Unnamed: 0
int64
0
389k
code
stringlengths
26
79.6k
docstring
stringlengths
1
46.9k
388,900
def update(self, response, **kwargs): response_cls = self._get_instance(**kwargs) if response_cls: setattr(response_cls, self.column, self.accessor(response)) _action_and_commit(response_cls, session.add) else: self.get_or_create_from_legacy_response(response, **kwargs)
If a record matching the instance already exists in the database, update it, else create a new record.
388,901
def preferences_view(request): user = request.user if request.method == "POST": logger.debug(dict(request.POST)) phone_formset, email_formset, website_formset, errors = save_personal_info(request, user) if user.is_student: preferred_pic_form = save_preferred_pic(request, user) bus_route_form = save_bus_route(request, user) else: preferred_pic_form = None bus_route_form = None privacy_options_form = save_privacy_options(request, user) notification_options_form = save_notification_options(request, user) for error in errors: messages.error(request, error) try: save_gcm_options(request, user) except AttributeError: pass return redirect("preferences") else: phone_formset = PhoneFormset(instance=user, prefix=) email_formset = EmailFormset(instance=user, prefix=) website_formset = WebsiteFormset(instance=user, prefix=) if user.is_student: preferred_pic = get_preferred_pic(user) bus_route = get_bus_route(user) logger.debug(preferred_pic) preferred_pic_form = PreferredPictureForm(user, initial=preferred_pic) bus_route_form = BusRouteForm(user, initial=bus_route) else: bus_route_form = None preferred_pic = None preferred_pic_form = None privacy_options = get_privacy_options(user) logger.debug(privacy_options) privacy_options_form = PrivacyOptionsForm(user, initial=privacy_options) notification_options = get_notification_options(user) logger.debug(notification_options) notification_options_form = NotificationOptionsForm(user, initial=notification_options) context = { "phone_formset": phone_formset, "email_formset": email_formset, "website_formset": website_formset, "preferred_pic_form": preferred_pic_form, "privacy_options_form": privacy_options_form, "notification_options_form": notification_options_form, "bus_route_form": bus_route_form if settings.ENABLE_BUS_APP else None } return render(request, "preferences/preferences.html", context)
View and process updates to the preferences page.
388,902
def split_gtf(gtf, sample_size=None, out_dir=None): if out_dir: part1_fn = os.path.basename(os.path.splitext(gtf)[0]) + ".part1.gtf" part2_fn = os.path.basename(os.path.splitext(gtf)[0]) + ".part2.gtf" part1 = os.path.join(out_dir, part1_fn) part2 = os.path.join(out_dir, part2_fn) if file_exists(part1) and file_exists(part2): return part1, part2 else: part1 = tempfile.NamedTemporaryFile(delete=False, suffix=".part1.gtf").name part2 = tempfile.NamedTemporaryFile(delete=False, suffix=".part2.gtf").name db = get_gtf_db(gtf) gene_ids = set([x[][0] for x in db.all_features()]) if not sample_size or (sample_size and sample_size > len(gene_ids)): sample_size = len(gene_ids) gene_ids = set(random.sample(gene_ids, sample_size)) part1_ids = set(random.sample(gene_ids, sample_size / 2)) part2_ids = gene_ids.difference(part1_ids) with open(part1, "w") as part1_handle: for gene in part1_ids: for feature in db.children(gene): part1_handle.write(str(feature) + "\n") with open(part2, "w") as part2_handle: for gene in part2_ids: for feature in db.children(gene): part2_handle.write(str(feature) + "\n") return part1, part2
split a GTF file into two equal parts, randomly selecting genes. sample_size will select up to sample_size genes in total
388,903
def discretize(value, factor=100): if not isinstance(value, Iterable): return int(value * factor) int_value = list(deepcopy(value)) for i in range(len(int_value)): int_value[i] = int(int_value[i] * factor) return int_value
Discretize the given value, pre-multiplying by the given factor
388,904
def build_ricecooker_json_tree(args, options, metadata_provider, json_tree_path): LOGGER.info() channeldir = args[] if channeldir.endswith(os.path.sep): channeldir.rstrip(os.path.sep) channelparentdir, channeldirname = os.path.split(channeldir) channelparentdir, channeldirname = os.path.split(channeldir) channel_info = metadata_provider.get_channel_info() thumbnail_chan_path = channel_info.get(, None) if thumbnail_chan_path: thumbnail_rel_path = rel_path_from_chan_path(thumbnail_chan_path, metadata_provider.channeldir) else: thumbnail_rel_path = None ricecooker_json_tree = dict( dirname=channeldirname, title=channel_info[], description=channel_info[], source_domain=channel_info[], source_id=channel_info[], language=channel_info[], thumbnail=thumbnail_rel_path, children=[], ) channeldir = args[] content_folders = sorted(os.walk(channeldir)) for rel_path, _subfolders, filenames in content_folders: LOGGER.info( + str(rel_path)) if metadata_provider.has_exercises(): dir_chan_path = chan_path_from_rel_path(rel_path, metadata_provider.channeldir) dir_path_tuple = path_to_tuple(dir_chan_path) exercises_filenames = metadata_provider.get_exercises_for_dir(dir_path_tuple) filenames.extend(exercises_filenames) sorted_filenames = sorted(filenames) process_folder(ricecooker_json_tree, rel_path, sorted_filenames, metadata_provider) write_tree_to_json_tree(json_tree_path, ricecooker_json_tree) LOGGER.info( + json_tree_path)
Download all categories, subpages, modules, and resources from open.edu.
388,905
def sample(self): lenghts = [] angles = [] coordinates = [] fix = [] sample_size = int(round(self.trajLen_borders[self.drawFrom(, self.getrand())])) coordinates.append([0, 0]) fix.append(1) while len(coordinates) < sample_size: if len(lenghts) == 0 and len(angles) == 0: angle, length = self._draw(self) else: angle, length = self._draw(prev_angle = angles[-1], prev_length = lenghts[-1]) x, y = self._calc_xy(coordinates[-1], angle, length) coordinates.append([x, y]) lenghts.append(length) angles.append(angle) fix.append(fix[-1]+1) return coordinates
Draws a trajectory length, first coordinates, lengths, angles and length-angle-difference pairs according to the empirical distribution. Each call creates one complete trajectory.
388,906
def generate(self): observed_arr = None for result_tuple in self.__feature_generator.generate(): observed_arr = result_tuple[0] break if self.noise_sampler is not None: self.noise_sampler.output_shape = observed_arr.shape observed_arr += self.noise_sampler.generate() observed_arr = observed_arr.astype(float) if self.__norm_mode == "z_score": if observed_arr.std() != 0: observed_arr = (observed_arr - observed_arr.mean()) / observed_arr.std() elif self.__norm_mode == "min_max": if (observed_arr.max() - observed_arr.min()) != 0: observed_arr = (observed_arr - observed_arr.min()) / (observed_arr.max() - observed_arr.min()) elif self.__norm_mode == "tanh": observed_arr = np.tanh(observed_arr) return observed_arr
Draws samples from the `true` distribution. Returns: `np.ndarray` of samples.
388,907
def add_member_roles(self, guild_id: int, member_id: int, roles: List[int]): current_roles = [role for role in self.get_guild_member_by_id(guild_id, member_id)[]] roles.extend(current_roles) new_list = list(set(roles)) self.set_member_roles(guild_id, member_id, new_list)
Add roles to a member This method takes a list of **role ids** that you want to give to the user, on top of whatever roles they may already have. This method will fetch the user's current roles, and add to that list the roles passed in. The user's resulting list of roles will not contain duplicates, so you don't have to filter role ids to this method (as long as they're still roles for this guild). This method differs from ``set_member_roles`` in that this method ADDS roles to the user's current role list. ``set_member_roles`` is used by this method. Args: guild_id: snowflake id of the guild member_id: snowflake id of the member roles: list of snowflake ids of roles to add
388,908
def ConsultarCortes(self, sep="||"): "Retorna listado de cortes -carnes- (código, descripción)" ret = self.client.consultarCortes( auth={ : self.Token, : self.Sign, : self.Cuit, }, )[] self.__analizar_errores(ret) array = ret.get(, []) + ret.get(, []) if sep is None: return dict([(it[], it[]) for it in array]) else: return [("%s %%s %s %%s %s" % (sep, sep, sep)) % (it[], it[]) for it in array]
Retorna listado de cortes -carnes- (código, descripción)
388,909
def _realsize(self): current = self size= 0 while current is not None: size += current._parser.sizeof(current) last = current current = getattr(current, , None) size += len(getattr(last, , b)) return size
Get the struct size without padding (or the "real size") :returns: the "real size" in bytes
388,910
def update_wallet(self, wallet_name, limit): request = { : { : str(limit), } } return make_request( .format(self.url, wallet_name), method=, body=request, timeout=self.timeout, client=self._client)
Update a wallet with a new limit. @param the name of the wallet. @param the new value of the limit. @return a success string from the plans server. @raise ServerError via make_request.
388,911
def _build_archive(self, dir_path): zip_path = os.path.join(dir_path, "import.zip") archive = zipfile.ZipFile(zip_path, "w") for filename in CSV_FILES: filepath = os.path.join(dir_path, filename) if os.path.exists(filepath): archive.write(filepath, filename, zipfile.ZIP_DEFLATED) archive.close() with open(zip_path, "rb") as f: body = f.read() return body
Creates a zip archive from files in path.
388,912
def index_spacing(self, value): if not isinstance(value, bool): raise TypeError() self._index_spacing = value
Validate and set the index_spacing flag.
388,913
def get_categories(self): posts = self.get_posts(include_draft=True) result = {} for post in posts: for category_name in set(post.categories): result[category_name] = result.setdefault( category_name, Pair(0, 0)) + Pair(1, 0 if post.is_draft else 1) return list(result.items())
Get all categories and post count of each category. :return dict_item(category_name, Pair(count_all, count_published))
388,914
def get_parallel_value_for_key(self, key): if self._remotelib: return self._remotelib.run_keyword(, [key], {}) return _PabotLib.get_parallel_value_for_key(self, key)
Get the value for a key. If there is no value for the key then empty string is returned.
388,915
def delete_namespaced_cron_job(self, name, namespace, **kwargs): kwargs[] = True if kwargs.get(): return self.delete_namespaced_cron_job_with_http_info(name, namespace, **kwargs) else: (data) = self.delete_namespaced_cron_job_with_http_info(name, namespace, **kwargs) return data
delete_namespaced_cron_job # noqa: E501 delete a CronJob # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.delete_namespaced_cron_job(name, namespace, async_req=True) >>> result = thread.get() :param async_req bool :param str name: name of the CronJob (required) :param str namespace: object name and auth scope, such as for teams and projects (required) :param str pretty: If 'true', then the output is pretty printed. :param str dry_run: When present, indicates that modifications should not be persisted. An invalid or unrecognized dryRun directive will result in an error response and no further processing of the request. Valid values are: - All: all dry run stages will be processed :param int grace_period_seconds: The duration in seconds before the object should be deleted. Value must be non-negative integer. The value zero indicates delete immediately. If this value is nil, the default grace period for the specified type will be used. Defaults to a per object value if not specified. zero means delete immediately. :param bool orphan_dependents: Deprecated: please use the PropagationPolicy, this field will be deprecated in 1.7. Should the dependent objects be orphaned. If true/false, the \"orphan\" finalizer will be added to/removed from the object's finalizers list. Either this field or PropagationPolicy may be set, but not both. :param str propagation_policy: Whether and how garbage collection will be performed. Either this field or OrphanDependents may be set, but not both. The default policy is decided by the existing finalizer set in the metadata.finalizers and the resource-specific default policy. Acceptable values are: 'Orphan' - orphan the dependents; 'Background' - allow the garbage collector to delete the dependents in the background; 'Foreground' - a cascading policy that deletes all dependents in the foreground. :param V1DeleteOptions body: :return: V1Status If the method is called asynchronously, returns the request thread.
388,916
def write_contents_to_file(self, entities, path_patterns=None, contents=None, link_to=None, content_mode=, conflicts=, strict=False, domains=None, index=False, index_domains=None): path = self.build_path(entities, path_patterns, strict, domains) if path is None: raise ValueError("Cannot construct any valid filename for " "the passed entities given available path " "patterns.") write_contents_to_file(path, contents=contents, link_to=link_to, content_mode=content_mode, conflicts=conflicts, root=self.root) if index: if index_domains is None: index_domains = list(self.domains.keys()) self._index_file(self.root, path, index_domains)
Write arbitrary data to a file defined by the passed entities and path patterns. Args: entities (dict): A dictionary of entities, with Entity names in keys and values for the desired file in values. path_patterns (list): Optional path patterns to use when building the filename. If None, the Layout-defined patterns will be used. contents (object): Contents to write to the generate file path. Can be any object serializable as text or binary data (as defined in the content_mode argument). conflicts (str): One of 'fail', 'skip', 'overwrite', or 'append' that defines the desired action when the output path already exists. 'fail' raises an exception; 'skip' does nothing; 'overwrite' overwrites the existing file; 'append' adds a suffix to each file copy, starting with 1. Default is 'fail'. strict (bool): If True, all entities must be matched inside a pattern in order to be a valid match. If False, extra entities will be ignored so long as all mandatory entities are found. domains (list): List of Domains to scan for path_patterns. Order determines precedence (i.e., earlier Domains will be scanned first). If None, all available domains are included. index (bool): If True, adds the generated file to the current index using the domains specified in index_domains. index_domains (list): List of domain names to attach the generated file to when indexing. Ignored if index == False. If None, All available domains are used.
388,917
def _complete_batch_send(self, resp): self._batch_send_d = None self._req_attempts = 0 self._retry_interval = self._init_retry_interval if isinstance(resp, Failure) and not resp.check(tid_CancelledError, CancelledError): log.error("Failure detected in _complete_batch_send: %r\n%r", resp, resp.getTraceback()) return
Complete the processing of our batch send operation Clear the deferred tracking our current batch processing and reset our retry count and retry interval Return none to eat any errors coming from up the deferred chain
388,918
def dict_of_numpyarray_to_dict_of_list(d): for key,value in d.iteritems(): if isinstance(value,dict): d[key] = dict_of_numpyarray_to_dict_of_list(value) elif isinstance(value,np.ndarray): d[key] = value.tolist() return d
Convert dictionary containing numpy arrays to dictionary containing lists Parameters ---------- d : dict sli parameter name and value as dictionary key and value pairs Returns ------- d : dict modified dictionary
388,919
def evaluate_accuracy(data_iterator, net): acc = mx.metric.Accuracy() for data, label in data_iterator: output = net(data) predictions = nd.argmax(output, axis=1) predictions = predictions.reshape((-1, 1)) acc.update(preds=predictions, labels=label) return acc.get()[1]
Function to evaluate accuracy of any data iterator passed to it as an argument
388,920
def start(self) -> None: if self.config: self.websocket = self.ws_client( self.loop, self.session, self.host, self.config.websocketport, self.async_session_handler) self.websocket.start() else: _LOGGER.error()
Connect websocket to deCONZ.
388,921
def PhyDMSComprehensiveParser(): parser = ArgumentParserNoArgHelp(description=("Comprehensive phylogenetic " "model comparison and detection of selection informed by deep " "mutational scanning data. This program runs repeatedly " "to compare substitution models and detect selection. " "{0} Version {1}. Full documentation at {2}").format( phydmslib.__acknowledgments__, phydmslib.__version__, phydmslib.__url__), formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument(, help=, type=str) parser.add_argument(, help= , type=ExistingFile) parser.add_argument(, help= , type=ExistingFile, nargs=) group = parser.add_mutually_exclusive_group(required=True) group.add_argument(, help="Path to RAxML (e.g., )") group.add_argument(, type=ExistingFile, help="Existing Newick file giving input tree.") parser.add_argument(, default=-1, help= , type=int) parser.add_argument(, choices=[, ], default=, help=("How to handle branch lengths: " "scale by single parameter or optimize each one")) parser.set_defaults(omegabysite=False) parser.add_argument(, dest=, action=, help="Fit omega (dN/dS) for each site.") parser.set_defaults(diffprefsbysite=False) parser.add_argument(, dest=, action=, help="Fit differential preferences for " "each site.") parser.set_defaults(gammaomega=False) parser.add_argument(, dest=, action=\ , help="Fit ExpCM with gamma distributed omega.") parser.set_defaults(gammabeta=False) parser.add_argument(, dest=, action=\ , help="Fit ExpCM with gamma distributed beta.") parser.set_defaults(noavgprefs=False) parser.add_argument(, dest=, action=, help="No fitting of models with preferences averaged across sites " "for ExpCM.") parser.set_defaults(randprefs=False) parser.add_argument(, dest=, action=, help="Include ExpCM models with randomized preferences.") parser.add_argument(, , action=, version= .format(version=phydmslib.__version__)) return parser
Returns *argparse.ArgumentParser* for ``phdyms_comprehensive`` script.
388,922
def next(self): while True: self.cur_idx += 1 if self.__datasource.populate_iteration(self): return self raise StopIteration
Move to the next valid locus. Will only return valid loci or exit via StopIteration exception
388,923
def _fix_typo(s): subst, attr, mode = s return m(subst, attr, script("t.-x.-s.y.-'"))
M:.-O:.-'M:.-wa.e.-'t.x.-s.y.-', => M:.-O:.-'M:.-wa.e.-'t.-x.-s.y.-',
388,924
def exit_and_fail(self, msg=None, out=None): self.exit(result=PANTS_FAILED_EXIT_CODE, msg=msg, out=out)
Exits the runtime with a nonzero exit code, indicating failure. :param msg: A string message to print to stderr or another custom file desciptor before exiting. (Optional) :param out: The file descriptor to emit `msg` to. (Optional)
388,925
def host_members(self): host = self.host() if host is None: return for member, full_member in host.members_objects: yield full_member
Return the members of the host committee.
388,926
def xpathNextPreceding(self, cur): if cur is None: cur__o = None else: cur__o = cur._o ret = libxml2mod.xmlXPathNextPreceding(self._o, cur__o) if ret is None:raise xpathError() __tmp = xmlNode(_obj=ret) return __tmp
Traversal function for the "preceding" direction the preceding axis contains all nodes in the same document as the context node that are before the context node in document order, excluding any ancestors and excluding attribute nodes and namespace nodes; the nodes are ordered in reverse document order
388,927
def get_resource_group(access_token, subscription_id, rgname): endpoint = .join([get_rm_endpoint(), , subscription_id, , rgname, , RESOURCE_API]) return do_get(endpoint, access_token)
Get details about the named resource group. Args: access_token (str): A valid Azure authentication token. subscription_id (str): Azure subscription id. rgname (str): Azure resource group name. Returns: HTTP response. JSON body.
388,928
def auth(self): if not self.store_handler.has_value(): params = {} params["access_key"] = self.access_key params["secret_key"] = self.secret_key params["app_id"] = self.app_id params["device_id"] = self.device_id auth_url = self.api_path + "auth/" response = self.get_response(auth_url, params, "post") if in response: self.store_handler.set_value("access_token", response[][]) self.store_handler.set_value("expires", response[][]) logger.info() else: msg = "Error getting access_token, " + \ "please verify your access_key, secret_key and app_id" logger.error(msg) raise Exception("Auth Failed, please check your access details")
Auth is used to call the AUTH API of CricketAPI. Access token required for every request call to CricketAPI. Auth functional will post user Cricket API app details to server and return the access token. Return: Access token
388,929
def fcm_send_single_device_data_message( registration_id, condition=None, collapse_key=None, delay_while_idle=False, time_to_live=None, restricted_package_name=None, low_priority=False, dry_run=False, data_message=None, content_available=None, api_key=None, timeout=5, json_encoder=None): push_service = FCMNotification( api_key=SETTINGS.get("FCM_SERVER_KEY") if api_key is None else api_key, json_encoder=json_encoder, ) return push_service.single_device_data_message( registration_id=registration_id, condition=condition, collapse_key=collapse_key, delay_while_idle=delay_while_idle, time_to_live=time_to_live, restricted_package_name=restricted_package_name, low_priority=low_priority, dry_run=dry_run, data_message=data_message, content_available=content_available, timeout=timeout )
Send push message to a single device All arguments correspond to that defined in pyfcm/fcm.py. Args: registration_id (str): FCM device registration IDs. data_message (dict): Data message payload to send alone or with the notification message Keyword Args: collapse_key (str, optional): Identifier for a group of messages that can be collapsed so that only the last message gets sent when delivery can be resumed. Defaults to ``None``. delay_while_idle (bool, optional): If ``True`` indicates that the message should not be sent until the device becomes active. time_to_live (int, optional): How long (in seconds) the message should be kept in FCM storage if the device is offline. The maximum time to live supported is 4 weeks. Defaults to ``None`` which uses the FCM default of 4 weeks. low_priority (boolean, optional): Whether to send notification with the low priority flag. Defaults to ``False``. restricted_package_name (str, optional): Package name of the application where the registration IDs must match in order to receive the message. Defaults to ``None``. dry_run (bool, optional): If ``True`` no message will be sent but request will be tested. timeout (int, optional): set time limit for the request Returns: :dict:`multicast_id(long), success(int), failure(int), canonical_ids(int), results(list)`: Response from FCM server. Raises: AuthenticationError: If :attr:`api_key` is not set or provided or there is an error authenticating the sender. FCMServerError: Internal server error or timeout error on Firebase cloud messaging server InvalidDataError: Invalid data provided InternalPackageError: Mostly from changes in the response of FCM, contact the project owner to resolve the issue
388,930
def nltk_tree_to_logical_form(tree: Tree) -> str:
Given an ``nltk.Tree`` representing the syntax tree that generates a logical form, this method produces the actual (lisp-like) logical form, with all of the non-terminal symbols converted into the correct number of parentheses. This is used in the logic that converts action sequences back into logical forms. It's very unlikely that you will need this anywhere else.
388,931
def as_lwp_str(self, ignore_discard=True, ignore_expires=True): now = time.time() r = [] for cookie in self: if not ignore_discard and cookie.discard: continue if not ignore_expires and cookie.is_expired(now): continue r.append("Set-Cookie3: %s" % lwp_cookie_str(cookie)) return "\n".join(r+[""])
Return cookies as a string of "\\n"-separated "Set-Cookie3" headers. ignore_discard and ignore_expires: see docstring for FileCookieJar.save
388,932
def cmd_tracker_mode(self, args): connection = self.find_connection() if not connection: print("No antenna tracker found") return mode_mapping = connection.mode_mapping() if mode_mapping is None: print() return if len(args) != 1: print(, mode_mapping.keys()) return mode = args[0].upper() if mode not in mode_mapping: print( % mode) return connection.set_mode(mode_mapping[mode])
set arbitrary mode
388,933
def setnx(self, key, value): fut = self.execute(b, key, value) return wait_convert(fut, bool)
Set the value of a key, only if the key does not exist.
388,934
def set_check(self, name, state): if self.child.is_alive(): self.parent_pipe.send(CheckItem(name, state))
set a status value
388,935
def convert_to_unicode( tscii_input ): output = list() prev = None prev2x = None for char in tscii_input: if ord(char) < 128 : output.append( char ) prev = None prev2x = None elif ord(char) in TSCII_DIRECT_LOOKUP: if ( prev in TSCII_PRE_MODIFIER ): curr_char = [TSCII[ord(char)],TSCII[prev]] else: curr_char = [TSCII[ord(char)]] char = None output.extend( curr_char ) elif ( (ord(char) in TSCII_POST_MODIFIER) ): if ( (prev in TSCII_DIRECT_LOOKUP) and (prev2x in TSCII_PRE_MODIFIER) ): if len(output) >= 2: del output[-1] del output[-2] elif len(output)==1: del output[-1] else: pass output.extend( [TSCII[prev], TSCII[prev2x]] ) else: print("Warning: malformed TSCII encoded file; skipping characters") prev = None char = None else: pass prev2x = prev if char: prev = ord(char) return u"".join(output)
convert a byte-ASCII encoded string into equivalent Unicode string in the UTF-8 notation.
388,936
def banner(*lines, **kwargs): sep = kwargs.get("sep", "*") count = kwargs.get("width", globals()["WIDTH"]) out(sep * count) if lines: out(sep) for line in lines: out("{} {}".format(sep, line)) out(sep) out(sep * count)
prints a banner sep -- string -- the character that will be on the line on the top and bottom and before any of the lines, defaults to * count -- integer -- the line width, defaults to 80
388,937
def is_subdir(a, b): a, b = map(os.path.abspath, [a, b]) return os.path.commonpath([a, b]) == b
Return true if a is a subdirectory of b
388,938
def _sanitize_parameters(self): if isinstance(self._additional_edges, (list, set, tuple)): new_dict = defaultdict(list) for s, d in self._additional_edges: new_dict[s].append(d) self._additional_edges = new_dict elif isinstance(self._additional_edges, dict): pass else: raise AngrCFGError() if self._advanced_backward_slicing and self._enable_symbolic_back_traversal: raise AngrCFGError() if self._advanced_backward_slicing and not self._keep_state: raise AngrCFGError() self._avoid_runs = [ ] if self._avoid_runs is None else self._avoid_runs if not isinstance(self._avoid_runs, (list, set)): raise AngrCFGError() self._sanitize_starts()
Perform a sanity check on parameters passed in to CFG.__init__(). An AngrCFGError is raised if any parameter fails the sanity check. :return: None
388,939
def mk_subsuper_association(m, r_subsup): r_rel = one(r_subsup).R_REL[206]() r_rto = one(r_subsup).R_SUPER[212].R_RTO[204]() target_o_obj = one(r_rto).R_OIR[203].O_OBJ[201]() for r_sub in many(r_subsup).R_SUB[213](): r_rgo = one(r_sub).R_RGO[205]() source_o_obj = one(r_rgo).R_OIR[203].O_OBJ[201]() source_ids, target_ids = _get_related_attributes(r_rgo, r_rto) m.define_association(rel_id=r_rel.Numb, source_kind=source_o_obj.Key_Lett, target_kind=target_o_obj.Key_Lett, source_keys=source_ids, target_keys=target_ids, source_conditional=True, target_conditional=False, source_phrase=, target_phrase=, source_many=False, target_many=False)
Create pyxtuml associations from a sub/super association in BridgePoint.
388,940
def get_template_data(template_file): if not pathlib.Path(template_file).exists(): raise ValueError("Template file not found at {}".format(template_file)) with open(template_file, ) as fp: try: return yaml_parse(fp.read()) except (ValueError, yaml.YAMLError) as ex: raise ValueError("Failed to parse template: {}".format(str(ex)))
Read the template file, parse it as JSON/YAML and return the template as a dictionary. Parameters ---------- template_file : string Path to the template to read Returns ------- Template data as a dictionary
388,941
def _parse_request(self, schema, req, locations): if schema.many: assert ( "json" in locations ), "schema.many=True is only supported for JSON location" parsed = self.parse_arg( name="json", field=ma.fields.Nested(schema, many=True), req=req, locations=locations, ) if parsed is missing: parsed = [] else: argdict = schema.fields parsed = {} for argname, field_obj in iteritems(argdict): if MARSHMALLOW_VERSION_INFO[0] < 3: parsed_value = self.parse_arg(argname, field_obj, req, locations) if parsed_value is missing and field_obj.load_from: parsed_value = self.parse_arg( field_obj.load_from, field_obj, req, locations ) argname = field_obj.load_from else: argname = field_obj.data_key or argname parsed_value = self.parse_arg(argname, field_obj, req, locations) if parsed_value is not missing: parsed[argname] = parsed_value return parsed
Return a parsed arguments dictionary for the current request.
388,942
def get_normal_draws(num_mixers, num_draws, num_vars, seed=None): assert all([isinstance(x, int) for x in [num_mixers, num_draws, num_vars]]) assert all([x > 0 for x in [num_mixers, num_draws, num_vars]]) if seed is not None: assert isinstance(seed, int) and seed > 0 normal_dist = scipy.stats.norm(loc=0.0, scale=1.0) all_draws = [] if seed: np.random.seed(seed) for i in xrange(num_vars): all_draws.append(normal_dist.rvs(size=(num_mixers, num_draws))) return all_draws
Parameters ---------- num_mixers : int. Should be greater than zero. Denotes the number of observations for which we are making draws from a normal distribution for. I.e. the number of observations with randomly distributed coefficients. num_draws : int. Should be greater than zero. Denotes the number of draws that are to be made from each normal distribution. num_vars : int. Should be greater than zero. Denotes the number of variables for which we need to take draws from the normal distribution. seed : int or None, optional. If an int is passed, it should be greater than zero. Denotes the value to be used in seeding the random generator used to generate the draws from the normal distribution. Default == None. Returns ------- all_draws : list of 2D ndarrays. The list will have num_vars elements. Each element will be a num_obs by num_draws numpy array of draws from a normal distribution with mean zero and standard deviation of one.
388,943
def create_and_register_access97_db(filename: str, dsn: str, description: str) -> bool: fullfilename = os.path.abspath(filename) create_string = fullfilename + " General" return (create_user_dsn(access_driver, CREATE_DB3=create_string) and register_access_db(filename, dsn, description))
(Windows only.) Creates a Microsoft Access 97 database and registers it with ODBC. Args: filename: filename of the database to create dsn: ODBC data source name to create description: description of the database Returns: bool: was the DSN created?
388,944
def domain_create(auth=None, **kwargs): * cloud = get_operator_cloud(auth) kwargs = _clean_kwargs(keep_name=True, **kwargs) return cloud.create_domain(**kwargs)
Create a domain CLI Example: .. code-block:: bash salt '*' keystoneng.domain_create name=domain1
388,945
def Softmax(x, params, axis=-1, **kwargs): del params, kwargs return np.exp(x - backend.logsumexp(x, axis, keepdims=True))
Apply softmax to x: exponentiate and normalize along the given axis.
388,946
def ParseRow(self, parser_mediator, row_offset, row): timestamp = self._ParseTimestamp(parser_mediator, row) if timestamp is None: return event_data = TrendMicroUrlEventData() event_data.offset = row_offset for field in ( , , , , ): try: value = int(row[field], 10) except (ValueError, TypeError): value = None setattr(event_data, field, value) for field in (, , , , ): setattr(event_data, field, row[field]) event = time_events.DateTimeValuesEvent( timestamp, definitions.TIME_DESCRIPTION_WRITTEN) parser_mediator.ProduceEventWithEventData(event, event_data)
Parses a line of the log file and produces events. Args: parser_mediator (ParserMediator): mediates interactions between parsers and other components, such as storage and dfvfs. row_offset (int): line number of the row. row (dict[str, str]): fields of a single row, as specified in COLUMNS.
388,947
def _create_cell(args, cell_body): name = args.get() if name is None: raise Exception("Pipeline name was not specified.") pipeline_spec = google.datalab.utils.commands.parse_config( cell_body, google.datalab.utils.commands.notebook_environment()) airflow_spec = google.datalab.contrib.pipeline._pipeline.PipelineGenerator.generate_airflow_spec( name, pipeline_spec) debug = args.get() if debug is True: return airflow_spec
Implements the pipeline cell create magic used to create Pipeline objects. The supported syntax is: %%pipeline create <args> [<inline YAML>] Args: args: the arguments following '%%pipeline create'. cell_body: the contents of the cell
388,948
def remove_attr(self, attr): self._stable = False self.attrs.pop(attr, None) return self
Removes an attribute.
388,949
def init_widget(self): super(AndroidChronometer, self).init_widget() w = self.widget w.setOnChronometerTickListener(w.getId()) w.onChronometerTick.connect(self.on_chronometer_tick)
Initialize the underlying widget.
388,950
def getlist(self, section, option): value_list = self.get(section, option) values = [] for value_line in value_list.split(): for value in value_line.split(): value = value.strip() if value: values.append(value) return values
Read a list of strings. The value of `section` and `option` is treated as a comma- and newline- separated list of strings. Each value is stripped of whitespace. Returns the list of strings.
388,951
def yn_prompt(text): text = "\n"+ text + "\n( or ): " while True: answer = input(text).strip() if answer != and answer != : continue elif answer == : return True elif answer == : return False
Takes the text prompt, and presents it, takes only "y" or "n" for answers, and returns True or False. Repeats itself on bad input.
388,952
def find_declaration(self): if not self.is_plt: binary_name = self.binary_name if binary_name not in SIM_LIBRARIES: return else: binary_name = None edges = self.transition_graph.edges() node = next(iter(edges))[1] if len(edges) == 1 and (type(node) is HookNode or type(node) is SyscallNode): target = node.addr if target in self._function_manager: target_func = self._function_manager[target] binary_name = target_func.binary_name if binary_name is None: return library = SIM_LIBRARIES.get(binary_name, None) if library is None: return if not library.has_prototype(self.name): return proto = library.prototypes[self.name] self.prototype = proto if self.calling_convention is not None: self.calling_convention.args = None self.calling_convention.func_ty = proto
Find the most likely function declaration from the embedded collection of prototypes, set it to self.prototype, and update self.calling_convention with the declaration. :return: None
388,953
def _reset_problem_type(self): if self._solve_count > 0: integer_count = 0 for func in (self._cp.variables.get_num_binary, self._cp.variables.get_num_integer, self._cp.variables.get_num_semicontinuous, self._cp.variables.get_num_semiinteger): integer_count += func() integer = integer_count > 0 quad_constr = self._cp.quadratic_constraints.get_num() > 0 quad_obj = self._cp.objective.get_num_quadratic_variables() > 0 if not integer: if quad_constr: new_type = self._cp.problem_type.QCP elif quad_obj: new_type = self._cp.problem_type.QP else: new_type = self._cp.problem_type.LP else: if quad_constr: new_type = self._cp.problem_type.MIQCP elif quad_obj: new_type = self._cp.problem_type.MIQP else: new_type = self._cp.problem_type.MILP logger.debug(.format( self._cp.problem_type[new_type])) self._cp.set_problem_type(new_type) else: logger.debug(.format( self._cp.problem_type[self._cp.get_problem_type()])) quad_obj = self._cp.objective.get_num_quadratic_variables() > 0 if hasattr(self._cp.parameters, ): target_param = self._cp.parameters.optimalitytarget else: target_param = self._cp.parameters.solutiontarget if quad_obj: target_param.set(target_param.values.optimal_global) else: target_param.set(target_param.values.auto)
Reset problem type to whatever is appropriate.
388,954
def dict_contents(self, use_dict=None, as_class=None): if _debug: _log.debug("dict_contents use_dict=%r as_class=%r", use_dict, as_class) return str(self)
Return the contents of an object as a dict.
388,955
def rdf_source(self, aformat="turtle"): if aformat and aformat not in self.SUPPORTED_FORMATS: return "Sorry. Allowed formats are %s" % str(self.SUPPORTED_FORMATS) if aformat == "dot": return self.__serializedDot() else: return self.rdflib_graph.serialize(format=aformat)
Serialize graph using the format required
388,956
def find_xml_all(cls, url, markup, tag, pattern): body = cls.find_xml(url, markup) return body.find_all(tag, href=re.compile(pattern))
find xml(list) :param url: contents url :param markup: markup provider :param tag: find tag :param pattern: xml file pattern :return: BeautifulSoup object list
388,957
def seq_minibatches(inputs, targets, batch_size, seq_length, stride=1): if len(inputs) != len(targets): raise AssertionError("The length of inputs and targets should be equal") n_loads = (batch_size * stride) + (seq_length - stride) for start_idx in range(0, len(inputs) - n_loads + 1, (batch_size * stride)): seq_inputs = np.zeros((batch_size, seq_length) + inputs.shape[1:], dtype=inputs.dtype) seq_targets = np.zeros((batch_size, seq_length) + targets.shape[1:], dtype=targets.dtype) for b_idx in xrange(batch_size): start_seq_idx = start_idx + (b_idx * stride) end_seq_idx = start_seq_idx + seq_length seq_inputs[b_idx] = inputs[start_seq_idx:end_seq_idx] seq_targets[b_idx] = targets[start_seq_idx:end_seq_idx] flatten_inputs = seq_inputs.reshape((-1, ) + inputs.shape[1:]) flatten_targets = seq_targets.reshape((-1, ) + targets.shape[1:]) yield flatten_inputs, flatten_targets
Generate a generator that return a batch of sequence inputs and targets. If `batch_size=100` and `seq_length=5`, one return will have 500 rows (examples). Parameters ---------- inputs : numpy.array The input features, every row is a example. targets : numpy.array The labels of inputs, every element is a example. batch_size : int The batch size. seq_length : int The sequence length. stride : int The stride step, default is 1. Examples -------- Synced sequence input and output. >>> X = np.asarray([['a','a'], ['b','b'], ['c','c'], ['d','d'], ['e','e'], ['f','f']]) >>> y = np.asarray([0, 1, 2, 3, 4, 5]) >>> for batch in tl.iterate.seq_minibatches(inputs=X, targets=y, batch_size=2, seq_length=2, stride=1): >>> print(batch) (array([['a', 'a'], ['b', 'b'], ['b', 'b'], ['c', 'c']], dtype='<U1'), array([0, 1, 1, 2])) (array([['c', 'c'], ['d', 'd'], ['d', 'd'], ['e', 'e']], dtype='<U1'), array([2, 3, 3, 4])) Many to One >>> return_last = True >>> num_steps = 2 >>> X = np.asarray([['a','a'], ['b','b'], ['c','c'], ['d','d'], ['e','e'], ['f','f']]) >>> Y = np.asarray([0,1,2,3,4,5]) >>> for batch in tl.iterate.seq_minibatches(inputs=X, targets=Y, batch_size=2, seq_length=num_steps, stride=1): >>> x, y = batch >>> if return_last: >>> tmp_y = y.reshape((-1, num_steps) + y.shape[1:]) >>> y = tmp_y[:, -1] >>> print(x, y) [['a' 'a'] ['b' 'b'] ['b' 'b'] ['c' 'c']] [1 2] [['c' 'c'] ['d' 'd'] ['d' 'd'] ['e' 'e']] [3 4]
388,958
def filter_for_ignored_ext(result, ignored_ext, ignore_copying): if ignore_copying: log = LoggingMixin().log regex_builder = r"^.*\.(%s$)$" % .join(ignored_ext) ignored_extensions_regex = re.compile(regex_builder) log.debug( , ignored_extensions_regex.pattern, map(lambda x: x[], result) ) result = [x for x in result if not ignored_extensions_regex.match(x[])] log.debug(, result) return result
Will filter if instructed to do so the result to remove matching criteria :param result: list of dicts returned by Snakebite ls :type result: list[dict] :param ignored_ext: list of ignored extensions :type ignored_ext: list :param ignore_copying: shall we ignore ? :type ignore_copying: bool :return: list of dicts which were not removed :rtype: list[dict]
388,959
def save(self, ts): with open(self, ) as f: Timestamp.wrap(ts).dump(f)
Save timestamp to file.
388,960
def _cur_band_filled(self): cur_band = self._hyperbands[self._state["band_idx"]] return len(cur_band) == self._s_max_1
Checks if the current band is filled. The size of the current band should be equal to s_max_1
388,961
def extract(cls, padded): if padded.startswith("@{") and padded.endswith("}"): return padded[2:len(padded)-1] else: return padded
Removes the surrounding "@{...}" from the name. :param padded: the padded string :type padded: str :return: the extracted name :rtype: str
388,962
def remove(self, data): current_node = self._first_node deleted = False if self._size == 0: return if data == current_node.data(): if current_node.next() is None: self._first_node = LinkedListNode(None, None) self._last_node = self._first_node self._size = 0 return current_node = current_node.next() self._first_node = current_node self._size -= 1 return while True: if current_node is None: deleted = False break next_node = current_node.next() if next_node is not None: if data == next_node.data(): next_next_node = next_node.next() current_node.update_next(next_next_node) next_node = None deleted = True break current_node = current_node.next() if deleted: self._size -= 1
Removes a data node from the list. If the list contains more than one node having the same data that shall be removed, then the node having the first occurrency of the data is removed. :param data: the data to be removed in the new list node :type data: object
388,963
def enqueue(self, item_type, item): with self.enlock: self.queue[item_type].append(item)
Queue a new data item, make item iterable
388,964
def astra_projector(vol_interp, astra_vol_geom, astra_proj_geom, ndim, impl): if vol_interp not in (, ): raise ValueError("`vol_interp` not understood" .format(vol_interp)) impl = str(impl).lower() if impl not in (, ): raise ValueError("`impl` not understood" .format(impl)) if not in astra_proj_geom: raise ValueError( .format(astra_proj_geom)) if ndim == 3 and impl == : raise ValueError() ndim = int(ndim) proj_type = astra_proj_geom[] if proj_type not in (, , , , , , ): raise ValueError(.format(proj_type)) type_map_cpu = {: {: , : }, : {: , : }, : {: , : }, : {: , : }} type_map_cpu[] = type_map_cpu[] type_map_cpu[] = type_map_cpu[] type_map_cpu[] = type_map_cpu[] type_map_cuda = {: , : } type_map_cuda[] = type_map_cuda[] type_map_cuda[] = type_map_cuda[] type_map_cuda[] = type_map_cuda[] type_map_cuda[] = type_map_cuda[] type_map_cuda[] = type_map_cuda[] proj_cfg = {} if impl == : proj_cfg[] = type_map_cpu[proj_type][vol_interp] else: proj_cfg[] = type_map_cuda[proj_type] proj_cfg[] = astra_vol_geom proj_cfg[] = astra_proj_geom proj_cfg[] = {} if (proj_type in (, ) and astra_supports()): proj_cfg[][] = True if ndim == 2: return astra.projector.create(proj_cfg) else: return astra.projector3d.create(proj_cfg)
Create an ASTRA projector configuration dictionary. Parameters ---------- vol_interp : {'nearest', 'linear'} Interpolation type of the volume discretization. This determines the projection model that is chosen. astra_vol_geom : dict ASTRA volume geometry. astra_proj_geom : dict ASTRA projection geometry. ndim : {2, 3} Number of dimensions of the projector. impl : {'cpu', 'cuda'} Implementation of the projector. Returns ------- proj_id : int Handle for the created ASTRA internal projector object.
388,965
def capture_output(self, with_hook=True): self.hooked = def display_hook(obj): self.hooked += self.safe_better_repr(obj) self.last_obj = obj stdout, stderr = sys.stdout, sys.stderr if with_hook: d_hook = sys.displayhook sys.displayhook = display_hook sys.stdout, sys.stderr = StringIO(), StringIO() out, err = [], [] try: yield out, err finally: out.extend(sys.stdout.getvalue().splitlines()) err.extend(sys.stderr.getvalue().splitlines()) if with_hook: sys.displayhook = d_hook sys.stdout, sys.stderr = stdout, stderr
Steal stream output, return them in string, restore them
388,966
def process_placeholder_image(self): if self.placeholder_image_name: return placeholder_image_name = None placeholder_image = self.placeholder_image if placeholder_image: if isinstance(placeholder_image, OnStoragePlaceholderImage): name = placeholder_image.path else: name = placeholder_image.image_data.name placeholder_image_name = os.path.join( VERSATILEIMAGEFIELD_PLACEHOLDER_DIRNAME, name ) if not self.storage.exists(placeholder_image_name): self.storage.save( placeholder_image_name, placeholder_image.image_data ) self.placeholder_image_name = placeholder_image_name
Process the field's placeholder image. Ensures the placeholder image has been saved to the same storage class as the field in a top level folder with a name specified by settings.VERSATILEIMAGEFIELD_SETTINGS['placeholder_directory_name'] This should be called by the VersatileImageFileDescriptor __get__. If self.placeholder_image_name is already set it just returns right away.
388,967
def search_related(self, request): logger.debug("Cache Search Request") if self.cache.is_empty() is True: logger.debug("Empty Cache") return None result = [] items = list(self.cache.cache.items()) for key, item in items: element = self.cache.get(item.key) logger.debug("Element : {elm}".format(elm=str(element))) if request.proxy_uri == element.uri: result.append(item) return result
extracting everything from the cache
388,968
def random_string(length=6, alphabet=string.ascii_letters+string.digits): return .join([random.choice(alphabet) for i in xrange(length)])
Return a random string of given length and alphabet. Default alphabet is url-friendly (base62).
388,969
def authenticate_server(self, response): log.debug("authenticate_server(): Authenticate header: {0}".format( _negotiate_value(response))) host = urlparse(response.url).hostname try: if self.cbt_struct: result = kerberos.authGSSClientStep(self.context[host], _negotiate_value(response), channel_bindings=self.cbt_struct) else: result = kerberos.authGSSClientStep(self.context[host], _negotiate_value(response)) except kerberos.GSSError: log.exception("authenticate_server(): authGSSClientStep() failed:") return False if result < 1: log.error("authenticate_server(): authGSSClientStep() failed: " "{0}".format(result)) return False log.debug("authenticate_server(): returning {0}".format(response)) return True
Uses GSSAPI to authenticate the server. Returns True on success, False on failure.
388,970
def get_jobs_from_argument(self, raw_job_string): jobs = [] if raw_job_string.startswith(":"): job_keys = raw_job_string.strip(" :") jobs.extend([job for job in self.jobs(job_keys)]) else: assert "/" in raw_job_string, "Job Code {0} is improperly formatted!".format(raw_job_string) host, job_name = raw_job_string.rsplit("/", 1) host_url = self._config_dict.get(host, {}).get(, host) host = self.get_host(host_url) if host.has_job(job_name): jobs.append(JenksJob(None, host, job_name, lambda: self._get_job_api_instance(host_url, job_name))) else: raise JenksDataException( "Could not find Job {0}/{1}!".format(host, job_name)) return jobs
return a list of jobs corresponding to the raw_job_string
388,971
def get_all_events(self): self.all_events = {} events = self.tree.execute("$.events.frames") if events is None: return for e in events: event_type = e.get() frame_id = e.get() try: self.all_events[event_type].append(frame_id) except KeyError: self.all_events[event_type] = [frame_id]
Gather all event IDs in the REACH output by type. These IDs are stored in the self.all_events dict.
388,972
def chisquare(n_ij, weighted): if weighted: m_ij = n_ij / n_ij nan_mask = np.isnan(m_ij) m_ij[nan_mask] = 0.000001 w_ij = m_ij n_ij_col_sum = n_ij.sum(axis=1) n_ij_row_sum = n_ij.sum(axis=0) alpha, beta, eps = (1, 1, 1) while eps > 10e-6: alpha = alpha * np.vstack(n_ij_col_sum / m_ij.sum(axis=1)) beta = n_ij_row_sum / (alpha * w_ij).sum(axis=0) eps = np.max(np.absolute(w_ij * alpha * beta - m_ij)) m_ij = w_ij * alpha * beta else: m_ij = (np.vstack(n_ij.sum(axis=1)) * n_ij.sum(axis=0)) / n_ij.sum().astype(float) dof = (n_ij.shape[0] - 1) * (n_ij.shape[1] - 1) chi, p_val = stats.chisquare(n_ij, f_exp=m_ij, ddof=n_ij.size - 1 - dof, axis=None) return (chi, p_val, dof)
Calculates the chisquare for a matrix of ind_v x dep_v for the unweighted and SPSS weighted case
388,973
def Cp(self, T): result = 0.0 for c, e in zip(self._coefficients, self._exponents): result += c*T**e return result
Calculate the heat capacity of the compound phase. :param T: [K] temperature :returns: [J/mol/K] Heat capacity.
388,974
def url_join(base, *args): scheme, netloc, path, query, fragment = urlsplit(base) path = path if len(path) else "/" path = posixpath.join(path, *[( % x) for x in args]) return urlunsplit([scheme, netloc, path, query, fragment])
Helper function to join an arbitrary number of url segments together.
388,975
def startGraph(self): g = r.Graph() g.namespace_manager.bind("rdf", r.namespace.RDF) g.namespace_manager.bind("foaf", r.namespace.FOAF) g.namespace_manager.bind("xsd", r.namespace.XSD) g.namespace_manager.bind("opa", "http://purl.org/socialparticipation/opa/") g.namespace_manager.bind("ops", "http://purl.org/socialparticipation/ops/") g.namespace_manager.bind("wsg", "http://www.w3.org/2003/01/geo/wgs84_pos g.namespace_manager.bind("dc2", "http://purl.org/dc/elements/1.1/") g.namespace_manager.bind("dc", "http://purl.org/dc/terms/") g.namespace_manager.bind("sioc", "http://rdfs.org/sioc/ns g.namespace_manager.bind("tsioc", "http://rdfs.org/sioc/types g.namespace_manager.bind("schema", "http://schema.org/") g.namespace_manager.bind("part", "http://participa.br/") self.g=g
Starts RDF graph and bing namespaces
388,976
def GetDirections(self, origin, destination, sensor = False, mode = None, waypoints = None, alternatives = None, avoid = None, language = None, units = None, region = None, departure_time = None, arrival_time = None): params = { : origin, : destination, : str(sensor).lower() } if mode: params[] = mode if waypoints: params[] = waypoints if alternatives: params[] = alternatives if avoid: params[] = avoid if language: params[] = language if units: params[] = units if region: params[] = region if departure_time: params[] = departure_time if arrival_time: params[] = arrival_time if not self.premier: url = self.get_url(params) else: url = self.get_signed_url(params) return self.GetService_url(url)
Get Directions Service Pls refer to the Google Maps Web API for the details of the remained parameters
388,977
def ToLatLng(self): rad_lat = math.atan2(self.z, math.sqrt(self.x * self.x + self.y * self.y)) rad_lng = math.atan2(self.y, self.x) return (rad_lat * 180.0 / math.pi, rad_lng * 180.0 / math.pi)
Returns that latitude and longitude that this point represents under a spherical Earth model.
388,978
def bind(self, prefix, namespace, *args, **kwargs): setattr(self, prefix, RdfNamespace(prefix, namespace, **kwargs)) if kwargs.pop(, True): self.__make_dicts__
Extends the function to add an attribute to the class for each added namespace to allow for use of dot notation. All prefixes are converted to lowercase Args: prefix: string of namespace name namespace: rdflib.namespace instance kwargs: calc: whether or not create the lookup reference dictionaries Example usage: RdfNsManager.rdf.type => http://www.w3.org/1999/02/22-rdf-syntax-ns#type
388,979
def xi2_from_mass1_mass2_spin2x_spin2y(mass1, mass2, spin2x, spin2y): q = q_from_mass1_mass2(mass1, mass2) a1 = 2 + 3 * q / 2 a2 = 2 + 3 / (2 * q) return a1 / (q**2 * a2) * chi_perp_from_spinx_spiny(spin2x, spin2y)
Returns the effective precession spin argument for the smaller mass. This function assumes it's given spins of the secondary mass.
388,980
def log(self, branch, remote): log_hook = self.settings[] if log_hook: if ON_WINDOWS: with NamedTemporaryFile( prefix=, suffix=, delete=False ) as bat_file:
Call a log-command, if set by git-up.fetch.all.
388,981
def _prefetch_items(self,change): if self.is_initialized: view = self.item_view upper_limit = view.iterable_index+view.iterable_fetch_size-view.iterable_prefetch lower_limit = max(0,view.iterable_index+view.iterable_prefetch) offset = int(view.iterable_fetch_size/2.0) upper_visible_row = view.visible_rect[2] lower_visible_row = view.visible_rect[0] print("Visible rect = %s"%view.visible_rect) if upper_visible_row >= upper_limit: next_index = max(0,upper_visible_row-offset) if next_index>view.iterable_index: print("Auto prefetch upper limit %s!"%upper_limit) view.iterable_index = next_index elif view.iterable_index>0 and lower_visible_row < lower_limit: next_index = max(0,lower_visible_row-offset) if next_index<view.iterable_index: print("Auto prefetch lower limit=%s, iterable=%s, setting next=%s!"%(lower_limit,view.iterable_index,next_index)) view.iterable_index = next_index
When the current_row in the model changes (whether from scrolling) or set by the application. Make sure the results are loaded!
388,982
def snap_to_nearest_config(x, tune_params): params = [] for i, k in enumerate(tune_params.keys()): values = numpy.array(tune_params[k]) idx = numpy.abs(values-x[i]).argmin() params.append(int(values[idx])) return params
helper func that for each param selects the closest actual value
388,983
def merge_parameters(parameters, date_time, macros, types_and_values): merged_parameters = Query._airflow_macro_formats(date_time=date_time, macros=macros, types_and_values=types_and_values) if parameters: if types_and_values: parameters = { item[]: {: item[], : item[]} for item in parameters } else: parameters = {item[]: item[] for item in parameters} merged_parameters.update(parameters) return merged_parameters
Merge Return a mapping from airflow macro names (prefixed with '_') to values Args: date_time: The timestamp at which the macro values need to be evaluated. This is only applicable when types_and_values = True macros: If true, the values in the returned dict are the macro strings (like '{{ ds }}') Returns: The resolved value, i.e. the value with the format modifiers replaced with the corresponding parameter-values. E.g. if value is <project-id>.<dataset-id>.logs_%(_ds)s, the returned value could be <project-id>.<dataset-id>.logs_2017-12-21.
388,984
def load_modules_alignak_configuration(self): alignak_cfg = {} for instance in self.modules_manager.instances: if not hasattr(instance, ): return try: logger.info("Getting Alignak global configuration from module ", instance.name) cfg = instance.get_alignak_configuration() alignak_cfg.update(cfg) except Exception as exp: logger.error("Module %s get_alignak_configuration raised an exception %s. " "Log and continue to run", instance.name, str(exp)) output = io.StringIO() traceback.print_exc(file=output) logger.error("Back trace of this remove: %s", output.getvalue()) output.close() continue params = [] if alignak_cfg: logger.info("Got Alignak global configuration:") for key, value in sorted(alignak_cfg.items()): logger.info("- %s = %s", key, value) if key.startswith(): key = + key[1:].upper() + if value is None: continue if value == : continue if value == : continue params.append("%s=%s" % (key, value)) self.conf.load_params(params)
Load Alignak configuration from the arbiter modules If module implements get_alignak_configuration, call this function :param raw_objects: raw objects we got from reading config files :type raw_objects: dict :return: None
388,985
def surface_of_section(orbit, plane_ix, interpolate=False): w = orbit.w() if w.ndim == 2: w = w[...,None] ndim,ntimes,norbits = w.shape H_dim = ndim // 2 p_ix = plane_ix + H_dim if interpolate: raise NotImplementedError("Not yet implemented, sorry!") all_sos = np.zeros((ndim,norbits), dtype=object) for n in range(norbits): cross_ix = argrelmin(w[plane_ix,:,n]**2)[0] cross_ix = cross_ix[w[p_ix,cross_ix,n] > 0.] sos = w[:,cross_ix,n] for j in range(ndim): all_sos[j,n] = sos[j,:] return all_sos
Generate and return a surface of section from the given orbit. .. warning:: This is an experimental function and the API may change. Parameters ---------- orbit : `~gala.dynamics.Orbit` plane_ix : int Integer that represents the coordinate to record crossings in. For example, for a 2D Hamiltonian where you want to make a SoS in :math:`y-p_y`, you would specify ``plane_ix=0`` (crossing the :math:`x` axis), and this will only record crossings for which :math:`p_x>0`. interpolate : bool (optional) Whether or not to interpolate on to the plane of interest. This makes it much slower, but will work for orbits with a coarser sampling. Returns ------- Examples -------- If your orbit of interest is a tube orbit, it probably conserves (at least approximately) some equivalent to angular momentum in the direction of the circulation axis. Therefore, a surface of section in R-z should be instructive for classifying these orbits. TODO...show how to convert an orbit to Cylindrical..etc...
388,986
def getinfo(self, member): if isinstance(member, RarInfo): fname = member.filename else: fname = member if PATH_SEP == : fname2 = fname.replace("\\", "/") else: fname2 = fname.replace("/", "\\") try: return self._info_map[fname] except KeyError: try: return self._info_map[fname2] except KeyError: raise NoRarEntry("No such file: %s" % fname)
Return RarInfo for filename
388,987
def vlan_classifier_rule_class_type_proto_proto_proto_val(self, **kwargs): config = ET.Element("config") vlan = ET.SubElement(config, "vlan", xmlns="urn:brocade.com:mgmt:brocade-vlan") classifier = ET.SubElement(vlan, "classifier") rule = ET.SubElement(classifier, "rule") ruleid_key = ET.SubElement(rule, "ruleid") ruleid_key.text = kwargs.pop() class_type = ET.SubElement(rule, "class-type") proto = ET.SubElement(class_type, "proto") proto = ET.SubElement(proto, "proto") proto_val = ET.SubElement(proto, "proto-val") proto_val.text = kwargs.pop() callback = kwargs.pop(, self._callback) return callback(config)
Auto Generated Code
388,988
def on_nick(self, connection, event): old_nickname = self.get_nickname(event) old_color = self.nicknames.pop(old_nickname) new_nickname = event.target() message = "is now known as %s" % new_nickname self.namespace.emit("message", old_nickname, message, old_color) new_color = color(new_nickname) self.nicknames[new_nickname] = new_color self.emit_nicknames() if self.nickname == old_nickname: self.nickname = new_nickname
Someone changed their nickname - send the nicknames list to the WebSocket.
388,989
def _check_available_data(archive, arc_type, day): available_stations = [] if arc_type.lower() == : wavefiles = glob.glob(os.path.join(archive, day.strftime(), day.strftime(), )) for wavefile in wavefiles: header = read(wavefile, headonly=True) available_stations.append((header[0].stats.station, header[0].stats.channel)) elif arc_type.lower() == : client = SeishubClient(archive) st = client.get_previews(starttime=UTCDateTime(day), endtime=UTCDateTime(day) + 86400) for tr in st: available_stations.append((tr.stats.station, tr.stats.channel)) elif arc_type.lower() == : client = FDSNClient(archive) inventory = client.get_stations(starttime=UTCDateTime(day), endtime=UTCDateTime(day) + 86400, level=) for network in inventory: for station in network: for channel in station: available_stations.append((station.code, channel.code)) return available_stations
Function to check what stations are available in the archive for a given \ day. :type archive: str :param archive: The archive source :type arc_type: str :param arc_type: The type of archive, can be: :type day: datetime.date :param day: Date to retrieve data for :returns: list of tuples of (station, channel) as available. .. note:: Currently the seishub options are untested.
388,990
def render_file(self, filename): dirname, basename = split(filename) with changedir(dirname): infile = abspath(basename) outfile = abspath( % basename) self.docutils.publish_file(infile, outfile, self.styles) return outfile
Convert a reST file to HTML.
388,991
def remove_config_to_machine_group(self, project_name, config_name, group_name): headers = {} params = {} resource = "/machinegroups/" + group_name + "/configs/" + config_name (resp, header) = self._send("DELETE", project_name, None, resource, params, headers) return RemoveConfigToMachineGroupResponse(header, resp)
remove a logtail config to a machine group Unsuccessful opertaion will cause an LogException. :type project_name: string :param project_name: the Project name :type config_name: string :param config_name: the logtail config name to apply :type group_name: string :param group_name: the machine group name :return: RemoveConfigToMachineGroupResponse :raise: LogException
388,992
def build_values(name, values_mods): values_file = os.path.join(name, ) with open(values_file) as f: values = yaml.load(f) for key, value in values_mods.items(): parts = key.split() mod_obj = values for p in parts: mod_obj = mod_obj[p] print(f"Updating {values_file}: {key}: {value}") if isinstance(mod_obj, MutableMapping): keys = IMAGE_REPOSITORY_KEYS & mod_obj.keys() if keys: for key in keys: mod_obj[key] = value[] else: possible_keys = .join(IMAGE_REPOSITORY_KEYS) raise KeyError( f ) mod_obj[] = value[] else: raise TypeError( f ) with open(values_file, ) as f: yaml.dump(values, f)
Update name/values.yaml with modifications
388,993
def create_in_cluster(self): try: self.api.create_namespaced_service(self.namespace, self.body) except ApiException as e: raise ConuException( "Exception when calling Kubernetes API - create_namespaced_service: {}\n".format(e)) logger.info( "Creating Service %s in namespace: %s", self.name, self.namespace)
call Kubernetes API and create this Service in cluster, raise ConuExeption if the API call fails :return: None
388,994
def intercept_(self): if getattr(self, , None) is not None and self.booster != : raise AttributeError( .format(self.booster)) b = self.get_booster() return np.array(json.loads(b.get_dump(dump_format=)[0])[])
Intercept (bias) property .. note:: Intercept is defined only for linear learners Intercept (bias) is only defined when the linear model is chosen as base learner (`booster=gblinear`). It is not defined for other base learner types, such as tree learners (`booster=gbtree`). Returns ------- intercept_ : array of shape ``(1,)`` or ``[n_classes]``
388,995
def delete_vmss(access_token, subscription_id, resource_group, vmss_name): endpoint = .join([get_rm_endpoint(), , subscription_id, , resource_group, , vmss_name, , COMP_API]) return do_delete(endpoint, access_token)
Delete a virtual machine scale set. Args: access_token (str): A valid Azure authentication token. subscription_id (str): Azure subscription id. resource_group (str): Azure resource group name. vmss_name (str): Name of the virtual machine scale set. Returns: HTTP response.
388,996
def csoftmax_for_slice(input): [ten, u] = input shape_t = ten.shape shape_u = u.shape ten -= tf.reduce_mean(ten) q = tf.exp(ten) active = tf.ones_like(u, dtype=tf.int32) mass = tf.constant(0, dtype=tf.float32) found = tf.constant(True, dtype=tf.bool) def loop(q_, mask, mass_, found_): q_list = tf.dynamic_partition(q_, mask, 2) condition_indices = tf.dynamic_partition(tf.range(tf.shape(q_)[0]), mask, 2) p = q_list[1] * (1.0 - mass_) / tf.reduce_sum(q_list[1]) p_new = tf.dynamic_stitch(condition_indices, [q_list[0], p]) less_mask = tf.cast(tf.less(u, p_new), tf.int32) condition_indices = tf.dynamic_partition(tf.range(tf.shape(p_new)[0]), less_mask, 2) split_p_new = tf.dynamic_partition(p_new, less_mask, 2) split_u = tf.dynamic_partition(u, less_mask, 2) alpha = tf.dynamic_stitch(condition_indices, [split_p_new[0], split_u[1]]) mass_ += tf.reduce_sum(split_u[1]) mask = mask * (tf.ones_like(less_mask) - less_mask) found_ = tf.cond(tf.equal(tf.reduce_sum(less_mask), 0), lambda: False, lambda: True) alpha = tf.reshape(alpha, q_.shape) return alpha, mask, mass_, found_ (csoft, mask_, _, _) = tf.while_loop(cond=lambda _0, _1, _2, f: f, body=loop, loop_vars=(q, active, mass, found)) return [csoft, mask_]
It is a implementation of the constrained softmax (csoftmax) for slice. Based on the paper: https://andre-martins.github.io/docs/emnlp2017_final.pdf "Learning What's Easy: Fully Differentiable Neural Easy-First Taggers" (page 4) Args: input: A list of [input tensor, cumulative attention]. Returns: output: A list of [csoftmax results, masks]
388,997
def classify(self, n_jobs=-1, configure=None): start = timeit.default_timer() networks = self.networks n = len(networks) cpu = n_jobs if n_jobs > -1 else mp.cpu_count() if cpu > 1: lpart = int(np.ceil(n / float(cpu))) if n > cpu else 1 parts = networks.split(np.arange(lpart, n, lpart)) behaviors_parts = Parallel(n_jobs=n_jobs)(delayed(__learn_io__)(part, self.setup, configure) for part in parts) networks = core.LogicalNetworkList.from_hypergraph(networks.hg) for behavior in behaviors_parts: networks = networks.concat(behavior) behaviors = __learn_io__(networks, self.setup, configure) self.stats[] = timeit.default_timer() - start self._logger.info("%s input-output logical behaviors found in %.4fs", len(behaviors), self.stats[]) return behaviors
Returns input-output behaviors for the list of logical networks in the attribute :attr:`networks` Example:: >>> from caspo import core, classify >>> networks = core.LogicalNetworkList.from_csv('networks.csv') >>> setup = core.Setup.from_json('setup.json') >>> classifier = classify.Classifier(networks, setup) >>> behaviors = classifier.classify() >>> behaviors.to_csv('behaviors.csv', networks=True) n_jobs : int Number of jobs to run in parallel. Default to -1 (all cores available) configure : callable Callable object responsible of setting clingo configuration Returns ------- caspo.core.logicalnetwork.LogicalNetworkList The list of networks with one representative for each behavior
388,998
def highlight(self, *args): toEnable = (self._highlighter is None) seconds = 3 color = "red" if len(args) > 3: raise TypeError("Unrecognized argument(s) for highlight()") for arg in args: if type(arg) == bool: toEnable = arg elif isinstance(arg, Number): seconds = arg elif isinstance(arg, basestring): color = arg if self._highlighter is not None: self._highlighter.close() if toEnable: self._highlighter = PlatformManager.highlight((self.getX(), self.getY(), self.getW(), self.getH()), color, seconds)
Highlights the region with a colored frame. Accepts the following parameters: highlight([toEnable], [seconds], [color]) * toEnable (boolean): Enables or disables the overlay * seconds (number): Seconds to show overlay * color (string): Hex code ("#XXXXXX") or color name ("black")
388,999
def run(self): if KSER_METRICS_ENABLED == "yes": from prometheus_client import start_http_server logger.info("Metric.Starting...") start_http_server( os.getenv("KSER_METRICS_PORT", 8888), os.getenv("KSER_METRICS_ADDRESS", "0.0.0.0") ) logger.info("{}.Starting...".format(self.__class__.__name__)) running = True while running: msg = self.client.poll() if msg: if not msg.error(): self.REGISTRY.run(msg.value().decode()) elif msg.error().code() != KafkaError._PARTITION_EOF: logger.error(msg.error()) running = False self.client.close()
Run consumer