Unnamed: 0
int64 0
389k
| code
stringlengths 26
79.6k
| docstring
stringlengths 1
46.9k
|
---|---|---|
387,800 | def getmap(self, path, query=None):
code, data, ctype = self.get(path, query)
if ctype != :
self.log.error("Expecting JSON from GET of , got ", self.lastpath, ctype)
raise HttpError(code=400, content_type=, content=+ctype)
try:
result = json.loads(data)
except Exception as e:
self.log.error("Could not load JSON content from GET %r -- %s", self.lastpath, e)
raise HttpError(code=400, content_type=, content=)
return result | Performs a GET request where the response content type is required to be
"application/json" and the content is a JSON-encoded data structure.
The decoded structure is returned. |
387,801 | def iterfiles(self):
try:
for path in self.order:
yield self.files[path]
except:
for winfile in self.files.values():
yield winfile | Yield all WinFile object. |
387,802 | def fov_for_height_and_distance(height, distance):
vfov_deg = np.degrees(2.0 * np.arctan(height * 0.5 / distance))
return vfov_deg | Calculate the FOV needed to get a given frustum height at a
given distance. |
387,803 | def data(self, **query):
data = self.gencloud.project_data(self.id)
query[] = self.id
ids = set(d[] for d in self.gencloud.api.dataid.get(**query)[])
return [d for d in data if d.id in ids] | Query for Data object annotation. |
387,804 | def __create_channel_run(self, channel, username, token):
data = {
: channel.get_node_id().hex,
: self.__get_chef_name(),
: __version__,
: username,
: token,
: config.DOMAIN,
}
try:
response = requests.post(
config.sushi_bar_channel_runs_url(),
data=data,
auth=AUTH)
response.raise_for_status()
return response.json()[]
except Exception as e:
config.LOGGER.error( % e)
return None | Sends a post request to create the channel run. |
387,805 | def download_extract(url):
logger.info("Downloading %s", url)
request = urllib2.Request(url)
request.add_header(,
)
opener = urllib2.build_opener()
with tempfile.TemporaryFile(suffix=, dir=env.WEATHER_DATA_PATH) \
as local_file:
logger.debug(, local_file.name)
local_file.write(opener.open(request).read())
compressed_file = zipfile.ZipFile(local_file, )
logger.debug(, compressed_file)
compressed_file.extractall(env.WEATHER_DATA_PATH)
local_file.close() | download and extract file. |
387,806 | def save(self):
with open(self.filename, ) as file:
self.prune()
self.data[] = self.version
json.dump(self.data,
file,
sort_keys=True, indent=2) | Save data. |
387,807 | def _get_range(book, range_, sheet):
filename = None
if isinstance(book, str):
filename = book
book = opxl.load_workbook(book, data_only=True)
elif isinstance(book, opxl.Workbook):
pass
else:
raise TypeError
if _is_range_address(range_):
sheet_names = [name.upper() for name in book.sheetnames]
index = sheet_names.index(sheet.upper())
data = book.worksheets[index][range_]
else:
data = _get_namedrange(book, range_, sheet)
if data is None:
raise ValueError(
"Named range not found in %s" % (range_, filename or book)
)
return data | Return a range as nested dict of openpyxl cells. |
387,808 | def forwards(apps, schema_editor):
Event = apps.get_model(, )
Work = apps.get_model(, )
WorkRole = apps.get_model(, )
WorkSelection = apps.get_model(, )
for event in Event.objects.filter(kind=):
work.slug = generate_slug(work.pk)
work.save()
WorkSelection.objects.create(
event=event,
work=work
)
for role in event.roles.all():
WorkRole.objects.create(
creator=role.creator,
work=work,
role_name=role.role_name,
role_order=role.role_order
)
role.delete() | Having added the new 'exhibition' Work type, we're going to assume that
every Event of type 'museum' should actually have one Exhibition attached.
So, we'll add one, with the same title as the Event.
And we'll move all Creators from the Event to the Exhibition. |
387,809 | def extract_transformers_from_source(source):
lines = source.split()
linenumbers = []
for number, line in enumerate(lines):
if FROM_EXPERIMENTAL.match(line):
add_transformers(line)
linenumbers.insert(0, number)
for number in linenumbers:
del lines[number]
return .join(lines) | Scan a source for lines of the form
from __experimental__ import transformer1 [,...]
identifying transformers to be used. Such line is passed to the
add_transformer function, after which it is removed from the
code to be executed. |
387,810 | def save_related(self, request, form, formsets, change):
super(MenuItemAdmin, self).save_related(request, form, formsets, change)
self.model.objects.rebuild() | Rebuilds the tree after saving items related to parent. |
387,811 | def _remove_redundancy_routers(self, context, router_ids, ports,
delete_ha_groups=False):
subnets_info = [{: port[][0][]}
for port in ports]
for r_id in router_ids:
for i in range(len(subnets_info)):
self.remove_router_interface(context, r_id, subnets_info[i])
LOG.debug("Removed interface on %(s_id)s to redundancy router "
"with %(r_id)s",
{: ports[i][], : r_id})
if delete_ha_groups and r_id == router_ids[0]:
self._delete_ha_group(context, ports[i][])
self.delete_router(context, r_id)
LOG.debug("Deleted redundancy router %s", r_id) | Deletes all interfaces of the specified redundancy routers
and then the redundancy routers themselves. |
387,812 | def do_rename(argdict):
site = make_site_obj(argdict)
slug = argdict[]
newtitle = argdict[]
try:
site.rename_page(slug, newtitle)
print "Renamed page."
except ValueError:
print "Cannot rename. A page with the given slug does not exist."
sys.exit() | Rename a page. |
387,813 | def define(self, value, lineno, namespace=None):
if self.defined:
error(lineno, "label already defined at line %i" % (self.name, self.lineno))
self.value = value
self.lineno = lineno
self.namespace = NAMESPACE if namespace is None else namespace | Defines label value. It can be anything. Even an AST |
387,814 | def _genA(self):
p, df = self._p, self.df
A = np.zeros((p, p))
for i in range(p):
A[i, i] = sqrt(st.chi2.rvs(df - i))
for j in range(p-1):
for i in range(j+1, p):
A[i, j] = np.random.randn()
return A | Generate the matrix A in the Bartlett decomposition
A is a lower triangular matrix, with
A(i, j) ~ sqrt of Chisq(df - i + 1) when i == j
~ Normal() when i > j |
387,815 | def load_data(path, fmt=None, bg_data=None, bg_fmt=None,
meta_data={}, holo_kw={}, as_type="float32"):
path = pathlib.Path(path).resolve()
for kk in meta_data:
if kk not in qpimage.meta.DATA_KEYS:
msg = "Meta data key not allowed: {}".format(kk)
raise ValueError(msg)
for kk in list(meta_data.keys()):
if meta_data[kk] in [np.nan, None]:
meta_data.pop(kk)
if fmt is None:
fmt = guess_format(path)
else:
if not formats_dict[fmt].verify(path):
msg = "Wrong file format for !".format(fmt, path)
raise WrongFileFormatError(msg)
dataobj = formats_dict[fmt](path=path,
meta_data=meta_data,
holo_kw=holo_kw,
as_type=as_type)
if bg_data is not None:
if isinstance(bg_data, qpimage.QPImage):
dataobj.set_bg(bg_data)
else:
bg_path = pathlib.Path(bg_data).resolve()
if bg_fmt is None:
bg_fmt = guess_format(bg_path)
bgobj = formats_dict[bg_fmt](path=bg_path,
meta_data=meta_data,
holo_kw=holo_kw,
as_type=as_type)
dataobj.set_bg(bgobj)
return dataobj | Load experimental data
Parameters
----------
path: str
Path to experimental data file or folder
fmt: str
The file format to use (see `file_formats.formats`).
If set to `None`, the file format is guessed.
bg_data: str
Path to background data file or `qpimage.QPImage`
bg_fmt: str
The file format to use (see `file_formats.formats`)
for the background. If set to `None`, the file format
is be guessed.
meta_data: dict
Meta data (see `qpimage.meta.DATA_KEYS`)
as_type: str
Defines the data type that the input data is casted to.
The default is "float32" which saves memory. If high
numerical accuracy is required (does not apply for a
simple 2D phase analysis), set this to double precision
("float64").
Returns
-------
dataobj: SeriesData or SingleData
Object that gives lazy access to the experimental data. |
387,816 | def format(self, record):
s = super(ANSIFormatter, self).format(record)
if hasattr(self.context, ):
s = self.context.ansi(s, **self.get_sgr(record))
return s | Overridden method that applies SGR codes to log messages. |
387,817 | def _register_view(self, app, resource, *urls, **kwargs):
endpoint = kwargs.pop(, None) or resource.__name__.lower()
self.endpoints.add(endpoint)
if endpoint in getattr(app, , {}):
existing_view_class = app.view_functions[endpoint].__dict__[]
if existing_view_class != resource:
raise ValueError(
.format(endpoint, existing_view_class.__name__))
if not hasattr(resource, ):
rule = self._make_url(url, None)
app.add_url_rule(rule, view_func=resource_func, **kwargs) | Bind resources to the app.
:param app: an actual :class:`flask.Flask` app
:param resource:
:param urls:
:param endpoint: endpoint name (defaults to :meth:`Resource.__name__.lower`
Can be used to reference this route in :meth:`flask.url_for`
:type endpoint: str
Additional keyword arguments not specified above will be passed as-is
to :meth:`flask.Flask.add_url_rule`.
SIDE EFFECT
Implements the one mentioned in add_resource |
387,818 | def rm(self, container_alias):
title = % self.__class__.__name__
input_fields = {
: container_alias
}
for key, value in input_fields.items():
object_title = % (title, key, str(value))
self.fields.validate(value, % key, object_title)
sys_cmd = % container_alias
output_lines = self.command(sys_cmd).split()
return output_lines[0] | a method to remove an active container
:param container_alias: string with name or id of container
:return: string with container id |
387,819 | def _decode_embedded_list(src):
output = []
for elem in src:
if isinstance(elem, dict):
elem = _decode_embedded_dict(elem)
elif isinstance(elem, list):
elem = _decode_embedded_list(elem)
elif isinstance(elem, bytes):
try:
elem = elem.decode()
except UnicodeError:
pass
output.append(elem)
return output | Convert enbedded bytes to strings if possible.
List helper. |
387,820 | def update_item(self, payload, last_modified=None):
to_send = self.check_items([payload])[0]
if last_modified is None:
modified = payload["version"]
else:
modified = last_modified
ident = payload["key"]
headers = {"If-Unmodified-Since-Version": str(modified)}
headers.update(self.default_headers())
req = requests.patch(
url=self.endpoint
+ "/{t}/{u}/items/{id}".format(
t=self.library_type, u=self.library_id, id=ident
),
headers=headers,
data=json.dumps(to_send),
)
self.request = req
try:
req.raise_for_status()
except requests.exceptions.HTTPError:
error_handler(req)
return True | Update an existing item
Accepts one argument, a dict containing Item data |
387,821 | def from_local_name(acs, attr, name_format):
for aconv in acs:
if aconv.name_format == name_format:
return aconv.to_format(attr)
return attr | :param acs: List of AttributeConverter instances
:param attr: attribute name as string
:param name_format: Which name-format it should be translated to
:return: An Attribute instance |
387,822 | def getFilename(name):
name = re.sub(r"[^0-9a-zA-Z_\-\.]", "_", name)
while ".." in name:
name = name.replace(, )
while "__" in name:
name = name.replace(, )
if name.startswith((".", "-")):
name = name[1:]
return name | Get a filename from given name without dangerous or incompatible characters. |
387,823 | def _get_config_value(profile, config_name):
s configuration value based on
the supplied configuration name.
profile
The profile name that contains configuration information.
config_name
The configuration item
config = __salt__[](profile)
if not config:
raise CommandExecutionError(
{0}\.format(profile)
)
config_value = config.get(config_name)
if config_value is None:
raise CommandExecutionError(
{0}\{1}\
.format(
config_name,
profile
)
)
return config_value | Helper function that returns a profile's configuration value based on
the supplied configuration name.
profile
The profile name that contains configuration information.
config_name
The configuration item's name to use to return configuration values. |
387,824 | def _get_record_attrs(out_keys):
if len(out_keys) == 1:
attr = list(out_keys.keys())[0]
if out_keys[attr]:
return attr, out_keys[attr]
return None, None | Check for records, a single key plus output attributes. |
387,825 | def AddClient(self, client):
client_id, keywords = self.AnalyzeClient(client)
self.AddKeywordsForName(client_id, keywords) | Adds a client to the index.
Args:
client: A VFSGRRClient record to add or update. |
387,826 | def pin(package, version, checks, marker, resolving, lazy, quiet):
root = get_root()
package_name = package.lower()
version = version.lower()
for check_name in sorted(os.listdir(root)):
pinned_reqs_file = os.path.join(root, check_name, )
resolved_reqs_file = os.path.join(root, check_name, )
if os.path.isfile(pinned_reqs_file):
pinned_packages = {package.name: package for package in read_packages(pinned_reqs_file)}
if package not in pinned_packages and check_name not in checks:
continue
if resolving:
pre_packages = list(read_packages(resolved_reqs_file))
else:
pre_packages = list(itervalues(pinned_packages))
if not quiet:
echo_info(.format(check_name))
if version == :
del pinned_packages[package_name]
else:
pinned_packages[package_name] = Package(package_name, version, marker)
package_list = sorted(itervalues(pinned_packages))
write_file_lines(pinned_reqs_file, (.format(package) for package in package_list))
if not quiet:
echo_waiting()
if resolving:
result = resolve_requirements(pinned_reqs_file, resolved_reqs_file, lazy=lazy)
if result.code:
abort(result.stdout + result.stderr)
if not quiet:
post_packages = read_packages(resolved_reqs_file if resolving else pinned_reqs_file)
display_package_changes(pre_packages, post_packages, indent=) | Pin a dependency for all checks that require it. This can
also resolve transient dependencies.
Setting the version to `none` will remove the package. You can
specify an unlimited number of additional checks to apply the
pin for via arguments. |
387,827 | def response_hook(self, r, **kwargs):
if r.status_code == 401:
www_authenticate = r.headers.get(, ).lower()
auth_type = _auth_type_from_header(www_authenticate)
if auth_type is not None:
return self.retry_using_http_NTLM_auth(
,
,
r,
auth_type,
kwargs
)
elif r.status_code == 407:
r,
auth_type,
kwargs
)
return r | The actual hook handler. |
387,828 | def disable_multicolor(self):
for color in [, , ]:
self.multicolorscales[color].config(state=tk.DISABLED, bg=)
self.multicolorframes[color].config(bg=)
self.multicolorlabels[color].config(bg=)
self.multicolordropdowns[color].config(bg=, state=tk.DISABLED)
self.multicolorminscale[color].config(bg=, state=tk.DISABLED)
self.multicolormaxscale[color].config(bg=, state=tk.DISABLED)
self.singlecolorscale.config(state=tk.NORMAL, bg=self.single_color_theme)
self.singlecolorframe.config(bg=self.single_color_theme)
self.singlecolorlabel.config(bg=self.single_color_theme)
self.singlecolordropdown.config(bg=self.single_color_theme, state=tk.NORMAL)
self.singlecolorminscale.config(bg=self.single_color_theme, state=tk.NORMAL)
self.singlecolormaxscale.config(bg=self.single_color_theme, state=tk.NORMAL) | swap from the multicolor image to the single color image |
387,829 | def AssignTasksToClient(self, client_id):
rules = self.Get(self.Schema.RULES)
if not rules:
return 0
if data_store.RelationalDBEnabled():
last_foreman_run = self._GetLastForemanRunTimeRelational(client_id)
else:
last_foreman_run = self._GetLastForemanRunTime(client_id)
latest_rule = max(rule.created for rule in rules)
if latest_rule <= last_foreman_run:
return 0
if data_store.RelationalDBEnabled():
try:
self._SetLastForemanRunTimeRelational(client_id, latest_rule)
except db.UnknownClientError:
pass
if not data_store.RelationalDBEnabled():
self._SetLastForemanRunTime(client_id, latest_rule)
relevant_rules = []
expired_rules = False
now = time.time() * 1e6
for rule in rules:
if rule.expires < now:
expired_rules = True
continue
if rule.created <= int(last_foreman_run):
continue
relevant_rules.append(rule)
if data_store.RelationalDBEnabled():
client_data = data_store.REL_DB.ReadClientFullInfo(client_id)
if client_data is None:
return
else:
client_data = aff4.FACTORY.Open(client_id, mode="rw", token=self.token)
actions_count = 0
for rule in relevant_rules:
if self._EvaluateRules(rule, client_data):
actions_count += self._RunActions(rule, client_id)
if expired_rules:
self.ExpireRules()
return actions_count | Examines our rules and starts up flows based on the client.
Args:
client_id: Client id of the client for tasks to be assigned.
Returns:
Number of assigned tasks. |
387,830 | def update_hacluster_dns_ha(service, relation_data,
crm_ocf=):
assert_charm_supports_dns_ha()
settings = [, ,
, ]
hostname_group = []
for setting in settings:
hostname = config(setting)
if hostname is None:
log(
.format(setting),
DEBUG)
continue
m = re.search(, setting)
if m:
endpoint_type = m.group(1)
raise DNSHAException(msg) | Configure DNS-HA resources based on provided configuration
@param service: Name of the service being configured
@param relation_data: Pointer to dictionary of relation data.
@param crm_ocf: Corosync Open Cluster Framework resource agent to use for
DNS HA |
387,831 | def binned_bitsets_from_list( list=[] ):
last_chrom = None
last_bitset = None
bitsets = dict()
for l in list:
chrom = l[0]
if chrom != last_chrom:
if chrom not in bitsets:
bitsets[chrom] = BinnedBitSet(MAX)
last_chrom = chrom
last_bitset = bitsets[chrom]
start, end = int( l[1] ), int( l[2] )
last_bitset.set_range( start, end - start )
return bitsets | Read a list into a dictionary of bitsets |
387,832 | def RemoveDevice(self, object_path):
adapter = mockobject.objects[self.path]
adapter.EmitSignal(ADAPTER_IFACE, ,
, [object_path]) | Remove (forget) a device |
387,833 | def is_contextfree(self):
for lhs, rhs in self.rules:
if len(lhs) != 1:
return False
if lhs[0] not in self.nonterminals:
return False
return True | Returns True iff the grammar is context-free. |
387,834 | def unregister(self, name):
try:
name = name.name
except AttributeError:
pass
return self.pop(name,None) | Unregister function by name. |
387,835 | def check_load(grid, mode):
crit_branches = {}
crit_stations = []
if mode == :
load_factor_mv_line_lc_normal = float(cfg_ding0.get(,
))
load_factor_mv_cable_lc_normal = float(cfg_ding0.get(,
))
load_factor_mv_line_fc_normal = float(cfg_ding0.get(,
))
load_factor_mv_cable_fc_normal = float(cfg_ding0.get(,
))
mw2kw = 1e3
kw2mw = 1e-3
elif mode == :
raise NotImplementedError
if crit_branches:
logger.info(.format(
len(crit_branches)))
if crit_stations:
logger.info(.format(
len(crit_stations)))
return crit_branches, crit_stations | Checks for over-loading of branches and transformers for MV or LV grid.
Parameters
----------
grid : GridDing0
Grid identifier.
mode : str
Kind of grid ('MV' or 'LV').
Returns
-------
:obj:`dict`
Dict of critical branches with max. relative overloading, and the
following format::
{
branch_1: rel_overloading_1,
...,
branch_n: rel_overloading_n
}
:any:`list` of :obj:`GridDing0`
List of critical transformers with the following format::
[trafo_1, ..., trafo_m]
Notes
-----
Lines'/cables' max. capacity (load case and feed-in case) are taken from [#]_.
References
----------
.. [#] dena VNS
See Also
--------
ding0.flexopt.reinforce_measures.reinforce_branches_current :
ding0.flexopt.reinforce_measures.reinforce_branches_voltage : |
387,836 | def compile_relative_distances(self, sympy_accesses=None):
if sympy_accesses is None:
sympy_accesses = self.compile_sympy_accesses()
sympy_distances = defaultdict(list)
for var_name, accesses in sympy_accesses.items():
for i in range(1, len(accesses)):
sympy_distances[var_name].append((accesses[i-1]-accesses[i]).simplify())
return sympy_distances | Return load and store distances between accesses.
:param sympy_accesses: optionally restrict accesses, default from compile_sympy_accesses()
e.g. if accesses are to [+N, +1, -1, -N], relative distances are [N-1, 2, N-1]
returned is a dict of list of sympy expressions, for each variable |
387,837 | def get_pending_withdrawals(self, currency=None):
return self._api_query(path_dict={
API_V2_0:
}, options={: currency} if currency else None,
protection=PROTECTION_PRV) | Used to view your pending withdrawals
Endpoint:
1.1 NO EQUIVALENT
2.0 /key/balance/getpendingwithdrawals
:param currency: String literal for the currency (ie. BTC)
:type currency: str
:return: pending withdrawals in JSON
:rtype : list |
387,838 | def new(cls, settings, *args, **kwargs):
logger.debug( % settings[])
cloud = settings[]
if cloud == :
self = BareInstance(settings=settings, *args, **kwargs)
elif cloud == :
self = AWSInstance(settings=settings, *args, **kwargs)
elif cloud == :
self = GCPInstance(settings=settings, *args, **kwargs)
else:
raise DSBException( % cloud)
return self | Create a new Cloud instance based on the Settings |
387,839 | def compile(self, source, name=None, filename=None, raw=False,
defer_init=False):
source_hint = None
try:
if isinstance(source, string_types):
source_hint = source
source = self._parse(source, name, filename)
source = self._generate(source, name, filename,
defer_init=defer_init)
if raw:
return source
if filename is None:
filename =
else:
filename = encode_filename(filename)
return self._compile(source, filename)
except TemplateSyntaxError:
exc_info = sys.exc_info()
self.handle_exception(exc_info, source_hint=source_hint) | Compile a node or template source code. The `name` parameter is
the load name of the template after it was joined using
:meth:`join_path` if necessary, not the filename on the file system.
the `filename` parameter is the estimated filename of the template on
the file system. If the template came from a database or memory this
can be omitted.
The return value of this method is a python code object. If the `raw`
parameter is `True` the return value will be a string with python
code equivalent to the bytecode returned otherwise. This method is
mainly used internally.
`defer_init` is use internally to aid the module code generator. This
causes the generated code to be able to import without the global
environment variable to be set.
.. versionadded:: 2.4
`defer_init` parameter added. |
387,840 | def decorator_handle(tokens):
defs = []
decorates = []
for i, tok in enumerate(tokens):
if "simple" in tok and len(tok) == 1:
decorates.append("@" + tok[0])
elif "test" in tok and len(tok) == 1:
varname = decorator_var + "_" + str(i)
defs.append(varname + " = " + tok[0])
decorates.append("@" + varname)
else:
raise CoconutInternalException("invalid decorator tokens", tok)
return "\n".join(defs + decorates) + "\n" | Process decorators. |
387,841 | def _extract_coeffs(self, imt):
C_HR = self.COEFFS_HARD_ROCK[imt]
C_BC = self.COEFFS_BC[imt]
C_SR = self.COEFFS_SOIL_RESPONSE[imt]
SC = self.COEFFS_STRESS[imt]
return C_HR, C_BC, C_SR, SC | Extract dictionaries of coefficients specific to required
intensity measure type. |
387,842 | def jtype(c):
ct = c[]
return ct if ct != else .format(ct, c.get()) | Return the a string with the data type of a value, for JSON data |
387,843 | def _bool_segments(array, start=0, delta=1, minlen=1):
array = iter(array)
i = 0
while True:
try:
val = next(array)
except StopIteration:
return
if val:
n = 1
try:
while next(array):
n += 1
except StopIteration:
return
finally:
if n >= minlen:
yield (start + i * delta, start + (i + n) * delta)
i += n
i += 1 | Yield segments of consecutive `True` values in a boolean array
Parameters
----------
array : `iterable`
An iterable of boolean-castable values.
start : `float`
The value of the first sample on the indexed axis
(e.g.the GPS start time of the array).
delta : `float`
The step size on the indexed axis (e.g. sample duration).
minlen : `int`, optional
The minimum number of consecutive `True` values for a segment.
Yields
------
segment : `tuple`
``(start + i * delta, start + (i + n) * delta)`` for a sequence
of ``n`` consecutive True values starting at position ``i``.
Notes
-----
This method is adapted from original code written by Kipp Cannon and
distributed under GPLv3.
The datatype of the values returned will be the larger of the types
of ``start`` and ``delta``.
Examples
--------
>>> print(list(_bool_segments([0, 1, 0, 0, 0, 1, 1, 1, 0, 1]))
[(1, 2), (5, 8), (9, 10)]
>>> print(list(_bool_segments([0, 1, 0, 0, 0, 1, 1, 1, 0, 1]
... start=100., delta=0.1))
[(100.1, 100.2), (100.5, 100.8), (100.9, 101.0)] |
387,844 | def sticker_templates():
voc = DisplayList()
stickers = getStickerTemplates()
for sticker in stickers:
voc.add(sticker.get(), sticker.get())
if voc.index == 0:
logger.warning()
return voc | It returns the registered stickers in the system.
:return: a DisplayList object |
387,845 | def exclude(source, keys, *, transform=None):
check = keys if callable(keys) else lambda key: key in keys
return {key: transform(source[key]) if transform else source[key]
for key in source if not check(key)} | Returns a dictionary excluding keys from a source dictionary.
:source: a dictionary
:keys: a set of keys, or a predicate function that accepting a key
:transform: a function that transforms the values |
387,846 | def coerce(self, values):
if isinstance(values, compat.basestring):
values = tuple(value.strip() for value in values.split())
opt_iter = tuple(copy.deepcopy(self._option) for value in values)
for opt_obj, val in compat.zip(opt_iter, values):
opt_obj.__set__(None, val)
return opt_iter | Convert an iterable of literals to an iterable of options.
Args:
values (iterable or string): An iterable of raw values to convert
into options. If the value is a string is is assumed to be a
comma separated list and will be split before processing.
Returns:
iterable: An iterable of option values initialized with the raw
values from `values`.
Raises:
TypeError: If `values` is not iterable or string.
TypeError: If the underlying option raises a TypeError.
ValueError: If the underlying option raises a ValueError. |
387,847 | def params_of_mean(value=array([-.005, 1.]), tau=.1, rate=4.):
def logp(value, tau, rate):
if value[1] > 0 and value[1] + value[0] * 110 > 0:
return normal_like(value[0], 0., tau) + \
exponential_like(value[1], rate)
else:
return -Inf
def random(tau, rate):
val = zeros(2)
val[0] = rnormal(0., tau)
val[1] = rexponential(rate)
while val[1] < 0 or val[1] + val[0] * 110 <= 0:
val[0] = rnormal(0., tau)
val[1] = rexponential(rate)
return val | Intercept and slope of rate stochastic of poisson distribution
Rate stochastic must be positive for t in [0,T]
p(intercept, slope|tau,rate) =
N(slope|0,tau) Exp(intercept|rate) 1(intercept>0) 1(intercept + slope * T>0) |
387,848 | def _get_color(self, r, g, b):
clr = (r, g, b)
return clr | Convert red, green and blue values specified in floats with
range 0-1 to whatever the native widget color object is. |
387,849 | def wrap(msg, indent, indent_first=True):
wrapper.width = 120
wrapper.initial_indent = indent
wrapper.subsequent_indent = indent
msg = wrapper.fill(msg)
return msg if indent_first else msg[len(indent):] | Helper function that wraps msg to 120-chars page width. All lines (except maybe 1st) will be prefixed with
string {indent}. First line is prefixed only if {indent_first} is True.
:param msg: string to indent
:param indent: string that will be used for indentation
:param indent_first: if True then the first line will be indented as well, otherwise not |
387,850 | def toposort(data):
if len(data) == 0:
return
data = data.copy()
for k, v in data.items():
v.discard(k)
extra_items_in_deps = reduce(set.union, data.values()) - set(data.keys())
data.update(dict((item, set()) for item in extra_items_in_deps))
while True:
ordered = set(item for item, dep in data.items() if len(dep) == 0)
if not ordered:
break
yield ordered
data = dict((item, (dep - ordered))
for item, dep in data.items()
if item not in ordered)
if len(data) != 0:
raise CyclicDependency(data) | Dependencies are expressed as a dictionary whose keys are items
and whose values are a set of dependent items. Output is a list of
sets in topological order. The first set consists of items with no
dependences, each subsequent set consists of items that depend upon
items in the preceeding sets.
:param data:
:type data:
:return:
:rtype: |
387,851 | def int_list_packer(term, values):
DENSITY = 10
MIN_RANGE = 20
singletons = set()
ranges = []
exclude = set()
sorted = jx.sort(values)
last = sorted[0]
curr_start = last
curr_excl = set()
for v in sorted[1::]:
if v <= last + 1:
pass
elif v - last > 3:
if last == curr_start:
singletons.add(last)
elif last - curr_start - len(curr_excl) < MIN_RANGE or ((last - curr_start) < len(curr_excl) * DENSITY):
singletons |= set(range(curr_start, last + 1))
singletons -= curr_excl
else:
ranges.append({"gte": curr_start, "lte": last})
exclude |= curr_excl
curr_start = v
curr_excl = set()
else:
if 1 + last - curr_start >= len(curr_excl) * DENSITY:
add_me = set(range(last + 1, v))
curr_excl |= add_me
elif 1 + last - curr_start - len(curr_excl) < MIN_RANGE:
new_singles = set(range(curr_start, last + 1)) - curr_excl
singletons = singletons | new_singles
curr_start = v
curr_excl = set()
else:
ranges.append({"gte": curr_start, "lte": last})
exclude |= curr_excl
curr_start = v
curr_excl = set()
last = v
if last == curr_start:
singletons.add(last)
elif last - curr_start - len(curr_excl) < MIN_RANGE or ((last - curr_start) < len(curr_excl) * DENSITY):
singletons |= set(range(curr_start, last + 1))
singletons -= curr_excl
else:
ranges.append({"gte": curr_start, "lte": last})
exclude |= curr_excl
if ranges:
r = {"or": [{"range": {term: r}} for r in ranges]}
if exclude:
r = {"and": [r, {"not": {"terms": {term: jx.sort(exclude)}}}]}
if singletons:
return {"or": [
{"terms": {term: jx.sort(singletons)}},
r
]}
else:
return r
else:
return {"terms": {term: values}} | return singletons, ranges and exclusions |
387,852 | def delete(self):
if lib.EnvDeleteInstance(self._env, self._ist) != 1:
raise CLIPSError(self._env) | Delete the instance. |
387,853 | def wrap_many(self, *args, strict=False):
for arg in args:
is_elem = arg and isinstance(arg, DOMElement)
is_elem_iter = (
not is_elem and arg and isinstance(arg, Iterable) and isinstance(iter(arg).__next__(), DOMElement)
)
if not (is_elem or is_elem_iter):
raise WrongArgsError(
self,
"Argument {} is not DOMElement nor iterable of DOMElements".format(
arg
),
)
wcopies = []
failure = []
def wrap_next(tag, idx):
nonlocal wcopies, failure
next_copy = self.__copy__()
try:
return next_copy.wrap(tag)
except TagError:
failure.append(idx)
return next_copy
for arg_idx, arg in enumerate(args):
if isinstance(arg, DOMElement):
wcopies.append(wrap_next(arg, (arg_idx, -1)))
else:
iter_wcopies = []
for iter_idx, t in enumerate(arg):
iter_wcopies.append(wrap_next(t, (arg_idx, iter_idx)))
wcopies.append(type(arg)(iter_wcopies))
if failure and strict:
raise TagError(
self,
"Wrapping in a non empty Tag is forbidden, failed on arguments " +
", ".join(
list(
map(
lambda idx: str(idx[0])
if idx[1] == -1
else "[{1}] of {0}".format(*idx),
failure,
)
)
),
)
return wcopies | Wraps different copies of this element inside all empty tags
listed in params or param's (non-empty) iterators.
Returns list of copies of this element wrapped inside args
or None if not succeeded, in the same order and same structure,
i.e. args = (Div(), (Div())) -> value = (A(...), (A(...)))
If on some args it must raise TagError, it will only if strict is True,
otherwise it will do nothing with them and return Nones on their positions |
387,854 | def update(did):
required_attributes = [, , , , , ,
]
required_metadata_base_attributes = [, , , ,
, , , ]
required_metadata_curation_attributes = [, ]
assert isinstance(request.json, dict),
data = request.json
if not data:
logger.error(f)
return 400
msg, status = check_required_attributes(required_attributes, data, )
if msg:
return msg, status
msg, status = check_required_attributes(required_metadata_base_attributes,
_get_base_metadata(data[]), )
if msg:
return msg, status
msg, status = check_required_attributes(required_metadata_curation_attributes,
_get_curation_metadata(data[]), )
if msg:
return msg, status
msg, status = check_no_urls_in_files(_get_base_metadata(data[]), )
if msg:
return msg, status
msg, status = validate_date_format(data[])
if msg:
return msg, status
_record = dict()
_record = copy.deepcopy(data)
_record[] = datetime.strptime(data[], )
try:
if dao.get(did) is None:
register()
return _sanitize_record(_record), 201
else:
for service in _record[]:
service_id = int(service[])
if service[] == :
_record[][service_id][][][] = _get_date(
dao.get(did)[])
dao.update(_record, did)
return Response(_sanitize_record(_record), 200, content_type=)
except Exception as err:
return f, 500 | Update DDO of an existing asset
---
tags:
- ddo
consumes:
- application/json
parameters:
- in: body
name: body
required: true
description: DDO of the asset.
schema:
type: object
required:
- "@context"
- created
- id
- publicKey
- authentication
- proof
- service
properties:
"@context":
description:
example: https://w3id.org/future-method/v1
type: string
id:
description: ID of the asset.
example: did:op:123456789abcdefghi
type: string
created:
description: date of ddo creation.
example: "2016-02-08T16:02:20Z"
type: string
publicKey:
type: array
description: List of public keys.
example: [{"id": "did:op:123456789abcdefghi#keys-1"},
{"type": "Ed25519VerificationKey2018"},
{"owner": "did:op:123456789abcdefghi"},
{"publicKeyBase58": "H3C2AVvLMv6gmMNam3uVAjZpfkcJCwDwnZn6z3wXmqPV"}]
authentication:
type: array
description: List of authentication mechanisms.
example: [{"type": "RsaSignatureAuthentication2018"},
{"publicKey": "did:op:123456789abcdefghi#keys-1"}]
proof:
type: dictionary
description: Information about the creation and creator of the asset.
example: {"type": "UUIDSignature",
"created": "2016-02-08T16:02:20Z",
"creator": "did:example:8uQhQMGzWxR8vw5P3UWH1ja",
"signatureValue": "QNB13Y7Q9...1tzjn4w=="
}
service:
type: array
description: List of services.
example: [{"type": "Access",
"serviceEndpoint":
"http://mybrizo.org/api/v1/brizo/services/consume?pubKey=${
pubKey}&serviceId={serviceId}&url={url}"},
{"type": "Compute",
"serviceEndpoint":
"http://mybrizo.org/api/v1/brizo/services/compute?pubKey=${
pubKey}&serviceId={serviceId}&algo={algo}&container={container}"},
{
"type": "Metadata",
"serviceDefinitionId": "2",
"serviceEndpoint":
"http://myaquarius.org/api/v1/provider/assets/metadata/{did}",
"metadata": {
"base": {
"name": "UK Weather information 2011",
"type": "dataset",
"description": "Weather information of UK including
temperature and humidity",
"dateCreated": "2012-02-01T10:55:11Z",
"author": "Met Office",
"license": "CC-BY",
"copyrightHolder": "Met Office",
"compression": "zip",
"workExample": "stationId,latitude,longitude,datetime,
temperature,humidity/n423432fsd,51.509865,-0.118092,
2011-01-01T10:55:11+00:00,7.2,68",
"files": [{
"contentLength": "4535431",
"contentType": "text/csv",
"encoding": "UTF-8",
"compression": "zip",
"resourceId": "access-log2018-02-13-15-17-29-18386C502CAEA932"
}
],
"encryptedFiles": "0x098213xzckasdf089723hjgdasfkjgasfv",
"links": [{
"name": "Sample of Asset Data",
"type": "sample",
"url": "https://foo.com/sample.csv"
},
{
"name": "Data Format Definition",
"type": "format",
"AssetID":
"4d517500da0acb0d65a716f61330969334630363ce4a6a9d39691026ac7908ea"
}
],
"inLanguage": "en",
"tags": "weather, uk, 2011, temperature, humidity",
"price": 10,
"checksum":
"38803b9e6f04fce3fba4b124524672592264d31847182c689095a081c9e85262"
},
"curation": {
"rating": 0.93,
"numVotes": 123,
"schema": "Binary Voting"
},
"additionalInformation": {
"updateFrecuency": "yearly",
"structuredMarkup": [{
"uri": "http://skos.um.es/unescothes/C01194/jsonld",
"mediaType": "application/ld+json"
},
{
"uri": "http://skos.um.es/unescothes/C01194/turtle",
"mediaType": "text/turtle"
}
]
}
}
}]
responses:
200:
description: Asset successfully updated.
201:
description: Asset successfully registered.
400:
description: One of the required attributes is missing.
404:
description: Invalid asset data.
500:
description: Error |
387,855 | def check_in(self, url: str, new_status: Status,
increment_try_count: bool=True,
url_result: Optional[URLResult]=None):
| Update record for processed URL.
Args:
url: The URL.
new_status: Update the item status to `new_status`.
increment_try_count: Whether to increment the try counter
for the URL.
url_result: Additional values. |
387,856 | def cut_from_block(html_message):
block = html_message.xpath(
("//*[starts-with(mg:text_content(), )]|"
"//*[starts-with(mg:text_content(), )]"))
if block:
block = block[-1]
parent_div = None
while block.getparent() is not None:
if block.tag == :
parent_div = block
break
block = block.getparent()
if parent_div is not None:
maybe_body = parent_div.getparent()
parent_div_is_all_content = (
maybe_body is not None and maybe_body.tag == and
len(maybe_body.getchildren()) == 1)
if not parent_div_is_all_content:
parent = block.getparent()
next_sibling = block.getnext()
while next_sibling is not None:
parent.remove(block)
block = next_sibling
next_sibling = block.getnext()
if block is not None:
parent.remove(block)
return True
else:
return False
block = html_message.xpath(
("//*[starts-with(mg:tail(), )]|"
"//*[starts-with(mg:tail(), )]"))
if block:
block = block[0]
if RE_FWD.match(block.getparent().text or ):
return False
while(block.getnext() is not None):
block.getparent().remove(block.getnext())
block.getparent().remove(block)
return True | Cuts div tag which wraps block starting with "From:". |
387,857 | def get_help(obj, env, subcmds):
doc = txt.dedent(obj.__doc__ or "")
env = env.copy()
doc = doc.strip()
if not re.search(r"^usage:\s*$", doc, flags=re.IGNORECASE | re.MULTILINE):
doc += txt.dedent()
help_line = (" %%-%ds %%s"
% (max([5] + [len(a) for a in subcmds]), ))
env["actions"] = "\n".join(
help_line % (
name,
get_help(subcmd, subcmd_env(env, name), {}).split("\n")[0])
for name, subcmd in subcmds.items())
env["actions_help"] = "" if not env["actions"] else (
"ACTION could be one of:\n\n"
"%(actions)s\n\n"
"See for more information "
"on a specific command."
% env)
if "%(std_usage)s" in doc:
env["std_usage"] = txt.indent(
("%(surcmd)s --help\n"
"%(surcmd)s --version" +
(("\n%(surcmd)s help [COMMAND]"
"\n%(surcmd)s ACTION [ARGS...]") if subcmds else ""))
% env,
_find_prefix(doc, "%(std_usage)s"),
first="")
if "%(std_options)s" in doc:
env["std_options"] = txt.indent(
"--help Show this screen.\n"
"--version Show version.",
_find_prefix(doc, "%(std_options)s"),
first="")
if subcmds and "%(actions_help)s" not in doc:
doc += "\n\n%(actions_help)s"
try:
output = doc % env
except KeyError as e:
msg.err("Doc interpolation of %s needed missing key %r"
% (aformat(env["surcmd"], attrs=["bold", ]),
e.args[0]))
exit(1)
except Exception as e:
msg.err(
"Documentation of %s is not valid. Please check it:\n%s"
% (aformat(env["surcmd"], attrs=["bold", ]),
doc))
exit(1)
return output | Interpolate complete help doc of given object
Assumption that given object as a specific interface:
obj.__doc__ is the basic help object.
obj.get_actions_titles() returns the subcommand if any. |
387,858 | def list_build_configuration_sets(page_size=200, page_index=0, sort="", q=""):
data = list_build_configuration_sets_raw(page_size, page_index, sort, q)
if data:
return utils.format_json_list(data) | List all build configuration sets |
387,859 | def tf_idf(text):
_raise_error_if_not_sarray(text, "text")
if len(text) == 0:
return _turicreate.SArray()
dataset = _turicreate.SFrame({: text})
scores = _feature_engineering.TFIDF().fit_transform(dataset)
return scores[] | Compute the TF-IDF scores for each word in each document. The collection
of documents must be in bag-of-words format.
.. math::
\mbox{TF-IDF}(w, d) = tf(w, d) * log(N / f(w))
where :math:`tf(w, d)` is the number of times word :math:`w` appeared in
document :math:`d`, :math:`f(w)` is the number of documents word :math:`w`
appeared in, :math:`N` is the number of documents, and we use the
natural logarithm.
Parameters
----------
text : SArray[str | dict | list]
Input text data.
Returns
-------
out : SArray[dict]
The same document corpus where each score has been replaced by the
TF-IDF transformation.
See Also
--------
count_words, count_ngrams, tokenize,
References
----------
- `Wikipedia - TF-IDF <https://en.wikipedia.org/wiki/TFIDF>`_
Examples
--------
.. sourcecode:: python
>>> import turicreate
>>> docs = turicreate.SArray('https://static.turi.com/datasets/nips-text')
>>> docs_tfidf = turicreate.text_analytics.tf_idf(docs) |
387,860 | def main():
import signal
signal.signal(signal.SIGINT, signal.SIG_DFL)
import argparse
parser = argparse.ArgumentParser(description=)
parser.add_argument(,,type=str, default=,help=)
parser.add_argument(,type=str, help=)
parser.add_argument(,type=str, help=)
parser.add_argument(, , help=)
parser.add_argument(, nargs=, help=)
args = parser.parse_args()
GObject.threads_init()
default_config = {: args.parser}
if args.filter:
default_config[]=args.filter
if args.separator:
default_config[]=args.separator
if args.headers:
default_config[]=map(lambda s: s.strip(),args.headers.split())
inputs = [ (open(f,),default_config) for f in args.files ]
| Main entry point |
387,861 | def get_all_publications(return_namedtuples=True):
sources = [
ben_cz.get_publications,
grada_cz.get_publications,
cpress_cz.get_publications,
zonerpress_cz.get_publications,
]
publications = []
for source in sources:
publications.extend(
filters.filter_publications(source())
)
if return_namedtuples:
publications = map(lambda x: x.to_namedtuple(), publications)
return publications | Get list publications from all available source.
Args:
return_namedtuples (bool, default True): Convert :class:`.Publication`
structures to namedtuples (used in AMQP
communication).
Returns:
list: List of :class:`.Publication` structures converted to namedtuple. |
387,862 | def download_ts(self, path, chunk, process_last_line=True):
import glob
ret_chunk = []
partial_chunk =
lines = chunk.strip().split()
if not process_last_line:
partial_chunk = lines.pop()
for line in lines:
if line.startswith():
ts = % (path, line.split()[0].split()[-1])
relative_ts = % (
path.split()[-1], line.split()[0].split()[-1])
if not os.path.exists(ts):
gevent.spawn(ApiCall.save_url_to_file, line, ts).start()
gevent.sleep(0)
ret_chunk.append( + line)
ret_chunk.append(relative_ts)
else:
ret_chunk = []
else:
ret_chunk.append(line)
if in chunk:
self.repeat_needed = 0
gevent.sleep(0)
elif chunk.strip():
self.repeat_needed = 1 + len(glob.glob(path + ))
ret_chunk = ret_chunk and .join(ret_chunk) + or
return ret_chunk, partial_chunk | This will look for a download ts link.
It will then download that file and replace the
link with the local file.
:param process_last_line:
:param path: str of the path to put the file
:param chunk: str of the chunk file, note this could have partial lines
:return: str of the chunk with the local file link |
387,863 | def c(*args, **kwargs):
with Reflect.context(**kwargs) as r:
kwargs["args"] = args
instance = C_CLASS(r, stream, **kwargs)
instance() | kind of like od -c on the command line, basically it dumps each character and info
about that char
since -- 2013-5-9
*args -- tuple -- one or more strings to dump |
387,864 | def differences_between(self, current_files, parent_files, changes, prefixes):
parent_oid = None
if any(is_tree for _, is_tree, _ in changes):
if len(changes) == 1:
wanted_path = list(changes)[0][0]
parent_oid = frozenset([oid for path, is_tree, oid in parent_files if path == wanted_path and is_tree])
else:
parent_values = defaultdict(set)
parent_changes = parent_files - current_files
for path, is_tree, oid in parent_changes:
if is_tree:
parent_values[path].add(oid)
for path, is_tree, oid in changes:
if is_tree and path not in prefixes:
continue
if not is_tree:
yield path, None, True
else:
parent_oids = parent_oid if parent_oid is not None else parent_values.get(path, empty)
cf_and_pf, changes = self.tree_structures_for(path, oid, parent_oids, prefixes)
if changes:
yield cf_and_pf, changes, False | yield (thing, changes, is_path)
If is_path is true, changes is None and thing is the path as a tuple.
If is_path is false, thing is the current_files and parent_files for
that changed treeentry and changes is the difference between current_files
and parent_files.
The code here is written to squeeze as much performance as possible out
of this operation. |
387,865 | def _rest_post(self, suburi, request_headers, request_body):
return self._rest_op(, suburi, request_headers, request_body) | REST POST operation.
The response body after the operation could be the new resource, or
ExtendedError, or it could be empty. |
387,866 | def on_for_seconds(self, left_speed, right_speed, seconds, brake=True, block=True):
if seconds < 0:
raise ValueError("seconds is negative ({})".format(seconds))
(left_speed_native_units, right_speed_native_units) = self._unpack_speeds_to_native_units(left_speed, right_speed)
self.left_motor.speed_sp = int(round(left_speed_native_units))
self.left_motor.time_sp = int(seconds * 1000)
self.left_motor._set_brake(brake)
self.right_motor.speed_sp = int(round(right_speed_native_units))
self.right_motor.time_sp = int(seconds * 1000)
self.right_motor._set_brake(brake)
log.debug("%s: on_for_seconds %ss at left-speed %s, right-speed %s" %
(self, seconds, left_speed, right_speed))
self.left_motor.run_timed()
self.right_motor.run_timed()
if block:
self._block() | Rotate the motors at 'left_speed & right_speed' for 'seconds'. Speeds
can be percentages or any SpeedValue implementation. |
387,867 | def install_remote(self):
package, pkg_folder = None, None
try:
package = self._download()
pkg_folder = self._extract(package)
napp_folder = self._get_local_folder(pkg_folder)
dst = self._installed / self.user / self.napp
self._check_module(dst.parent)
shutil.move(str(napp_folder), str(dst))
finally:
if package:
Path(package).unlink()
if pkg_folder and pkg_folder.exists():
shutil.rmtree(str(pkg_folder)) | Download, extract and install NApp. |
387,868 | def getRelativePath(basepath, path):
basepath = splitpath(os.path.abspath(basepath))
path = splitpath(os.path.abspath(path))
afterCommon = False
for c in basepath:
if afterCommon or path[0] != c:
path.insert(0, os.path.pardir)
afterCommon = True
else:
del path[0]
return os.path.join(*path) | Get a path that is relative to the given base path. |
387,869 | def _from_dict(cls, _dict):
args = {}
if in _dict:
args[] = [
LanguageModel._from_dict(x)
for x in (_dict.get())
]
else:
raise ValueError(
customizations\
)
return cls(**args) | Initialize a LanguageModels object from a json dictionary. |
387,870 | def make_encoder(self,formula_dict,inter_list,param_dict):
X_dict = {}
Xcol_dict = {}
encoder_dict = {}
for key in formula_dict:
encoding,arg = formula_dict[key]
if in encoding:
drop_name = arg
deviation_encoder,X_sub,colnames_sub = _dev_encode(param_dict,drop_name,key)
X_dict[key] = X_sub
Xcol_dict[key] = colnames_sub
encoder_dict[key] = deviation_encoder
elif in encoding:
ref_name = arg
dummy_encoder,X_sub,colnames_sub = _dum_encode(param_dict,ref_name,key)
X_dict[key] = X_sub
Xcol_dict[key] = colnames_sub
encoder_dict[key] = dummy_encoder
elif in encoding:
degree = arg
polynomial_encoder,X_sub,colnames_sub = _poly_encode(param_dict,degree,key)
X_dict[key] = X_sub
Xcol_dict[key] = colnames_sub
encoder_dict[key] = polynomial_encoder
else:
print encoding
raise Exception("Encoding name error")
for interaction in inter_list:
if len(interaction) >= 3:
raise Exception("Doesnthreewaytwowaytrimmed_columns'] = self._trimmed_columns
return encoder_dict | make the encoder function |
387,871 | def associate_route_table(self, route_table_id, subnet_id):
params = {
: route_table_id,
: subnet_id
}
result = self.get_object(, params, ResultSet)
return result.associationId | Associates a route table with a specific subnet.
:type route_table_id: str
:param route_table_id: The ID of the route table to associate.
:type subnet_id: str
:param subnet_id: The ID of the subnet to associate with.
:rtype: str
:return: The ID of the association created |
387,872 | def export_throw_event_info(node_params, output_element):
definitions = node_params[consts.Consts.event_definitions]
for definition in definitions:
definition_id = definition[consts.Consts.id]
definition_type = definition[consts.Consts.definition_type]
output_definition = eTree.SubElement(output_element, definition_type)
if definition_id != "":
output_definition.set(consts.Consts.id, definition_id) | Adds EndEvent or IntermediateThrowingEvent attributes to exported XML element
:param node_params: dictionary with given intermediate throw event parameters,
:param output_element: object representing BPMN XML 'intermediateThrowEvent' element. |
387,873 | def _rapRperiAxiEq(R,E,L,pot):
return E-potentialAxi(R,pot)-L**2./2./R**2. | The vr=0 equation that needs to be solved to find apo- and pericenter |
387,874 | def get_measurement_id_options(self):
document = self._get_document_for_url(
self._get_url_for_measurements()
)
measurement_ids = self._get_measurement_ids(document)
return measurement_ids | Returns list of measurement choices. |
387,875 | def create_small_thumbnail(self, token, item_id):
parameters = dict()
parameters[] = token
parameters[] = item_id
response = self.request(
, parameters)
return response | Create a 100x100 small thumbnail for the given item. It is used for
preview purpose and displayed in the 'preview' and 'thumbnails'
sidebar sections.
:param token: A valid token for the user in question.
:type token: string
:param item_id: The item on which to set the thumbnail.
:type item_id: int | long
:returns: The item object (with the new thumbnail id) and the path
where the newly created thumbnail is stored.
:rtype: dict |
387,876 | def on(self, event, listener, *user_args):
self._listeners[event].append(
_Listener(callback=listener, user_args=user_args)) | Register a ``listener`` to be called on ``event``.
The listener will be called with any extra arguments passed to
:meth:`emit` first, and then the extra arguments passed to :meth:`on`
last.
If the listener function returns :class:`False`, it is removed and will
not be called the next time the ``event`` is emitted. |
387,877 | def get_image_grad(net, image, class_id=None):
return _get_grad(net, image, class_id, image_grad=True) | Get the gradients of the image.
Parameters:
----------
net: Block
Network to use for visualization.
image: NDArray
Preprocessed image to use for visualization.
class_id: int
Category ID this image belongs to. If not provided,
network's prediction will be used. |
387,878 | def determine_if_whitespace(self):
value = self.current.value
if value == :
self.is_space = True
else:
self.is_space = False
if (value == or regexes[].match(value)):
self.is_space = True | Set is_space if current token is whitespace
Is space if value is:
* Newline
* Empty String
* Something that matches regexes['whitespace'] |
387,879 | def authorized_default_handler(resp, remote, *args, **kwargs):
response_token_setter(remote, resp)
db.session.commit()
return redirect(url_for()) | Store access token in session.
Default authorized handler.
:param remote: The remote application.
:param resp: The response.
:returns: Redirect response. |
387,880 | def init_registry_from_json(mongo, filename, clear_collection=False):
with open(filename, ) as f:
models = json.load(f)
init_registry(mongo, models, clear_collection) | Initialize a model registry with a list of model definitions that are
stored in a given file in Json format.
Parameters
----------
mongo : scodata.MongoDBFactory
Connector for MongoDB
filename : string
Path to file containing model definitions
clear_collection : boolean
If true, collection will be dropped before models are created |
387,881 | def write(self):
self._check()
cache = self._cache
pristine_cache = self._pristine_cache
self._pristine_cache = cache.copy()
changes = []
def apply_changes(content, stat):
del changes[:]
current = yaml.load(content) if content else {}
missing = object()
for key in set(pristine_cache).union(cache):
old_value = pristine_cache.get(key, missing)
new_value = cache.get(key, missing)
if old_value != new_value:
if new_value != missing:
current[key] = new_value
if old_value != missing:
changes.append(
ModifiedItem(key, old_value, new_value))
else:
changes.append(AddedItem(key, new_value))
elif key in current:
del current[key]
changes.append(DeletedItem(key, old_value))
return yaml.safe_dump(current)
yield retry_change(self._client, self._path, apply_changes)
returnValue(changes) | Write object state to Zookeeper.
This will write the current state of the object to Zookeeper,
taking the final merged state as the new one, and resetting
any write buffers. |
387,882 | def wait_for_crm_operation(operation):
logger.info("wait_for_crm_operation: "
"Waiting for operation {} to finish...".format(operation))
for _ in range(MAX_POLLS):
result = crm.operations().get(name=operation["name"]).execute()
if "error" in result:
raise Exception(result["error"])
if "done" in result and result["done"]:
logger.info("wait_for_crm_operation: Operation done.")
break
time.sleep(POLL_INTERVAL)
return result | Poll for cloud resource manager operation until finished. |
387,883 | def attention_mask_same_segment(
query_segment, memory_segment=None, dtype=tf.float32):
memory_segment = rename_length_to_memory_length(
memory_segment or query_segment)
return mtf.cast(mtf.not_equal(query_segment, memory_segment), dtype) * -1e9 | Bias for attention where attention between segments is disallowed.
Args:
query_segment: a mtf.Tensor with shape [..., length_dim]
memory_segment: a mtf.Tensor with shape [..., memory_length_dim]
dtype: a tf.dtype
Returns:
a mtf.Tensor with shape [..., length_dim, memory_length_dim] |
387,884 | def _load(self):
with open(self._pickle_file, ) as source:
pickler = pickle.Unpickler(source)
for attribute in self._pickle_attributes:
pickle_data = pickler.load()
setattr(self, attribute, pickle_data) | Load data from a pickle file. |
387,885 | def get_nsing(self,epsilon=1.0e-4):
mx = self.xtqx.shape[0]
nsing = mx - np.searchsorted(
np.sort((self.xtqx.s.x / self.xtqx.s.x.max())[:,0]),epsilon)
if nsing == mx:
self.logger.warn("optimal nsing=npar")
nsing = None
return nsing | get the number of solution space dimensions given
a ratio between the largest and smallest singular values
Parameters
----------
epsilon: float
singular value ratio
Returns
-------
nsing : float
number of singular components above the epsilon ratio threshold
Note
-----
If nsing == nadj_par, then None is returned |
387,886 | def defaults(self):
self.chart_style = {}
self.chart_opts = {}
self.style("color", "
self.width(900)
self.height(250) | Reset the chart options and style to defaults |
387,887 | def load_glove_df(filepath, **kwargs):
pdkwargs = dict(index_col=0, header=None, sep=r, skiprows=[0], verbose=False, engine=)
pdkwargs.update(kwargs)
return pd.read_csv(filepath, **pdkwargs) | Load a GloVE-format text file into a dataframe
>>> df = load_glove_df(os.path.join(BIGDATA_PATH, 'glove_test.txt'))
>>> df.index[:3]
Index(['the', ',', '.'], dtype='object', name=0)
>>> df.iloc[0][:3]
1 0.41800
2 0.24968
3 -0.41242
Name: the, dtype: float64 |
387,888 | def conv2d_fixed_padding(inputs,
filters,
kernel_size,
strides,
data_format="channels_first",
use_td=False,
targeting_rate=None,
keep_prob=None,
is_training=None):
if strides > 1:
inputs = fixed_padding(inputs, kernel_size, data_format=data_format)
if use_td:
inputs_shape = common_layers.shape_list(inputs)
if use_td == "weight":
if data_format == "channels_last":
size = kernel_size * kernel_size * inputs_shape[-1]
else:
size = kernel_size * kernel_size * inputs_shape[1]
targeting_count = targeting_rate * tf.to_float(size)
targeting_fn = common_layers.weight_targeting
elif use_td == "unit":
targeting_count = targeting_rate * filters
targeting_fn = common_layers.unit_targeting
else:
raise Exception("Unrecognized targeted dropout type: %s" % use_td)
y = common_layers.td_conv(
inputs,
filters,
kernel_size,
targeting_count,
targeting_fn,
keep_prob,
is_training,
do_prune=True,
strides=strides,
padding=("SAME" if strides == 1 else "VALID"),
data_format=data_format,
use_bias=False,
kernel_initializer=tf.variance_scaling_initializer())
else:
y = layers().Conv2D(
filters=filters,
kernel_size=kernel_size,
strides=strides,
padding=("SAME" if strides == 1 else "VALID"),
use_bias=False,
kernel_initializer=tf.variance_scaling_initializer(),
data_format=data_format)(inputs)
return y | Strided 2-D convolution with explicit padding.
The padding is consistent and is based only on `kernel_size`, not on the
dimensions of `inputs` (as opposed to using `tf.layers.conv2d` alone).
Args:
inputs: `Tensor` of size `[batch, channels, height_in, width_in]`.
filters: `int` number of filters in the convolution.
kernel_size: `int` size of the kernel to be used in the convolution.
strides: `int` strides of the convolution.
data_format: `str` either "channels_first" for `[batch, channels, height,
width]` or "channels_last for `[batch, height, width, channels]`.
use_td: `str` one of "weight" or "unit". Set to False or "" to disable
targeted dropout.
targeting_rate: `float` proportion of weights to target with targeted
dropout.
keep_prob: `float` keep probability for targeted dropout.
is_training: `bool` for whether the model is in training.
Returns:
A `Tensor` of shape `[batch, filters, height_out, width_out]`.
Raises:
Exception: if use_td is not valid. |
387,889 | def init_prior(self, R):
centers, widths = self.init_centers_widths(R)
prior = np.zeros(self.K * (self.n_dim + 1))
self.set_centers(prior, centers)
self.set_widths(prior, widths)
self.set_prior(prior)
return self | initialize prior for the subject
Returns
-------
TFA
Returns the instance itself. |
387,890 | def printSequences(x, formatString="%d"):
[seqLen, numElements] = x.shape
for i in range(seqLen):
s = ""
for j in range(numElements):
s += formatString % x[i][j]
print s | Print a bunch of sequences stored in a 2D numpy array. |
387,891 | async def execute_all_with_names(self, subprocesses, container = None, retnames = (,), forceclose = True):
retvalue1retvalue2
if not subprocesses:
return []
subprocesses = list(subprocesses)
if len(subprocesses) == 1 and (container is None or container is self) and forceclose:
return [await subprocesses[0]]
if container is None:
container = self
delegates = [self.begin_delegate_other(p, container, retnames) for p in subprocesses]
matchers = [d[0] for d in delegates]
try:
_, eventdict = await self.wait_for_all(*matchers)
events = [eventdict[m] for m in matchers]
exceptions = [e.exception for e in events if hasattr(e, )]
if exceptions:
if len(exceptions) == 1:
raise exceptions[0]
else:
raise MultipleException(exceptions)
return [e.result for e in events]
finally:
if forceclose:
for d in delegates:
try:
container.terminate(d[1])
except Exception:
pass | DEPRECATED Execute all subprocesses and get the return values.
:param subprocesses: sequence of subroutines (coroutines)
:param container: if specified, run subprocesses in another container.
:param retnames: DEPRECATED get return value from container.(name) for each name in retnames.
'' for return value (to be compatible with earlier versions)
:param forceclose: force close the routines on exit, so all the subprocesses are terminated
on timeout if used with executeWithTimeout
:returns: a list of tuples, one for each subprocess, with value of retnames inside:
`[('retvalue1',),('retvalue2',),...]` |
387,892 | def _get_notifications_status(self, notifications):
if notifications:
size = len(notifications["activeNotifications"])
else:
size = 0
status = self.status_notif if size > 0 else self.status_no_notif
return (size, status) | Get the notifications status |
387,893 | def get_cached_moderated_reddits(self):
if self._mod_subs is None:
self._mod_subs = {: self.reddit_session.get_subreddit()}
for sub in self.reddit_session.get_my_moderation(limit=None):
self._mod_subs[six.text_type(sub).lower()] = sub
return self._mod_subs | Return a cached dictionary of the user's moderated reddits.
This list is used internally. Consider using the `get_my_moderation`
function instead. |
387,894 | def contains(self, times, keep_inside=True, delta_t=DEFAULT_OBSERVATION_TIME):
current_max_order = self.max_order
new_max_order = TimeMOC.time_resolution_to_order(delta_t)
if new_max_order > current_max_order:
message = \
.format(
TimeMOC.order_to_time_resolution(current_max_order).sec)
warnings.warn(message, UserWarning)
rough_tmoc = self.degrade_to_order(new_max_order)
pix_arr = (times.jd * TimeMOC.DAY_MICRO_SEC)
pix_arr = pix_arr.astype(int)
intervals_arr = rough_tmoc._interval_set._intervals
inf_arr = np.vstack([pix_arr[i] >= intervals_arr[:, 0] for i in range(pix_arr.shape[0])])
sup_arr = np.vstack([pix_arr[i] <= intervals_arr[:, 1] for i in range(pix_arr.shape[0])])
if keep_inside:
res = inf_arr & sup_arr
filtered_rows = np.any(res, axis=1)
else:
res = ~inf_arr | ~sup_arr
filtered_rows = np.all(res, axis=1)
return filtered_rows | Get a mask array (e.g. a numpy boolean array) of times being inside (or outside) the
TMOC instance.
Parameters
----------
times : `astropy.time.Time`
astropy times to check whether they are contained in the TMOC or not.
keep_inside : bool, optional
True by default. If so the filtered table contains only observations that are located the MOC.
If ``keep_inside`` is False, the filtered table contains all observations lying outside the MOC.
delta_t : `astropy.time.TimeDelta`, optional
the duration of one observation. It is set to 30 min by default. This data is used to compute the
more efficient TimeMOC order to represent the observations (Best order = the less precise order which
is able to discriminate two observations separated by ``delta_t``).
Returns
-------
array : `~numpy.darray`
A mask boolean array |
387,895 | def lookup(self, pathogenName, sampleName):
pathogenIndex = self._pathogens[pathogenName]
sampleIndex = self._samples[sampleName]
return self._readsFilenames[(pathogenIndex, sampleIndex)] | Look up a pathogen name, sample name combination and get its
FASTA/FASTQ file name and unique read count.
This method should be used instead of C{add} in situations where
you want an exception to be raised if a pathogen/sample combination has
not already been passed to C{add}.
@param pathogenName: A C{str} pathogen name.
@param sampleName: A C{str} sample name.
@raise KeyError: If the pathogen name or sample name have not been
seen, either individually or in combination.
@return: A (C{str}, C{int}) tuple retrieved from self._readsFilenames |
387,896 | def highlight_occurences(editor):
format = editor.language.theme.get("accelerator.occurence")
if not format:
return False
extra_selections = editor.extraSelections() or []
if not editor.isReadOnly():
word = editor.get_word_under_cursor()
if not word:
return False
block = editor.document().findBlock(0)
cursor = editor.document().find(word,
block.position(),
QTextDocument.FindCaseSensitively | QTextDocument.FindWholeWords)
while block.isValid() and cursor.position() != -1:
selection = QTextEdit.ExtraSelection()
selection.format.setBackground(format.background())
selection.cursor = cursor
extra_selections.append(selection)
cursor = editor.document().find(word,
cursor.position(),
QTextDocument.FindCaseSensitively | QTextDocument.FindWholeWords)
block = block.next()
editor.setExtraSelections(extra_selections)
return True | Highlights given editor current line.
:param editor: Document editor.
:type editor: QWidget
:return: Method success.
:rtype: bool |
387,897 | def list(self, full_properties=False, filter_args=None):
resource_obj_list = []
uris = self.partition.get_property()
if uris:
for uri in uris:
resource_obj = self.resource_class(
manager=self,
uri=uri,
name=None,
properties=None)
if self._matches_filters(resource_obj, filter_args):
resource_obj_list.append(resource_obj)
if full_properties:
resource_obj.pull_full_properties()
self._name_uri_cache.update_from(resource_obj_list)
return resource_obj_list | List the Virtual Functions of this Partition.
Authorization requirements:
* Object-access permission to this Partition.
Parameters:
full_properties (bool):
Controls whether the full set of resource properties should be
retrieved, vs. only the short set as returned by the list
operation.
filter_args (dict):
Filter arguments that narrow the list of returned resources to
those that match the specified filter arguments. For details, see
:ref:`Filtering`.
`None` causes no filtering to happen, i.e. all resources are
returned.
Returns:
: A list of :class:`~zhmcclient.VirtualFunction` objects.
Raises:
:exc:`~zhmcclient.HTTPError`
:exc:`~zhmcclient.ParseError`
:exc:`~zhmcclient.AuthError`
:exc:`~zhmcclient.ConnectionError` |
387,898 | def load_obs(self, mask_threshold=0.5):
print("Loading obs ", self.run_date, self.model_name, self.forecast_variable)
start_date = self.run_date + timedelta(hours=self.start_hour)
end_date = self.run_date + timedelta(hours=self.end_hour)
mrms_grid = MRMSGrid(start_date, end_date, self.mrms_variable, self.mrms_path)
mrms_grid.load_data()
if len(mrms_grid.data) > 0:
self.raw_obs[self.mrms_variable] = np.where(mrms_grid.data > 100, 100, mrms_grid.data)
self.period_obs[self.mrms_variable] = self.raw_obs[self.mrms_variable].max(axis=0)
if self.obs_mask:
mask_grid = MRMSGrid(start_date, end_date, self.mask_variable, self.mrms_path)
mask_grid.load_data()
self.raw_obs[self.mask_variable] = np.where(mask_grid.data >= mask_threshold, 1, 0)
self.period_obs[self.mask_variable] = self.raw_obs[self.mask_variable].max(axis=0) | Loads observations and masking grid (if needed).
Args:
mask_threshold: Values greater than the threshold are kept, others are masked. |
387,899 | def _normalise_weights(logZ, weights, ntrim=None):
logZ -= logZ.max()
Zs = numpy.exp(logZ)
weights = [w/w.sum()*Z for w, Z in zip(weights, Zs)]
wmax = max([w.max() for w in weights])
weights = [w/wmax for w in weights]
ntot = sum([w.sum() for w in weights])
if ntrim is not None and ntrim < ntot:
weights = [w*ntrim/ntot for w in weights]
return logZ, weights | Correctly normalise the weights for trimming
This takes a list of log-evidences, and re-normalises the weights so that
the largest weight across all samples is 1, and the total weight in each
set of samples is proportional to the evidence.
Parameters
----------
logZ: array-like
log-evidences to weight each set of weights by
weights: array-like of numpy.array
list of not necessarily equal length list of weights
Returns
-------
logZ: numpy.array
evidences, renormalised so that max(logZ) = 0
weights: list of 1D numpy.array
normalised weights |
Subsets and Splits
No saved queries yet
Save your SQL queries to embed, download, and access them later. Queries will appear here once saved.