)
return callback(config) | Auto Generated Code |
386,214 | def get_interface_detail_output_interface_ip_mtu(self, **kwargs):
config = ET.Element("config")
get_interface_detail = ET.Element("get_interface_detail")
config = get_interface_detail
output = ET.SubElement(get_interface_detail, "output")
interface = ET.SubElement(output, "interface")
interface_type_key = ET.SubElement(interface, "interface-type")
interface_type_key.text = kwargs.pop()
interface_name_key = ET.SubElement(interface, "interface-name")
interface_name_key.text = kwargs.pop()
ip_mtu = ET.SubElement(interface, "ip-mtu")
ip_mtu.text = kwargs.pop()
callback = kwargs.pop(, self._callback)
return callback(config) | Auto Generated Code |
386,215 | def _layer_norm_new_params(input_shape, rng, epsilon=1e-6):
del rng, epsilon
features = input_shape[-1]
scale = np.ones(features)
bias = np.zeros(features)
return (scale, bias) | Helper: create layer norm parameters. |
386,216 | def get_permissions(self):
user_role = self.last_login_role() if self.last_login_role_key else self.role_set[0].role
return user_role.get_permissions() | Permissions of the user.
Returns:
List of Permission objects. |
386,217 | def feed_fetch_force(request, id, redirect_to):
feed = Feed.objects.get(id=id)
feed.fetch(force=True)
msg = _("Fetched tweets for %s" % feed.name)
messages.success(request, msg, fail_silently=True)
return HttpResponseRedirect(redirect_to) | Forcibly fetch tweets for the feed |
386,218 | def repeat_str(state):
if state == const.REPEAT_STATE_OFF:
return
if state == const.REPEAT_STATE_TRACK:
return
if state == const.REPEAT_STATE_ALL:
return
return | Convert internal API repeat state to string. |
386,219 | def is_threat(self, result=None, harmless_age=None, threat_score=None, threat_type=None):
harmless_age = harmless_age if harmless_age is not None else settings.CACHED_HTTPBL_HARMLESS_AGE
threat_score = threat_score if threat_score is not None else settings.CACHED_HTTPBL_THREAT_SCORE
threat_type = threat_type if threat_type is not None else -1
result = result if result is not None else self._last_result
threat = False
if result is not None:
if result[] < harmless_age and result[] > threat_score:
threat = True
if threat_type > -1:
if result[] & threat_type:
threat = True
else:
threat = False
return threat | Check if IP is a threat
:param result: httpBL results; if None, then results from last check_ip() used (optional)
:param harmless_age: harmless age for check if httpBL age is older (optional)
:param threat_score: threat score for check if httpBL threat is lower (optional)
:param threat_type: threat type, if not equal httpBL score type, then return False (optional)
:return: True or False |
386,220 | def quit(self, message=None):
if message is None:
message =
if self.connected:
self.send(, params=[message]) | Quit from the server. |
386,221 | def start_dashboard(self):
stdout_file, stderr_file = self.new_log_files("dashboard", True)
self._webui_url, process_info = ray.services.start_dashboard(
self.redis_address,
self._temp_dir,
stdout_file=stdout_file,
stderr_file=stderr_file,
redis_password=self._ray_params.redis_password)
assert ray_constants.PROCESS_TYPE_DASHBOARD not in self.all_processes
if process_info is not None:
self.all_processes[ray_constants.PROCESS_TYPE_DASHBOARD] = [
process_info
]
redis_client = self.create_redis_client()
redis_client.hmset("webui", {"url": self._webui_url}) | Start the dashboard. |
386,222 | def extract(self, package_name):
for cmd in [, ]:
if not Cmd.which(cmd):
message = .format(cmd)
raise InstallError(message)
pattern = .format(package_name, self.arch)
rpm_files = Cmd.find(, pattern)
if not rpm_files:
raise InstallError()
cmd = .format(rpm_files[0])
Cmd.sh_e(cmd) | Extract given package. |
386,223 | def audio_inputs(self):
return self.client.get_ports(is_audio=True, is_physical=True, is_input=True) | :return: A list of audio input :class:`Ports`. |
386,224 | def _GenerateDescription(self):
manifest = {
"description": self.description,
"processed_files": len(self.processed_files),
"archived_files": len(self.archived_files),
"ignored_files": len(self.ignored_files),
"failed_files": len(self.failed_files)
}
if self.ignored_files:
manifest["ignored_files_list"] = [
_ClientPathToString(cp, prefix="aff4:") for cp in self.ignored_files
]
if self.failed_files:
manifest["failed_files_list"] = [
_ClientPathToString(cp, prefix="aff4:") for cp in self.failed_files
]
manifest_fd = io.BytesIO()
if self.total_files != len(self.archived_files):
manifest_fd.write(self.FILES_SKIPPED_WARNING)
manifest_fd.write(yaml.Dump(manifest).encode("utf-8"))
manifest_fd.seek(0)
st = os.stat_result(
(0o644, 0, 0, 0, 0, 0, len(manifest_fd.getvalue()), 0, 0, 0))
for chunk in self.archive_generator.WriteFromFD(
manifest_fd, os.path.join(self.prefix, "MANIFEST"), st=st):
yield chunk | Generates description into a MANIFEST file in the archive. |
386,225 | def gen_xlsx_table_info():
XLSX_FILE =
if os.path.exists(XLSX_FILE):
pass
else:
return
RAW_LIST = [, , , , , , , , , , , , , ,
, , , , , , , , , , , ]
FILTER_COLUMNS = RAW_LIST + ["A" + x for x in RAW_LIST] + \
["B" + x for x in RAW_LIST] + \
["C" + x for x in RAW_LIST] + \
["D" + x for x in RAW_LIST]
tvalue = []
file_d = open_workbook(XLSX_FILE)
x = 0
for sheet_ranges in load_workbook(filename=XLSX_FILE):
select_sheet = file_d.sheets()[x]
rows_num = select_sheet.nrows + 1
for row_num in range(6, rows_num):
tvalue = []
for xr in FILTER_COLUMNS:
row1_val = sheet_ranges[xr + ].value
row4_val = sheet_ranges[xr + .format(row_num)].value
if row1_val:
if row4_val == None:
row4_val =
tvalue.append(row4_val)
insert_tab(tvalue)
x = x + 1
print("成功插入 " + str(rows_num - 6) + " 行数据") | 向表中插入数据 |
386,226 | def _parse_response(self, xmlstr, response_cls, service, binding,
outstanding_certs=None, **kwargs):
if self.config.accepted_time_diff:
kwargs["timeslack"] = self.config.accepted_time_diff
if "asynchop" not in kwargs:
if binding in [BINDING_SOAP, BINDING_PAOS]:
kwargs["asynchop"] = False
else:
kwargs["asynchop"] = True
response = None
if not xmlstr:
return response
if "return_addrs" not in kwargs:
bindings = {
BINDING_SOAP,
BINDING_HTTP_REDIRECT,
BINDING_HTTP_POST,
}
if binding in bindings:
kwargs["return_addrs"] = self.config.endpoint(
service,
binding=binding,
context=self.entity_type)
try:
response = response_cls(self.sec, **kwargs)
except Exception as exc:
logger.info("%s", exc)
raise
xmlstr = self.unravel(xmlstr, binding, response_cls.msgtype)
if not xmlstr:
return None
try:
response_is_signed = False
require_response_signature = response.require_response_signature
response.require_response_signature = True
response = response.loads(xmlstr, False, origxml=xmlstr)
except SigverError as err:
if require_response_signature:
logger.error("Signature Error: %s", err)
raise
else:
response.require_response_signature = require_response_signature
response = response.loads(xmlstr, False, origxml=xmlstr)
except UnsolicitedResponse:
logger.error("Unsolicited response")
raise
except Exception as err:
if "not well-formed" in "%s" % err:
logger.error("Not well-formed XML")
raise
else:
response_is_signed = True
finally:
response.require_response_signature = require_response_signature
logger.debug("XMLSTR: %s", xmlstr)
if not response:
return response
keys = None
if outstanding_certs:
try:
cert = outstanding_certs[response.in_response_to]
except KeyError:
keys = None
else:
if not isinstance(cert, list):
cert = [cert]
keys = []
for _cert in cert:
keys.append(_cert["key"])
try:
assertions_are_signed = False
require_signature = response.require_signature
response.require_signature = True
response = response.verify(keys)
except SignatureError as err:
if require_signature:
logger.error("Signature Error: %s", err)
raise
else:
response.require_signature = require_signature
response = response.verify(keys)
else:
assertions_are_signed = True
finally:
response.require_signature = require_signature
if response.require_signature_or_response_signature:
if not response_is_signed and not assertions_are_signed:
msg = "Neither the response nor the assertions are signed"
logger.error(msg)
raise SigverError(msg)
return response | Deal with a Response
:param xmlstr: The response as a xml string
:param response_cls: What type of response it is
:param binding: What type of binding this message came through.
:param outstanding_certs: Certificates that belongs to me that the
IdP may have used to encrypt a response/assertion/..
:param kwargs: Extra key word arguments
:return: None if the reply doesn't contain a valid SAML Response,
otherwise the response. |
386,227 | def field_to_dict(fields):
field_dict = {}
for field in fields:
d_tmp = field_dict
for part in field.split(LOOKUP_SEP)[:-1]:
d_tmp = d_tmp.setdefault(part, {})
d_tmp = d_tmp.setdefault(
field.split(LOOKUP_SEP)[-1],
deepcopy(EMPTY_DICT)
).update(deepcopy(EMPTY_DICT))
return field_dict | Build dictionnary which dependancy for each field related to "root"
fields = ["toto", "toto__tata", "titi__tutu"]
dico = {
"toto": {
EMPTY_DICT,
"tata": EMPTY_DICT
},
"titi" : {
"tutu": EMPTY_DICT
}
}
EMPTY_DICT is useful because we don't lose field
without it dico["toto"] would only contains "tata"
inspired from django.db.models.sql.add_select_related |
386,228 | def ReadDataFile(self):
if os.path.isfile(self.filename[0:-4] + ):
filename = self.filename[0:-4] +
elif os.path.isfile(self.filename[0:-4] + ):
filename = self.filename[0:-4] +
else:
print "Data file File not found."
return 0
self.filehandler = open(filename,)
self.DatFileContent = self.filehandler.read()
self.filehandler.close()
return 1 | Reads the contents of the Comtrade .dat file and store them in a
private variable.
For accessing a specific channel data, see methods getAnalogData and
getDigitalData. |
386,229 | def AgregarFusion(self, nro_ing_brutos, nro_actividad, **kwargs):
"Datos de comprador o vendedor según liquidación a ajustar (fusión.)"
self.ajuste[][] = {: nro_ing_brutos,
: nro_actividad,
}
return True | Datos de comprador o vendedor según liquidación a ajustar (fusión.) |
386,230 | def rget(self, key, replica_index=None, quiet=None):
if replica_index is not None:
return _Base._rgetix(self, key, replica=replica_index, quiet=quiet)
else:
return _Base._rget(self, key, quiet=quiet) | Get an item from a replica node
:param string key: The key to fetch
:param int replica_index: The replica index to fetch.
If this is ``None`` then this method will return once any
replica responds. Use :attr:`configured_replica_count` to
figure out the upper bound for this parameter.
The value for this parameter must be a number between 0 and
the value of :attr:`configured_replica_count`-1.
:param boolean quiet: Whether to suppress errors when the key is
not found
This method (if `replica_index` is not supplied) functions like
the :meth:`get` method that has been passed the `replica`
parameter::
c.get(key, replica=True)
.. seealso:: :meth:`get` :meth:`rget_multi` |
386,231 | def plot_site(fignum, SiteRec, data, key):
print()
print()
print(SiteRec[], SiteRec[], SiteRec[], SiteRec[], SiteRec[],
SiteRec[], SiteRec[], SiteRec[], SiteRec[])
print()
for i in range(len(data)):
print( % (data[i][ + key + ], data[i][key + ], data[i]
[key + ], data[i][key + ], data[i][key + ], data[i][]))
plot_slnp(fignum, SiteRec, data, key)
plot = input("s[a]ve plot, [q]uit or <return> to continue: ")
if plot == :
print("CUL8R")
sys.exit()
if plot == :
files = {}
for key in list(EQ.keys()):
files[key] = site + + key + + fmt
save_plots(EQ, files) | deprecated (used in ipmag) |
386,232 | def _generate_struct_class(self, ns, data_type):
self.emit(self._class_declaration_for_type(ns, data_type))
with self.indent():
if data_type.has_documented_type_or_fields():
self.emit()
self.emit()
self._generate_struct_class_slots(data_type)
self._generate_struct_class_has_required_fields(data_type)
self._generate_struct_class_init(data_type)
self._generate_struct_class_properties(ns, data_type)
self._generate_struct_class_custom_annotations(ns, data_type)
self._generate_struct_class_repr(data_type)
if data_type.has_enumerated_subtypes():
validator =
else:
validator =
self.emit(.format(
class_name_for_data_type(data_type),
validator,
))
self.emit() | Defines a Python class that represents a struct in Stone. |
386,233 | def to_datetime(dt, tzinfo=None, format=None):
if not dt:
return dt
tz = pick_timezone(tzinfo, __timezone__)
if isinstance(dt, (str, unicode)):
if not format:
formats = DEFAULT_DATETIME_INPUT_FORMATS
else:
formats = list(format)
d = None
for fmt in formats:
try:
d = datetime.strptime(dt, fmt)
except ValueError:
continue
if not d:
return None
d = d.replace(tzinfo=tz)
else:
d = datetime(getattr(dt, , 1970), getattr(dt, , 1),
getattr(dt, , 1), getattr(dt, , 0), getattr(dt, , 0),
getattr(dt, , 0), getattr(dt, , 0))
if not getattr(dt, , None):
d = d.replace(tzinfo=tz)
else:
d = d.replace(tzinfo=dt.tzinfo)
return to_timezone(d, tzinfo) | Convert a date or time to datetime with tzinfo |
386,234 | def mutual_information(
self, M_c, X_L_list, X_D_list, Q, seed, n_samples=1000):
get_next_seed = make_get_next_seed(seed)
return iu.mutual_information(
M_c, X_L_list, X_D_list, Q, get_next_seed, n_samples) | Estimate mutual information for each pair of columns on Q given
the set of samples.
:param Q: List of tuples where each tuple contains the two column
indexes to compare
:type Q: list of two-tuples of ints
:param n_samples: the number of simple predictive samples to use
:type n_samples: int
:returns: list of list -- where each sublist is a set of MIs and
Linfoots from each crosscat sample. |
386,235 | def interrupt(self):
if(self.device.read(9) & 0x01):
self.handle_request()
self.device.clear_IR() | Invoked on a write operation into the IR of the RendererDevice. |
386,236 | def pop(self, key, *args):
try:
return self.maps[0].pop(key, *args)
except KeyError:
raise KeyError(.format(key)) | Remove *key* from maps[0] and return its value. Raise KeyError if *key* not in maps[0]. |
386,237 | def calculate_lyapunov(self):
if self._calculate_megno==0:
raise RuntimeError("Lyapunov Characteristic Number cannot be calculated. Make sure to call init_megno() after adding all particles but before integrating the simulation.")
clibrebound.reb_tools_calculate_lyapunov.restype = c_double
return clibrebound.reb_tools_calculate_lyapunov(byref(self)) | Return the current Lyapunov Characteristic Number (LCN).
Note that you need to call init_megno() before the start of the simulation.
To get a timescale (the Lyapunov timescale), take the inverse of this quantity. |
386,238 | def _get_nsamps_samples_n(res):
try:
samples_n = res.samples_n
nsamps = len(samples_n)
except:
niter = res.niter
nlive = res.nlive
nsamps = len(res.logvol)
if nsamps == niter:
samples_n = np.ones(niter, dtype=) * nlive
elif nsamps == (niter + nlive):
samples_n = np.append(np.ones(niter, dtype=) * nlive,
np.arange(1, nlive + 1)[::-1])
else:
raise ValueError("Final number of samples differs from number of "
"iterations and number of live points.")
return nsamps, samples_n | Helper function for calculating the number of samples
Parameters
----------
res : :class:`~dynesty.results.Results` instance
The :class:`~dynesty.results.Results` instance taken from a previous
nested sampling run.
Returns
-------
nsamps: int
The total number of samples
samples_n: array
Number of live points at a given iteration |
386,239 | def is_gene_list(bed_file):
with utils.open_gzipsafe(bed_file) as in_handle:
for line in in_handle:
if not line.startswith("
if len(line.split()) == 1:
return True
else:
return False | Check if the file is only a list of genes, not a BED |
386,240 | def is_decorated_with_property(node):
if not node.decorators:
return False
for decorator in node.decorators.nodes:
if not isinstance(decorator, astroid.Name):
continue
try:
if _is_property_decorator(decorator):
return True
except astroid.InferenceError:
pass
return False | Check if the function is decorated as a property.
:param node: The node to check.
:type node: astroid.nodes.FunctionDef
:returns: True if the function is a property, False otherwise.
:rtype: bool |
386,241 | def cpustats():
*
def linux_cpustats():
ret = {}
try:
with salt.utils.files.fopen(, ) as fp_:
stats = salt.utils.stringutils.to_unicode(fp_.read())
except IOError:
pass
else:
for line in stats.splitlines():
if not line:
continue
comps = line.split()
if comps[0] == :
ret[comps[0]] = {: _number(comps[4]),
: _number(comps[5]),
: _number(comps[6]),
: _number(comps[2]),
: _number(comps[7]),
: _number(comps[8]),
: _number(comps[3]),
: _number(comps[1])}
elif comps[0] == :
ret[comps[0]] = {: _number(comps[1]),
: [_number(x) for x in comps[2:]]}
elif comps[0] == :
ret[comps[0]] = {: _number(comps[1]),
: [_number(x) for x in comps[2:]]}
else:
ret[comps[0]] = _number(comps[1])
return ret
def freebsd_cpustats():
vmstat = __salt__[]().splitlines()
vm0 = vmstat[0].split()
cpu0loc = vm0.index()
vm1 = vmstat[1].split()
usloc = vm1.index()
vm2 = vmstat[2].split()
cpuctr = 0
ret = {}
for cpu in vm0[cpu0loc:]:
ret[cpu] = {: _number(vm2[usloc + 3 * cpuctr]),
: _number(vm2[usloc + 1 + 3 * cpuctr]),
: _number(vm2[usloc + 2 + 3 * cpuctr]), }
cpuctr += 1
return ret
def sunos_cpustats():
mpstat = __salt__[]().splitlines()
fields = mpstat[0].split()
ret = {}
for cpu in mpstat:
if cpu.startswith():
continue
cpu = cpu.split()
ret[_number(cpu[0])] = {}
for i in range(1, len(fields)-1):
ret[_number(cpu[0])][fields[i]] = _number(cpu[i])
return ret
def aix_cpustats():
ret = {}
ret[] = []
procn = None
fields = []
for line in __salt__[]().splitlines():
if not line:
continue
procn = len(ret[])
if line.startswith():
comps = line.split()
ret[].append({})
ret[][procn][] = {}
cpu_comps = comps[1].split()
for i in range(0, len(cpu_comps)):
cpu_vals = cpu_comps[i].split()
ret[][procn][][cpu_vals[0]] = cpu_vals[1]
if line.startswith():
fields = line.split()
continue
if fields:
cpustat = line.split()
ret[_number(cpustat[0])] = {}
for i in range(1, len(fields)-1):
ret[_number(cpustat[0])][fields[i]] = _number(cpustat[i])
return ret
def openbsd_cpustats():
systat = __salt__[]().splitlines()
fields = systat[3].split()
ret = {}
for cpu in systat[4:]:
cpu_line = cpu.split()
cpu_idx = cpu_line[0]
ret[cpu_idx] = {}
for idx, field in enumerate(fields[1:]):
ret[cpu_idx][field] = cpu_line[idx+1]
return ret
get_version = {
: linux_cpustats,
: freebsd_cpustats,
: openbsd_cpustats,
: sunos_cpustats,
: aix_cpustats,
}
errmsg =
return get_version.get(__grains__[], lambda: errmsg)() | Return the CPU stats for this minion
.. versionchanged:: 2016.11.4
Added support for AIX
.. versionchanged:: 2018.3.0
Added support for OpenBSD
CLI Example:
.. code-block:: bash
salt '*' status.cpustats |
386,242 | def zDDEInit(self):
self.pyver = _get_python_version()
if _PyZDDE.liveCh==0:
try:
_PyZDDE.server = _dde.CreateServer()
_PyZDDE.server.Create("ZCLIENT")
except Exception as err:
_sys.stderr.write("{}: DDE server may be in use!".format(str(err)))
return -1
self.conversation = _dde.CreateConversation(_PyZDDE.server)
try:
self.conversation.ConnectTo(self.appName, " ")
except Exception as err:
_sys.stderr.write("{}.\nOpticStudio UI may not be running!\n".format(str(err)))
self.zDDEClose()
return -1
else:
_PyZDDE.liveCh += 1
self.connection = True
return 0 | Initiates link with OpticStudio DDE server |
386,243 | def get(self, key):
o = self.data[key]()
if o is None:
del self.data[key]
raise CacheFault(
"FinalizingCache has %r but its value is no more." % (key,))
log.msg(interface=iaxiom.IStatEvent, stat_cache_hits=1, key=key)
return o | Get an entry from the cache by key.
@raise KeyError: if the given key is not present in the cache.
@raise CacheFault: (a L{KeyError} subclass) if the given key is present
in the cache, but the value it points to is gone. |
386,244 | def dict_to_env(d, pathsep=os.pathsep):
out_env = {}
for k, v in d.iteritems():
if isinstance(v, list):
out_env[k] = pathsep.join(v)
elif isinstance(v, string_types):
out_env[k] = v
else:
raise TypeError(.format(type(v)))
return out_env | Convert a python dict to a dict containing valid environment variable
values.
:param d: Dict to convert to an env dict
:param pathsep: Path separator used to join lists(default os.pathsep) |
386,245 | def grid(script, size=1.0, x_segments=1, y_segments=1, center=False,
color=None):
size = util.make_list(size, 2)
filter_xml = .join([
,
,
.format(size[0]),
,
,
,
,
.format(size[1]),
,
,
,
,
.format(x_segments + 1),
,
,
,
,
.format(y_segments + 1),
,
,
,
,
,
,
,
,
])
util.write_filter(script, filter_xml)
if isinstance(script, FilterScript):
script.add_layer(, change_layer=True)
transform.vert_function(script, z_func=)
if center:
transform.translate(script, value=[size[0]/2, -size[1]/2, 0])
else:
transform.translate(script, value=[size[0], 0, 0])
if color is not None:
vert_color.function(script, color=color)
return None | 2D square/plane/grid created on XY plane
x_segments # Number of segments in the X direction.
y_segments # Number of segments in the Y direction.
center="false" # If true square will be centered on origin;
otherwise it is place in the positive XY quadrant. |
386,246 | def analyzeSweep(abf,sweep,m1=None,m2=None,plotToo=False):
abf.setsweep(sweep)
if m1 is None: m1=0
else: m1=m1*abf.pointsPerSec
if m2 is None: m2=-1
else: m2=m2*abf.pointsPerSec
Yorig=abf.sweepY[int(m1):int(m2)]
X=np.arange(len(Yorig))/abf.pointsPerSec
Ylpf=linear_gaussian(Yorig,sigmaSize=abf.pointsPerMs*300,forwardOnly=False)
Yflat=Yorig-Ylpf
EPSCs,IPSCs=[],[]
if plotToo:
plt.figure(figsize=(15,6))
ax1=plt.subplot(211)
plt.title("%s sweep %d"%(abf.ID,sweep))
plt.grid()
plt.plot(X,Yorig,alpha=.5)
plt.plot(X,Ylpf,,alpha=.5,lw=2)
plt.margins(0,.2)
plt.subplot(212,sharex=ax1)
plt.title("gaussian baseline subtraction")
plt.grid()
plt.plot(X,Yflat,alpha=.5)
plt.axhline(0,color=,lw=2,alpha=.5)
plt.tight_layout()
plt.show()
hist, bin_edges = np.histogram(Yflat, density=True, bins=200)
peakPa=bin_edges[np.where(hist==max(hist))[0][0]+1]
if plotToo:
plt.figure()
plt.grid()
plt.plot(bin_edges[1:],hist,alpha=.5)
plt.axvline(0,color=)
plt.axvline(peakPa,color=,ls=,lw=2,alpha=.5)
plt.semilogy()
plt.title("sweep data distribution")
plt.ylabel("power")
plt.xlabel("pA deviation")
plt.show()
return peakPa | m1 and m2, if given, are in seconds.
returns [# EPSCs, # IPSCs] |
386,247 | def record(self):
if not self._initialized:
raise pycdlibexception.PyCdlibInternalError()
return b + struct.pack(, RRRERecord.length(), SU_ENTRY_VERSION) | Generate a string representing the Rock Ridge Relocated Directory
record.
Parameters:
None.
Returns:
String containing the Rock Ridge record. |
386,248 | def FaultFromException(ex, inheader, tb=None, actor=None):
tracetext = None
if tb:
try:
lines = .join([ % (name, line, func)
for name, line, func, text in traceback.extract_tb(tb)])
except:
pass
else:
tracetext = lines
exceptionName = ""
try:
exceptionName = ":".join([ex.__module__, ex.__class__.__name__])
except: pass
elt = ZSIFaultDetail(string=exceptionName + "\n" + str(ex), trace=tracetext)
if inheader:
detail, headerdetail = None, elt
else:
detail, headerdetail = elt, None
return Fault(Fault.Server, ,
actor, detail, headerdetail) | Return a Fault object created from a Python exception.
<SOAP-ENV:Fault>
<faultcode>SOAP-ENV:Server</faultcode>
<faultstring>Processing Failure</faultstring>
<detail>
<ZSI:FaultDetail>
<ZSI:string></ZSI:string>
<ZSI:trace></ZSI:trace>
</ZSI:FaultDetail>
</detail>
</SOAP-ENV:Fault> |
386,249 | def getoutputerror(cmd):
out_err = process_handler(cmd, lambda p: p.communicate())
if out_err is None:
return ,
out, err = out_err
return py3compat.bytes_to_str(out), py3compat.bytes_to_str(err) | Return (standard output, standard error) of executing cmd in a shell.
Accepts the same arguments as os.system().
Parameters
----------
cmd : str
A command to be executed in the system shell.
Returns
-------
stdout : str
stderr : str |
386,250 | def setMotorShutdown(self, value, device=DEFAULT_DEVICE_ID, message=True):
return self._setMotorShutdown(value, device, message) | Set the motor shutdown on error status stored on the hardware device.
:Parameters:
value : `int`
An integer indicating the effect on the motors when an error occurs.
A `1` will cause the cause the motors to stop on an error and a
`0` will ignore errors keeping the motors running.
:Keywords:
device : `int`
The device is the integer number of the hardware devices ID and
is only used with the Pololu Protocol. Defaults to the hardware's
default value.
message : `bool`
If set to `True` a text message will be returned, if set to `False`
the integer stored in the Qik will be returned.
:Returns:
Text message indicating the status of the shutdown error.
A text message or an int. See the `message` parameter above.
:Exceptions:
* `SerialException`
IO error indicating there was a problem reading from the serial
connection. |
386,251 | def xpathNextChild(self, cur):
if cur is None: cur__o = None
else: cur__o = cur._o
ret = libxml2mod.xmlXPathNextChild(self._o, cur__o)
if ret is None:raise xpathError()
__tmp = xmlNode(_obj=ret)
return __tmp | Traversal function for the "child" direction The child axis
contains the children of the context node in document order. |
386,252 | def to_json(value, pretty=False):
options = {
: False,
: BasicJSONEncoder,
}
if pretty:
options[] = 2
options[] = (, )
return json.dumps(value, **options) | Serializes the given value to JSON.
:param value: the value to serialize
:param pretty:
whether or not to format the output in a more human-readable way; if
not specified, defaults to ``False``
:type pretty: bool
:rtype: str |
386,253 | def t_text(self, t):
r
t.lexer.text_start = t.lexer.lexpos - len()
t.lexer.begin() | r':\s*<text> |
386,254 | def count(self, request, *args, **kwargs):
self.queryset = self.filter_queryset(self.get_queryset())
return response.Response({: self.queryset.count()}, status=status.HTTP_200_OK) | To get a count of events - run **GET** against */api/events/count/* as authenticated user.
Endpoint support same filters as events list.
Response example:
.. code-block:: javascript
{"count": 12321} |
386,255 | def conn_gcp(cred, crid):
gcp_auth_type = cred.get(, "S")
if gcp_auth_type == "A":
gcp_crd_ia = CONFIG_DIR + ".gcp_libcloud_a_auth." + cred[]
gcp_crd = {: cred[],
: cred[],
: cred[],
: "IA",
: gcp_crd_ia}
else:
gcp_pem = CONFIG_DIR + cred[]
gcp_crd_sa = CONFIG_DIR + ".gcp_libcloud_s_auth." + cred[]
gcp_crd = {: cred[],
: gcp_pem,
: cred[],
: gcp_crd_sa}
driver = get_driver(Provider.GCE)
try:
gcp_obj = driver(**gcp_crd)
except SSLError as e:
abort_err("\r SSL Error with GCP: {}".format(e))
except (InvalidCredsError, ValueError) as e:
abort_err("\r Error with GCP Credentials: {}".format(e))
return {crid: gcp_obj} | Establish connection to GCP. |
386,256 | def create_symlinks(d):
data = loadJson(d)
outDir = prepare_output(d)
unseen = data["pages"].keys()
while len(unseen) > 0:
latest = work = unseen[0]
while work in unseen:
unseen.remove(work)
if "prev" in data["pages"][work]:
work = data["pages"][work]["prev"]
print("Latest page: %s" % (latest))
order = []
work = latest
while work in data["pages"]:
order.extend(data["pages"][work]["images"].values())
if "prev" in data["pages"][work]:
work = data["pages"][work]["prev"]
else:
work = None
order.reverse()
for i, img in enumerate(order):
os.symlink(os.path.join(, img), os.path.join(outDir, % (i, img))) | Create new symbolic links in output directory. |
386,257 | def list_slot_differences_slot(
self, resource_group_name, name, slot, target_slot, preserve_vnet, custom_headers=None, raw=False, **operation_config):
slot_swap_entity = models.CsmSlotEntity(target_slot=target_slot, preserve_vnet=preserve_vnet)
def internal_paging(next_link=None, raw=False):
if not next_link:
url = self.list_slot_differences_slot.metadata[]
path_format_arguments = {
: self._serialize.url("resource_group_name", resource_group_name, , max_length=90, min_length=1, pattern=r),
: self._serialize.url("name", name, ),
: self._serialize.url("slot", slot, ),
: self._serialize.url("self.config.subscription_id", self.config.subscription_id, )
}
url = self._client.format_url(url, **path_format_arguments)
query_parameters = {}
query_parameters[] = self._serialize.query("self.api_version", self.api_version, )
else:
url = next_link
query_parameters = {}
header_parameters = {}
header_parameters[] =
header_parameters[] =
if self.config.generate_client_request_id:
header_parameters[] = str(uuid.uuid1())
if custom_headers:
header_parameters.update(custom_headers)
if self.config.accept_language is not None:
header_parameters[] = self._serialize.header("self.config.accept_language", self.config.accept_language, )
body_content = self._serialize.body(slot_swap_entity, )
request = self._client.post(url, query_parameters, header_parameters, body_content)
response = self._client.send(request, stream=False, **operation_config)
if response.status_code not in [200]:
raise models.DefaultErrorResponseException(self._deserialize, response)
return response
deserialized = models.SlotDifferencePaged(internal_paging, self._deserialize.dependencies)
if raw:
header_dict = {}
client_raw_response = models.SlotDifferencePaged(internal_paging, self._deserialize.dependencies, header_dict)
return client_raw_response
return deserialized | Get the difference in configuration settings between two web app slots.
Get the difference in configuration settings between two web app slots.
:param resource_group_name: Name of the resource group to which the
resource belongs.
:type resource_group_name: str
:param name: Name of the app.
:type name: str
:param slot: Name of the source slot. If a slot is not specified, the
production slot is used as the source slot.
:type slot: str
:param target_slot: Destination deployment slot during swap operation.
:type target_slot: str
:param preserve_vnet: <code>true</code> to preserve Virtual Network to
the slot during swap; otherwise, <code>false</code>.
:type preserve_vnet: bool
:param dict custom_headers: headers that will be added to the request
:param bool raw: returns the direct response alongside the
deserialized response
:param operation_config: :ref:`Operation configuration
overrides<msrest:optionsforoperations>`.
:return: An iterator like instance of SlotDifference
:rtype:
~azure.mgmt.web.models.SlotDifferencePaged[~azure.mgmt.web.models.SlotDifference]
:raises:
:class:`DefaultErrorResponseException<azure.mgmt.web.models.DefaultErrorResponseException>` |
386,258 | def _suppress_distutils_logs():
f = distutils.log.Log._log
def _log(log, level, msg, args):
if level >= distutils.log.ERROR:
f(log, level, msg, args)
distutils.log.Log._log = _log
yield
distutils.log.Log._log = f | Hack to hide noise generated by `setup.py develop`.
There isn't a good way to suppress them now, so let's monky-patch.
See https://bugs.python.org/issue25392. |
386,259 | def close(self):
if self.session is not None:
self.session.cookies.clear()
self.session.close()
self.session = None | Close the current session, if still open. |
386,260 | def disable_ipython(self):
from IPython.core.getipython import get_ipython
self.ipython_enabled = False
ip = get_ipython()
formatter = ip.display_formatter.formatters[]
formatter.type_printers.pop(Visualization, None)
formatter.type_printers.pop(VisualizationLocal, None) | Disable plotting in the iPython notebook.
After disabling, lightning plots will be produced in your lightning server,
but will not appear in the notebook. |
386,261 | def api(self):
api = getattr(self, , None)
if api is None:
self._api = mailjet.Api()
return self._api | Get or create an Api() instance using django settings. |
386,262 | def estimate_from_ssr(histograms, readout_povm, channel_ops, settings):
nqc = len(channel_ops[0].dims[0])
pauli_basis = grove.tomography.operator_utils.PAULI_BASIS ** nqc
pi_basis = readout_povm.pi_basis
if not histograms.shape[1] == pi_basis.dim:
raise ValueError("Currently tomography is only implemented for two-level systems.")
n_kj = np.asarray(histograms)
c_jk_m = _prepare_c_jk_m(readout_povm, pauli_basis, channel_ops)
rho_m = cvxpy.Variable(pauli_basis.dim)
p_jk = c_jk_m * rho_m
obj = -n_kj.ravel() * cvxpy.log(p_jk)
p_jk_mat = cvxpy.reshape(p_jk, pi_basis.dim, len(channel_ops))
constraints = [
p_jk >= 0,
np.matrix(np.ones((1, pi_basis.dim))) * p_jk_mat == 1,
]
rho_m_real_imag = sum((rm * o_ut.to_realimag(Pm)
for (rm, Pm) in ut.izip(rho_m, pauli_basis.ops)), 0)
if POSITIVE in settings.constraints:
if tomography._SDP_SOLVER.is_functional():
constraints.append(rho_m_real_imag >> 0)
else:
_log.warning("No convex solver capable of semi-definite problems installed.\n"
"Dropping the positivity constraint on the density matrix.")
if UNIT_TRACE in settings.constraints:
constraints.append(rho_m[0, 0] == 1. / pauli_basis.ops[0].tr().real)
prob = cvxpy.Problem(cvxpy.Minimize(obj), constraints)
_log.info("Starting convex solver")
prob.solve(solver=tomography.SOLVER, **settings.solver_kwargs)
if prob.status != cvxpy.OPTIMAL:
_log.warning("Problem did not converge to optimal solution. "
"Solver settings: {}".format(settings.solver_kwargs))
return StateTomography(np.array(rho_m.value).ravel(), pauli_basis, settings) | Estimate a density matrix from single shot histograms obtained by measuring bitstrings in
the Z-eigenbasis after application of given channel operators.
:param numpy.ndarray histograms: The single shot histograms, `shape=(n_channels, dim)`.
:param DiagognalPOVM readout_povm: The POVM corresponding to the readout plus classifier.
:param list channel_ops: The tomography measurement channels as `qutip.Qobj`'s.
:param TomographySettings settings: The solver and estimation settings.
:return: The generated StateTomography object.
:rtype: StateTomography |
386,263 | def get_resource_area(self, area_id, enterprise_name=None, organization_name=None):
route_values = {}
if area_id is not None:
route_values[] = self._serialize.url(, area_id, )
query_parameters = {}
if enterprise_name is not None:
query_parameters[] = self._serialize.query(, enterprise_name, )
if organization_name is not None:
query_parameters[] = self._serialize.query(, organization_name, )
response = self._send(http_method=,
location_id=,
version=,
route_values=route_values,
query_parameters=query_parameters)
return self._deserialize(, response) | GetResourceArea.
[Preview API]
:param str area_id:
:param str enterprise_name:
:param str organization_name:
:rtype: :class:`<ResourceAreaInfo> <azure.devops.v5_0.location.models.ResourceAreaInfo>` |
386,264 | def _setBitOn(x, bitNum):
_checkInt(x, minvalue=0, description=)
_checkInt(bitNum, minvalue=0, description=)
return x | (1 << bitNum) | Set bit 'bitNum' to True.
Args:
* x (int): The value before.
* bitNum (int): The bit number that should be set to True.
Returns:
The value after setting the bit. This is an integer.
For example:
For x = 4 (dec) = 0100 (bin), setting bit number 0 results in 0101 (bin) = 5 (dec). |
386,265 | def post(self):
self.write(resultdict)
self.finish() | This handles POST requests.
Saves the changes made by the user on the frontend back to the current
checkplot-list.json file. |
386,266 | def handle_webhook_event(self, environ, url, params):
for handler in self.events["webhook"]:
urlpattern = handler.event.args["urlpattern"]
if not urlpattern or match(urlpattern, url):
response = handler(self, environ, url, params)
if response:
return response | Webhook handler - each handler for the webhook event
takes an initial pattern argument for matching the URL
requested. Here we match the URL to the pattern for each
webhook handler, and bail out if it returns a response. |
386,267 | def _prepare_executor(self, data, executor):
logger.debug(__("Preparing executor for Data with id {}", data.id))
| Copy executor sources into the destination directory.
:param data: The :class:`~resolwe.flow.models.Data` object being
prepared for.
:param executor: The fully qualified name of the executor that
is to be used for this data object.
:return: Tuple containing the relative fully qualified name of
the executor class ('relative' to how the executor will be
run) and the path to the directory where the executor will
be deployed.
:rtype: (str, str) |
386,268 | def parse_expression(expression: str) -> Tuple[Set[str], List[CompositeAxis]]:
identifiers = set()
composite_axes = []
if in expression:
if not in expression:
raise EinopsError()
if str.count(expression, ) != 1 or str.count(expression, ) != 3:
raise EinopsError()
expression = expression.replace(, _ellipsis)
bracket_group = None
def add_axis_name(x):
if x is not None:
if x in identifiers:
raise ValueError(.format(x))
identifiers.add(x)
if bracket_group is None:
composite_axes.append([x])
else:
bracket_group.append(x)
current_identifier = None
for char in expression:
if char in + _ellipsis:
add_axis_name(current_identifier)
current_identifier = None
if char == _ellipsis:
if bracket_group is not None:
raise EinopsError("Ellipsis can()Brackets are not balanced09t start with a digit")
current_identifier += char
elif <= char <= :
if current_identifier is None:
current_identifier = char
else:
current_identifier += char
else:
if <= char <= :
raise EinopsError("Only lower-case latin letters allowed in names, not ".format(char))
raise EinopsError("Unknown character ".format(char))
if bracket_group is not None:
raise EinopsError(.format(expression))
add_axis_name(current_identifier)
return identifiers, composite_axes | Parses an indexing expression (for a single tensor).
Checks uniqueness of names, checks usage of '...' (allowed only once)
Returns set of all used identifiers and a list of axis groups |
386,269 | def apply_mutation(module_path, operator, occurrence):
module_ast = get_ast(module_path, python_version=operator.python_version)
original_code = module_ast.get_code()
visitor = MutationVisitor(occurrence, operator)
mutated_ast = visitor.walk(module_ast)
mutated_code = None
if visitor.mutation_applied:
mutated_code = mutated_ast.get_code()
with module_path.open(mode=, encoding=) as handle:
handle.write(mutated_code)
handle.flush()
return original_code, mutated_code | Apply a specific mutation to a file on disk.
Args:
module_path: The path to the module to mutate.
operator: The `operator` instance to use.
occurrence: The occurrence of the operator to apply.
Returns: A `(unmutated-code, mutated-code)` tuple to the with-block. If there was
no mutation performed, the `mutated-code` is `None`. |
386,270 | def parse_rcfile(rcfile):
def parse_bool(value):
value = value.lower()
if value in [, ]:
return True
elif value in [, ]:
return False
else:
raise ValueError(t parse {}sizecommenttemplatereverseoppositeposition
file=sys.stderr)
return params | Parses rcfile
Invalid lines are ignored with a warning |
386,271 | def dropped(self, param, event):
if event.source() == self or isinstance(param, AddLabel):
index = self.indexAt(event.pos())
self.model().insertRows(index.row(),1)
if event.source() == self:
self.model().setData(index, param)
else:
self.hintRequested.emit()
row = index.row()
if row == -1:
row = self.model().rowCount() - 1
self.selectRow(row)
self.parameterChanged.emit(self.model().selection(index))
self.dragActive.emit(False) | Adds the dropped parameter *param* into the protocol list.
Re-implemented from :meth:`AbstractDragView<sparkle.gui.abstract_drag_view.AbstractDragView.dropped>` |
386,272 | def call(self, command, *args):
command = self._normalize_command_name(command)
args = self._normalize_command_args(command, *args)
redis_function = getattr(self, command)
value = redis_function(*args)
return self._normalize_command_response(command, value) | Sends call to the function, whose name is specified by command.
Used by Script invocations and normalizes calls using standard
Redis arguments to use the expected redis-py arguments. |
386,273 | def get_assessment_offered_query_session_for_bank(self, bank_id):
if not self.supports_assessment_offered_query():
raise errors.Unimplemented()
return sessions.AssessmentOfferedQuerySession(bank_id, runtime=self._runtime) | Gets the ``OsidSession`` associated with the assessment offered query service for the given bank.
arg: bank_id (osid.id.Id): the ``Id`` of the bank
return: (osid.assessment.AssessmentOfferedQuerySession) - an
``AssessmentOfferedQuerySession``
raise: NotFound - ``bank_id`` not found
raise: NullArgument - ``bank_id`` is ``null``
raise: OperationFailed - ``unable to complete request``
raise: Unimplemented - ``supports_assessment_offered_query()``
or ``supports_visible_federation()`` is ``false``
*compliance: optional -- This method must be implemented if
``supports_assessment_offered_query()`` and
``supports_visible_federation()`` are ``true``.* |
386,274 | def get_vocab(self, vocab_name, **kwargs):
vocab_dict = self.__get_vocab_dict__(vocab_name, **kwargs)
filepaths = list(set([os.path.join(self.cache_dir,
vocab_dict[]),
os.path.join(self.vocab_dir,
vocab_dict[])]))
for path in filepaths:
if os.path.exists(path):
with open(path, ) as f_obj:
vocab_dict.update({"name": vocab_name,
"data": f_obj.read(),
"modified": os.path.getmtime(path)})
return vocab_dict
download_locs = make_list(vocab_dict.get(,[]))
for loc in download_locs:
loc_web = urllib.request.urlopen(loc)
urllib.request.urlretrieve(loc, filepaths[0])
with open(filepaths[0], ) as f_obj:
vocab_dict.update({"name": vocab_name,
"data": f_obj.read(),
"modified": os.path.getmtime(filepaths[0])})
return vocab_dict | Returns data stream of an rdf vocabulary
args:
vocab_name: the name or uri of the vocab to return |
386,275 | def produce(self, **kwargs):
produce_args = self._produce_params.copy()
produce_args.update(kwargs)
if self._class:
return getattr(self.instance, self.produce_method)(**produce_args)
produce_args.update(self._hyperparameters)
return self.primitive(**produce_args) | Call the primitive function, or the predict method of the primitive.
The given keyword arguments will be passed directly to the primitive,
if it is a simple function, or to the `produce` method of the
primitive instance specified in the JSON annotation, if it is a class.
If any of the arguments expected by the fit method had been given
during the MLBlock initialization, they will be passed as well.
Returns:
The output of the call to the primitive function or primitive
produce method. |
386,276 | def parse_sdk_name(name):
if all(part.isdigit() for part in name.split(, 2)):
return DOWNLOAD_URL % name
url = urlparse.urlparse(name)
if url.scheme:
return name
return os.path.abspath(name) | Returns a filename or URL for the SDK name.
The name can be a version string, a remote URL or a local path. |
386,277 | def set_properties(self, properties, recursive=True):
if not properties:
return
return self._accessor.set_properties(self, properties, recursive) | Adds new or modifies existing properties listed in properties
properties - is a dict which contains the property names and values to set.
Property values can be a list or tuple to set multiple values
for a key.
recursive - on folders property attachment is recursive by default. It is
possible to force recursive behavior. |
386,278 | def galleries(self):
api_version = self._get_api_version()
if api_version == :
from .v2018_06_01.operations import GalleriesOperations as OperationClass
elif api_version == :
from .v2019_03_01.operations import GalleriesOperations as OperationClass
else:
raise NotImplementedError("APIVersion {} is not available".format(api_version))
return OperationClass(self._client, self.config, Serializer(self._models_dict(api_version)), Deserializer(self._models_dict(api_version))) | Instance depends on the API version:
* 2018-06-01: :class:`GalleriesOperations<azure.mgmt.compute.v2018_06_01.operations.GalleriesOperations>`
* 2019-03-01: :class:`GalleriesOperations<azure.mgmt.compute.v2019_03_01.operations.GalleriesOperations>` |
386,279 | def qteBindKeyWidget(self, keysequence, macroName: str,
widgetObj: QtGui.QWidget):
keysequence = QtmacsKeysequence(keysequence)
if not hasattr(widgetObj, ):
msg =
msg +=
raise QtmacsOtherError(msg)
if not self.qteIsMacroRegistered(macroName):
msg = (
.format(macroName))
self.qteLogger.error(msg, stack_info=True)
return False
try:
widgetObj._qteAdmin.keyMap.qteInsertKey(keysequence, macroName)
except AttributeError:
msg =
self.qteLogger.error(msg, stack_info=True)
return False
return True | Bind ``macroName`` to ``widgetObj`` and associate it with
``keysequence``.
This method does not affect the key bindings of other applets
and/or widgets and can be used to individualise the key
bindings inside every applet instance and every widget inside
that instance. Even multiple instances of the same applet type
(eg. multiple text buffers) can all have individual key
bindings.
The ``keysequence`` can be specified either as a string (eg
'<ctrl>+x <ctrl>+f'), or a list of tuples containing the
constants from the ``QtCore.Qt`` name space
(eg. [(ControlModifier, Key_X), (ControlModifier, Key_F)]), or
as a ``QtmacsKeysequence`` object.
|Args|
* ``keysequence`` (**str**, **list** of **tuples**,
**QtmacsKeysequence**):
key sequence to activate ``macroName`` for specified
``widgetSignature``.
* ``macroName`` (**str**): the macro to associated with
``keysequence``.
* ``widgetObj`` (**QWidget**): determines which widgets
signature to use.
|Returns|
* **bool**: whether or not at least one widget was
successfully bound.
|Raises|
* **QtmacsArgumentError** if at least one argument has an invalid type.
* **QtmacsKeysequenceError** if the provided ``keysequence``
could not be parsed.
* **QtmacsOtherError** if ``widgetObj`` was not added with
``qteAddWidget``. |
386,280 | def randomColor( self ):
r = random.randint(120, 180)
g = random.randint(120, 180)
b = random.randint(120, 180)
return QColor(r, g, b) | Generates a random color.
:return <QColor> |
386,281 | def log_likelihood(self,x, K_extra=1):
x = np.asarray(x)
ks = self._get_occupied()
K = len(ks)
K_total = K + K_extra
obs_distns = []
for k in range(K):
o = copy.deepcopy(self.obs_distn)
o.resample(data=self._get_data_withlabel(k))
obs_distns.append(o)
for k in range(K_extra):
o = copy.deepcopy(self.obs_distn)
o.resample()
obs_distns.append(o)
weights = Categorical(alpha_0=self.alpha_0,
K=K_total,
weights=None)
assert len(self.labels_list) == 1
weights.resample(data=self.labels_list[0].z)
vals = np.empty((x.shape[0],K_total))
for k in range(K_total):
vals[:,k] = obs_distns[k].log_likelihood(x)
vals += weights.log_likelihood(np.arange(K_total))
assert not np.isnan(vals).any()
return logsumexp(vals,axis=1).sum() | Estimate the log likelihood with samples from
the model. Draw k_extra components which were not populated by
the current model in order to create a truncated approximate
mixture model. |
386,282 | def DbUnExportServer(self, argin):
self._log.debug("In DbUnExportServer()")
self.db.unexport_server(argin) | Mark all devices belonging to a specified device server
process as non exported
:param argin: Device server name (executable/instance)
:type: tango.DevString
:return:
:rtype: tango.DevVoid |
386,283 | def convolve_spatial3(im, psfs,
mode="constant",
grid_dim=None,
sub_blocks=None,
pad_factor=2,
plan=None,
return_plan=False,
verbose=False):
ndim = im.ndim
if ndim != 3:
raise ValueError("wrong dimensions of input!")
if grid_dim:
if psfs.shape != im.shape:
raise ValueError("if grid_dim is set, then im.shape = hs.shape !")
else:
if not psfs.ndim == 2 * ndim:
raise ValueError("wrong dimensions of psf grid! should be (Gz,Gy,Gx,Nz,Ny,Nx)")
if grid_dim:
Gs = grid_dim
else:
Gs = psfs.shape[:ndim]
if not np.all([n % g == 0 for n, g in zip(im.shape, Gs)]):
raise NotImplementedError(
"shape of image has to be divisible by Gx Gy = %s shape mismatch" % (str(psfs.shape[:2])))
if sub_blocks == None:
return _convolve_spatial3(im,
psfs,
mode=mode,
pad_factor=pad_factor,
plan=plan,
return_plan=return_plan,
grid_dim=grid_dim)
else:
if not np.all([g % n == 0 for n, g in zip(sub_blocks, Gs)]):
raise ValueError("psf grid dimension has to be divisible corresponding n_blocks")
N_sub = [n // s for n, s in zip(im.shape, sub_blocks)]
Nblocks = [n // g for n, g in zip(im.shape, Gs)]
Npads = [n * (s > 1) for n, s in zip(Nblocks, sub_blocks)]
grid_dim_sub = [g // s + 2 * (s > 1) for g, s in zip(Gs, sub_blocks)]
if grid_dim:
res = np.empty(im.shape, np.float32)
plan = None
for i, ((im_tile, im_s_src, im_s_dest), (hs_tile, hs_s_src, hs_s_dest)) \
in enumerate(zip(tile_iterator(im, blocksize=N_sub,
padsize=Npads,
mode=mode,
verbose=verbose), \
tile_iterator(psfs, blocksize=N_sub,
padsize=Npads,
mode=mode,
verbose=verbose
))):
if verbose:
print("convolve_spatial3 ... %s\t/ %s" % (i + 1, np.prod(sub_blocks)))
res_tile, plan = _convolve_spatial3(im_tile.copy(),
hs_tile.copy(),
mode=mode,
pad_factor=pad_factor,
return_plan=True,
plan=plan,
grid_dim=grid_dim_sub)
res[im_s_src] = res_tile[im_s_dest]
return res
else:
raise NotImplementedError("sub_blocks only implemented for Flatmode") | GPU accelerated spatial varying convolution of an 3d image with a
(Gz, Gy, Gx) grid of psfs assumed to be equally spaced within the image
the input image im is subdivided into (Gz, Gy,Gx) blocks, each block is
convolved with the corresponding psf and linearly interpolated to give the
final result
The psfs can be given either in
A) Stackmode
psfs.shape = (Gz, Gy, Gx, Hz, Hy, Hx)
then psfs[k,j,i] is the psf at the center of each block (i,j,k) in the image
B) Flatmode
psfs.shape = im.shape
then the psfs are assumed to be definied on the gridpoints of the images itself
in this case grid_dim = (Gz,Gy,Gx) has to be given
as of now each image dimension has to be divisible by the grid dim, i.e.
::
Nx % Gx == 0
Ny % Gy == 0
Nz % Gz == 0
GPU Memory consumption is of order 8*Nx*Ny*Nz
If not enough GPU memory is available, consider using
sub_blocks = (n,m,l)
then the operation is carried out in a tiled fashion reducing
memory consumption to 8*Nx*Ny*(1/n+2/Gx)*(1/m+2/Gy)*(1/l+2/Gz)
(so there is no much use if n>Gx/2...)
Example
-------
im = np.zeros((64,64,64))
im[::10,::10,::10] = 1.
# Stackmode
psfs = np.ones((8,8,8,4,4,4))
res = convolve_spatial3(im, psfs, mode = "wrap")
# Flatmode
_Xs = np.meshgrid(*(np.arange(64),)*2)
psfs = np.prod([np.clip(np.sin(2*np.pi*_X/8),0,1) for _X in _Xs],axis=0)
res = convolve_spatial2(im, psfs, grid_dim = (16,16,16))
Parameters
----------
im: ndarray
the image to convolve
psfs: ndarray
the (Gx,Gy) psf grid, either of shape (Gx,Gy, Hy, Hx) or im.shape
mode: string, optional
padding mode, either "constant" or "wrap"
grid_dim: tuple, optional
the (Gy,Gx) grid dimension, has to be provided if psfs.shape = im.shape
sub_blocks: tuple, optional
tiling mode, give e.g. (2,2) to sequentially operate on quadratnts
pad_factor: int
the factor of its size each block get tiled, use pad_factor=2 if the psfs
are well localized, use pad_factor = 3 if not (e.g. if you experience blocking)_
plan: fft_plan, optional
when given use this as the fft plan
return_plan: bool, optional
return (res, plan) with plan being the fft plan for further use
Returns
-------
res: ndarray
the convolved image |
386,284 | def slice_bounds_by_doubling(x_initial,
target_log_prob,
log_slice_heights,
max_doublings,
step_size,
seed=None,
name=None):
with tf.compat.v1.name_scope(
name, ,
[x_initial, log_slice_heights, max_doublings, step_size]):
seed_gen = distributions.SeedStream(seed, salt=)
x_initial = tf.convert_to_tensor(value=x_initial)
batch_shape = tf.shape(input=x_initial)
dtype = step_size.dtype.base_dtype
left_endpoints = x_initial + step_size * tf.random.uniform(
batch_shape, minval=-1.0, maxval=0.0, dtype=dtype, seed=seed_gen())
left_increments, widths = _left_doubling_increments(
batch_shape, max_doublings, step_size, seed=seed_gen())
left_endpoints -= left_increments
right_endpoints = left_endpoints + widths
left_ep_values = tf.map_fn(target_log_prob, left_endpoints)
right_ep_values = tf.map_fn(target_log_prob, right_endpoints)
left_ok = left_ep_values < log_slice_heights
right_ok = right_ep_values < log_slice_heights
both_ok = left_ok & right_ok
both_ok_f = tf.reshape(both_ok, [max_doublings + 1, -1])
best_interval_idx = _find_best_interval_idx(
tf.cast(both_ok_f, dtype=tf.int32))
point_index_gather = tf.stack(
[best_interval_idx,
tf.range(tf.size(input=best_interval_idx))],
axis=1,
name=)
left_ep_f = tf.reshape(left_endpoints, [max_doublings + 1, -1])
right_ep_f = tf.reshape(right_endpoints, [max_doublings + 1, -1])
lower_bounds = tf.reshape(tf.gather_nd(left_ep_f, point_index_gather),
batch_shape)
upper_bounds = tf.reshape(tf.gather_nd(right_ep_f, point_index_gather),
batch_shape)
both_ok = tf.reduce_any(input_tensor=both_ok, axis=0)
return upper_bounds, lower_bounds, both_ok | Returns the bounds of the slice at each stage of doubling procedure.
Precomputes the x coordinates of the left (L) and right (R) endpoints of the
interval `I` produced in the "doubling" algorithm [Neal 2003][1] P713. Note
that we simultaneously compute all possible doubling values for each chain,
for the reason that at small-medium densities, the gains from parallel
evaluation might cause a speed-up, but this will be benchmarked against the
while loop implementation.
Args:
x_initial: `tf.Tensor` of any shape and any real dtype consumable by
`target_log_prob`. The initial points.
target_log_prob: A callable taking a `tf.Tensor` of shape and dtype as
`x_initial` and returning a tensor of the same shape. The log density of
the target distribution.
log_slice_heights: `tf.Tensor` with the same shape as `x_initial` and the
same dtype as returned by `target_log_prob`. The log of the height of the
slice for each chain. The values must be bounded above by
`target_log_prob(x_initial)`.
max_doublings: Scalar positive int32 `tf.Tensor`. The maximum number of
doublings to consider.
step_size: `tf.Tensor` with same dtype as and shape compatible with
`x_initial`. The size of the initial interval.
seed: (Optional) positive int. The random seed. If None, no seed is set.
name: Python `str` name prefixed to Ops created by this function.
Default value: `None` (i.e., 'find_slice_bounds').
Returns:
upper_bounds: A tensor of same shape and dtype as `x_initial`. Slice upper
bounds for each chain.
lower_bounds: A tensor of same shape and dtype as `x_initial`. Slice lower
bounds for each chain.
both_ok: A tensor of shape `x_initial` and boolean dtype. Indicates if both
the chosen upper and lower bound lie outside of the slice.
#### References
[1]: Radford M. Neal. Slice Sampling. The Annals of Statistics. 2003, Vol 31,
No. 3 , 705-767.
https://projecteuclid.org/download/pdf_1/euclid.aos/1056562461 |
386,285 | def pretty_repr(instance):
instance_type = type(instance)
if not is_registered(
instance_type,
check_superclasses=True,
check_deferred=True,
register_deferred=True
):
warnings.warn(
"pretty_repr is assigned as the __repr__ method of "
". However, no pretty printer is registered for that type, "
"its superclasses or its subclasses. Falling back to the default "
"repr implementation. To fix this warning, register a pretty "
"printer using prettyprinter.register_pretty.".format(
instance_type.__qualname__
),
UserWarning
)
return object.__repr__(instance)
return pformat(instance) | A function assignable to the ``__repr__`` dunder method, so that
the ``prettyprinter`` definition for the type is used to provide
repr output. Usage:
.. code:: python
from prettyprinter import pretty_repr
class MyClass:
__repr__ = pretty_repr |
386,286 | def _dpi(self, resolution_tag):
ifd_entries = self._ifd_entries
if resolution_tag not in ifd_entries:
return 72
resolution_unit = (
ifd_entries[TIFF_TAG.RESOLUTION_UNIT]
if TIFF_TAG.RESOLUTION_UNIT in ifd_entries else 2
)
if resolution_unit == 1:
return 72
units_per_inch = 1 if resolution_unit == 2 else 2.54
dots_per_unit = ifd_entries[resolution_tag]
return int(round(dots_per_unit * units_per_inch)) | Return the dpi value calculated for *resolution_tag*, which can be
either TIFF_TAG.X_RESOLUTION or TIFF_TAG.Y_RESOLUTION. The
calculation is based on the values of both that tag and the
TIFF_TAG.RESOLUTION_UNIT tag in this parser's |_IfdEntries| instance. |
386,287 | def get_purchase(self, purchase_id, purchase_key=):
data = {: purchase_id,
: purchase_key}
return self.api_get(, data) | Retrieve information about a purchase using the system's unique ID or a client's ID
@param id_: a string that represents a unique_id or an extid.
@param key: a string that is either 'sid' or 'extid'. |
386,288 | def setup_logger(debug, color):
if debug:
log_level = logging.DEBUG
else:
log_level = logging.INFO
logger = logging.getLogger()
stream = Handler(log_level, debug, color)
logger.addHandler(stream)
logger.setLevel(log_level) | Configure the logger. |
386,289 | def from_graph(cls, graph, linear_energy_ranges, quadratic_energy_ranges):
get_env().enable_infix_notation = True
theta = cls.empty(dimod.SPIN)
theta.add_offset(Symbol(, REAL))
def Linear(v):
bias = Symbol(.format(v), REAL)
min_, max_ = linear_energy_ranges[v]
theta.assertions.add(LE(bias, limitReal(max_)))
theta.assertions.add(GE(bias, limitReal(min_)))
return bias
def Quadratic(u, v):
bias = Symbol(.format(u, v), REAL)
if (v, u) in quadratic_energy_ranges:
min_, max_ = quadratic_energy_ranges[(v, u)]
else:
min_, max_ = quadratic_energy_ranges[(u, v)]
theta.assertions.add(LE(bias, limitReal(max_)))
theta.assertions.add(GE(bias, limitReal(min_)))
return bias
for v in graph.nodes:
theta.add_variable(v, Linear(v))
for u, v in graph.edges:
theta.add_interaction(u, v, Quadratic(u, v))
return theta | Create Theta from a graph and energy ranges.
Args:
graph (:obj:`networkx.Graph`):
Provides the structure for Theta.
linear_energy_ranges (dict):
A dict of the form {v: (min, max), ...} where min and max are the
range of values allowed to v.
quadratic_energy_ranges (dict):
A dict of the form {(u, v): (min, max), ...} where min and max
are the range of values allowed to (u, v).
Returns:
:obj:`.Theta` |
386,290 | def save(self):
if self.compression and hasattr(self.path_or_buf, ):
msg = ("compression has no effect when passing file-like "
"object as input.")
warnings.warn(msg, RuntimeWarning, stacklevel=2)
is_zip = isinstance(self.path_or_buf, ZipFile) or (
not hasattr(self.path_or_buf, )
and self.compression == )
if is_zip:
self.path_or_buf.write(buf)
else:
f, handles = _get_handle(self.path_or_buf, self.mode,
encoding=self.encoding,
compression=self.compression)
f.write(buf)
close = True
if close:
f.close()
for _fh in handles:
_fh.close() | Create the writer & save |
386,291 | def access_token():
client = Client.query.filter_by(
client_id=request.form.get()
).first()
if not client:
abort(404)
if not client.is_confidential and \
== request.form.get():
error = InvalidClientError()
response = jsonify(dict(error.twotuples))
response.status_code = error.status_code
abort(response)
return None | Token view handles exchange/refresh access tokens. |
386,292 | def camelcase_underscore(name):
s1 = re.sub(, r, name)
return re.sub(, r, s1).lower() | Convert camelcase names to underscore |
386,293 | def pull(i):
o=i.get(,)
xrecache=False
pp=[]
px=i.get(,)
t=i.get(,)
url=i.get(,)
stable=i.get(,)
version=i.get(,)
if stable==: version=
branch=i.get(,)
checkout=i.get(,)
ip=i.get(,)
cr=i.get(,[])
tt=
if i.get(,)==: tt=
if px!=:
pp.append({:px, :t, :url})
uoa=i.get(,)
cids=i.get(,[])
if len(cids)>0 and uoa==:
uoa=cids[0]
if url!= and uoa== and px==:
ix=url.rfind()
if ix>0:
uoa=url[ix+1:]
if uoa.endswith():
uoa=uoa[:-4]
i[]=uoa
if uoa== and len(pp)==0 and url==:
uoa=
if uoa!=:
if uoa.find()>=0 or uoa.find()>=0:
r=ck.list_data({:work[], :uoa})
if r[]>0: return r
lst=r[]
for q in lst:
r=ck.access({:,
:work[],
:q[],
:})
if r[]>0: return r
d=r[]
t=d.get(,)
duoa=r[]
if d.get(,)==:
xrecache=True
if t!=:
p=d.get(,)
url=d.get(,)
checkouts=d.get(,{})
pp.append({:p, :t, :url, :duoa, :checkouts})
else:
r=ck.access({:,
:work[],
:uoa,
:})
if r[]>0:
if r[]==16:
i[]=
i[]=
x=i.get(,)
if x==: x=
i[]=x
i[]=cr
return add(i)
else:
return r
d=r[]
duoa=r[]
if d.get(,)==:
xrecache=True
p=d[]
t=d.get(,)
url=d.get(,)
checkouts=d.get(,{})
pp.append({:p, :t, :url, :duoa, :checkouts})
for q in pp:
p=q.get(,)
duoa=q.get(,)
t=q.get(,)
url=q.get(,)
if i.get(,)==:
url=url.replace(,)
j=url.find()
if j>0:
url=url[:j]++url[j+1:]
url+=
if o== and tt!=:
ck.out()
ck.out(+duoa+)
ck.out()
ck.out(+p)
ck.out(+url)
if t==:
rq=ck.gen_tmp_file({})
if rq[]>0: return rq
xfn=rq[]
os.system(+xfn)
rq=ck.load_text_file({:xfn,
:})
xs=
if rq[]==0:
xs=rq[].strip()
if xs.find()<0:
return{:1, :}
try:
px=os.getcwd()
except OSError:
from os.path import expanduser
px=expanduser("~")
if not os.path.isdir(p):
os.makedirs(p)
if o==:
ck.out()
ck.out(+p)
os.chdir(p)
r=0
if ip!=:
s=ck.cfg[][t][tt].replace(, url).replace(, p)
if o==:
ck.out(+s)
ck.out()
r=os.system(s)
if o==:
ck.out()
os.chdir(px)
if r>0:
if o==:
ck.out()
ck.out(+str(r)+)
ck.out()
rx=ck.inp({: })
x=rx[].lower()
if x== or x==:
return {:1, :+str(r)}
else:
return {:1, :+str(r)}
else:
if o==:
ck.out()
if tt!=:
if o==:
ck.out()
ck.out()
ck.out()
r=deps({:p,
:cr,
:,
:version,
:branch,
:checkout,
:o})
if r[]>0: return r
if xrecache:
if o==:
ck.out()
ck.out()
ck.out()
r=recache({:o})
if r[]>0: return r
return {:0} | Input: {
(path) - repo UOA (where to create entry)
(type) - type
(url) - URL
or
(data_uoa) - repo UOA
(clone) - if 'yes', clone repo instead of update
(current_repos) - if resolving dependencies on other repos, list of repos being updated (to avoid infinite recursion)
(git) - if 'yes', use git protocol instead of https
(ignore_pull) - useful just for switching to another branch
(stable) - take stable version (highly experimental)
(version) - checkout version (default - stable)
(branch) - git branch
(checkout) - git checkout
}
Output: {
return - return code = 0, if successful
> 0, if error
(error) - error text if return > 0
} |
386,294 | def register_action(self, name, **kwargs):
settings = foundations.data_structures.Structure(**{"parent": None,
"text": None,
"icon": None,
"icon_text": None,
"checkable": None,
"checked": None,
"status_tip": None,
"whats_this": None,
"tool_tip": None,
"shortcut": None,
"shortcut_context": None,
"slot": None})
settings.update(kwargs)
name = self.__normalize_name(name)
category = foundations.namespace.get_namespace(name)
name = foundations.namespace.remove_namespace(name)
action = QAction(name, settings.parent or self)
self.add_to_category(category, name, action)
settings.text and action.setText(settings.text)
settings.icon and action.setIcon(settings.icon)
settings.icon_text and action.setIconText(settings.icon_text)
settings.checkable and action.setCheckable(settings.checkable)
settings.checked and action.set_checked(settings.checked)
settings.status_tip and action.setStatusTip(settings.status_tip)
settings.whats_this and action.setWhatsThis(settings.whats_this)
settings.tool_tip and action.setToolTip(settings.tool_tip)
settings.shortcut and action.setShortcut(QKeySequence(settings.shortcut))
settings.shortcut_context and action.setShortcutContext(settings.shortcut_context)
if settings.slot:
self.__actions_signals_slots[action] = settings.slot
action.triggered.connect(settings.slot)
return action | Registers given action name, optional arguments like a parent, icon, slot etc ... can be given.
:param name: Action to register.
:type name: unicode
:param \*\*kwargs: Keywords arguments.
:type \*\*kwargs: \*\*
:return: Action.
:rtype: QAction |
386,295 | def _retrieveRegions(self):
self.sensors = []
self.coarseSensors = []
self.locationInputs = []
self.L4Columns = []
self.L2Columns = []
self.L5Columns = []
self.L6Columns = []
for i in xrange(self.numColumns):
self.sensors.append(
self.network.regions["sensorInput_" + str(i)].getSelf()
)
self.coarseSensors.append(
self.network.regions["coarseSensorInput_" + str(i)].getSelf()
)
self.locationInputs.append(
self.network.regions["locationInput_" + str(i)].getSelf()
)
self.L4Columns.append(
self.network.regions["L4Column_" + str(i)].getSelf()
)
self.L2Columns.append(
self.network.regions["L2Column_" + str(i)].getSelf()
)
self.L5Columns.append(
self.network.regions["L5Column_" + str(i)].getSelf()
)
self.L6Columns.append(
self.network.regions["L6Column_" + str(i)].getSelf()
) | Retrieve and store Python region instances for each column |
386,296 | def load_all(self, group):
for ep in iter_entry_points(group=group):
plugin = ep.load()
plugin(self.__config) | Loads all plugins advertising entry points with the given group name.
The specified plugin needs to be a callable that accepts the everest
configurator as single argument. |
386,297 | def salvar(self, destino=None, prefix=, suffix=):
if destino:
if os.path.exists(destino):
raise IOError((errno.EEXIST, , destino,))
destino = os.path.abspath(destino)
fd = os.open(destino, os.O_EXCL|os.O_CREAT|os.O_WRONLY)
else:
fd, destino = tempfile.mkstemp(prefix=prefix, suffix=suffix)
os.write(fd, self.conteudo())
os.fsync(fd)
os.close(fd)
return os.path.abspath(destino) | Salva o arquivo de log decodificado.
:param str destino: (Opcional) Caminho completo para o arquivo onde os
dados dos logs deverão ser salvos. Se não informado, será criado
um arquivo temporário via :func:`tempfile.mkstemp`.
:param str prefix: (Opcional) Prefixo para o nome do arquivo. Se não
informado será usado ``"tmp"``.
:param str suffix: (Opcional) Sufixo para o nome do arquivo. Se não
informado será usado ``"-sat.log"``.
:return: Retorna o caminho completo para o arquivo salvo.
:rtype: str
:raises IOError: Se o destino for informado e o arquivo já existir. |
386,298 | def port_str_arrange(ports):
b_tcp = ports.find("T")
b_udp = ports.find("U")
if (b_udp != -1 and b_tcp != -1) and b_udp < b_tcp:
return ports[b_tcp:] + ports[b_udp:b_tcp]
return ports | Gives a str in the format (always tcp listed first).
T:<tcp ports/portrange comma separated>U:<udp ports comma separated> |
386,299 | def to_phase(self, time, component=None, t0=, **kwargs):
if kwargs.get(, False):
raise ValueError("support for phshift was removed as of 2.1. Please pass t0 instead.")
ephem = self.get_ephemeris(component=component, t0=t0, **kwargs)
if isinstance(time, list):
time = np.array(time)
elif isinstance(time, Parameter):
time = time.get_value(u.d)
elif isinstance(time, str):
time = self.get_value(time, u.d)
t0 = ephem.get(, 0.0)
period = ephem.get(, 1.0)
dpdt = ephem.get(, 0.0)
if dpdt != 0:
phase = np.mod(1./dpdt * np.log(period + dpdt*(time-t0)), 1.0)
else:
phase = np.mod((time-t0)/period, 1.0)
if isinstance(phase, float):
if phase > 0.5:
phase -= 1
else:
phase[phase > 0.5] -= 1
return phase | Get the phase(s) of a time(s) for a given ephemeris
:parameter time: time to convert to phases (should be in same system
as t0s)
:type time: float, list, or array
:parameter t0: qualifier of the parameter to be used for t0
:type t0: str
:parameter str component: component for which to get the ephemeris.
If not given, component will default to the top-most level of the
current hierarchy
:parameter **kwargs: any value passed through kwargs will override the
ephemeris retrieved by component (ie period, t0, dpdt).
Note: be careful about units - input values will not be converted.
:return: phase (float) or phases (array) |
Subsets and Splits
No saved queries yet
Save your SQL queries to embed, download, and access them later. Queries will appear here once saved.