Unnamed: 0
int64
0
389k
code
stringlengths
26
79.6k
docstring
stringlengths
1
46.9k
387,200
def get_reports(self): url = .format(self.url) return Report._get_list_from_url(url, append_base_url=False)
Retrieve all reports submitted for this Sample. :return: A list of :class:`.Report`
387,201
def norm(self, valu): func = self._type_norms.get(type(valu)) if func is None: raise s_exc.NoSuchFunc(name=self.name, mesg= % (type(valu),)) return func(valu)
Normalize the value for a given type. Args: valu (obj): The value to normalize. Returns: ((obj,dict)): The normalized valu, info tuple. Notes: The info dictionary uses the following key conventions: subs (dict): The normalized sub-fields as name: valu entries.
387,202
def getFloat(self, name, default=0.0, parent_search=False, multikeys_search=False): try: value = self.get(name, default, parent_search, multikeys_search) return float(value) except: return default
récupération d'un élément float
387,203
def circleconvert(amount, currentformat, newformat): if currentformat.lower() == newformat.lower(): return amount if currentformat.lower() == : if newformat.lower() == : return amount * 2 elif newformat.lower() == : return amount * 2 * math.pi raise ValueError("Invalid new format provided.") elif currentformat.lower() == : if newformat.lower() == : return amount / 2 elif newformat.lower() == : return amount * math.pi raise ValueError("Invalid new format provided.") elif currentformat.lower() == : if newformat.lower() == : return amount / math.pi / 2 elif newformat.lower() == : return amount / math.pi
Convert a circle measurement. :type amount: number :param amount: The number to convert. :type currentformat: string :param currentformat: The format of the provided value. :type newformat: string :param newformat: The intended format of the value. >>> circleconvert(45, "radius", "diameter") 90
387,204
def _ftp_pwd(self): try: return self.ftp.pwd() except UnicodeEncodeError: if compat.PY2 or self.ftp.encoding != "utf-8": raise prev_encoding = self.ftp.encoding try: write("ftp.pwd() failed with utf-8: trying Cp1252...", warning=True) return self.ftp.pwd() finally: self.ftp.encoding = prev_encoding
Variant of `self.ftp.pwd()` that supports encoding-fallback. Returns: Current working directory as native string.
387,205
def name(self): if not self._name: self._name = self._alternatives[self._choice][0] return self._name
:return: A unicode string of the field name of the chosen alternative
387,206
def dir2fn(ofn, ifn, suffix) -> Union[None, Path]: if not ofn: return None ofn = Path(ofn).expanduser() ifn = Path(ifn).expanduser() assert ifn.is_file() if ofn.suffix == suffix: pass else: assert ofn.is_dir(), f ofn = ofn / ifn.with_suffix(suffix).name try: assert not ofn.samefile(ifn), f except FileNotFoundError: pass return ofn
ofn = filename or output directory, to create filename based on ifn ifn = input filename (don't overwrite!) suffix = desired file extension e.g. .h5
387,207
def get_static(root=None): * ret = set() out = __salt__[]( _systemctl_cmd(, root=root), python_shell=False, ignore_retcode=True) for line in salt.utils.itertools.split(out, ): try: fullname, unit_state = line.strip().split(None, 1) except ValueError: continue else: if unit_state != : continue try: unit_name, unit_type = fullname.rsplit(, 1) except ValueError: continue if unit_type in VALID_UNIT_TYPES: ret.add(unit_name if unit_type == else fullname) return sorted(ret)
.. versionadded:: 2015.8.5 Return a list of all static services root Enable/disable/mask unit files in the specified root directory CLI Example: .. code-block:: bash salt '*' service.get_static
387,208
def write_vtu(Verts, Cells, pdata=None, pvdata=None, cdata=None, cvdata=None, fname=): vtk_cell_info = [-1, 1, None, 2, None, 3, None, None, 4, 4, 4, 8, 8, 6, 5] if isinstance(fname, str): try: fname = open(fname, ) except IOError as e: print(".vtu error (%s): %s" % (e.errno, e.strerror)) else: raise ValueError() for key in Cells: if ((not isinstance(key, int)) or (key not in list(range(1, 15)))): raise ValueError() if (vtk_cell_info[key] is None) and (Cells[key] is not None): raise NotImplementedError() if Cells[key] is None: raise ValueError( % (key)) if np.ndim(Cells[key]) != 2: Cells[key] = Cells[key].reshape((Cells[key].size, 1)) if vtk_cell_info[key] != Cells[key].shape[1]: raise ValueError( % (Cells[key].shape[1], vtk_cell_info[key])) n_pdata = 0 if pdata is not None: if np.ndim(pdata) > 1: n_pdata = pdata.shape[1] else: n_pdata = 1 pdata = pdata.reshape((pdata.size, 1)) if pdata.shape[0] != Ndof: raise ValueError( % (Ndof, pdata.shape[0])) n_pvdata = 0 if pvdata is not None: if np.ndim(pvdata) > 1: n_pvdata = pvdata.shape[1] else: n_pvdata = 1 pvdata = pvdata.reshape((pvdata.size, 1)) if pvdata.shape[0] != 3*Ndof: raise ValueError( % (Ndof*3, pvdata.shape[0])) n_cdata = 0 if cdata is not None: for key in Cells: if np.ndim(cdata[key]) > 1: if n_cdata == 0: n_cdata = cdata[key].shape[1] elif n_cdata != cdata[key].shape[1]: raise ValueError() else: n_cdata = 1 cdata[key] = cdata[key].reshape((cdata[key].size, 1)) if cdata[key].shape[0] != Cells[key].shape[0]: raise ValueError( % (cdata[key].shape[0], Cells[key].shape[0])) if cdata[key] is None: raise ValueError( % (key)) n_cvdata = 0 if cvdata is not None: for key in Cells: if np.ndim(cvdata[key]) > 1: if n_cvdata == 0: n_cvdata = cvdata[key].shape[1] elif n_cvdata != cvdata[key].shape[1]: raise ValueError() else: n_cvdata = 1 cvdata[key] = cvdata[key].reshape((cvdata[key].size, 1)) if cvdata[key].shape[0] != 3*Cells[key].shape[0]: raise ValueError() if cvdata[key] is None: raise ValueError( % (key)) Ncells = 0 cell_ind = [] cell_offset = [] cell_type = [] cdata_all = None cvdata_all = None for key in Cells: sz = Cells[key].shape[0] offset = Cells[key].shape[1] Ncells += sz uu = np.ones((sz,), dtype=) cell_ind = np.hstack((cell_ind, Cells[key].ravel())) cell_offset = np.hstack((cell_offset, offset*uu)) cell_type = np.hstack((cell_type, key*uu)) if cdata is not None: if cdata_all is None: cdata_all = cdata[key] else: cdata_all = np.vstack((cdata_all, cdata[key])) if cvdata is not None: if cvdata_all is None: cvdata_all = cvdata[key] else: cvdata_all = np.vstack((cvdata_all, cvdata[key])) doc = xml.dom.minidom.Document() root = doc.createElementNS(, ) d = {: , : , : } set_attributes(d, root) grid = doc.createElementNS(, ) piece = doc.createElementNS(, ) d = {: str(Ndof), : str(Ncells)} set_attributes(d, piece) points = doc.createElementNS(, ) points_data = doc.createElementNS(, ) d = {: , : , : , : } set_attributes(d, points_data) points_data_str = doc.createTextNode(a2s(Verts)) cells = doc.createElementNS(, ) cells_data = doc.createElementNS(, ) d = {: , : , : } set_attributes(d, cells_data) cells_data_str = doc.createTextNode(a2s(cell_ind)) cells_offset_data = doc.createElementNS(, ) d = {: , : , : } set_attributes(d, cells_offset_data) cells_offset_data_str = doc.createTextNode(a2s(cell_offset.cumsum())) cells_type_data = doc.createElementNS(, ) d = {: , : , : } set_attributes(d, cells_type_data) cells_type_data_str = doc.createTextNode(a2s(cell_type)) pointdata = doc.createElementNS(, ) pdata_obj = [] pdata_str = [] for i in range(0, n_pdata): pdata_obj.append(doc.createElementNS(, )) d = {: , : % (i), : , : } set_attributes(d, pdata_obj[i]) pdata_str.append(doc.createTextNode(a2s(pdata[:, i]))) pvdata_obj = [] pvdata_str = [] for i in range(0, n_pvdata): pvdata_obj.append(doc.createElementNS(, )) d = {: , : % (i), : , : } set_attributes(d, pvdata_obj[i]) pvdata_str.append(doc.createTextNode(a2s(pvdata[:, i]))) celldata = doc.createElementNS(, ) cdata_obj = [] cdata_str = [] for i in range(0, n_cdata): cdata_obj.append(doc.createElementNS(, )) d = {: , : % (i), : , : } set_attributes(d, cdata_obj[i]) cdata_str.append(doc.createTextNode(a2s(cdata_all[:, i]))) cvdata_obj = [] cvdata_str = [] for i in range(0, n_cvdata): cvdata_obj.append(doc.createElementNS(, )) d = {: , : % (i), : , : } set_attributes(d, cvdata_obj[i]) cvdata_str.append(doc.createTextNode(a2s(cvdata_all[:, i]))) doc.appendChild(root) root.appendChild(grid) grid.appendChild(piece) piece.appendChild(points) points.appendChild(points_data) points_data.appendChild(points_data_str) piece.appendChild(cells) cells.appendChild(cells_data) cells.appendChild(cells_offset_data) cells.appendChild(cells_type_data) cells_data.appendChild(cells_data_str) cells_offset_data.appendChild(cells_offset_data_str) cells_type_data.appendChild(cells_type_data_str) piece.appendChild(pointdata) for i in range(0, n_pdata): pointdata.appendChild(pdata_obj[i]) pdata_obj[i].appendChild(pdata_str[i]) for i in range(0, n_pvdata): pointdata.appendChild(pvdata_obj[i]) pvdata_obj[i].appendChild(pvdata_str[i]) piece.appendChild(celldata) for i in range(0, n_cdata): celldata.appendChild(cdata_obj[i]) cdata_obj[i].appendChild(cdata_str[i]) for i in range(0, n_cvdata): celldata.appendChild(cvdata_obj[i]) cvdata_obj[i].appendChild(cvdata_str[i]) doc.writexml(fname, newl=) fname.close()
Write a .vtu file in xml format. Parameters ---------- fname : {string} file to be written, e.g. 'mymesh.vtu' Verts : {array} Ndof x 3 (if 2, then expanded by 0) list of (x,y,z) point coordinates Cells : {dictionary} Dictionary of with the keys pdata : {array} Ndof x Nfields array of scalar values for the vertices pvdata : {array} Nfields*3 x Ndof array of vector values for the vertices cdata : {dictionary} scalar valued cell data cvdata : {dictionary} vector valued cell data Returns ------- writes a .vtu file for use in Paraview Notes ----- - Poly data not supported - Non-Poly data is stored in Numpy array: Ncell x vtk_cell_info - Each I1 must be >=3 - pdata = Ndof x Nfields - pvdata = 3*Ndof x Nfields - cdata,cvdata = list of dictionaries in the form of Cells ===== =================== ============= === keys type n points dim ===== =================== ============= === 1 VTK_VERTEX: 1 point 2d 2 VTK_POLY_VERTEX: n points 2d 3 VTK_LINE: 2 points 2d 4 VTK_POLY_LINE: n+1 points 2d 5 VTK_TRIANGLE: 3 points 2d 6 VTK_TRIANGLE_STRIP: n+2 points 2d 7 VTK_POLYGON: n points 2d 8 VTK_PIXEL: 4 points 2d 9 VTK_QUAD: 4 points 2d 10 VTK_TETRA: 4 points 3d 11 VTK_VOXEL: 8 points 3d 12 VTK_HEXAHEDRON: 8 points 3d 13 VTK_WEDGE: 6 points 3d 14 VTK_PYRAMID: 5 points 3d ===== =================== ============= === Examples -------- >>> from pyamg.vis import write_vtu >>> import numpy as np >>> Verts = np.array([[0.0,0.0], ... [1.0,0.0], ... [2.0,0.0], ... [0.0,1.0], ... [1.0,1.0], ... [2.0,1.0], ... [0.0,2.0], ... [1.0,2.0], ... [2.0,2.0], ... [0.0,3.0], ... [1.0,3.0], ... [2.0,3.0]]) >>> E2V = np.array([[0,4,3], ... [0,1,4], ... [1,5,4], ... [1,2,5], ... [3,7,6], ... [3,4,7], ... [4,8,7], ... [4,5,8], ... [6,10,9], ... [6,7,10], ... [7,11,10], ... [7,8,11]]) >>> E2edge = np.array([[0,1]]) >>> E2point = np.array([2,3,4,5]) >>> Cells = {5:E2V,3:E2edge,1:E2point} >>> pdata=np.ones((12,2)) >>> pvdata=np.ones((12*3,2)) >>> cdata={5:np.ones((12,2)),3:np.ones((1,2)),1:np.ones((4,2))} >>> cvdata={5:np.ones((3*12,2)),3:np.ones((3*1,2)), 1:np.ones((3*4,2))} >>> write_vtu(Verts=Verts, Cells=Cells, fname='test.vtu') See Also -------- write_mesh
387,209
def get_object(self, url, month_format=, day_format=): params = self.get_params(url) try: year = params[self._meta.year_part] month = params[self._meta.month_part] day = params[self._meta.day_part] except KeyError: try: year, month, day = params[], params[], params[] except KeyError: raise OEmbedException() try: tt = time.strptime( % (year, month, day), % (, month_format, day_format)) date = datetime.date(*tt[:3]) except ValueError: raise OEmbedException( % url) if isinstance(self._meta.model._meta.get_field(self._meta.date_field), DateTimeField): min_date = datetime.datetime.combine(date, datetime.time.min) max_date = datetime.datetime.combine(date, datetime.time.max) query = { % self._meta.date_field: (min_date, max_date)} else: query = {self._meta.date_field: date} for key, value in self._meta.fields_to_match.iteritems(): try: query[value] = params[key] except KeyError: raise OEmbedException( % (key, .join(params.keys()))) try: obj = self.get_queryset().get(**query) except self._meta.model.DoesNotExist: raise OEmbedException() return obj
Parses the date from a url and uses it in the query. For objects which are unique for date.
387,210
def server_inspect_exception(self, req_event, rep_event, task_ctx, exc_info): if self._hide_zerorpc_frames: traceback = exc_info[2] while traceback: zerorpc_frame = traceback.tb_frame zerorpc_frame.f_locals["__traceback_hide__"] = True frame_info = inspect.getframeinfo(zerorpc_frame) if frame_info.function == "__call__" or frame_info.function == "_receiver": break traceback = traceback.tb_next self._elasticapm_client.capture_exception(exc_info, extra=task_ctx, handled=False)
Called when an exception has been raised in the code run by ZeroRPC
387,211
def close(self): if self.delegate: return self._close() future = self._framework.get_future(self.get_io_loop()) future.set_result(None) return future
Close this change stream. Stops any "async for" loops using this change stream.
387,212
def get_location(dom, location): node = dom.documentElement for i in location: node = get_child(node, i) if not node: raise ValueError( % location) return node
Get the node at the specified location in the dom. Location is a sequence of child indices, starting at the children of the root element. If there is no node at this location, raise a ValueError.
387,213
def allele_reads_from_locus_reads(locus_reads, n_ref): for locus_read in locus_reads: allele_read = AlleleRead.from_locus_read(locus_read, n_ref) if allele_read is None: continue else: yield allele_read
Given a collection of LocusRead objects, returns a list of AlleleRead objects (which are split into prefix/allele/suffix nucleotide strings). Parameters ---------- locus_reads : sequence of LocusRead records n_ref : int Number of reference nucleotides affected by variant. Generates AlleleRead objects.
387,214
def _compensate_pressure(self, adc_p): var_1 = (self._temp_fine / 2.0) - 64000.0 var_2 = ((var_1 / 4.0) * (var_1 / 4.0)) / 2048 var_2 *= self._calibration_p[5] var_2 += ((var_1 * self._calibration_p[4]) * 2.0) var_2 = (var_2 / 4.0) + (self._calibration_p[3] * 65536.0) var_1 = (((self._calibration_p[2] * (((var_1 / 4.0) * (var_1 / 4.0)) / 8192)) / 8) + ((self._calibration_p[1] * var_1) / 2.0)) var_1 /= 262144 var_1 = ((32768 + var_1) * self._calibration_p[0]) / 32768 if var_1 == 0: return 0 pressure = ((1048576 - adc_p) - (var_2 / 4096)) * 3125 if pressure < 0x80000000: pressure = (pressure * 2.0) / var_1 else: pressure = (pressure / var_1) * 2 var_1 = (self._calibration_p[8] * (((pressure / 8.0) * (pressure / 8.0)) / 8192.0)) / 4096 var_2 = ((pressure / 4.0) * self._calibration_p[7]) / 8192.0 pressure += ((var_1 + var_2 + self._calibration_p[6]) / 16.0) return pressure / 100
Compensate pressure. Formula from datasheet Bosch BME280 Environmental sensor. 8.1 Compensation formulas in double precision floating point Edition BST-BME280-DS001-10 | Revision 1.1 | May 2015.
387,215
def split_sentences(tokens): begin = 0 for i, token in enumerate(tokens): if is_end_of_sentence(tokens, i): yield tokens[begin:i+1] begin = i+1 if begin <= len(tokens)-1: yield tokens[begin:]
Split sentences (based on tokenised data), returns sentences as a list of lists of tokens, each sentence is a list of tokens
387,216
def editors(self): lay = self.layout() return [lay.itemAt(i).widget() for i in range(lay.count())]
Returns the editors that are associated with this edit. :return [<XLineEdit>, ..]
387,217
def action_spatial(self, action): if self.surf.surf_type & SurfType.FEATURE: return action.action_feature_layer elif self.surf.surf_type & SurfType.RGB: return action.action_render else: assert self.surf.surf_type & (SurfType.RGB | SurfType.FEATURE)
Given an Action, return the right spatial action.
387,218
def connect(self): if not self.connected(): self._ws = create_connection(self.WS_URI) message = { :self.WS_TYPE, :self.WS_PRODUCT_ID } self._ws.send(dumps(message)) with self._lock: if not self._thread: thread = Thread(target=self._keep_alive_thread, args=[]) thread.start()
Connects and subscribes to the WebSocket Feed.
387,219
def add_value(self, value, index_point): if index_point not in self.index: self.values.append(value) self.index.append(index_point)
The function is addeing new value to provied index. If index does not exist
387,220
def ensure(assertion, message=None): message = message or assertion if not assertion: raise AssertionError(message) return True
Checks an assertion argument for truth-ness. Will return ``True`` or explicitly raise ``AssertionError``. This is to deal with environments using ``python -O` or ``PYTHONOPTIMIZE=``. :param assertion: some value to evaluate for truth-ness :param message: optional message used for raising AssertionError
387,221
def bulk_overwrite(self, entities_and_kinds): EntityGroupMembership.objects.filter(entity_group=self).delete() return self.bulk_add_entities(entities_and_kinds)
Update the group to the given entities and sub-entity groups. After this operation, the only members of this EntityGroup will be the given entities, and sub-entity groups. :type entities_and_kinds: List of (Entity, EntityKind) pairs. :param entities_and_kinds: A list of entity, entity-kind pairs to set to the EntityGroup. In the pairs the entity-kind can be ``None``, to add a single entity, or some entity kind to add all sub-entities of that kind.
387,222
def setCodecPreferences(self, codecs): if not codecs: self._preferred_codecs = [] capabilities = get_capabilities(self.kind).codecs unique = [] for codec in reversed(codecs): if codec not in capabilities: raise ValueError() if codec not in unique: unique.insert(0, codec) self._preferred_codecs = unique
Override the default codec preferences. See :meth:`RTCRtpSender.getCapabilities` and :meth:`RTCRtpReceiver.getCapabilities` for the supported codecs. :param: codecs: A list of :class:`RTCRtpCodecCapability`, in decreasing order of preference. If empty, restores the default preferences.
387,223
def compute_acf(cls, filename, start_index=None, end_index=None, per_walker=False, walkers=None, parameters=None, temps=None): acfs = {} with cls._io(filename, ) as fp: if parameters is None: parameters = fp.variable_params if isinstance(parameters, str) or isinstance(parameters, unicode): parameters = [parameters] if isinstance(temps, int): temps = [temps] elif temps == : temps = numpy.arange(fp.ntemps) elif temps is None: temps = [0] for param in parameters: subacfs = [] for tk in temps: if per_walker: if walkers is None: walkers = numpy.arange(fp.nwalkers) arrays = [cls.compute_acfs(filename, start_index=start_index, end_index=end_index, per_walker=False, walkers=ii, parameters=param, temps=tk)[param][0, :] for ii in walkers] subacfs.append(numpy.vstack(arrays)) else: samples = fp.read_raw_samples( param, thin_start=start_index, thin_interval=1, thin_end=end_index, walkers=walkers, temps=tk, flatten=False)[param] samples = samples.mean(axis=1)[0, :] thisacf = autocorrelation.calculate_acf( samples).numpy() subacfs.append(thisacf) acfs[param] = numpy.stack(subacfs) return acfs
Computes the autocorrleation function of the model params in the given file. By default, parameter values are averaged over all walkers at each iteration. The ACF is then calculated over the averaged chain for each temperature. An ACF per-walker will be returned instead if ``per_walker=True``. Parameters ----------- filename : str Name of a samples file to compute ACFs for. start_index : {None, int} The start index to compute the acl from. If None, will try to use the number of burn-in iterations in the file; otherwise, will start at the first sample. end_index : {None, int} The end index to compute the acl to. If None, will go to the end of the current iteration. per_walker : optional, bool Return the ACF for each walker separately. Default is False. walkers : optional, int or array Calculate the ACF using only the given walkers. If None (the default) all walkers will be used. parameters : optional, str or array Calculate the ACF for only the given parameters. If None (the default) will calculate the ACF for all of the model params. temps : optional, (list of) int or 'all' The temperature index (or list of indices) to retrieve. If None (the default), the ACF will only be computed for the coldest (= 0) temperature chain. To compute an ACF for all temperates pass 'all', or a list of all of the temperatures. Returns ------- dict : Dictionary of arrays giving the ACFs for each parameter. If ``per-walker`` is True, the arrays will have shape ``ntemps x nwalkers x niterations``. Otherwise, the returned array will have shape ``ntemps x niterations``.
387,224
def _perturbation(self): if self.P>1: scales = [] for term_i in range(self.n_randEffs): _scales = sp.randn(self.diag[term_i].shape[0]) if self.jitter[term_i]>0: _scales = sp.concatenate((_scales,sp.zeros(1))) scales.append(_scales) scales = sp.concatenate(scales) else: scales = sp.randn(self.vd.getNumberScales()) return scales
Internal function for parameter initialization Returns Gaussian perturbation
387,225
def _get_webapi_requests(self): headers = { : , : , : , : , : , : , : } NCloudBot.req.headers.update(headers) return NCloudBot.req
Update headers of webapi for Requests.
387,226
def sim( self, src, tar, qval=1, mode=, long_strings=False, boost_threshold=0.7, scaling_factor=0.1, ): if mode == : if boost_threshold > 1 or boost_threshold < 0: raise ValueError( + ) if scaling_factor > 0.25 or scaling_factor < 0: raise ValueError( + ) if src == tar: return 1.0 src = QGrams(src.strip(), qval)._ordered_list tar = QGrams(tar.strip(), qval)._ordered_list lens = len(src) lent = len(tar) if lens == 0 or lent == 0: return 0.0 if lens > lent: search_range = lens minv = lent else: search_range = lent minv = lens src_flag = [0] * search_range tar_flag = [0] * search_range search_range = max(0, search_range // 2 - 1) num_com = 0 yl1 = lent - 1 for i in range(lens): low_lim = (i - search_range) if (i >= search_range) else 0 hi_lim = (i + search_range) if ((i + search_range) <= yl1) else yl1 for j in range(low_lim, hi_lim + 1): if (tar_flag[j] == 0) and (tar[j] == src[i]): tar_flag[j] = 1 src_flag[i] = 1 num_com += 1 break if num_com == 0: return 0.0 k = n_trans = 0 for i in range(lens): if src_flag[i] != 0: j = 0 for j in range(k, lent): if tar_flag[j] != 0: k = j + 1 break if src[i] != tar[j]: n_trans += 1 n_trans //= 2 weight = ( num_com / lens + num_com / lent + (num_com - n_trans) / num_com ) weight /= 3.0 if mode == and weight > boost_threshold: j = 4 if (minv >= 4) else minv i = 0 while (i < j) and (src[i] == tar[i]): i += 1 weight += i * scaling_factor * (1.0 - weight) if ( long_strings and (minv > 4) and (num_com > i + 1) and (2 * num_com >= minv + i) ): weight += (1.0 - weight) * ( (num_com - i - 1) / (lens + lent - i * 2 + 2) ) return weight
Return the Jaro or Jaro-Winkler similarity of two strings. Parameters ---------- src : str Source string for comparison tar : str Target string for comparison qval : int The length of each q-gram (defaults to 1: character-wise matching) mode : str Indicates which variant of this distance metric to compute: - ``winkler`` -- computes the Jaro-Winkler distance (default) which increases the score for matches near the start of the word - ``jaro`` -- computes the Jaro distance long_strings : bool Set to True to "Increase the probability of a match when the number of matched characters is large. This option allows for a little more tolerance when the strings are large. It is not an appropriate test when comparing fixed length fields such as phone and social security numbers." (Used in 'winkler' mode only.) boost_threshold : float A value between 0 and 1, below which the Winkler boost is not applied (defaults to 0.7). (Used in 'winkler' mode only.) scaling_factor : float A value between 0 and 0.25, indicating by how much to boost scores for matching prefixes (defaults to 0.1). (Used in 'winkler' mode only.) Returns ------- float Jaro or Jaro-Winkler similarity Raises ------ ValueError Unsupported boost_threshold assignment; boost_threshold must be between 0 and 1. ValueError Unsupported scaling_factor assignment; scaling_factor must be between 0 and 0.25.' Examples -------- >>> round(sim_jaro_winkler('cat', 'hat'), 12) 0.777777777778 >>> round(sim_jaro_winkler('Niall', 'Neil'), 12) 0.805 >>> round(sim_jaro_winkler('aluminum', 'Catalan'), 12) 0.60119047619 >>> round(sim_jaro_winkler('ATCG', 'TAGC'), 12) 0.833333333333 >>> round(sim_jaro_winkler('cat', 'hat', mode='jaro'), 12) 0.777777777778 >>> round(sim_jaro_winkler('Niall', 'Neil', mode='jaro'), 12) 0.783333333333 >>> round(sim_jaro_winkler('aluminum', 'Catalan', mode='jaro'), 12) 0.60119047619 >>> round(sim_jaro_winkler('ATCG', 'TAGC', mode='jaro'), 12) 0.833333333333
387,227
def make_filter(self, fieldname, query_func, expct_value): s property based on query_func eqneltltegtgtestartswithendswith{} {} {}val', query_func, expct_value) return actual_filter
makes a filter that will be appliead to an object's property based on query_func
387,228
def translate(s, table, deletions=""): if deletions or table is None: return s.translate(table, deletions) else: return s.translate(table + s[:0])
translate(s,table [,deletions]) -> string Return a copy of the string s, where all characters occurring in the optional argument deletions are removed, and the remaining characters have been mapped through the given translation table, which must be a string of length 256. The deletions argument is not allowed for Unicode strings.
387,229
def get(aadb: str): if (aadb): cfg = Config() value = cfg.get(ConfigKeys.asset_allocation_database_path) click.echo(value) if not aadb: click.echo("Use --help for more information.")
Retrieves a value from config
387,230
def tpu_estimator_model_fn(model_type, transformer_model, model_dir, use_tpu, mesh_shape, layout_rules, batch_size, sequence_length, autostack, metric_names): def my_model_fn(features, labels, mode, params=None, config=None): del labels, config global_step = tf.train.get_global_step() if use_tpu: ctx = params["context"] num_hosts = ctx.num_hosts host_placement_fn = ctx.tpu_host_placement_function device_list = [host_placement_fn(host_id=t) for t in range(num_hosts)] replica_cache_size = 300 * 1000000 worker0_mem = replica_cache_size * ctx.num_replicas devices_memeory_usage = [worker0_mem] + [0] * (num_hosts - 1) var_placer = mtf.utils.BalancedVariablePlacer(device_list, devices_memeory_usage) mesh_devices = [""] * mesh_shape.size mesh_impl = mtf.simd_mesh_impl.SimdMeshImpl( mesh_shape, layout_rules, mesh_devices, ctx.device_assignment) else: var_placer = None mesh_devices = [""] * mesh_shape.size mesh_impl = mtf.placement_mesh_impl.PlacementMeshImpl( mesh_shape, layout_rules, mesh_devices) graph = mtf.Graph() mesh = mtf.Mesh(graph, "my_mesh", var_placer) def _import_feature(key, allow_missing=False): batch_dim = mtf.Dimension("batch", batch_size) length_dim = mtf.Dimension("length", sequence_length) mtf_shape = mtf.Shape([batch_dim, length_dim]) if key not in features: if allow_missing: return None else: raise ValueError( "feature not found %s - features %s = " % (key, features)) tf.logging.info("Import feature %s: %s" % (key, features[key])) x = tf.to_int32(features[key]) if not use_tpu: x = tf.Print( x, [x], "import feature %s" % key, summarize=1000, first_n=1) return mtf.import_fully_replicated(mesh, x, mtf_shape, name=key) if mode == tf.estimator.ModeKeys.PREDICT: inputs = _import_feature("inputs") if isinstance(transformer_model, transformer.Unitransformer): mtf_samples = transformer_model.sample_autoregressive( inputs, variable_dtype=get_variable_dtype()) elif isinstance(transformer_model, transformer.Bitransformer): mtf_samples = transformer_model.decode( inputs, variable_dtype=get_variable_dtype()) else: raise ValueError("unrecognized class") mtf_samples = mtf.anonymize(mtf_samples) lowering = mtf.Lowering(graph, {mesh: mesh_impl}, autostack=autostack) outputs = lowering.export_to_tf_tensor(mtf_samples) predictions = {"outputs": outputs} return tpu_estimator.TPUEstimatorSpec( mode=tf.estimator.ModeKeys.PREDICT, predictions=predictions, prediction_hooks=[mtf.MtfRestoreHook(lowering)]) targets = _import_feature("targets") anon_targets = mtf.anonymize(targets) if model_type == "lm": _, length_dim = targets.shape inputs = mtf.shift(targets, offset=1, dim=length_dim, wrap=False) else: inputs = _import_feature("inputs") if mode == tf.estimator.ModeKeys.EVAL: if isinstance(transformer_model, transformer.Unitransformer): mtf_samples = transformer_model.sample_autoregressive( inputs, variable_dtype=get_variable_dtype()) elif isinstance(transformer_model, transformer.Bitransformer): mtf_samples = transformer_model.decode( inputs, variable_dtype=get_variable_dtype()) else: raise ValueError("unrecognized class") mtf_samples = mtf.anonymize(mtf_samples) lowering = mtf.Lowering(graph, {mesh: mesh_impl}, autostack=autostack) outputs = lowering.export_to_tf_tensor(mtf_samples) labels = lowering.export_to_tf_tensor(anon_targets) restore_hook = mtf.MtfRestoreHook(lowering) loss=tf.constant(0.), evaluation_hooks=[restore_hook], eval_metrics=eval_metrics) if isinstance(transformer_model, transformer.Unitransformer): position_kwargs = dict( sequence_id=_import_feature("targets_segmentation", True), position=_import_feature("targets_position", True), ) elif isinstance(transformer_model, transformer.Bitransformer): position_kwargs = dict( encoder_sequence_id=_import_feature("inputs_segmentation", True), decoder_sequence_id=_import_feature("targets_segmentation", True), encoder_position=_import_feature("inputs_position", True), decoder_position=_import_feature("targets_position", True), ) else: raise ValueError("unrecognized class") logits, loss = transformer_model.call_simple( inputs=inputs, targets=targets, compute_loss=True, mode=mode, variable_dtype=get_variable_dtype(), **position_kwargs) if use_tpu and logits is not None: logits = mtf.anonymize(logits) if mode == tf.estimator.ModeKeys.TRAIN: var_grads = mtf.gradients( [loss], [v.outputs[0] for v in graph.trainable_variables]) optimizer = mtf.optimize.AdafactorOptimizer() update_ops = optimizer.apply_grads(var_grads, graph.trainable_variables) lowering = mtf.Lowering(graph, {mesh: mesh_impl}, autostack=autostack) tf_loss = lowering.export_to_tf_tensor(loss) tf_loss = tf.to_float(tf_loss) if not use_tpu: tf_loss = tf.Print(tf_loss, [tf_loss, tf.train.get_global_step()], "step, tf_loss") if mode == tf.estimator.ModeKeys.TRAIN: tf_update_ops = [lowering.lowered_operation(op) for op in update_ops] tf_update_ops.append(tf.assign_add(global_step, 1)) train_op = tf.group(tf_update_ops) with mtf.utils.outside_all_rewrites(): restore_hook = mtf.MtfRestoreHook(lowering) saver = tf.train.Saver( tf.global_variables(), sharded=True, max_to_keep=10, keep_checkpoint_every_n_hours=2, defer_build=False, save_relative_paths=True) tf.add_to_collection(tf.GraphKeys.SAVERS, saver) saver_listener = mtf.MtfCheckpointSaverListener(lowering) saver_hook = tf.train.CheckpointSaverHook( model_dir, save_steps=1000, saver=saver, listeners=[saver_listener]) gin_config_saver_hook = gin.tf.GinConfigSaverHook( model_dir, summarize_config=True) if mode == tf.estimator.ModeKeys.TRAIN: if use_tpu: return tpu_estimator.TPUEstimatorSpec( mode=tf.estimator.ModeKeys.TRAIN, loss=tf_loss, train_op=train_op, training_hooks=[ restore_hook, saver_hook, gin_config_saver_hook, ]) else: return tf.estimator.EstimatorSpec( tf.estimator.ModeKeys.TRAIN, loss=tf_loss, train_op=train_op, training_chief_hooks=[ restore_hook, saver_hook, gin_config_saver_hook, ]) return my_model_fn
Create a TPUEstimator model function. Args: model_type: a string transformer_model: a transformer.Unitransformer or transformer.Bitransformer model_dir: a string use_tpu: a boolean mesh_shape: a mtf.Shape layout_rules: a mtf.LayoutRules batch_size: an integer sequence_length: an integer autostack: a boolean metric_names: list of strings giving the metric names. If None, then computes padded_neg_log_perplexity Returns: a function to be passed to TPUEstimator
387,231
def _get_logical_raid_levels(self): logical_drive_details = self._get_logical_drive_resource() raid_level = {} if logical_drive_details: for item in logical_drive_details: if in item: raid_level_var = "logical_raid_level_" + item[] raid_level.update({raid_level_var: }) return raid_level if len(raid_level.keys()) > 0 else None
Gets the different raid levels configured on a server. :returns a dictionary of logical_raid_levels set to true. Example if raid level 1+0 and 6 are configured, it returns {'logical_raid_level_10': 'true', 'logical_raid_level_6': 'true'}
387,232
def clickmap(parser, token): bits = token.split_contents() if len(bits) > 1: raise TemplateSyntaxError(" takes no arguments" % bits[0]) return ClickmapNode()
Clickmap tracker template tag. Renders Javascript code to track page visits. You must supply your clickmap tracker ID (as a string) in the ``CLICKMAP_TRACKER_ID`` setting.
387,233
def _send(self): if not statsd: return for metric in self.metrics: self.connection.send() self.metrics = []
Send data to statsd. Fire and forget. Cross fingers and it'll arrive.
387,234
def jit_load(self): try: model = importlib.import_module( + self.model, ) device = getattr(model, self.device) self.system.__dict__[self.name] = device(self.system, self.name) g = self.system.__dict__[self.name]._group self.system.group_add(g) self.system.__dict__[g].register_model(self.name) self.system.devman.register_device(self.name) self.loaded = 1 logger.debug(.format( self.model, self.device)) except ImportError: logger.error( .format(self.model, self.device)) except AttributeError: logger.error( .format(self.model, self.device))
Import and instantiate this JIT object Returns -------
387,235
def get_attrs(self): return FrozenOrderedDict((a, getattr(self.ds, a)) for a in self.ds.ncattrs())
Get the global attributes from underlying data set.
387,236
def delete_all(config=None): storm_ = get_storm_instance(config) try: storm_.delete_all_entries() print(get_formatted_message(, )) except Exception as error: print(get_formatted_message(str(error), ), file=sys.stderr) sys.exit(1)
Deletes all hosts from ssh config.
387,237
def open_db(db, zipped=None, encoding=None, fieldnames_lower=True, case_sensitive=True): kwargs = dict( encoding=encoding, fieldnames_lower=fieldnames_lower, case_sensitive=case_sensitive, ) if zipped: with Dbf.open_zip(db, zipped, **kwargs) as dbf: yield dbf else: with Dbf.open(db, **kwargs) as dbf: yield dbf
Context manager. Allows reading DBF file (maybe even from zip). :param str|unicode|file db: .dbf file name or a file-like object. :param str|unicode zipped: .zip file path or a file-like object. :param str|unicode encoding: Encoding used by DB. This will be used if there's no encoding information in the DB itself. :param bool fieldnames_lower: Lowercase field names. :param bool case_sensitive: Whether DB filename is case sensitive. :rtype: Dbf
387,238
def distributions(self, _args): ctx = self.ctx dists = Distribution.get_distributions(ctx) if dists: print( .format(Style=Out_Style, Fore=Out_Fore)) pretty_log_dists(dists, print) else: print( .format(Style=Out_Style))
Lists all distributions currently available (i.e. that have already been built).
387,239
def append_manage_data_op(self, data_name, data_value, source=None): op = operation.ManageData(data_name, data_value, source) return self.append_op(op)
Append a :class:`ManageData <stellar_base.operation.ManageData>` operation to the list of operations. :param str data_name: String up to 64 bytes long. If this is a new Name it will add the given name/value pair to the account. If this Name is already present then the associated value will be modified. :param data_value: If not present then the existing Name will be deleted. If present then this value will be set in the DataEntry. Up to 64 bytes long. :type data_value: str, bytes, None :param str source: The source account on which data is being managed. operation. :return: This builder instance.
387,240
def dumps(self, script): "Return a compressed representation of script as a binary string." string = BytesIO() self._dump(script, string, self._protocol, self._version) return string.getvalue()
Return a compressed representation of script as a binary string.
387,241
def set_entries(self, entries: List[Tuple[str, str]], titles, resources): self.entries = [] for flag, pagename in entries: title = titles[pagename].children[0] resource = resources.get(pagename, None) if resource and hasattr(resource, ) and not \ resource.is_published: continue self.entries.append(dict( title=title, href=pagename, resource=resource )) self.result_count = len(self.entries)
Provide the template the data for the toc entries
387,242
def get_support_variables(polynomial): support = [] if is_number_type(polynomial): return support for monomial in polynomial.expand().as_coefficients_dict(): mon, _ = __separate_scalar_factor(monomial) symbolic_support = flatten(split_commutative_parts(mon)) for s in symbolic_support: if isinstance(s, Pow): base = s.base if is_adjoint(base): base = base.adjoint() support.append(base) elif is_adjoint(s): support.append(s.adjoint()) elif isinstance(s, Operator): support.append(s) return support
Gets the support of a polynomial.
387,243
def create_ver_browser(self, layout): brws = ComboBoxBrowser(1, headers=[]) layout.insertWidget(1, brws) return brws
Create a version browser and insert it into the given layout :param layout: the layout to insert the browser into :type layout: QLayout :returns: the created browser :rtype: :class:`jukeboxcore.gui.widgets.browser.ComboBoxBrowser` :raises: None
387,244
def integers(start, count): if count < 0: raise ValueError("integers() count cannot be negative") return query(irange(start, start + count))
Generates in sequence the integral numbers within a range. Note: This method uses deferred execution. Args: start: The first integer in the sequence. count: The number of sequential integers to generate. Returns: A Queryable over the specified range of integers. Raises: ValueError: If count is negative.
387,245
def get_published(self, layer_id, expand=[]): target_url = self.client.get_url(, , , {: layer_id}) return self._get(target_url, expand=expand)
Get the latest published version of this layer. :raises NotFound: if there is no published version.
387,246
def get_extra_functions(self) -> Dict[str, Callable]: if self.channel_type == ChannelType.Master: raise NameError("get_extra_function is not available on master channels.") methods = {} for mName in dir(self): m = getattr(self, mName) if callable(m) and getattr(m, "extra_fn", False): methods[mName] = m return methods
Get a list of additional features Returns: Dict[str, Callable]: A dict of methods marked as additional features. Method can be called with ``get_extra_functions()["methodName"]()``.
387,247
def is_de_listed(self): env = Environment.get_instance() instrument = env.get_instrument(self._order_book_id) current_date = env.trading_dt if instrument.de_listed_date is not None: if instrument.de_listed_date.date() > env.config.base.end_date: return False if current_date >= env.data_proxy.get_previous_trading_date(instrument.de_listed_date): return True return False
判断合约是否过期
387,248
def _write_cache(self, lines, append=False): mode = if append else with open(self.filepath, mode, encoding=) as fh: fh.writelines(line + for line in lines)
Write virtualenv metadata to cache.
387,249
def fit(self, train_x, train_y): if self.first_fitted: self.incremental_fit(train_x, train_y) else: self.first_fit(train_x, train_y)
Fit the regressor with more data. Args: train_x: A list of NetworkDescriptor. train_y: A list of metric values.
387,250
def _process_results(self, raw_results, *args, **kwargs): if in raw_results: for agg_fieldname, agg_info in raw_results[].items(): agg_info[] = for bucket_item in agg_info[]: if in bucket_item: bucket_item[] = bucket_item[] bucket_item[] = bucket_item[] agg_info[] = agg_info[] raw_results[] = raw_results[] return super(ICEkitConfigurableElasticBackend, self) \ ._process_results(raw_results, *args, **kwargs)
Naively translate between the 'aggregations' search result data structure returned by ElasticSearch 2+ in response to 'aggs' queries into a structure with 'facets'-like content that Haystack (2.6.1) can understand and process, then pass it on to Haystack's default result processing code. WARNING: Only 'terms' facet types are currently supported. An example result: { 'hits': <BLAH> 'aggregations': { 'type_exact': { 'doc_count_error_upper_bound': 0, 'sum_other_doc_count': 0, 'buckets': [ {'key': 'artwork', 'doc_count': 14145}, {'key': 'artist', 'doc_count': 3360}, {'key': 'event', 'doc_count': 2606}, {'key': 'exhibition', 'doc_count': 416}, {'key': 'essay', 'doc_count': 20}, {'key': 'publication', 'doc_count': 1} ] } } } Will be translated to look like: { 'hits': <BLAH> 'facets': { 'type_exact': { '_type': 'terms', 'terms': [ {'term': 'artwork', 'count': 14145}, {'term': 'artist', 'count': 3360}, {'term': 'event', 'count': 2606}, {'term': 'exhibition', 'count': 416}, {'term': 'essay', 'count': 20}, {'term': 'publication', 'count': 1} ] } } } NOTE: We don't bother cleaning up the data quite this much really, we just translate and duplicate item names and leave the old ones in place for a time when Haystack may support the real returned results.
387,251
def read_raw(data_path): with open(data_path, ) as f: data = pickle.load(f) return data
Parameters ---------- data_path : str
387,252
def get_trees(self, data, showerrors = False): if showerrors: raise NotImplementedError("This parser doesn't implement errors") self.data = data self.index = 0 try: return [self.__aux_parser(self._productionset.initialsymbol)] except (IndexError, ParseError): return []
returns a list of trees with valid guesses
387,253
def direct_messages(self, delegate, params={}, extra_args=None): return self.__get(, delegate, params, txml.Direct, extra_args=extra_args)
Get direct messages for the authenticating user. Search results are returned one message at a time a DirectMessage objects
387,254
def _on_group_stream_changed(self, data): self._groups.get(data.get()).update_stream(data)
Handle group stream change.
387,255
def _run_apt_command(cmd, fatal=False): cmd_env = { : os.environ.get(, )} if fatal: _run_with_retries( cmd, cmd_env=cmd_env, retry_exitcodes=(1, APT_NO_LOCK,), retry_message="Couldn't acquire DPKG lock") else: env = os.environ.copy() env.update(cmd_env) subprocess.call(cmd, env=env)
Run an apt command with optional retries. :param: cmd: str: The apt command to run. :param: fatal: bool: Whether the command's output should be checked and retried.
387,256
async def _on_trace_notification(self, trace_event): conn_string = trace_event.get() payload = trace_event.get() await self.notify_event(conn_string, , payload)
Callback function called when a trace chunk is received. Args: trace_chunk (dict): The received trace chunk information
387,257
def on_quote_changed(self, tiny_quote): data = tiny_quote str_log = "on_quote_changed symbol=%s open=%s high=%s close=%s low=%s" % (data.symbol, data.openPrice, data.highPrice, data.lastPrice, data.lowPrice) self.log(str_log)
报价、摆盘实时数据变化时,会触发该回调
387,258
def create(self, data): if data is None: return None prototype = {} errors = {} for field_name, field_spec in self.spec.fields.items(): try: value = self._create_value(data, field_name, self.spec) except ValidationError, e: if field_name not in self.default_create_values: if hasattr(e, ): errors.update(dict(zip( [field_name + + key for key in e.message_dict.keys()], e.message_dict.values()))) else: errors[field_name] = e.messages else: key_name = self.property_name_map[field_name] prototype[key_name] = value if self.prevent_extra_fields: extras = set(data.keys()) - set(self.property_name_map.keys()) if extras: errors[.join(extras)] = [] if errors: raise ValidationError(errors) _data = deepcopy(self.default_create_values) _data.update(prototype) if self.klass: instance = self.klass() instance.__dict__.update(prototype) return instance else: return prototype
Create object from the given data. The given data may or may not have been validated prior to calling this function. This function will try its best in creating the object. If the resulting object cannot be produced, raises ``ValidationError``. The spec can affect how individual fields will be created by implementing ``clean()`` for the fields needing customization. :param data: the data as a dictionary. :return: instance of ``klass`` or dictionary. :raises: ``ValidationError`` if factory is unable to create object.
387,259
def calculated_intervals(self, value): if not value: self._calculated_intervals = TimeIntervals() return if isinstance(value, TimeInterval): value = TimeIntervals([value]) elif isinstance(value, TimeIntervals): pass elif isinstance(value, list): value = TimeIntervals(value) else: raise TypeError("Expected list/TimeInterval/TimeIntervals, got {}".format(type(value))) for interval in value: if interval.end > utcnow(): raise ValueError("Calculated intervals should not be in the future") self._calculated_intervals = value
Set the calculated intervals This will be written to the stream_status collection if it's in the database channel :param value: The calculated intervals :type value: TimeIntervals, TimeInterval, list[TimeInterval]
387,260
def addExpectedFailure(self, test: unittest.case.TestCase, err: tuple) -> None: self.add_result(TestState.expected_failure, test, err)
Transforms the test in a serializable version of it and sends it to a queue for further analysis :param test: the test to save :param err: tuple of the form (Exception class, Exception instance, traceback)
387,261
def poll_event(self): curses.flushinp() ch = self.screen.getch() if ch == 27: return EVENT_ESC elif ch == -1 or ch == curses.KEY_RESIZE: return EVENT_RESIZE elif ch == 10 or ch == curses.KEY_ENTER: return EVENT_ENTER elif ch == 127 or ch == curses.KEY_BACKSPACE: return EVENT_BACKSPACE elif ch == curses.KEY_UP: return EVENT_UP elif ch == curses.KEY_DOWN: return EVENT_DOWN elif ch == curses.KEY_LEFT: return EVENT_LEFT elif ch == curses.KEY_RIGHT: return EVENT_RIGHT elif ch == 3: return EVENT_CTRL_C elif 0 <= ch < 256: return chr(ch) else: return EVENT_UNHANDLED
Waits for an event to happen and returns a string related to the event. If the event is a normal (letter) key press, the letter is returned (case sensitive) :return: Event type
387,262
def eigenvectors_nrev(T, right=True): r if right: val, R = eig(T, left=False, right=True) perm = np.argsort(np.abs(val))[::-1] eigvec = R[:, perm] else: val, L = eig(T, left=True, right=False) perm = np.argsort(np.abs(val))[::-1] eigvec = L[:, perm] return eigvec
r"""Compute eigenvectors of transition matrix. Parameters ---------- T : (d, d) ndarray Transition matrix (stochastic matrix) k : int or tuple of ints, optional Compute the first k eigenvalues of T right : bool, optional If right=True compute right eigenvectors, left eigenvectors otherwise Returns ------- eigvec : (d, d) ndarray The eigenvectors of T ordered with decreasing absolute value of the corresponding eigenvalue
387,263
def consume_network_packet_messages_from_redis(): sub = KombuSubscriber( name, FORWARD_BROKER_URL, FORWARD_SSL_OPTIONS) seconds_to_consume = 10.0 heartbeat = 60 serializer = "application/json" queue = FORWARD_QUEUE sub.consume( callback=recv_msg, queue=queue, exchange=None, routing_key=None, serializer=serializer, heartbeat=heartbeat, time_to_wait=seconds_to_consume) log.info("end - {}".format(name))
consume_network_packet_messages_from_redis Setup a ``celery_connectors.KombuSubscriber`` to consume meessages from the ``FORWARD_BROKER_URL`` broker in the ``FORWARD_QUEUE`` queue.
387,264
def get_imports(filename): with open(filename, "rb") as f: src = f.read() finder = ImportFinder() finder.visit(ast.parse(src, filename=filename)) imports = [] for i in finder.imports: name, _, is_from, is_star = i imports.append(i + (resolve_import(name, is_from, is_star),)) return imports
Get all the imports in a file. Each import is a tuple of: (name, alias, is_from, is_star, source_file)
387,265
def get(self, file_id: str) -> [typing.BinaryIO, str, datetime.datetime]: raise NotImplementedError("Downloading files for downloading files in FileStore has not been implemented yet.")
Return the file identified by a file_id string, its file name and upload date.
387,266
def fit(self, X, y=None, groups=None, **fit_params): return self._fit(X, y=y, groups=groups, **fit_params)
Run fit on the estimator with parameters chosen sequentially by SigOpt. Parameters ---------- X : array-like, shape = [n_samples, n_features] Training vector, where n_samples in the number of samples and n_features is the number of features. y : array-like, shape = [n_samples] or [n_samples, n_output], optional Target relative to X for classification or regression; None for unsupervised learning.
387,267
def entrypoint(cls): if not isinstance(cls, type) or not issubclass(cls, Command): raise TypeError(f"inappropriate entrypoint instance of type {cls.__class__}") cls._argcmdr_entrypoint_ = True return cls
Mark the decorated command as the intended entrypoint of the command module.
387,268
def url_(client_id: str, redirect_uri: str, *, scope: str = None, state: str = None, secure: bool = True) -> str: attrs = { : client_id, : quote(redirect_uri) } if scope is not None: attrs[] = quote(scope) if state is not None: attrs[] = state parameters = .join(.format(*item) for item in attrs.items()) return OAuth2._BASE.format(parameters=parameters)
Construct a OAuth2 URL instead of an OAuth2 object.
387,269
def crosslisting_feature(catalog, soup): listing = {} for elem in soup.coursedb.findAll(): seats = int(elem[]) crns = [safeInt(crn.string) for crn in elem.findAll()] cl = CrossListing(crns, seats) for crn in crns: listing[crn] = cl catalog.crosslistings = FrozenDict(listing) logger.info( % len(catalog.crosslistings))
Parses all the crosslistings. These refer to the similar CRNs, such as a grad & undergrad level course.
387,270
def _get_value(data_structure, key): if len(key) == 0: raise KeyError() value = data_structure[key[0]] if len(key) > 1: return _get_value(value, key[1:]) return value
Return the value of a data_structure given a path. :param data_structure: Dictionary, list or subscriptable object. :param key: Array with the defined path ordered.
387,271
def getSparseTensor(numNonzeros, inputSize, outputSize, onlyPositive=False, fixedRange=1.0/24): w = torch.Tensor(outputSize, inputSize, ) if onlyPositive: w.data.uniform_(0, fixedRange) else: w.data.uniform_(-fixedRange, fixedRange) if numNonzeros < inputSize: numZeros = inputSize - numNonzeros outputIndices = np.arange(outputSize) inputIndices = np.array([np.random.permutation(inputSize)[:numZeros] for _ in outputIndices], dtype=np.long) zeroIndices = np.empty((outputSize, numZeros, 2), dtype=np.long) zeroIndices[:, :, 0] = outputIndices[:, None] zeroIndices[:, :, 1] = inputIndices zeroIndices = torch.LongTensor(zeroIndices.reshape(-1, 2)) zeroWts = (zeroIndices[:, 0], zeroIndices[:, 1]) w.data[zeroWts] = 0.0 return w
Return a random tensor that is initialized like a weight matrix Size is outputSize X inputSize, where weightSparsity% of each row is non-zero
387,272
def step( self, local_inv=None, peer_table=None, peer_queue=None, con=None, path=None ): if path is None: path = self.atlasdb_path if self.max_neighbors is None: self.max_neighbors = atlas_max_neighbors() log.debug("%s: max neighbors is %s" % (self.my_hostport, self.max_neighbors)) current_peers = self.get_current_peers( peer_table=peer_table ) num_added = self.update_new_peers( 10, current_peers, peer_queue=peer_queue, peer_table=peer_table, con=con, path=path ) if self.my_hostport in self.current_peer_neighbors: self.current_peer_neighbors.remove(self.my_hostport) log.debug("%s: neighbors of %s are (%s): %s" % (self.my_hostport, self.current_peer, len(self.current_peer_neighbors), ",".join(self.current_peer_neighbors))) self.new_peers = list(set( self.new_peers + peer_neighbors )) if self.current_peer is not None: next_peer, next_peer_neighbors = self.random_walk_graph( self.prev_peer, self.prev_peer_degree, self.current_peer, self.current_peer_neighbors, con=con, path=path, peer_table=peer_table ) if next_peer is not None and next_peer_neighbors is not None: self.prev_peer = self.current_peer self.prev_peer_degree = len(self.current_peer_neighbors) self.current_peer = next_peer self.current_peer_neighbors = next_peer_neighbors self.new_peers = list(set(self.new_peers + self.current_peer_neighbors)) else: log.error("%s: failed to walk from %s" % (self.my_hostport, self.current_peer)) self.random_walk_reset() num_removed = self.update_existing_peers( 10, con=con, path=path, peer_table=peer_table ) return num_added, num_removed
Execute one round of the peer discovery algorithm: * Add at most 10 new peers from the pending peer queue (but ping them first, and drop hosts if the pending queue gets to be too long). * Execute one step of the MHRWDA algorithm. Add any new peers from the neighbor sets discovered. * Remove at most 10 old, unresponsive peers from the peer DB.
387,273
def namespace(self): if self.m_name == -1 or (self.m_event != const.START_TAG and self.m_event != const.END_TAG): return u if self.m_namespaceUri == 0xFFFFFFFF: return u return self.sb[self.m_namespaceUri]
Return the Namespace URI (if any) as a String for the current tag
387,274
def get_repo(self, auth, username, repo_name): path = "/repos/{u}/{r}".format(u=username, r=repo_name) response = self.get(path, auth=auth) return GogsRepo.from_json(response.json())
Returns a the repository with name ``repo_name`` owned by the user with username ``username``. :param auth.Authentication auth: authentication object :param str username: username of owner of repository :param str repo_name: name of repository :return: a representation of the retrieved repository :rtype: GogsRepo :raises NetworkFailure: if there is an error communicating with the server :raises ApiFailure: if the request cannot be serviced
387,275
def eval(self, construct): data = clips.data.DataObject(self._env) if lib.EnvEval(self._env, construct.encode(), data.byref) != 1: raise CLIPSError(self._env) return data.value
Evaluate an expression returning its value. The Python equivalent of the CLIPS eval command.
387,276
def config_merge_text(source=, merge_config=None, merge_path=None, saltenv=): * config_txt = __salt__[](source=source)[][source] return __salt__[](initial_config=config_txt, merge_config=merge_config, merge_path=merge_path, saltenv=saltenv)
.. versionadded:: 2019.2.0 Return the merge result of the configuration from ``source`` with the merge configuration, as plain text (without loading the config on the device). source: ``running`` The configuration type to retrieve from the network device. Default: ``running``. Available options: ``running``, ``startup``, ``candidate``. merge_config The config to be merged into the initial config, sent as text. This argument is ignored when ``merge_path`` is set. merge_path Absolute or remote path from where to load the merge configuration text. This argument allows any URI supported by :py:func:`cp.get_url <salt.modules.cp.get_url>`), e.g., ``salt://``, ``https://``, ``s3://``, ``ftp:/``, etc. saltenv: ``base`` Salt fileserver environment from which to retrieve the file. Ignored if ``merge_path`` is not a ``salt://`` URL. CLI Example: .. code-block:: bash salt '*' napalm.config_merge_text merge_path=salt://path/to/merge.cfg
387,277
def delete_file(self, path, prefixed_path, source_storage): if self.faster: return True else: return super(Command, self).delete_file(path, prefixed_path, source_storage)
We don't need all the file_exists stuff because we have to override all files anyways.
387,278
def map(source = , z = 0, x = 0, y = 0, format = , srs=, bin=None, hexPerTile=None, style=, taxonKey=None, country=None, publishingCountry=None, publisher=None, datasetKey=None, year=None, basisOfRecord=None, **kwargs): t work) :param publishingCountry: [str] The 2-letter country code (as per ISO-3166-1) of the country in which the occurrence was recorded. :return: An object of class GbifMap For mvt format, see https://github.com/tilezen/mapbox-vector-tile to decode, and example below Usage:: from pygbif import maps out = maps.map(taxonKey = 2435098) out.response out.path out.img out.plot() out = maps.map(taxonKey = 2480498, year = range(2008, 2011+1)) out.response out.path out.img out.plot() maps.map(taxonKey = 2480498, year = 2010, srs = "EPSG:3857") maps.map(taxonKey = 212, year = 1998, bin = "hex", hexPerTile = 30, style = "classic-noborder.poly") maps.map(taxonKey = 2480498, style = "purpleYellow.point").plot() maps.map(taxonKey = 2480498, year = 2010, basisOfRecord = "HUMAN_OBSERVATION", bin = "hex", hexPerTile = 500).plot() maps.map(taxonKey = 2480498, year = 2010, basisOfRecord = ["HUMAN_OBSERVATION", "LIVING_SPECIMEN"], hexPerTile = 500, bin = "hex").plot() from pygbif import maps x = maps.map(taxonKey = 2480498, year = 2010, format = ".mvt") x.response x.path x.img import mapbox_vector_tile mapbox_vector_tile.decode(x.response.content) [email protected]@[email protected]@[email protected]:3857EPSG:4326EPSG:3575EPSG:3031srssquarehexbinstylehttps://api.gbif.org/v2/map/occurrence/%s/%s/%s/%s%ssrsbinhexPerTilestyletaxonKeycountrypublishingCountrypublisherdatasetKeyyearbasisOfRecord_.image/pngapplication/x-protobuf' out = gbif_GET_map(url, args, ctype, **kwargs) return GbifMap(out)
GBIF maps API :param source: [str] Either ``density`` for fast, precalculated tiles, or ``adhoc`` for any search :param z: [str] zoom level :param x: [str] longitude :param y: [str] latitude :param format: [str] format of returned data. One of: - ``.mvt`` - vector tile - ``@Hx.png`` - 256px raster tile (for legacy clients) - ``@1x.png`` - 512px raster tile, @2x.png for a 1024px raster tile - ``@2x.png`` - 1024px raster tile - ``@3x.png`` - 2048px raster tile - ``@4x.png`` - 4096px raster tile :param srs: [str] Spatial reference system. One of: - ``EPSG:3857`` (Web Mercator) - ``EPSG:4326`` (WGS84 plate caree) - ``EPSG:3575`` (Arctic LAEA) - ``EPSG:3031`` (Antarctic stereographic) :param bin: [str] square or hex to aggregate occurrence counts into squares or hexagons. Points by default. :param hexPerTile: [str] sets the size of the hexagons (the number horizontally across a tile) :param squareSize: [str] sets the size of the squares. Choose a factor of 4096 so they tessalate correctly: probably from 8, 16, 32, 64, 128, 256, 512. :param style: [str] for raster tiles, choose from the available styles. Defaults to classic.point. :param taxonKey: [int] A GBIF occurrence identifier :param datasetKey: [str] The occurrence dataset key (a uuid) :param country: [str] The 2-letter country code (as per ISO-3166-1) of the country in which the occurrence was recorded. See here http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2 :param basisOfRecord: [str] Basis of record, as defined in the BasisOfRecord enum http://gbif.github.io/gbif-api/apidocs/org/gbif/api/vocabulary/BasisOfRecord.html Acceptable values are - ``FOSSIL_SPECIMEN`` An occurrence record describing a fossilized specimen. - ``HUMAN_OBSERVATION`` An occurrence record describing an observation made by one or more people. - ``LITERATURE`` An occurrence record based on literature alone. - ``LIVING_SPECIMEN`` An occurrence record describing a living specimen, e.g. - ``MACHINE_OBSERVATION`` An occurrence record describing an observation made by a machine. - ``OBSERVATION`` An occurrence record describing an observation. - ``PRESERVED_SPECIMEN`` An occurrence record describing a preserved specimen. - ``UNKNOWN`` Unknown basis for the record. :param year: [int] The 4 digit year. A year of 98 will be interpreted as AD 98. Supports range queries, smaller,larger (e.g., ``1990,1991``, whereas ``1991,1990`` wouldn't work) :param publishingCountry: [str] The 2-letter country code (as per ISO-3166-1) of the country in which the occurrence was recorded. :return: An object of class GbifMap For mvt format, see https://github.com/tilezen/mapbox-vector-tile to decode, and example below Usage:: from pygbif import maps out = maps.map(taxonKey = 2435098) out.response out.path out.img out.plot() out = maps.map(taxonKey = 2480498, year = range(2008, 2011+1)) out.response out.path out.img out.plot() # srs maps.map(taxonKey = 2480498, year = 2010, srs = "EPSG:3857") # bin maps.map(taxonKey = 212, year = 1998, bin = "hex", hexPerTile = 30, style = "classic-noborder.poly") # style maps.map(taxonKey = 2480498, style = "purpleYellow.point").plot() # basisOfRecord maps.map(taxonKey = 2480498, year = 2010, basisOfRecord = "HUMAN_OBSERVATION", bin = "hex", hexPerTile = 500).plot() maps.map(taxonKey = 2480498, year = 2010, basisOfRecord = ["HUMAN_OBSERVATION", "LIVING_SPECIMEN"], hexPerTile = 500, bin = "hex").plot() # map vector tiles, gives back raw bytes from pygbif import maps x = maps.map(taxonKey = 2480498, year = 2010, format = ".mvt") x.response x.path x.img # None import mapbox_vector_tile mapbox_vector_tile.decode(x.response.content)
387,279
def cli(*args, **kwargs): log.debug(.format(args, kwargs)) env.update(kwargs)
通用自动化处理工具 详情参考 `GitHub <https://github.com/littlemo/mohand>`_
387,280
def database(self, database_id, ddl_statements=(), pool=None): return Database(database_id, self, ddl_statements=ddl_statements, pool=pool)
Factory to create a database within this instance. :type database_id: str :param database_id: The ID of the instance. :type ddl_statements: list of string :param ddl_statements: (Optional) DDL statements, excluding the 'CREATE DATABSE' statement. :type pool: concrete subclass of :class:`~google.cloud.spanner_v1.pool.AbstractSessionPool`. :param pool: (Optional) session pool to be used by database. :rtype: :class:`~google.cloud.spanner_v1.database.Database` :returns: a database owned by this instance.
387,281
def numeric_function_clean_dataframe(self, axis): result = None query_compiler = self if not axis and len(self.index) == 0: result = pandas.Series(dtype=np.int64) nonnumeric = [ col for col, dtype in zip(self.columns, self.dtypes) if not is_numeric_dtype(dtype) ] if len(nonnumeric) == len(self.columns): if axis: result = pandas.Series([np.nan for _ in self.index]) else: result = pandas.Series([0 for _ in self.index]) else: query_compiler = self.drop(columns=nonnumeric) return result, query_compiler
Preprocesses numeric functions to clean dataframe and pick numeric indices. Args: axis: '0' if columns and '1' if rows. Returns: Tuple with return value(if any), indices to apply func to & cleaned Manager.
387,282
def javascript_escape(s, quote_double_quotes=True): ustring_re = re.compile(u"([\u0080-\uffff])") def fix(match): return r"\u%04x" % ord(match.group(1)) if type(s) == str: s = s.decode() elif type(s) != six.text_type: raise TypeError(s) s = s.replace(, ) s = s.replace(, ) s = s.replace(, ) s = s.replace(, ) s = s.replace("") if quote_double_quotes: s = s.replace(, ) return str(ustring_re.sub(fix, s))
Escape characters for javascript strings.
387,283
def is_eligible(self, timestamp, status, notif_number, in_notif_time, interval, escal_period): short_states = { u: , u: , u: , u: , u: , u: , u: , u: , u: , u: } if not self.time_based: if notif_number < self.first_notification: return False if self.last_notification and notif_number > self.last_notification: return False else: if in_notif_time < self.first_notification_time * interval: return False if self.last_notification_time and \ in_notif_time > self.last_notification_time * interval: return False if status in short_states and short_states[status] not in self.escalation_options: return False if escal_period is not None and not escal_period.is_time_valid(timestamp): return False return True
Check if the escalation is eligible (notification is escalated or not) Escalation is NOT eligible in ONE of the following condition is fulfilled:: * escalation is not time based and notification number not in range [first_notification;last_notification] (if last_notif == 0, it's infinity) * escalation is time based and notification time not in range [first_notification_time;last_notification_time] (if last_notif_time == 0, it's infinity) * status does not matches escalation_options ('WARNING' <=> 'w' ...) * escalation_period is not legit for this time (now usually) :param timestamp: timestamp to check if timeperiod is valid :type timestamp: int :param status: item status (one of the small_states key) :type status: str :param notif_number: current notification number :type notif_number: int :param in_notif_time: current notification time :type in_notif_time: int :param interval: time interval length :type interval: int :return: True if no condition has been fulfilled, otherwise False :rtype: bool
387,284
def virtualenv_no_global(): site_mod_dir = os.path.dirname(os.path.abspath(site.__file__)) no_global_file = os.path.join(site_mod_dir, ) if running_under_virtualenv() and os.path.isfile(no_global_file): return True
Return True if in a venv and no system site packages.
387,285
def set_passport_data_errors(self, user_id, errors): from pytgbot.api_types.sendable.passport import PassportElementError assert_type_or_raise(user_id, int, parameter_name="user_id") assert_type_or_raise(errors, list, parameter_name="errors") result = self.do("setPassportDataErrors", user_id=user_id, errors=errors) if self.return_python_objects: logger.debug("Trying to parse {data}".format(data=repr(result))) try: return from_array_list(bool, result, list_level=0, is_builtin=True) except TgApiParseException: logger.debug("Failed parsing as primitive bool", exc_info=True) raise TgApiParseException("Could not parse result.") return result
Informs a user that some of the Telegram Passport elements they provided contains errors. The user will not be able to re-submit their Passport to you until the errors are fixed (the contents of the field for which you returned the error must change). Returns True on success. Use this if the data submitted by the user doesn't satisfy the standards your service requires for any reason. For example, if a birthday date seems invalid, a submitted document is blurry, a scan shows evidence of tampering, etc. Supply some details in the error message to make sure the user knows how to correct the issues. https://core.telegram.org/bots/api#setpassportdataerrors Parameters: :param user_id: User identifier :type user_id: int :param errors: A JSON-serialized array describing the errors :type errors: list of pytgbot.api_types.sendable.passport.PassportElementError Returns: :return: Returns True on success :rtype: bool
387,286
def add_neighbor(self, edge: "Edge") -> None: if edge is None or (edge.source != self and edge.target != self): return if edge.source == self: other: Node = edge.target elif edge.target == self: other: Node = edge.source else: raise ValueError("Tried to add a neighbor with an invalid edge.") edge_key: Tuple(int, int) = edge.key if self._neighbors.get(edge_key) or self._neighbors.get((edge_key[1], edge_key[0])): return self._neighbors[edge_key] = edge self.dispatch_event(NeighborAddedEvent(other))
Adds a new neighbor to the node. Arguments: edge (Edge): The edge that would connect this node with its neighbor.
387,287
def header(self, array): self._check_row_size(array) self._header = list(map(obj2unicode, array)) return self
Specify the header of the table
387,288
def relations_used(self): g = self.get_graph() types = set() for (x,y,d) in g.edges(data=True): types.add(d[]) return list(types)
Return list of all relations used to connect edges
387,289
def _build_environ(self) -> Dict[str, Optional[str]]: d: Dict[str, Optional[str]] = {} if self.__config__.case_insensitive: env_vars = {k.lower(): v for k, v in os.environ.items()} else: env_vars = cast(Dict[str, str], os.environ) for field in self.__fields__.values(): if field.has_alias: env_name = field.alias else: env_name = self.__config__.env_prefix + field.name.upper() env_name_ = env_name.lower() if self.__config__.case_insensitive else env_name env_val = env_vars.get(env_name_, None) if env_val: if field.is_complex(): try: env_val = json.loads(env_val) except ValueError as e: raise SettingsError(f) from e d[field.alias] = env_val return d
Build environment variables suitable for passing to the Model.
387,290
def transfer_size(self): ts = self.attributes[] if isinstance(ts, six.string_types): ts = shlex.split(ts) ts = [str(e) for e in ts] return ts
Size of transfer in bytes (e.g.: 8, 4k, 2m, 1g)
387,291
def ask(question): while True: ans = input(question) al = ans.lower() if match(, al): return True elif match(, al): return False elif match(, al): stdout.write(CYAN) print("\nGoodbye.\n") stdout.write(RESET) quit() else: stdout.write(RED) print("%s is invalid. Enter (y)es, (n)o or (q)uit." % ans) stdout.write(RESET)
Infinite loop to get yes or no answer or quit the script.
387,292
def find_all_files(glob): for finder in finders.get_finders(): for path, storage in finder.list([]): if fnmatch.fnmatchcase(os.path.join(getattr(storage, , ) or , path), glob): yield path, storage
Finds all files in the django finders for a given glob, returns the file path, if available, and the django storage object. storage objects must implement the File storage API: https://docs.djangoproject.com/en/dev/ref/files/storage/
387,293
def get(self, path, content=True, type=None, format=None, load_alternative_format=True): path = path.strip() ext = os.path.splitext(path)[1] if not self.exists(path) or (type != if type else ext not in self.all_nb_extensions()): return super(TextFileContentsManager, self).get(path, content, type, format) fmt = preferred_format(ext, self.preferred_jupytext_formats_read) if ext == : model = self._notebook_model(path, content=content) else: self.set_default_format_options(fmt, read=True) with mock.patch(, _jupytext_reads(fmt)): model = self._notebook_model(path, content=content) if not load_alternative_format: return model if not content: if path not in self.paired_notebooks: return model fmt, formats = self.paired_notebooks.get(path) for alt_path, _ in paired_paths(path, fmt, formats): if alt_path != path and self.exists(alt_path): alt_model = self._notebook_model(alt_path, content=False) if alt_model[] > model[]: model[] = alt_model[] return model nbk = model[] jupytext_formats = nbk.metadata.get(, {}).get() or self.default_formats(path) jupytext_formats = long_form_multiple_formats(jupytext_formats) alt_paths = [(path, fmt)] if jupytext_formats: try: _, fmt = find_base_path_and_format(path, jupytext_formats) alt_paths = paired_paths(path, fmt, jupytext_formats) self.update_paired_notebooks(path, fmt, jupytext_formats) except InconsistentPath as err: self.log.info("Unable to read paired notebook: %s", str(err)) else: if path in self.paired_notebooks: fmt, formats = self.paired_notebooks.get(path) alt_paths = paired_paths(path, fmt, formats) if len(alt_paths) > 1 and ext == : jupytext_metadata = model[][].get(, {}) self.set_default_format_options(jupytext_metadata, read=True) if jupytext_metadata: model[][][] = jupytext_metadata org_model = model fmt_inputs = fmt path_inputs = path_outputs = path model_outputs = None if path.endswith(): for alt_path, alt_fmt in alt_paths: if not alt_path.endswith() and self.exists(alt_path): self.log.info(u.format(alt_path)) path_inputs = alt_path fmt_inputs = alt_fmt model_outputs = model model = self.get(alt_path, content=content, type=type, format=format, load_alternative_format=False) break else: for alt_path, _ in alt_paths: if alt_path.endswith() and self.exists(alt_path): self.log.info(u.format(alt_path)) path_outputs = alt_path model_outputs = self.get(alt_path, content=content, type=type, format=format, load_alternative_format=False) break try: check_file_version(model[], path_inputs, path_outputs) except Exception as err: raise HTTPError(400, str(err)) seems more recent than {src} (last modified {src_last}) Please either: - open {src} in a text editor, make sure it is up to date, and save it, - or delete {src} if not up to date, - or increase check margin by adding, say, c.ContentsManager.outdated_text_notebook_margin = 5 to your .jupyter/jupyter_notebook_config.py file last_modifiedlast_modifiedcontentcontent.ipynbcontentjupytextmain_languagepythonkernelspecpythonkernelspeccontentcodetrustedtrustedpathpathnamename'] return model
Takes a path for an entity and returns its model
387,294
def write_file(content, *path): with open(os.path.join(*path), "w") as file: return file.write(content)
Simply write some content to a file, overriding the file if necessary.
387,295
def clean_whitespace(statement): import re statement.text = statement.text.replace(, ).replace(, ).replace(, ) statement.text = statement.text.strip() statement.text = re.sub(, , statement.text) return statement
Remove any consecutive whitespace characters from the statement text.
387,296
def post(self, res_path, data=None, files=None, timeout=10.): resp = requests.post( self.__res_uri(res_path), data=data, files=files, headers=self.__headers(), verify=False, auth=self.__auth(), timeout=timeout ) return ( resp.status_code, json.loads(resp.text) )
Post operation. :param str res_path: Resource path. :param list data: Request parameters for data. :param list files: Request parameters for files. :param float timeout: Timeout in seconds. :rtype: tuple :return: Tuple with status code and response body.
387,297
def handle_get_token(self, req): try: pathsegs = split_path(req.path_info, minsegs=1, maxsegs=3, rest_with_last=True) except ValueError: return HTTPNotFound(request=req) if pathsegs[0] == and pathsegs[2] == : account = pathsegs[1] user = req.headers.get() if not user: user = unquote(req.headers.get(, )) if not user or not in user: return HTTPUnauthorized(request=req) account2, user = user.split(, 1) if account != account2: return HTTPUnauthorized(request=req) key = req.headers.get() if not key: key = unquote(req.headers.get(, )) elif pathsegs[0] in (, ): user = unquote(req.headers.get(, )) if not user: user = req.headers.get() if not user or not in user: return HTTPUnauthorized(request=req) account, user = user.split(, 1) key = unquote(req.headers.get(, )) if not key: key = req.headers.get() else: return HTTPBadRequest(request=req) if not all((account, user, key)): return HTTPUnauthorized(request=req) if user == and self.super_admin_key and \ key == self.super_admin_key: token = self.get_itoken(req.environ) url = % (self.dsc_url, self.reseller_prefix) return Response( request=req, content_type=CONTENT_TYPE_JSON, body=json.dumps({: {: , : url}}), headers={: token, : token, : url}) path = quote( % (self.auth_account, account, user)) resp = self.make_pre_authed_request( req.environ, , path).get_response(self.app) if resp.status_int == 404: return HTTPUnauthorized(request=req) if resp.status_int // 100 != 2: raise Exception( % (path, resp.status)) user_detail = json.loads(resp.body) if not self.credentials_match(user_detail, key): return HTTPUnauthorized(request=req) if not token:
Handles the various `request for token and service end point(s)` calls. There are various formats to support the various auth servers in the past. Examples:: GET <auth-prefix>/v1/<act>/auth X-Auth-User: <act>:<usr> or X-Storage-User: <usr> X-Auth-Key: <key> or X-Storage-Pass: <key> GET <auth-prefix>/auth X-Auth-User: <act>:<usr> or X-Storage-User: <act>:<usr> X-Auth-Key: <key> or X-Storage-Pass: <key> GET <auth-prefix>/v1.0 X-Auth-User: <act>:<usr> or X-Storage-User: <act>:<usr> X-Auth-Key: <key> or X-Storage-Pass: <key> Values should be url encoded, "act%3Ausr" instead of "act:usr" for example; however, for backwards compatibility the colon may be included unencoded. On successful authentication, the response will have X-Auth-Token and X-Storage-Token set to the token to use with Swift and X-Storage-URL set to the URL to the default Swift cluster to use. The response body will be set to the account's services JSON object as described here:: {"storage": { # Represents the Swift storage service end points "default": "cluster1", # Indicates which cluster is the default "cluster1": "<URL to use with Swift>", # A Swift cluster that can be used with this account, # "cluster1" is the name of the cluster which is usually a # location indicator (like "dfw" for a datacenter region). "cluster2": "<URL to use with Swift>" # Another Swift cluster that can be used with this account, # there will always be at least one Swift cluster to use or # this whole "storage" dict won't be included at all. }, "servers": { # Represents the Nova server service end points # Expected to be similar to the "storage" dict, but not # implemented yet. }, # Possibly other service dicts, not implemented yet. } One can also include an "X-Auth-New-Token: true" header to force issuing a new token and revoking any old token, even if it hasn't expired yet. :param req: The swob.Request to process. :returns: swob.Response, 2xx on success with data set as explained above.
387,298
def browse(self, ml_item=None, start=0, max_items=100, full_album_art_uri=False, search_term=None, subcategories=None): if ml_item is None: search = else: search = ml_item.item_id if subcategories is not None: for category in subcategories: search += + url_escape_path(really_unicode(category)) if search_term is not None: search += + url_escape_path(really_unicode(search_term)) try: response, metadata = \ self._music_lib_search(search, start, max_items) except SoCoUPnPException as exception: if exception.error_code == : return SearchResult([], , 0, 0, None) else: raise exception metadata[] = containers = from_didl_string(response[]) item_list = [] for container in containers: if full_album_art_uri: self._update_album_art_to_full_uri(container) item_list.append(container) return SearchResult(item_list, **metadata)
Browse (get sub-elements from) a music library item. Args: ml_item (`DidlItem`): the item to browse, if left out or `None`, items at the root level will be searched. start (int): the starting index of the results. max_items (int): the maximum number of items to return. full_album_art_uri (bool): whether the album art URI should be fully qualified with the relevant IP address. search_term (str): A string that will be used to perform a fuzzy search among the search results. If used in combination with subcategories, the fuzzy search will be performed on the subcategory. Note: Searching will not work if ``ml_item`` is `None`. subcategories (list): A list of strings that indicate one or more subcategories to descend into. Note: Providing sub categories will not work if ``ml_item`` is `None`. Returns: A `SearchResult` instance. Raises: AttributeError: if ``ml_item`` has no ``item_id`` attribute. SoCoUPnPException: with ``error_code='701'`` if the item cannot be browsed.
387,299
def _run_paired(paired): from bcbio.structural import titancna work_dir = _sv_workdir(paired.tumor_data) seg_files = model_segments(tz.get_in(["depth", "bins", "normalized"], paired.tumor_data), work_dir, paired) call_file = call_copy_numbers(seg_files["seg"], work_dir, paired.tumor_data) out = [] if paired.normal_data: out.append(paired.normal_data) if "sv" not in paired.tumor_data: paired.tumor_data["sv"] = [] paired.tumor_data["sv"].append({"variantcaller": "gatk-cnv", "call_file": call_file, "vrn_file": titancna.to_vcf(call_file, "GATK4-CNV", _get_seg_header, _seg_to_vcf, paired.tumor_data), "seg": seg_files["seg"], "plot": plot_model_segments(seg_files, work_dir, paired.tumor_data)}) out.append(paired.tumor_data) return out
Run somatic variant calling pipeline.