Unnamed: 0
int64
0
389k
code
stringlengths
26
79.6k
docstring
stringlengths
1
46.9k
4,000
def as_string(self, chars, current_linkable=False, class_current="active_link"): return self.__do_menu("as_string", current_linkable, class_current, chars)
It returns menu as string
4,001
def full_name(self): if self.requested_version is not None: return % (self.name, self.requested_version) return self.name
Return full package/distribution name, w/version
4,002
def get_dash(self): dashes = ffi.new(, cairo.cairo_get_dash_count(self._pointer)) offset = ffi.new() cairo.cairo_get_dash(self._pointer, dashes, offset) self._check_status() return list(dashes), offset[0]
Return the current dash pattern. :returns: A ``(dashes, offset)`` tuple of a list and a float. :obj:`dashes` is a list of floats, empty if no dashing is in effect.
4,003
def get_available_references(self, datas): names = [] for k, v in datas.items(): if k.startswith(RULE_REFERENCE): names.append(k[len(RULE_REFERENCE)+1:]) return names
Get available manifest reference names. Every rules starting with prefix from ``nomenclature.RULE_REFERENCE`` are available references. Only name validation is performed on these references. Arguments: datas (dict): Data where to search for reference declarations. Returns: list: List of every available reference names. This is the real name unprefixed.
4,004
def hkdf(self, chaining_key, input_key_material, dhlen=64): if len(chaining_key) != self.HASHLEN: raise HashError("Incorrect chaining key length") if len(input_key_material) not in (0, 32, dhlen): raise HashError("Incorrect input key material length") temp_key = self.hmac_hash(chaining_key, input_key_material) output1 = self.hmac_hash(temp_key, b) output2 = self.hmac_hash(temp_key, output1 + b) return output1, output2
Hash-based key derivation function Takes a ``chaining_key'' byte sequence of len HASHLEN, and an ``input_key_material'' byte sequence with length either zero bytes, 32 bytes or dhlen bytes. Returns two byte sequences of length HASHLEN
4,005
def _read_hdf_columns(path_or_buf, columns, num_splits, kwargs): df = pandas.read_hdf(path_or_buf, columns=columns, **kwargs) return _split_result_for_readers(0, num_splits, df) + [len(df.index)]
Use a Ray task to read columns from HDF5 into a Pandas DataFrame. Note: Ray functions are not detected by codecov (thus pragma: no cover) Args: path_or_buf: The path of the HDF5 file. columns: The list of column names to read. num_splits: The number of partitions to split the column into. Returns: A list containing the split Pandas DataFrames and the Index as the last element. If there is not `index_col` set, then we just return the length. This is used to determine the total length of the DataFrame to build a default Index.
4,006
def create_weekmatrices(user, split_interval=60): if not float(24 * 60 / split_interval).is_integer(): raise ValueError( "The minute interval set for the week-matrix structure does not evenly divide the day!") contacts_in = partial(bc.individual.number_of_contacts, direction=, interaction=, summary=None) contacts_out = partial(bc.individual.number_of_contacts, direction=, interaction=, summary=None) calls_in = partial(bc.individual.number_of_interactions, direction=, interaction=, summary=None) calls_out = partial(bc.individual.number_of_interactions, direction=, interaction=, summary=None) texts_in = partial(bc.individual.number_of_interactions, direction=, interaction=, summary=None) texts_out = partial(bc.individual.number_of_interactions, direction=, interaction=, summary=None) time_spent_in = partial(bc.individual.call_duration, direction=, interaction=, summary=None) time_spent_out = partial(bc.individual.call_duration, direction=, interaction=, summary=None) core_func = [ (contacts_in, "scalar"), (contacts_out, "scalar"), (calls_in, "scalar"), (calls_out, "scalar"), (texts_in, "scalar"), (texts_out, "scalar") ] time_func = [ (time_spent_in, "summarystats"), (time_spent_out, "summarystats") ] wm = [] sections = [ (i + 1) * split_interval for i in range(7 * 24 * 60 // split_interval)] temp_user = _extract_user_info(user) for grouped_records in group_records(user.records, groupby=): week_records = list(grouped_records) time_spent_rec = _transform_to_time_spent( week_records, split_interval, sections) wm.extend(_calculate_channels( week_records, sections, split_interval, core_func, temp_user)) wm.extend(_calculate_channels( time_spent_rec, sections, split_interval, time_func, temp_user, len(core_func))) return wm
Computes raw indicators (e.g. number of outgoing calls) for intervals of ~1 hour across each week of user data. These "week-matrices" are returned in a nested list with each sublist containing [user.name, channel, weekday, section, value]. Parameters ---------- user : object The user to create week-matrices for. split_interval : int The interval in minutes for which each indicator is computed. Defaults to 60. Needs to be able to split a day (24*60 minutes) evenly.
4,007
def check_install(): if platform.system() == and sys.executable != : print("*" * 79) print(textwrap.fill( "WARNING: You are not using the version of Python included with " "macOS. If you intend to use Voltron with the LLDB included " "with Xcode, or GDB installed with Homebrew, it will not work " "unless it is installed using the systemLinux': try: output = check_output([ "gdb", "-batch", "-q", "--nx", "-ex", "pi print(sys.version_info.major)" ]).decode("utf-8") gdb_python = int(output) if gdb_python != sys.version_info.major: print("*" * 79) print(textwrap.fill( "WARNING: You are installing Voltron using Python {0}.x " "and GDB is linked with Python {1}.x. GDB will not be " "able to load Voltron. Please install using Python {1} " "if you intend to use Voltron with the copy of GDB that " "is installed. See the following documentation for more " "detailed installation instructions: " "https://github.com/snare/voltron/wiki/Installation" .format(sys.version_info.major, gdb_python), 79)) print("*" * 79) except: pass
Try to detect the two most common installation errors: 1. Installing on macOS using a Homebrew version of Python 2. Installing on Linux using Python 2 when GDB is linked with Python 3
4,008
def mv(source, target): if os.path.isfile(target) and len(source) == 1: if click.confirm("Are you sure you want to overwrite %s?" % target): err_msg = cli_syncthing_adapter.mv_edge_case(source, target) if err_msg: click.echo(err_msg) return if len(source) > 1 and not os.path.isdir(target): click.echo(click.get_current_context().get_help()) return else: err_msg, err = cli_syncthing_adapter.mv(source, target) if err_msg: click.echo(err_msg, err)
Move synchronized directory.
4,009
def waitForCreation(self, timeout=10, notification=): callback = AXCallbacks.returnElemCallback retelem = None args = (retelem,) return self.waitFor(timeout, notification, callback=callback, args=args)
Convenience method to wait for creation of some UI element. Returns: The element created
4,010
def properties(self): if self._property_manager is None: self._property_manager = PropertyManager(session=self._session) return self._property_manager
Property for accessing :class:`PropertyManager` instance, which is used to manage properties of the jobs. :rtype: yagocd.resources.property.PropertyManager
4,011
def _make_jsmin(python_only=False): if not python_only: try: import _rjsmin except ImportError: pass else: return _rjsmin.jsmin try: xrange except NameError: xrange = range space_chars = r line_comment = r space_comment = r space_comment_nobang = r bang_comment = r string1 = \ r string2 = r strings = r % (string1, string2) charclass = r nospecial = r regex = r % ( nospecial, charclass, nospecial ) space = r % (space_chars, space_comment) space_nobang = r % (space_chars, space_comment_nobang) newline = r % line_comment def fix_charclass(result): pos = result.find() if pos >= 0: result = r % (result[:pos], result[pos + 1:]) def sequentize(string): first, last, result = None, None, [] for char in map(ord, string): if last is None: first = last = char elif last + 1 == char: last = char else: result.append((first, last)) first = last = char if last is not None: result.append((first, last)) return .join([ % ( chr(first), last > first + 1 and or , last != first and chr(last) or ) for first, last in result]) return _re.sub( r, lambda m: % ord(m.group(1)), ( sequentize(result) .replace(, ) .replace(, ) .replace(, ) ) ) def id_literal_(what): match = _re.compile(what).match result = .join([ chr(c) for c in xrange(127) if not match(chr(c)) ]) return % fix_charclass(result) def not_id_literal_(keep): match = _re.compile(id_literal_(keep)).match result = .join([ chr(c) for c in xrange(127) if not match(chr(c)) ]) return r % fix_charclass(result) not_id_literal = not_id_literal_(r) preregex1 = r preregex2 = r % locals() id_literal = id_literal_(r) id_literal_open = id_literal_(r) id_literal_close = id_literal_(r) dull = r space_sub_simple = _re.compile(( r r r r r r r r r r r r r r r r ) % locals()).sub def space_subber_simple(match): groups = match.groups() if groups[0]: return groups[0] elif groups[1]: return groups[1] elif groups[2]: return groups[2] elif groups[3]: return groups[3] elif groups[4]: return elif groups[5] or groups[6] or groups[7]: return else: return space_sub_banged = _re.compile(( r r r r r r r r r r r r r r r r r ) % dict(locals(), space=space_nobang)).sub def space_subber_banged(match): groups = match.groups() if groups[0]: return groups[0] elif groups[1]: return groups[1] elif groups[2]: return groups[2] elif groups[3]: return groups[3] elif groups[4]: return groups[4] elif groups[5]: return elif groups[6] or groups[7] or groups[8]: return else: return def jsmin(script, keep_bang_comments=False): r if keep_bang_comments: return space_sub_banged( space_subber_banged, % script ).strip() else: return space_sub_simple( space_subber_simple, % script ).strip() return jsmin
Generate JS minifier based on `jsmin.c by Douglas Crockford`_ .. _jsmin.c by Douglas Crockford: http://www.crockford.com/javascript/jsmin.c :Parameters: `python_only` : ``bool`` Use only the python variant. If true, the c extension is not even tried to be loaded. :Return: Minifier :Rtype: ``callable``
4,012
def print_progress_bar(iteration, total, prefix=, suffix=, decimals=1, length=100, fill=): percent = ("{0:." + str(decimals) + "f}").format(100 * (iteration / float(total))) print(percent) if iteration == total: print()
Call in a loop to create terminal progress bar @params: iteration - Required : current iteration (Int) total - Required : total iterations (Int) prefix - Optional : prefix string (Str) suffix - Optional : suffix string (Str) decimals - Optional : positive number of decimals in percent complete (Int) length - Optional : character length of bar (Int) fill - Optional : bar fill character (Str)
4,013
def QWidget_factory(ui_file=None, *args, **kwargs): file = ui_file or DEFAULT_UI_FILE if not foundations.common.path_exists(file): raise foundations.exceptions.FileExistsError("{0} | ui file doesn{0}(){1}{1}' attribute is not deletable!".format( self.__class__.__name__, "ui_file")) def show(self, setGeometry=True): if not setGeometry: super(QWidget, self).show() return wasHidden = not self.isVisible() if self.__geometry is None and wasHidden: center_widget_on_screen(self) super(QWidget, self).show() if self.__geometry is not None and wasHidden: self.restoreGeometry(self.__geometry) def closeEvent(self, event): self.__geometry = self.saveGeometry() event.accept() return QWidget
Defines a class factory creating `QWidget <http://doc.qt.nokia.com/qwidget.html>`_ classes using given ui file. :param ui_file: Ui file. :type ui_file: unicode :param \*args: Arguments. :type \*args: \* :param \*\*kwargs: Keywords arguments. :type \*\*kwargs: \*\* :return: QWidget class. :rtype: QWidget
4,014
def remove(self, fieldspec): pattern = r match = re.match(pattern, fieldspec) if not match: return None grp = match.groupdict() for field in self.get_fields(grp[]): if grp[]: updated = [] for code, value in pairwise(field.subfields): if not code == grp[]: updated += [code, value] if not updated: self.remove_field(field) else: field.subfields = updated else: self.remove_field(field)
Removes fields or subfields according to `fieldspec`. If a non-control field subfield removal leaves no other subfields, delete the field entirely.
4,015
def lockToColumn(self, index): self._lockColumn = index if index is None: self.__destroyLockedView() return else: if not self._lockedView: view = QtGui.QTreeView(self.parent()) view.setModel(self.model()) view.setSelectionModel(self.selectionModel()) view.setItemDelegate(self.itemDelegate()) view.setFrameShape(view.NoFrame) view.setVerticalScrollBarPolicy(QtCore.Qt.ScrollBarAlwaysOff) view.setHorizontalScrollBarPolicy(QtCore.Qt.ScrollBarAlwaysOff) view.setRootIsDecorated(self.rootIsDecorated()) view.setUniformRowHeights(True) view.setFocusProxy(self) view.header().setFocusProxy(self.header()) view.setStyleSheet(self.styleSheet()) view.setAutoScroll(False) view.setSortingEnabled(self.isSortingEnabled()) view.setPalette(self.palette()) view.move(self.x(), self.y()) self.setAutoScroll(False) self.setUniformRowHeights(True) view.collapsed.connect(self.collapse) view.expanded.connect(self.expand) view.expanded.connect(self.__updateLockedView) view.collapsed.connect(self.__updateLockedView) view_head = view.header() for i in range(self.columnCount()): view_head.setResizeMode(i, self.header().resizeMode(i)) view.header().sectionResized.connect(self.__updateStandardSection) self.header().sectionResized.connect(self.__updateLockedSection) vbar = view.verticalScrollBar() self.verticalScrollBar().valueChanged.connect(vbar.setValue) self._lockedView = view self.__updateLockedView()
Sets the column that the tree view will lock to. If None is supplied, then locking will be removed. :param index | <int> || None
4,016
def server(request): return direct_to_template( request, , {: getViewURL(request, idPage), : getViewURL(request, idpXrds), })
Respond to requests for the server's primary web page.
4,017
def discover(language): debug(%s\ % (language,)) global scrapers, discovered for language in scrapers.iterkeys(): discovered[language] = {} for scraper in scrapers[language]: blacklist = [, , ] methods = [method for method in dir(scraper) if method not in blacklist and not method.startswith() and callable(getattr(scraper, method))] for method in methods: if discovered[language].has_key(method): discovered[language][method].append(scraper) else: discovered[language][method] = [scraper] debug(%s\ % (len(scrapers[language]), len(discovered[language].keys()), language))
Discovers all registered scrapers to be used for the generic scraping interface.
4,018
def check_bidi(data): has_l = False has_ral = False for char in data: if stringprep.in_table_d1(char): has_ral = True elif stringprep.in_table_d2(char): has_l = True if has_l and has_ral: raise StringprepError("Both RandALCat and LCat characters present") if has_ral and (not stringprep.in_table_d1(data[0]) or not stringprep.in_table_d1(data[-1])): raise StringprepError("The first and the last character must" " be RandALCat") return data
Checks if sting is valid for bidirectional printing.
4,019
def handle_battery_level(msg): if not msg.gateway.is_sensor(msg.node_id): return None msg.gateway.sensors[msg.node_id].battery_level = msg.payload msg.gateway.alert(msg) return None
Process an internal battery level message.
4,020
def getScans(self, modifications=True, fdr=True): if not self.scans: for i in self: yield i else: for i in self.scans.values(): yield i yield None
get a random scan
4,021
def _vote_disagreement(self, votes): ret = [] for candidate in votes: ret.append(0.0) lab_count = {} for lab in candidate: lab_count[lab] = lab_count.setdefault(lab, 0) + 1 for lab in lab_count.keys(): ret[-1] -= lab_count[lab] / self.n_students * \ math.log(float(lab_count[lab]) / self.n_students) return ret
Return the disagreement measurement of the given number of votes. It uses the vote vote to measure the disagreement. Parameters ---------- votes : list of int, shape==(n_samples, n_students) The predictions that each student gives to each sample. Returns ------- disagreement : list of float, shape=(n_samples) The vote entropy of the given votes.
4,022
def describe(self, **kwargs): api_method = dxpy.api.container_describe if isinstance(self, DXProject): api_method = dxpy.api.project_describe self._desc = api_method(self._dxid, **kwargs) return self._desc
:returns: A hash containing attributes of the project or container. :rtype: dict Returns a hash with key-value pairs as specified by the API specification for the `/project-xxxx/describe <https://wiki.dnanexus.com/API-Specification-v1.0.0/Projects#API-method%3A-%2Fproject-xxxx%2Fdescribe>`_ method. This will usually include keys such as "id", "name", "class", "billTo", "created", "modified", and "dataUsage".
4,023
async def stop(self): for task in self.__tracks.values(): if task is not None: task.cancel() self.__tracks = {}
Stop discarding media.
4,024
def ko_model(model, field_names=None, data=None): try: if isinstance(model, str): modelName = model else: modelName = model.__class__.__name__ if field_names: fields = field_names else: fields = get_fields(model) if hasattr(model, "comparator"): comparator = str(model.comparator()) else: comparator = modelViewString = render_to_string( "knockout_modeler/model.js", {: modelName, : fields, : data, : comparator} ) return modelViewString except Exception as e: logger.exception(e) return
Given a model, returns the Knockout Model and the Knockout ViewModel. Takes optional field names and data.
4,025
def _get_cpu_info_from_registry(): try: if not DataSource.is_windows: return {} processor_brand = DataSource.winreg_processor_brand().strip() vendor_id = DataSource.winreg_vendor_id_raw() arch_string_raw = DataSource.winreg_arch_string_raw() arch, bits = _parse_arch(arch_string_raw) hz_actual = DataSource.winreg_hz_actual() hz_actual = _to_decimal_string(hz_actual) hz_advertised, scale = _parse_cpu_brand_string(processor_brand) if hz_advertised == : scale = 6 hz_advertised = _to_decimal_string(hz_actual) feature_bits = DataSource.winreg_feature_bits() def is_set(bit): mask = 0x80000000 >> bit retval = mask & feature_bits > 0 return retval flags = { : is_set(0), : is_set(1), : is_set(2), : is_set(3), : is_set(4), : is_set(5), : is_set(6), : is_set(7), : is_set(8), : is_set(9), : is_set(10), : is_set(11), : is_set(12), : is_set(13), : is_set(14), : is_set(15), : is_set(16), : is_set(17), : is_set(18), : is_set(19), : is_set(21), : is_set(22), : is_set(23), : is_set(24), : is_set(25), : is_set(26), : is_set(27), : is_set(29), : is_set(30), : is_set(31) } flags = [k for k, v in flags.items() if v] flags.sort() info = { : vendor_id, : processor_brand, : _hz_short_to_friendly(hz_advertised, scale), : _hz_short_to_friendly(hz_actual, 6), : _hz_short_to_full(hz_advertised, scale), : _hz_short_to_full(hz_actual, 6), : flags } info = {k: v for k, v in info.items() if v} return info except: return {}
FIXME: Is missing many of the newer CPU flags like sse3 Returns the CPU info gathered from the Windows Registry. Returns {} if not on Windows.
4,026
def index(): if current_app.config[] is not None: override = current_app.config[] results = (models.TaskResult.query .join(models.Task) .filter(models.Task.playbook_id.in_(override))) else: results = models.TaskResult.query.all() return render_template(, results=results)
This is not served anywhere in the web application. It is used explicitly in the context of generating static files since flask-frozen requires url_for's to crawl content. url_for's are not used with result.show_result directly and are instead dynamically generated through javascript for performance purposes.
4,027
def list_resource_commands(self): resource_path = os.path.abspath(os.path.join( os.path.dirname(__file__), os.pardir, )) answer = set([]) for _, name, _ in pkgutil.iter_modules([resource_path]): res = tower_cli.get_resource(name) if not getattr(res, , False): answer.add(name) return sorted(answer)
Returns a list of multi-commands for each resource type.
4,028
def patch_namespaced_horizontal_pod_autoscaler_status(self, name, namespace, body, **kwargs): kwargs[] = True if kwargs.get(): return self.patch_namespaced_horizontal_pod_autoscaler_status_with_http_info(name, namespace, body, **kwargs) else: (data) = self.patch_namespaced_horizontal_pod_autoscaler_status_with_http_info(name, namespace, body, **kwargs) return data
partially update status of the specified HorizontalPodAutoscaler This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.patch_namespaced_horizontal_pod_autoscaler_status(name, namespace, body, async_req=True) >>> result = thread.get() :param async_req bool :param str name: name of the HorizontalPodAutoscaler (required) :param str namespace: object name and auth scope, such as for teams and projects (required) :param object body: (required) :param str pretty: If 'true', then the output is pretty printed. :param str dry_run: When present, indicates that modifications should not be persisted. An invalid or unrecognized dryRun directive will result in an error response and no further processing of the request. Valid values are: - All: all dry run stages will be processed :param str field_manager: fieldManager is a name associated with the actor or entity that is making these changes. The value must be less than or 128 characters long, and only contain printable characters, as defined by https://golang.org/pkg/unicode/#IsPrint. This field is required for apply requests (application/apply-patch) but optional for non-apply patch types (JsonPatch, MergePatch, StrategicMergePatch). :param bool force: Force is going to \"force\" Apply requests. It means user will re-acquire conflicting fields owned by other people. Force flag must be unset for non-apply patch requests. :return: V2beta1HorizontalPodAutoscaler If the method is called asynchronously, returns the request thread.
4,029
def command_max_delay(self, event=None): try: max_delay = self.max_delay_var.get() except ValueError: max_delay = self.runtime_cfg.max_delay if max_delay < 0: max_delay = self.runtime_cfg.max_delay if max_delay > 0.1: max_delay = self.runtime_cfg.max_delay self.runtime_cfg.max_delay = max_delay self.max_delay_var.set(self.runtime_cfg.max_delay)
CPU burst max running time - self.runtime_cfg.max_delay
4,030
def _read_to_buffer(self) -> Optional[int]: try: while True: try: if self._user_read_buffer: buf = memoryview(self._read_buffer)[ self._read_buffer_size : ] else: buf = bytearray(self.read_chunk_size) bytes_read = self.read_from_fd(buf) except (socket.error, IOError, OSError) as e: if errno_from_exception(e) == errno.EINTR: continue if self._is_connreset(e): self.close(exc_info=e) return None self.close(exc_info=e) raise break if bytes_read is None: return 0 elif bytes_read == 0: self.close() return 0 if not self._user_read_buffer: self._read_buffer += memoryview(buf)[:bytes_read] self._read_buffer_size += bytes_read finally: del buf if self._read_buffer_size > self.max_buffer_size: gen_log.error("Reached maximum read buffer size") self.close() raise StreamBufferFullError("Reached maximum read buffer size") return bytes_read
Reads from the socket and appends the result to the read buffer. Returns the number of bytes read. Returns 0 if there is nothing to read (i.e. the read returns EWOULDBLOCK or equivalent). On error closes the socket and raises an exception.
4,031
def upload(ctx, product, git_ref, dirname, aws_id, aws_secret, ci_env, on_travis_push, on_travis_pr, on_travis_api, on_travis_cron, skip_upload): logger = logging.getLogger(__name__) if skip_upload: click.echo() sys.exit(0) logger.debug(, ci_env) logger.debug( , on_travis_push, on_travis_pr, on_travis_api, on_travis_cron) if ci_env == and \ _should_skip_travis_event( on_travis_push, on_travis_pr, on_travis_api, on_travis_cron): sys.exit(0) ensure_login(ctx) git_refs = _get_git_refs(ci_env, git_ref) build_resource = register_build( ctx.obj[], ctx.obj[], product, git_refs ) logger.debug(, build_resource)
Upload a new site build to LSST the Docs.
4,032
def serial_ports(): if sys.platform.startswith(): ports = [ % (i + 1) for i in range(256)] elif sys.platform.startswith() or sys.platform.startswith(): ports = glob.glob() elif sys.platform.startswith(): ports = glob.glob() else: raise EnvironmentError() result = [] for port in ports: try: s = serial.Serial(port) s.close() result.append(port) except (OSError, serial.SerialException) as e: hfoslog(, port, e, type(e), exc=True, lvl=warn) return result
Lists serial port names :raises EnvironmentError: On unsupported or unknown platforms :returns: A list of the serial ports available on the system Courtesy: Thomas ( http://stackoverflow.com/questions/12090503 /listing-available-com-ports-with-python )
4,033
def build_asset_array(assets_by_site, tagnames=(), time_event=None): for assets in assets_by_site: if len(assets): first_asset = assets[0] break else: raise ValueError() loss_types = [] occupancy_periods = [] for name in sorted(first_asset.values): if name.startswith(): period = name.split(, 1)[1] if period != : occupancy_periods.append(period) loss_types.append(name) else: loss_types.append( + name) deductible_d = first_asset.deductibles or {} limit_d = first_asset.insurance_limits or {} if deductible_d or limit_d: logging.warning( ) retro = [] if first_asset._retrofitted else [] float_fields = loss_types + retro int_fields = [(str(name), U16) for name in tagnames] tagi = {str(name): i for i, name in enumerate(tagnames)} asset_dt = numpy.dtype( [(, U32), (, F32), (, F32), (, U32), (, F32), (, F32)] + [ (str(name), float) for name in float_fields] + int_fields) num_assets = sum(len(assets) for assets in assets_by_site) assetcol = numpy.zeros(num_assets, asset_dt) asset_ordinal = 0 fields = set(asset_dt.fields) for sid, assets_ in enumerate(assets_by_site): for asset in assets_: asset.ordinal = asset_ordinal record = assetcol[asset_ordinal] asset_ordinal += 1 for field in fields: if field == : value = asset.ordinal elif field == : value = asset.number elif field == : value = asset.area elif field == : value = sid elif field == : value = asset.location[0] elif field == : value = asset.location[1] elif field.startswith(): value = asset.values[field] elif field == : value = asset.retrofitted() elif field in tagnames: value = asset.tagidxs[tagi[field]] else: name, lt = field.split() value = asset.value(lt, time_event) record[field] = value return assetcol, .join(occupancy_periods)
:param assets_by_site: a list of lists of assets :param tagnames: a list of tag names :returns: an array `assetcol`
4,034
def is_successful(self, retry=False): if not self.is_terminated(retry=retry): return False retry_num = options.retry_times while retry_num > 0: try: statuses = self.get_task_statuses() return all(task.status == Instance.Task.TaskStatus.SUCCESS for task in statuses.values()) except (errors.InternalServerError, errors.RequestTimeTooSkewed): retry_num -= 1 if not retry or retry_num <= 0: raise
If the instance runs successfully. :return: True if successful else False :rtype: bool
4,035
def add_report(self, specification_name, report): self._reports[specification_name] = report self._total = self._total + report.testsRun self._failures = self._failures + len(report.failures) self._errors = self._errors + len(report.errors) self._success = self._total - self._failures - self._errors
Adds a given report with the given specification_name as key to the reports list and computes the number of success, failures and errors Args: specification_name: string representing the specification (with ".spec") report: The
4,036
def parse(self): parser = self.subparser.add_parser( "show", help="Show workspace details", description="Show workspace details.") group = parser.add_mutually_exclusive_group(required=True) group.add_argument(, action=, help="All workspaces") group.add_argument(, type=str, help="Workspace name", nargs=)
Parse show subcommand.
4,037
def squeeze(attrs, inputs, proto_obj): new_attrs = translation_utils._fix_attribute_names(attrs, { : }) return , new_attrs, inputs
Remove single-dimensional entries from the shape of a tensor.
4,038
def get_chart(self, id, **kwargs): resp = self._get_object_by_name(self._CHART_ENDPOINT_SUFFIX, id, **kwargs) return resp
Retrieve a (v2) chart by id.
4,039
def p_multiplicative_expr(self, p): if len(p) == 2: p[0] = p[1] else: p[0] = ast.BinOp(op=p[2], left=p[1], right=p[3])
multiplicative_expr : unary_expr | multiplicative_expr MULT unary_expr | multiplicative_expr DIV unary_expr | multiplicative_expr MOD unary_expr
4,040
def get_text(self): return u.join(u.format(b) for b in self.text)
Get the text in its current state.
4,041
def just_find_proxy(pacfile, url, host=None): if not os.path.isfile(pacfile): raise IOError(.format(pacfile)) init() parse_pac(pacfile) proxy = find_proxy(url,host) cleanup() return proxy
This function is a wrapper around init, parse_pac, find_proxy and cleanup. This is the function to call if you want to find proxy just for one url.
4,042
def _runcog(options, files, uncog=False): options.order(, , add_rest=True) c = Cog() if uncog: c.options.bNoGenerate = True c.options.bReplace = True c.options.bDeleteCode = options.get("delete_code", False) includedir = options.get(, None) if includedir: include = Includer(includedir, cog=c, include_markers=options.get("include_markers")) basedir = path(basedir) if not files: pattern = options.get("pattern", "*.rst") if pattern: files = basedir.walkfiles(pattern) else: files = basedir.walkfiles() for f in sorted(files): dry("cog %s" % f, c.processOneFile, f)
Common function for the cog and runcog tasks.
4,043
def print_object_results(obj_result): print_results_header(obj_result.object_id, obj_result.is_valid) if obj_result.warnings: print_warning_results(obj_result, 1) if obj_result.errors: print_schema_results(obj_result, 1)
Print the results of validating an object. Args: obj_result: An ObjectValidationResults instance.
4,044
def parse_summary(self, contents): lines = contents.strip().split() data = {} for row in lines[1:]: split = row.strip().split() sample = split[0] data[sample] = { : int(split[1]), : int(split[2]), : int(split[3]) } return data
Parses summary file into a dictionary of counts.
4,045
def _onError(self, message): self.isOK = False if message.strip() != "": self.errors.append(message)
Memorizies a parser error message
4,046
def _import_lua_dependencies(lua, lua_globals): if sys.platform not in (, ): import ctypes ctypes.CDLL(, mode=ctypes.RTLD_GLOBAL) try: lua_globals.cjson = lua.eval() except RuntimeError: raise RuntimeError("cjson not installed")
Imports lua dependencies that are supported by redis lua scripts. The current implementation is fragile to the target platform and lua version and may be disabled if these imports are not needed. Included: - cjson lib. Pending: - base lib. - table lib. - string lib. - math lib. - debug lib. - cmsgpack lib.
4,047
def transpose(self, rows): res = OrderedDict() for row, cols in rows.items(): for col, cell in cols.items(): if col not in res: res[col] = OrderedDict() res[col][row] = cell return res
Transposes the grid to allow for cols
4,048
def _example_from_allof(self, prop_spec): example_dict = {} for definition in prop_spec[]: update = self.get_example_from_prop_spec(definition, True) example_dict.update(update) return example_dict
Get the examples from an allOf section. Args: prop_spec: property specification you want an example of. Returns: An example dict
4,049
def patchURL(self, url, headers, body): return self._load_resource("PATCH", url, headers, body)
Request a URL using the HTTP method PATCH.
4,050
def _get_position(self): portfolio_code = self.account_config["portfolio_code"] portfolio_info = self._get_portfolio_info(portfolio_code) position = portfolio_info["view_rebalancing"] stocks = position["holdings"] return stocks
获取雪球持仓 :return:
4,051
def serialize_filesec(self): if ( self.type.lower() not in ("item", "archival information package") or self.use is None ): return None el = etree.Element(utils.lxmlns("mets") + "file", ID=self.file_id()) if self.group_id(): el.attrib["GROUPID"] = self.group_id() if self.admids: el.set("ADMID", " ".join(self.admids)) if self.checksum and self.checksumtype: el.attrib["CHECKSUM"] = self.checksum el.attrib["CHECKSUMTYPE"] = self.checksumtype if self.path: flocat = etree.SubElement(el, utils.lxmlns("mets") + "FLocat") try: flocat.set(utils.lxmlns("xlink") + "href", utils.urlencode(self.path)) except ValueError: raise exceptions.SerializeError( " URL.".format(self.path) ) flocat.set("LOCTYPE", "OTHER") flocat.set("OTHERLOCTYPE", "SYSTEM") for transform_file in self.transform_files: transform_file_el = etree.SubElement( el, utils.lxmlns("mets") + "transformFile" ) for key, val in transform_file.items(): attribute = "transform{}".format(key).upper() transform_file_el.attrib[attribute] = str(val) return el
Return the file Element for this file, appropriate for use in a fileSec. If this is not an Item or has no use, return None. :return: fileSec element for this FSEntry
4,052
def gradient_factory(name): if name == : def gradient(self): return cos(self.domain) elif name == : def gradient(self): return -sin(self.domain) elif name == : def gradient(self): return 1 + square(self.domain) * self elif name == : def gradient(self): return FunctionalQuotient(ConstantFunctional(self.domain, 0.5), self) elif name == : def gradient(self): return ScalingFunctional(self.domain, 2.0) elif name == : def gradient(self): return reciprocal(self.domain) elif name == : def gradient(self): return self elif name == : def gradient(self): return FunctionalQuotient(ConstantFunctional(self.domain, -1.0), square(self.domain)) elif name == : def gradient(self): return cosh(self.domain) elif name == : def gradient(self): return sinh(self.domain) else: gradient = Functional.gradient return gradient
Create gradient `Functional` for some ufuncs.
4,053
def register_hooks(app): @app.before_request def before_request(): g.user = get_current_user() if g.user and g.user.is_admin: g._before_request_time = time.time() @app.after_request def after_request(response): if hasattr(g, ): delta = time.time() - g._before_request_time response.headers[] = delta * 1000 return response
Register hooks.
4,054
def issue_add_comment(self, issue_key, comment, visibility=None): url = .format(issueIdOrKey=issue_key) data = {: comment} if visibility: data[] = visibility return self.post(url, data=data)
Add comment into Jira issue :param issue_key: :param comment: :param visibility: OPTIONAL :return:
4,055
def on_change(self, path, event_type): for result in results: collection_id = result[0] sql = cursor = self._execute(sql, (collection_id,)) self._load_keywords(collection_id, path=path)
Respond to changes in the file system This method will be given the path to a file that has changed on disk. We need to reload the keywords from that file
4,056
def get_full_durable_object(arn, event_time, durable_model): LOG.debug(f) item = list(durable_model.query(arn, durable_model.eventTime == event_time)) if not item: LOG.error(f f) raise DurableItemIsMissingException({"item_arn": arn, "event_time": event_time}) return item[0]
Utility method to fetch items from the Durable table if they are too big for SNS/SQS. :param record: :param durable_model: :return:
4,057
def tz_localize(self, tz, ambiguous=, nonexistent=, errors=None): if errors is not None: warnings.warn("The errors argument is deprecated and will be " "removed in a future release. Use " "nonexistent= or nonexistent= " "instead.", FutureWarning) if errors == : nonexistent = elif errors == : nonexistent = else: raise ValueError("The errors argument must be either " "or .") nonexistent_options = (, , , ) if nonexistent not in nonexistent_options and not isinstance( nonexistent, timedelta): raise ValueError("The nonexistent argument must be one of ," " , , or" " a timedelta object") if self.tz is not None: if tz is None: new_dates = tzconversion.tz_convert(self.asi8, timezones.UTC, self.tz) else: raise TypeError("Already tz-aware, use tz_convert to convert.") else: tz = timezones.maybe_get_tz(tz) new_dates = conversion.tz_localize_to_utc( self.asi8, tz, ambiguous=ambiguous, nonexistent=nonexistent, ) new_dates = new_dates.view(_NS_DTYPE) dtype = tz_to_dtype(tz) return self._simple_new(new_dates, dtype=dtype, freq=self.freq)
Localize tz-naive Datetime Array/Index to tz-aware Datetime Array/Index. This method takes a time zone (tz) naive Datetime Array/Index object and makes this time zone aware. It does not move the time to another time zone. Time zone localization helps to switch from time zone aware to time zone unaware objects. Parameters ---------- tz : str, pytz.timezone, dateutil.tz.tzfile or None Time zone to convert timestamps to. Passing ``None`` will remove the time zone information preserving local time. ambiguous : 'infer', 'NaT', bool array, default 'raise' When clocks moved backward due to DST, ambiguous times may arise. For example in Central European Time (UTC+01), when going from 03:00 DST to 02:00 non-DST, 02:30:00 local time occurs both at 00:30:00 UTC and at 01:30:00 UTC. In such a situation, the `ambiguous` parameter dictates how ambiguous times should be handled. - 'infer' will attempt to infer fall dst-transition hours based on order - bool-ndarray where True signifies a DST time, False signifies a non-DST time (note that this flag is only applicable for ambiguous times) - 'NaT' will return NaT where there are ambiguous times - 'raise' will raise an AmbiguousTimeError if there are ambiguous times nonexistent : 'shift_forward', 'shift_backward, 'NaT', timedelta, \ default 'raise' A nonexistent time does not exist in a particular timezone where clocks moved forward due to DST. - 'shift_forward' will shift the nonexistent time forward to the closest existing time - 'shift_backward' will shift the nonexistent time backward to the closest existing time - 'NaT' will return NaT where there are nonexistent times - timedelta objects will shift nonexistent times by the timedelta - 'raise' will raise an NonExistentTimeError if there are nonexistent times .. versionadded:: 0.24.0 errors : {'raise', 'coerce'}, default None - 'raise' will raise a NonExistentTimeError if a timestamp is not valid in the specified time zone (e.g. due to a transition from or to DST time). Use ``nonexistent='raise'`` instead. - 'coerce' will return NaT if the timestamp can not be converted to the specified time zone. Use ``nonexistent='NaT'`` instead. .. deprecated:: 0.24.0 Returns ------- Same type as self Array/Index converted to the specified time zone. Raises ------ TypeError If the Datetime Array/Index is tz-aware and tz is not None. See Also -------- DatetimeIndex.tz_convert : Convert tz-aware DatetimeIndex from one time zone to another. Examples -------- >>> tz_naive = pd.date_range('2018-03-01 09:00', periods=3) >>> tz_naive DatetimeIndex(['2018-03-01 09:00:00', '2018-03-02 09:00:00', '2018-03-03 09:00:00'], dtype='datetime64[ns]', freq='D') Localize DatetimeIndex in US/Eastern time zone: >>> tz_aware = tz_naive.tz_localize(tz='US/Eastern') >>> tz_aware DatetimeIndex(['2018-03-01 09:00:00-05:00', '2018-03-02 09:00:00-05:00', '2018-03-03 09:00:00-05:00'], dtype='datetime64[ns, US/Eastern]', freq='D') With the ``tz=None``, we can remove the time zone information while keeping the local time (not converted to UTC): >>> tz_aware.tz_localize(None) DatetimeIndex(['2018-03-01 09:00:00', '2018-03-02 09:00:00', '2018-03-03 09:00:00'], dtype='datetime64[ns]', freq='D') Be careful with DST changes. When there is sequential data, pandas can infer the DST time: >>> s = pd.to_datetime(pd.Series(['2018-10-28 01:30:00', ... '2018-10-28 02:00:00', ... '2018-10-28 02:30:00', ... '2018-10-28 02:00:00', ... '2018-10-28 02:30:00', ... '2018-10-28 03:00:00', ... '2018-10-28 03:30:00'])) >>> s.dt.tz_localize('CET', ambiguous='infer') 0 2018-10-28 01:30:00+02:00 1 2018-10-28 02:00:00+02:00 2 2018-10-28 02:30:00+02:00 3 2018-10-28 02:00:00+01:00 4 2018-10-28 02:30:00+01:00 5 2018-10-28 03:00:00+01:00 6 2018-10-28 03:30:00+01:00 dtype: datetime64[ns, CET] In some cases, inferring the DST is impossible. In such cases, you can pass an ndarray to the ambiguous parameter to set the DST explicitly >>> s = pd.to_datetime(pd.Series(['2018-10-28 01:20:00', ... '2018-10-28 02:36:00', ... '2018-10-28 03:46:00'])) >>> s.dt.tz_localize('CET', ambiguous=np.array([True, True, False])) 0 2015-03-29 03:00:00+02:00 1 2015-03-29 03:30:00+02:00 dtype: datetime64[ns, Europe/Warsaw] If the DST transition causes nonexistent times, you can shift these dates forward or backwards with a timedelta object or `'shift_forward'` or `'shift_backwards'`. >>> s = pd.to_datetime(pd.Series(['2015-03-29 02:30:00', ... '2015-03-29 03:30:00'])) >>> s.dt.tz_localize('Europe/Warsaw', nonexistent='shift_forward') 0 2015-03-29 03:00:00+02:00 1 2015-03-29 03:30:00+02:00 dtype: datetime64[ns, 'Europe/Warsaw'] >>> s.dt.tz_localize('Europe/Warsaw', nonexistent='shift_backward') 0 2015-03-29 01:59:59.999999999+01:00 1 2015-03-29 03:30:00+02:00 dtype: datetime64[ns, 'Europe/Warsaw'] >>> s.dt.tz_localize('Europe/Warsaw', nonexistent=pd.Timedelta('1H')) 0 2015-03-29 03:30:00+02:00 1 2015-03-29 03:30:00+02:00 dtype: datetime64[ns, 'Europe/Warsaw']
4,058
def to_dict(self): rv = {: self.code} if not self.is_native(): rv[] = self.issuer rv[] = self.type else: rv[] = return rv
Generate a dict for this object's attributes. :return: A dict representing an :class:`Asset`
4,059
def apply_reactions(self, user): if self.global_limit: self._log.info(.format(num=self.global_limit)) self.agentml.set_limit(self, (time() + self.global_limit), self.glimit_blocking) if self.user_limit: self._log.info(.format(num=self.user_limit)) user.set_limit(self, (time() + self.user_limit), self.ulimit_blocking) for var in self.vars: var_type, var_name, var_value = var var_name = .join(map(str, var_name)) if isinstance(var_name, Iterable) else var_name var_value = .join(map(str, var_value)) if isinstance(var_value, Iterable) else var_value if var_type == : self.user.set_var(var_name, var_value) if var_type == : self.agentml.set_var(var_name, var_value)
Set active topics and limits after a response has been triggered :param user: The user triggering the response :type user: agentml.User
4,060
def js_extractor(response): matches = rscript.findall(response) for match in matches: match = match[2].replace("JS file', match) bad_scripts.add(match)
Extract js files from the response body
4,061
def unpack_value(format_string, stream): message_bytes = stream.read(struct.calcsize(format_string)) return struct.unpack(format_string, message_bytes)
Helper function to unpack struct data from a stream and update the signature verifier. :param str format_string: Struct format string :param stream: Source data stream :type stream: io.BytesIO :returns: Unpacked values :rtype: tuple
4,062
def prepare_files(self, finder): from pip.index import Link unnamed = list(self.unnamed_requirements) reqs = list(self.requirements.values()) while reqs or unnamed: if unnamed: req_to_install = unnamed.pop(0) else: req_to_install = reqs.pop(0) install = True best_installed = False not_found = None if not self.ignore_installed and not req_to_install.editable: req_to_install.check_if_exists() if req_to_install.satisfied_by: if self.upgrade: if not self.force_reinstall and not req_to_install.url: try: url = finder.find_requirement( req_to_install, self.upgrade) except BestVersionAlreadyInstalled: best_installed = True install = False except DistributionNotFound as exc: not_found = exc else: req_to_install.url = url.url if not best_installed: if os.path.exists(os.path.join(location, )): raise PreviousBuildDirError( "pip can%st upgrade when therepip wheel` download_dir = self.wheel_download_dir do_download = True else: download_dir = self.download_dir do_download = self.is_download unpack_url( url, location, download_dir, do_download, session=self.session, ) except requests.HTTPError as exc: logger.critical( , req_to_install, exc, ) raise InstallationError( % (req_to_install, exc, url) ) else: unpack = False if unpack: is_wheel = url and url.filename.endswith(wheel_ext) if self.is_download: req_to_install.source_dir = location if not is_wheel: req_to_install.run_egg_info() if url and url.scheme in vcs.all_schemes: req_to_install.archive(self.download_dir) elif is_wheel: req_to_install.source_dir = location req_to_install.url = url.url else: req_to_install.source_dir = location req_to_install.run_egg_info() req_to_install.assert_source_matches_version() if not self.ignore_installed: req_to_install.check_if_exists() if req_to_install.satisfied_by: if self.upgrade or self.ignore_installed: if dist.has_metadata(): finder.add_dependency_links( dist.get_metadata_lines() ) if not self.ignore_dependencies: for subreq in dist.requires( req_to_install.extras): if self.has_requirement( subreq.project_name): continue subreq = InstallRequirement( str(subreq), req_to_install, isolated=self.isolated, ) reqs.append(subreq) self.add_requirement(subreq) if not self.has_requirement(req_to_install.name): self.add_requirement(req_to_install) if (self.is_download or req_to_install._temp_build_dir is not None): self.reqs_to_cleanup.append(req_to_install) if install: self.successfully_downloaded.append(req_to_install)
Prepare process. Create temp directories, download and/or unpack files.
4,063
def make_serializable(data, mutable=True, key_stringifier=lambda x:x, simplify_midnight_datetime=True): r if isinstance(data, (datetime.datetime, datetime.date, datetime.time)): if isinstance(data, datetime.datetime): if not any((data.hour, data.miniute, data.seconds)): return datetime.date(data.year, data.month, data.day) elif data.year == data.month == data.seconds == 1: return datetime.time(data.hour, data.minute, data.second) return data elif isinstance(data, Model): if isinstance(data, datetime.datetime): if not any((data.hour, data.miniute, data.seconds)): return datetime.date(data.year, data.month, data.day) elif data.year == data.month == data.seconds == 1: return datetime.time(data.hour, data.minute, data.second) return data elif isinstance(data, Mapping): mapping = tuple((make_serializable(k, mutable=False, key_stringifier=key_stringifier), make_serializable(v, mutable=mutable)) for (k, v) in data.iteritems()) if mutable: return dict(mapping) return mapping elif hasattr(data, ): if mutable: return list(make_serializable(v, mutable=mutable) for v in data) else: return key_stringifier(tuple(make_serializable(v, mutable=mutable) for v in data)) elif isinstance(data, (float, Decimal)): return float(data) elif isinstance(data, basestring): data = db.clean_utf8(data) try: return int(data) except: try: return float(data) except: try: return make_serializable(dateutil.parse(unicode(data))) except: try: return make_serializable(data.__dict__) except: return unicode(data)
r"""Make sure the data structure is json serializable (json.dumps-able), all they way down to scalars in nested structures. If mutable=False then return tuples for all iterables, except basestrings (strs), so that they can be used as keys in a Mapping (dict). >>> from collections import OrderedDict >>> from decimal import Decimal >>> data = {'x': Decimal('01.234567891113151719'), 'X': [{('y', 'z'): {'q': 'A\xFFB'}}, 'ender'] } >>> make_serializable(OrderedDict(data)) == {'X': [{('y', 'z'): {'q': 'A\xc3\xbfB'}}, 'ender'], 'x': 1.2345678911131517} True >>> make_serializable({'ABCs': list('abc'), datetime.datetime(2014,10,31): datetime.datetime(2014,10,31,23,59,59)} ... ) == {'ABCs': ['2014-10-16 00:00:00', 'b', 'c'], '2014-10-31 00:00:00': '2014-10-31 23:59:59'} True
4,064
def build_from_token_counts(self, token_counts, min_count, num_iterations=4): self._init_alphabet_from_tokens(six.iterkeys(token_counts)) self._init_subtokens_from_list(list(self._alphabet)) if min_count < 1: min_count = 1 for i in xrange(num_iterations): subtoken_counts = collections.defaultdict(int) for token, count in six.iteritems(token_counts): escaped_token = _escape_token(token, self._alphabet) subtokens = self._escaped_token_to_subtoken_strings(escaped_token) start = 0 for subtoken in subtokens: for end in xrange(start + 1, len(escaped_token) + 1): new_subtoken = escaped_token[start:end] subtoken_counts[new_subtoken] += count start += len(subtoken) len_to_subtoken_strings = [] for subtoken_string, count in six.iteritems(subtoken_counts): lsub = len(subtoken_string) if count >= min_count: while len(len_to_subtoken_strings) <= lsub: len_to_subtoken_strings.append(set()) len_to_subtoken_strings[lsub].add(subtoken_string) new_subtoken_strings = [] for lsub in xrange(len(len_to_subtoken_strings) - 1, 0, -1): subtoken_strings = len_to_subtoken_strings[lsub] for subtoken_string in subtoken_strings: count = subtoken_counts[subtoken_string] if count >= min_count: if subtoken_string not in self._alphabet: new_subtoken_strings.append((count, subtoken_string)) for l in xrange(1, lsub): subtoken_counts[subtoken_string[:l]] -= count new_subtoken_strings.extend((subtoken_counts.get(a, 0), a) for a in self._alphabet) new_subtoken_strings.sort(reverse=True) self._init_subtokens_from_list([subtoken for _, subtoken in new_subtoken_strings])
Train a SubwordTextTokenizer based on a dictionary of word counts. Args: token_counts: a dictionary of Unicode strings to int. min_count: an integer - discard subtokens with lower counts. num_iterations: an integer; how many iterations of refinement.
4,065
def get(self, buffer_type, offset): if buffer_type == u: chosen_buffer = self.streaming_data else: chosen_buffer = self.storage_data if offset >= len(chosen_buffer): raise StreamEmptyError("Invalid index given in get command", requested=offset, stored=len(chosen_buffer), buffer=buffer_type) return chosen_buffer[offset]
Get a reading from the buffer at offset. Offset is specified relative to the start of the data buffer. This means that if the buffer rolls over, the offset for a given item will appear to change. Anyone holding an offset outside of this engine object will need to be notified when rollovers happen (i.e. popn is called so that they can update their offset indices) Args: buffer_type (str): The buffer to pop from (either u"storage" or u"streaming") offset (int): The offset of the reading to get
4,066
def update(self, report): self.tp.extend(pack_boxes(report.tp, self.title)) self.fp.extend(pack_boxes(report.fp, self.title)) self.fn.extend(pack_boxes(report.fn, self.title))
Add the items from the given report.
4,067
def plot_hurst_hist(): import matplotlib.pyplot as plt hs = [nolds.hurst_rs(np.random.random(size=10000), corrected=True) for _ in range(100)] plt.hist(hs, bins=20) plt.xlabel("esimated value of hurst exponent") plt.ylabel("number of experiments") plt.show()
Plots a histogram of values obtained for the hurst exponent of uniformly distributed white noise. This function requires the package ``matplotlib``.
4,068
def enable_vxlan_feature(self, nexus_host, nve_int_num, src_intf): starttime = time.time() self.send_edit_string(nexus_host, snipp.PATH_VXLAN_STATE, (snipp.BODY_VXLAN_STATE % "enabled")) self.send_edit_string(nexus_host, snipp.PATH_VNSEG_STATE, (snipp.BODY_VNSEG_STATE % "enabled")) self.send_edit_string( nexus_host, (snipp.PATH_NVE_CREATE % nve_int_num), (snipp.BODY_NVE_CREATE % nve_int_num)) self.send_edit_string( nexus_host, (snipp.PATH_NVE_CREATE % nve_int_num), (snipp.BODY_NVE_ADD_LOOPBACK % ("enabled", src_intf))) self.capture_and_print_timeshot( starttime, "enable_vxlan", switch=nexus_host)
Enable VXLAN on the switch.
4,069
def delete_repository(self, repository, params=None): if repository in SKIP_IN_PATH: raise ValueError("Empty value passed for a required argument .") return self.transport.perform_request(, _make_path(, repository), params=params)
Removes a shared file system repository. `<http://www.elastic.co/guide/en/elasticsearch/reference/current/modules-snapshots.html>`_ :arg repository: A comma-separated list of repository names :arg master_timeout: Explicit operation timeout for connection to master node :arg timeout: Explicit operation timeout
4,070
def example_describe_configs(a, args): resources = [ConfigResource(restype, resname) for restype, resname in zip(args[0::2], args[1::2])] fs = a.describe_configs(resources) for res, f in fs.items(): try: configs = f.result() for config in iter(configs.values()): print_config(config, 1) except KafkaException as e: print("Failed to describe {}: {}".format(res, e)) except Exception: raise
describe configs
4,071
def get_version(self, paths=None, default="unknown"): if self.attribute is None: try: f, p, i = find_module(self.module, paths) if f: f.close() return default except ImportError: return None v = get_module_constant(self.module, self.attribute, default, paths) if v is not None and v is not default and self.format is not None: return self.format(v) return v
Get version number of installed module, 'None', or 'default' Search 'paths' for module. If not found, return 'None'. If found, return the extracted version attribute, or 'default' if no version attribute was specified, or the value cannot be determined without importing the module. The version is formatted according to the requirement's version format (if any), unless it is 'None' or the supplied 'default'.
4,072
def calc_stress_tf(self, lin, lout, damped): tf = self.calc_strain_tf(lin, lout) if damped: tf *= lout.layer.comp_shear_mod else: tf *= lout.layer.shear_mod return tf
Compute the stress transfer function. Parameters ---------- lin : :class:`~site.Location` Location of input lout : :class:`~site.Location` Location of output. Note that this would typically be midheight of the layer.
4,073
def _intertext_score(full_text): sentences = sentence_tokenizer(full_text) norm = _normalize(sentences) similarity_matrix = pairwise_kernels(norm, metric=) scores = _textrank(similarity_matrix) scored_sentences = [] for i, s in enumerate(sentences): scored_sentences.append((scores[i],i,s)) top_scorers = sorted(scored_sentences, key=lambda tup: tup[0], reverse=True) return top_scorers
returns tuple of scored sentences in order of appearance Note: Doing an A/B test to compare results, reverting to original algorithm.
4,074
def constrains(self): params = [] for constraint in self.in_constraints: for var in constraint._vars: param = var.get_parameter() if param.component == constraint.component and param.qualifier == constraint.qualifier: if param not in params and param.uniqueid != self.uniqueid: params.append(param) return params
returns a list of parameters that are constrained by this parameter
4,075
def check_ns_run_threads(run): assert run[].dtype == int uniq_th = np.unique(run[]) assert np.array_equal( np.asarray(range(run[].shape[0])), uniq_th), \ str(uniq_th) assert np.any(run[][:, 0] == -np.inf), ( + ) for th_lab in uniq_th: inds = np.where(run[] == th_lab)[0] th_info = .format( th_lab, run[][inds[0]], run[][th_lab, :]) assert run[][th_lab, 0] <= run[][inds[0]], ( + th_info + .format( run[][inds[0]] - run[][th_lab, 0])) assert run[][th_lab, 1] == run[][inds[-1]], ( + th_info)
Check thread labels and thread_min_max have expected properties. Parameters ---------- run: dict Nested sampling run to check. Raises ------ AssertionError If run does not have expected properties.
4,076
def get_appium_sessionId(self): self._info("Appium Session ID: " + self._current_application().session_id) return self._current_application().session_id
Returns the current session ID as a reference
4,077
def git_pull(repo_dir, remote="origin", ref=None, update_head_ok=False): command = [, ] if update_head_ok: command.append() command.append(pipes.quote(remote)) if ref: command.append(ref) return execute_git_command(command, repo_dir=repo_dir)
Do a git pull of `ref` from `remote`.
4,078
def encode(locations): encoded = ( (_encode_value(lat, prev_lat), _encode_value(lon, prev_lon)) for (prev_lat, prev_lon), (lat, lon) in _iterate_with_previous(locations, first=(0, 0)) ) encoded = chain.from_iterable(encoded) return .join(c for r in encoded for c in r)
:param locations: locations list containig (lat, lon) two-tuples :return: encoded polyline string
4,079
def confd_state_internal_callpoints_typepoint_registration_type_range_range_daemon_error(self, **kwargs): config = ET.Element("config") confd_state = ET.SubElement(config, "confd-state", xmlns="http://tail-f.com/yang/confd-monitoring") internal = ET.SubElement(confd_state, "internal") callpoints = ET.SubElement(internal, "callpoints") typepoint = ET.SubElement(callpoints, "typepoint") id_key = ET.SubElement(typepoint, "id") id_key.text = kwargs.pop() registration_type = ET.SubElement(typepoint, "registration-type") range = ET.SubElement(registration_type, "range") range = ET.SubElement(range, "range") daemon = ET.SubElement(range, "daemon") error = ET.SubElement(daemon, "error") error.text = kwargs.pop() callback = kwargs.pop(, self._callback) return callback(config)
Auto Generated Code
4,080
def _get_file_by_alias(part, files): if _is_output(part): return Output.from_string(part.pop()) else: inputs = [[]] if part.magic_or: and_or = else: and_or = for cut in part.asList(): if cut == OR_TOKEN: inputs.append([]) continue if cut == AND_TOKEN: continue input = Input(cut, filename=cut, and_or=and_or) for file in files: if file.alias == cut: input.filename = file.filename inputs[-1].append(input) break else: inputs[-1].append(input) return [input for input in inputs if input]
Given a command part, find the file it represents. If not found, then returns a new token representing that file. :throws ValueError: if the value is not a command file alias.
4,081
def averageConvergencePoint(self, prefix, minOverlap, maxOverlap, settlingTime=1, firstStat=0, lastStat=None): convergenceSum = 0.0 numCorrect = 0.0 inferenceLength = 1000000 for stats in self.statistics[firstStat:lastStat]: convergencePoint = 0.0 for key in stats.iterkeys(): if prefix in key: inferenceLength = len(stats[key]) columnConvergence = L4L2Experiment._locateConvergencePoint( stats[key], minOverlap, maxOverlap) convergencePoint = max(convergencePoint, columnConvergence) convergenceSum += ceil(float(convergencePoint) / settlingTime) if ceil(float(convergencePoint) / settlingTime) <= inferenceLength: numCorrect += 1 if len(self.statistics[firstStat:lastStat]) == 0: return 10000.0, 0.0 return (convergenceSum / len(self.statistics[firstStat:lastStat]), numCorrect / len(self.statistics[firstStat:lastStat]) )
For each object, compute the convergence time - the first point when all L2 columns have converged. Return the average convergence time and accuracy across all objects. Using inference statistics for a bunch of runs, locate all traces with the given prefix. For each trace locate the iteration where it finally settles on targetValue. Return the average settling iteration and accuracy across all runs. :param prefix: Use this prefix to filter relevant stats. :param minOverlap: Min target overlap :param maxOverlap: Max target overlap :param settlingTime: Setting time between iteration. Default 1 :return: Average settling iteration and accuracy across all runs
4,082
def get_orm_column_names(cls: Type, sort: bool = False) -> List[str]: colnames = [col.name for col in get_orm_columns(cls)] return sorted(colnames) if sort else colnames
Gets column names (that is, database column names) from an SQLAlchemy ORM class.
4,083
def expr(args): from jcvi.graphics.base import red_purple as default_cm p = OptionParser(expr.__doc__) opts, args, iopts = p.set_image_options(args, figsize="8x5") if len(args) != 4: sys.exit(not p.print_help()) block, exp, layout, napusbed = args fig = plt.figure(1, (iopts.w, iopts.h)) root = fig.add_axes([0, 0, 1, 1]) s = Synteny(fig, root, block, napusbed, layout) fp = open(exp) data = {} for row in fp: gid, lf, rt = row.split() lf, rt = float(lf), float(rt) data[gid] = (lf, rt) rA, rB = s.rr gA = [x.accn for x in rA.genes] gC = [x.accn for x in rB.genes] A = [data.get(x, (0, 0)) for x in gA] C = [data.get(x, (0, 0)) for x in gC] A = np.array(A) C = np.array(C) A = np.transpose(A) C = np.transpose(C) d, h = .01, .1 lsg = "lightslategrey" coords = s.gg axes = [] for j, (y, gg) in enumerate(((.79, gA), (.24, gC))): r = s.rr[j] x = r.xstart w = r.xend - r.xstart ax = fig.add_axes([x, y, w, h]) axes.append(ax) root.add_patch(Rectangle((x - h, y - d), w + h + d, h + 2 * d, fill=False, ec=lsg, lw=1)) root.text(x - d, y + 3 * h / 4, "root", ha="right", va="center") root.text(x - d, y + h / 4, "leaf", ha="right", va="center") ty = y - 2 * d if y > .5 else y + h + 2 * d nrows = len(gg) for i, g in enumerate(gg): start, end = coords[(j, g)] sx, sy = start ex, ey = end assert sy == ey sy = sy + 2 * d if sy > .5 else sy - 2 * d root.plot(((sx + ex) / 2, x + w * (i + .5) / nrows), (sy, ty), lw=1, ls=":", color="k", alpha=.2) axA, axC = axes p = axA.pcolormesh(A, cmap=default_cm) p = axC.pcolormesh(C, cmap=default_cm) axA.set_xlim(0, len(gA)) axC.set_xlim(0, len(gC)) x, y, w, h = .35, .1, .3, .05 ax_colorbar = fig.add_axes([x, y, w, h]) fig.colorbar(p, cax=ax_colorbar, orientation=) root.text(x - d, y + h / 2, "RPKM", ha="right", va="center") root.set_xlim(0, 1) root.set_ylim(0, 1) for x in (axA, axC, root): x.set_axis_off() image_name = "napusf4b." + iopts.format savefig(image_name, dpi=iopts.dpi, iopts=iopts)
%prog expr block exp layout napus.bed Plot a composite figure showing synteny and the expression level between homeologs in two tissues - total 4 lists of values. block file contains the gene pairs between AN and CN.
4,084
def area(self): r if self._dimension != 2: raise NotImplementedError( "2D is the only supported dimension", "Current dimension", self._dimension, ) edge1, edge2, edge3 = self._get_edges() return _surface_helpers.compute_area( (edge1._nodes, edge2._nodes, edge3._nodes) )
r"""The area of the current surface. For surfaces in :math:`\mathbf{R}^2`, this computes the area via Green's theorem. Using the vector field :math:`\mathbf{F} = \left[-y, x\right]^T`, since :math:`\partial_x(x) - \partial_y(-y) = 2` Green's theorem says twice the area is equal to .. math:: \int_{B\left(\mathcal{U}\right)} 2 \, d\mathbf{x} = \int_{\partial B\left(\mathcal{U}\right)} -y \, dx + x \, dy. This relies on the assumption that the current surface is valid, which implies that the image of the unit triangle under the B |eacute| zier map --- :math:`B\left(\mathcal{U}\right)` --- has the edges of the surface as its boundary. Note that for a given edge :math:`C(r)` with control points :math:`x_j, y_j`, the integral can be simplified: .. math:: \int_C -y \, dx + x \, dy = \int_0^1 (x y' - y x') \, dr = \sum_{i < j} (x_i y_j - y_i x_j) \int_0^1 b_{i, d} b'_{j, d} \, dr where :math:`b_{i, d}, b_{j, d}` are Bernstein basis polynomials. Returns: float: The area of the current surface. Raises: NotImplementedError: If the current surface isn't in :math:`\mathbf{R}^2`.
4,085
def crypto_box_seal_open(ciphertext, pk, sk): ensure(isinstance(ciphertext, bytes), "input ciphertext must be bytes", raising=TypeError) ensure(isinstance(pk, bytes), "public key must be bytes", raising=TypeError) ensure(isinstance(sk, bytes), "secret key must be bytes", raising=TypeError) if len(pk) != crypto_box_PUBLICKEYBYTES: raise exc.ValueError("Invalid public key") if len(sk) != crypto_box_SECRETKEYBYTES: raise exc.ValueError("Invalid secret key") _clen = len(ciphertext) ensure(_clen >= crypto_box_SEALBYTES, ("Input cyphertext must be " "at least {} long").format(crypto_box_SEALBYTES), raising=exc.TypeError) _mlen = _clen - crypto_box_SEALBYTES plaintext = ffi.new("unsigned char[]", max(1, _mlen)) res = lib.crypto_box_seal_open(plaintext, ciphertext, _clen, pk, sk) ensure(res == 0, "An error occurred trying to decrypt the message", raising=exc.CryptoError) return ffi.buffer(plaintext, _mlen)[:]
Decrypts and returns an encrypted message ``ciphertext``, using the recipent's secret key ``sk`` and the sender's ephemeral public key embedded in the sealed box. The box contruct nonce is derived from the recipient's public key ``pk`` and the sender's public key. :param ciphertext: bytes :param pk: bytes :param sk: bytes :rtype: bytes .. versionadded:: 1.2
4,086
def _get_query(self, order=None, filters=None): order = self._get_order(order) return self.posts.all().order_by(order)
This method is just to evade code duplication in count() and get_content, since they do basically the same thing
4,087
def _value_iterator(self, task_name, param_name): cp_parser = CmdlineParser.get_instance() if cp_parser: dest = self._parser_global_dest(param_name, task_name) found = getattr(cp_parser.known_args, dest, None) yield (self._parse_or_no_value(found), None) yield (self._get_value_from_config(task_name, param_name), None) if self._config_path: yield (self._get_value_from_config(self._config_path[], self._config_path[]), .format( self._config_path[], self._config_path[], task_name, param_name)) yield (self._default, None)
Yield the parameter values, with optional deprecation warning as second tuple value. The parameter value will be whatever non-_no_value that is yielded first.
4,088
def enumerate_global_imports(tokens): imported_modules = [] import_line = False from_import = False parent_module = "" function_count = 0 indentation = 0 for index, tok in enumerate(tokens): token_type = tok[0] token_string = tok[1] if token_type == tokenize.INDENT: indentation += 1 elif token_type == tokenize.DEDENT: indentation -= 1 elif token_type == tokenize.NEWLINE: import_line = False from_import = False elif token_type == tokenize.NAME: if token_string in ["def", "class"]: function_count += 1 if indentation == function_count - 1: function_count -= 1 elif function_count >= indentation: if token_string == "import": import_line = True elif token_string == "from": from_import = True elif import_line: if token_type == tokenize.NAME \ and tokens[index+1][1] != : if not from_import \ and token_string not in reserved_words: if token_string not in imported_modules: if tokens[index+1][1] == : parent_module = token_string + else: if parent_module: module_string = ( parent_module + token_string) imported_modules.append(module_string) parent_module = else: imported_modules.append(token_string) return imported_modules
Returns a list of all globally imported modules (skips modules imported inside of classes, methods, or functions). Example:: >>> enumerate_global_modules(tokens) ['sys', 'os', 'tokenize', 're'] .. note:: Does not enumerate imports using the 'from' or 'as' keywords.
4,089
def chdir(self, path, timeout=shutit_global.shutit_global_object.default_timeout, note=None, loglevel=logging.DEBUG): shutit = self.shutit shutit.handle_note(note, + path) shutit.log( + path + , level=logging.DEBUG) if shutit.build[] in (,): self.send(ShutItSendSpec(self, send= + path + , timeout=timeout, echo=False, loglevel=loglevel)) elif shutit.build[] in (,): os.chdir(path) else: shutit.fail( + str(shutit.build[])) shutit.handle_note_after(note=note) return True
How to change directory will depend on whether we are in delivery mode bash or docker. @param path: Path to send file to. @param timeout: Timeout on response @param note: See send()
4,090
def infomax(data, weights=None, l_rate=None, block=None, w_change=1e-12, anneal_deg=60., anneal_step=0.9, extended=False, n_subgauss=1, kurt_size=6000, ext_blocks=1, max_iter=200, random_state=None, verbose=None): rng = check_random_state(random_state) max_weight = 1e8 restart_fac = 0.9 min_l_rate = 1e-10 blowup = 1e4 blowup_fac = 0.5 n_small_angle = 20 degconst = 180.0 / np.pi extmomentum = 0.5 signsbias = 0.02 signcount_threshold = 25 signcount_step = 2 if ext_blocks > 0: n_subgauss = 1 n_samples, n_features = data.shape n_features_square = n_features ** 2 if l_rate is None: l_rate = 0.01 / math.log(n_features ** 2.0) if block is None: block = int(math.floor(math.sqrt(n_samples / 3.0))) logger.info( % if extended is True else ) nblock = n_samples // block lastt = (nblock - 1) * block + 1 if weights is None: weights = np.identity(n_features, dtype=np.float64) BI = block * np.identity(n_features, dtype=np.float64) bias = np.zeros((n_features, 1), dtype=np.float64) onesrow = np.ones((1, block), dtype=np.float64) startweights = weights.copy() oldweights = startweights.copy() step = 0 count_small_angle = 0 wts_blowup = False blockno = 0 signcount = 0 if extended is True: signs = np.identity(n_features) signs.flat[slice(0, n_features * n_subgauss, n_features)] kurt_size = min(kurt_size, n_samples) old_kurt = np.zeros(n_features, dtype=np.float64) oldsigns = np.zeros((n_features, n_features)) olddelta, oldchange = 1., 0. while step < max_iter: permute = list(range(n_samples)) rng.shuffle(permute) for t in range(0, lastt, block): u = np.dot(data[permute[t:t + block], :], weights) u += np.dot(bias, onesrow).T if extended is True: y = np.tanh(u) weights += l_rate * np.dot(weights, BI - np.dot(np.dot(u.T, y), signs) - np.dot(u.T, u)) bias += l_rate * np.reshape(np.sum(y, axis=0, dtype=np.float64) * -2.0, (n_features, 1)) else: y = 1.0 / (1.0 + np.exp(-u)) weights += l_rate * np.dot(weights, BI + np.dot(u.T, (1.0 - 2.0 * y))) bias += l_rate * np.reshape(np.sum((1.0 - 2.0 * y), axis=0, dtype=np.float64), (n_features, 1)) max_weight_val = np.max(np.abs(weights)) if max_weight_val > max_weight: wts_blowup = True blockno += 1 if wts_blowup: break if extended is True: n = np.fix(blockno / ext_blocks) if np.abs(n) * ext_blocks == blockno: if kurt_size < n_samples: rp = np.floor(rng.uniform(0, 1, kurt_size) * (n_samples - 1)) tpartact = np.dot(data[rp.astype(int), :], weights).T else: tpartact = np.dot(data, weights).T kurt = kurtosis(tpartact, axis=1, fisher=True) if extmomentum != 0: kurt = (extmomentum * old_kurt + (1.0 - extmomentum) * kurt) old_kurt = kurt signs.flat[::n_features + 1] = ((kurt + signsbias) / np.abs(kurt + signsbias)) ndiff = ((signs.flat[::n_features + 1] - oldsigns.flat[::n_features + 1]) != 0).sum() if ndiff == 0: signcount += 1 else: signcount = 0 oldsigns = signs if signcount >= signcount_threshold: ext_blocks = np.fix(ext_blocks * signcount_step) signcount = 0 if not wts_blowup: oldwtchange = weights - oldweights step += 1 angledelta = 0.0 delta = oldwtchange.reshape(1, n_features_square) change = np.sum(delta * delta, dtype=np.float64) if step > 1: angledelta = math.acos(np.sum(delta * olddelta) / math.sqrt(change * oldchange)) angledelta *= degconst oldweights = weights.copy() if angledelta > anneal_deg: l_rate *= anneal_step olddelta = delta oldchange = change count_small_angle = 0 else: if step == 1: olddelta = delta oldchange = change count_small_angle += 1 if count_small_angle > n_small_angle: max_iter = step if step > 2 and change < w_change: step = max_iter elif change > blowup: l_rate *= blowup_fac else: step = 0 wts_blowup = 0 blockno = 1 l_rate *= restart_fac weights = startweights.copy() oldweights = startweights.copy() olddelta = np.zeros((1, n_features_square), dtype=np.float64) bias = np.zeros((n_features, 1), dtype=np.float64) if extended: signs = np.identity(n_features) signs.flat[slice(0, n_features * n_subgauss, n_features)] oldsigns = np.zeros((n_features, n_features)) if l_rate > min_l_rate: if verbose: logger.info( % l_rate) else: raise ValueError( ) return weights.T
Run the (extended) Infomax ICA decomposition on raw data based on the publications of Bell & Sejnowski 1995 (Infomax) and Lee, Girolami & Sejnowski, 1999 (extended Infomax) Parameters ---------- data : np.ndarray, shape (n_samples, n_features) The data to unmix. w_init : np.ndarray, shape (n_features, n_features) The initialized unmixing matrix. Defaults to None. If None, the identity matrix is used. l_rate : float This quantity indicates the relative size of the change in weights. Note. Smaller learining rates will slow down the procedure. Defaults to 0.010d / alog(n_features ^ 2.0) block : int The block size of randomly chosen data segment. Defaults to floor(sqrt(n_times / 3d)) w_change : float The change at which to stop iteration. Defaults to 1e-12. anneal_deg : float The angle at which (in degree) the learning rate will be reduced. Defaults to 60.0 anneal_step : float The factor by which the learning rate will be reduced once ``anneal_deg`` is exceeded: l_rate *= anneal_step Defaults to 0.9 extended : bool Wheather to use the extended infomax algorithm or not. Defaults to True. n_subgauss : int The number of subgaussian components. Only considered for extended Infomax. kurt_size : int The window size for kurtosis estimation. Only considered for extended Infomax. ext_blocks : int The number of blocks after which to recompute Kurtosis. Only considered for extended Infomax. max_iter : int The maximum number of iterations. Defaults to 200. verbose : bool, str, int, or None If not None, override default verbose level (see mne.verbose). Returns ------- unmixing_matrix : np.ndarray of float, shape (n_features, n_features) The linear unmixing operator.
4,091
def from_iter(cls, data, name=None): if not name: name = if isinstance(data, (list, tuple)): data = {x: y for x, y in enumerate(data)} values = [{: k, : , : v} for k, v in sorted(data.items())] return cls(name, values=values)
Convenience method for loading data from an iterable. Defaults to numerical indexing for x-axis. Parameters ---------- data: iterable An iterable of data (list, tuple, dict of key/val pairs) name: string, default None Name of the data set. If None (default), the name will be set to ``'table'``.
4,092
def astype(self, dtype, undefined_on_failure=False): if (dtype == _Image) and (self.dtype == array.array): raise TypeError("Cannot cast from image type to array with sarray.astype(). Please use sarray.pixel_array_to_image() instead.") with cython_context(): return SArray(_proxy=self.__proxy__.astype(dtype, undefined_on_failure))
Create a new SArray with all values cast to the given type. Throws an exception if the types are not castable to the given type. Parameters ---------- dtype : {int, float, str, list, array.array, dict, datetime.datetime} The type to cast the elements to in SArray undefined_on_failure: bool, optional If set to True, runtime cast failures will be emitted as missing values rather than failing. Returns ------- out : SArray [dtype] The SArray converted to the type ``dtype``. Notes ----- - The string parsing techniques used to handle conversion to dictionary and list types are quite generic and permit a variety of interesting formats to be interpreted. For instance, a JSON string can usually be interpreted as a list or a dictionary type. See the examples below. - For datetime-to-string and string-to-datetime conversions, use sa.datetime_to_str() and sa.str_to_datetime() functions. - For array.array to turicreate.Image conversions, use sa.pixel_array_to_image() Examples -------- >>> sa = turicreate.SArray(['1','2','3','4']) >>> sa.astype(int) dtype: int Rows: 4 [1, 2, 3, 4] Given an SArray of strings that look like dicts, convert to a dictionary type: >>> sa = turicreate.SArray(['{1:2 3:4}', '{a:b c:d}']) >>> sa.astype(dict) dtype: dict Rows: 2 [{1: 2, 3: 4}, {'a': 'b', 'c': 'd'}]
4,093
def convert_svhn(which_format, directory, output_directory, output_filename=None): if which_format not in (1, 2): raise ValueError("SVHN format needs to be either 1 or 2.") if not output_filename: output_filename = .format(which_format) if which_format == 1: return convert_svhn_format_1( directory, output_directory, output_filename) else: return convert_svhn_format_2( directory, output_directory, output_filename)
Converts the SVHN dataset to HDF5. Converts the SVHN dataset [SVHN] to an HDF5 dataset compatible with :class:`fuel.datasets.SVHN`. The converted dataset is saved as 'svhn_format_1.hdf5' or 'svhn_format_2.hdf5', depending on the `which_format` argument. .. [SVHN] Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, Andrew Y. Ng. *Reading Digits in Natural Images with Unsupervised Feature Learning*, NIPS Workshop on Deep Learning and Unsupervised Feature Learning, 2011. Parameters ---------- which_format : int Either 1 or 2. Determines which format (format 1: full numbers or format 2: cropped digits) to convert. directory : str Directory in which input files reside. output_directory : str Directory in which to save the converted dataset. output_filename : str, optional Name of the saved dataset. Defaults to 'svhn_format_1.hdf5' or 'svhn_format_2.hdf5', depending on `which_format`. Returns ------- output_paths : tuple of str Single-element tuple containing the path to the converted dataset.
4,094
def flesh_out(X, W, embed_dim, CC_labels, dist_mult=2.0, angle_thresh=0.2, min_shortcircuit=4, max_degree=5, verbose=False): W = W.astype(bool) assert np.all(W == W.T), D = pairwise_distances(X, metric=) avg_edge_length = np.empty(X.shape[0]) for i,nbr_mask in enumerate(W): avg_edge_length[i] = D[i,nbr_mask].mean() dist_thresh = dist_mult * avg_edge_length dist_mask = (D < dist_thresh) | (D < dist_thresh[:,None]) hops_mask = np.isinf(dijkstra(W, unweighted=True, limit=min_shortcircuit-1)) CC_mask = CC_labels != CC_labels[:,None] candidate_edges = ~W & dist_mask & hops_mask & CC_mask if verbose: print(, candidate_edges.sum(), ) subspaces, _ = cluster_subspaces(X, embed_dim, CC_labels.max()+1, CC_labels) ii,jj = np.where(np.triu(candidate_edges)) edge_dirs = X[ii] - X[jj] ssi = subspaces[CC_labels[ii]] ssj = subspaces[CC_labels[jj]] F = edge_cluster_angle(edge_dirs, ssi, ssj) mask = F < angle_thresh edge_ii = ii[mask] edge_jj = jj[mask] edge_order = np.argsort(F[mask]) if verbose: print(, len(edge_ii), ) degree = W.sum(axis=0) sorted_edges = np.column_stack((edge_ii, edge_jj))[edge_order] for e in sorted_edges: if degree[e].max() < max_degree: W[e[0],e[1]] = True W[e[1],e[0]] = True degree[e] += 1 return Graph.from_adj_matrix(np.where(W, np.sqrt(D), 0))
Given a connected graph adj matrix (W), add edges to flesh it out.
4,095
def compare(orderby_item1, orderby_item2): type1_ord = _OrderByHelper.getTypeOrd(orderby_item1) type2_ord = _OrderByHelper.getTypeOrd(orderby_item2) type_ord_diff = type1_ord - type2_ord if type_ord_diff: return type_ord_diff if type1_ord == 0: return 0 return _compare_helper(orderby_item1[], orderby_item2[])
compares the two orderby item pairs. :param dict orderby_item1: :param dict orderby_item2: :return: Integer comparison result. The comparator acts such that - if the types are different we get: Undefined value < Null < booleans < Numbers < Strings - if both arguments are of the same type: it simply compares the values. :rtype: int
4,096
def local_fehdist(feh): fehdist= 0.8/0.15*np.exp(-0.5*(feh-0.016)**2./0.15**2.)\ +0.2/0.22*np.exp(-0.5*(feh+0.15)**2./0.22**2.) return fehdist
feh PDF based on local SDSS distribution From Jo Bovy: https://github.com/jobovy/apogee/blob/master/apogee/util/__init__.py#L3 2D gaussian fit based on Casagrande (2011)
4,097
def set_status(self, action, target): try: target = unquote(target) except (AttributeError, TypeError): pass status = "%s (%s) %s" % (self.domain, action, target) status = status.strip().replace(, ) if len(status) >= self.MAXWIDTH: tail = extent = self.MAXWIDTH - (len(tail) + self.RPAD) self.status = status[:extent] + tail else: self.status = status
Sets query status with format: "{domain} ({action}) {target}"
4,098
def connect_to_ec2(region=, access_key=None, secret_key=None): if access_key: logger.info(.format(region)) connection = ec2.connect_to_region( region, aws_access_key_id=access_key, aws_secret_access_key=secret_key) else: metadata = get_instance_metadata(timeout=1, num_retries=1) if metadata: try: region = metadata[][][:-1] except KeyError: pass logger.info(.format(region)) connection = ec2.connect_to_region(region) if not connection: logger.error() sys.exit(1) return connection
Connect to AWS ec2 :type region: str :param region: AWS region to connect to :type access_key: str :param access_key: AWS access key id :type secret_key: str :param secret_key: AWS secret access key :returns: boto.ec2.connection.EC2Connection -- EC2 connection
4,099
def raise_205(instance): instance.response.status = 205 instance.response.body = instance.response.body_raw = None raise ResponseException(instance.response)
Abort the current request with a 205 (Reset Content) response code. Clears out the body of the response. :param instance: Resource instance (used to access the response) :type instance: :class:`webob.resource.Resource` :raises: :class:`webob.exceptions.ResponseException` of status 205