Unnamed: 0
int64 0
389k
| code
stringlengths 26
79.6k
| docstring
stringlengths 1
46.9k
|
---|---|---|
7,000 | def tqxn(mt, x, n, t):
return tpx(mt, x, t) * qx(mt, x + n) | n/qx : Probability to die in n years being alive at age x.
Probability that x survives n year, and then dies in th subsequent t years |
7,001 | def create_routes_and_handler(transmute_func, context):
@wraps(transmute_func.raw_func)
def handler():
exc, result = None, None
try:
args, kwargs = ParamExtractorFlask().extract_params(
context, transmute_func, request.content_type
)
result = transmute_func(*args, **kwargs)
except Exception as e:
exc = e
exc.__traceback__ = sys.exc_info()[2]
response = transmute_func.process_result(
context, result, exc, request.content_type
)
return Response(
response["body"],
status=response["code"],
mimetype=response["content-type"],
headers=response["headers"]
)
return (
_convert_paths_to_flask(transmute_func.paths),
handler
) | return back a handler that is the api generated
from the transmute_func, and a list of routes
it should be mounted to. |
7,002 | def geometry_checker(geometry):
if geometry is None:
return False, None
if geometry.isGeosValid():
return True, geometry
else:
new_geom = geometry.makeValid()
if new_geom.isGeosValid():
return False, new_geom
else:
return False, None | Perform a cleaning if the geometry is not valid.
:param geometry: The geometry to check and clean.
:type geometry: QgsGeometry
:return: Tuple of bool and cleaned geometry. True if the geometry is
already valid, False if the geometry was not valid.
A cleaned geometry, or None if the geometry could not be repaired
:rtype: (bool, QgsGeometry) |
7,003 | def read(self, device=None, offset=0, bs=None, count=1):
volume = self.get_volume(device)
block_size = bs or BLOCK_SIZE
offset = int(offset) * block_size
count = int(count)
print("Offset: ", offset)
total = 0
with directio.open(volume[], buffered=block_size) as file:
file.seek(offset)
for i in range(0, count):
total += os.write(sys.stdout.fileno(), file.read(block_size))
os.write(sys.stdout.fileno(), "\nRead: %d Bytes\n" % total) | Using DIRECT_O read from the block device specified to stdout
(Without any optional arguments will read the first 4k from the device) |
7,004 | def listen(self):
_LOGGER.info()
self._mcastsocket = self._create_mcast_socket()
self._listening = True
thread = Thread(target=self._listen_to_msg, args=())
self._threads.append(thread)
thread.daemon = True
thread.start() | Start listening. |
7,005 | def publish (self):
self.lock.acquire()
tw = cmdvel2Twist(self.vel)
self.lock.release()
if (self.jdrc.getState() == "flying"):
self.pub.publish(tw) | Function to publish cmdvel. |
7,006 | def saveThumbnail(self,fileName,filePath):
if self._thumbnail is None:
self.__init()
param_dict = {}
if self._thumbnail is not None:
imgUrl = self.root + "/info/" + self._thumbnail
onlineFileName, file_ext = splitext(self._thumbnail)
fileNameSafe = "".join(x for x in fileName if x.isalnum()) + file_ext
result = self._get(url=imgUrl,
param_dict=param_dict,
securityHandler=self._securityHandler,
proxy_url=self._proxy_url,
proxy_port=self._proxy_port,
out_folder=filePath,
file_name=fileNameSafe)
return result
else:
return None | URL to the thumbnail used for the item |
7,007 | def method(cache_name, key_prefix=None):
def decorator(func):
if (func.__name__ in [, ] and
not config.CACHE_REPERTOIRES):
return func
@wraps(func)
def wrapper(obj, *args, **kwargs):
cache = getattr(obj, cache_name)
key = cache.key(*args, _prefix=key_prefix, **kwargs)
value = cache.get(key)
if value is None:
value = func(obj, *args, **kwargs)
cache.set(key, value)
return value
return wrapper
return decorator | Caching decorator for object-level method caches.
Cache key generation is delegated to the cache.
Args:
cache_name (str): The name of the (already-instantiated) cache
on the decorated object which should be used to store results
of this method.
*key_prefix: A constant to use as part of the cache key in addition
to the method arguments. |
7,008 | def read_var_str(self, max_size=sys.maxsize):
length = self.read_var_int(max_size)
return self.unpack(str(length) + , length) | Similar to `ReadString` but expects a variable length indicator instead of the fixed 1 byte indicator.
Args:
max_size (int): (Optional) maximum number of bytes to read.
Returns:
bytes: |
7,009 | def pathname(self):
slug = self.name
slug = unidecode.unidecode(slug)
slug = slug.replace("-", "")
slug = re.sub(r"[^\w\.]+", "-", slug).strip("-")
return os.path.join(*slug.split(".")) | Sluggified path for filenames
Slugs to a filename using the follow steps
* Decode unicode to approximate ascii
* Remove existing hypens
* Substitute hyphens for non-word characters
* Break up the string as paths |
7,010 | def _tokenize(self, source, name, filename=None, state=None):
source = self.preprocess(source, name, filename)
stream = self.lexer.tokenize(source, name, filename, state)
for ext in self.iter_extensions():
stream = ext.filter_stream(stream)
if not isinstance(stream, TokenStream):
stream = TokenStream(stream, name, filename)
return stream | Called by the parser to do the preprocessing and filtering
for all the extensions. Returns a :class:`~jinja2.lexer.TokenStream`. |
7,011 | def VShadowPathSpecGetStoreIndex(path_spec):
store_index = getattr(path_spec, , None)
if store_index is None:
location = getattr(path_spec, , None)
if location is None or not location.startswith():
return None
store_index = None
try:
store_index = int(location[4:], 10) - 1
except (TypeError, ValueError):
pass
if store_index is None or store_index < 0:
return None
return store_index | Retrieves the store index from the path specification.
Args:
path_spec (PathSpec): path specification.
Returns:
int: store index or None if not available. |
7,012 | def videos(self, **kwargs):
path = self._get_series_id_season_number_episode_number_path()
response = self._GET(path, kwargs)
self._set_attrs_to_values(response)
return response | Get the videos that have been added to a TV episode (teasers, clips,
etc...).
Args:
language: (optional) ISO 639 code.
Returns:
A dict respresentation of the JSON returned from the API. |
7,013 | def make_items_for(brains_or_objects, endpoint=None, complete=False):
include_children = req.get_children(False)
def extract_data(brain_or_object):
info = get_info(brain_or_object, endpoint=endpoint, complete=complete)
if include_children and is_folderish(brain_or_object):
info.update(get_children_info(brain_or_object, complete=complete))
return info
return map(extract_data, brains_or_objects) | Generate API compatible data items for the given list of brains/objects
:param brains_or_objects: List of objects or brains
:type brains_or_objects: list/Products.ZCatalog.Lazy.LazyMap
:param endpoint: The named URL endpoint for the root of the items
:type endpoint: str/unicode
:param complete: Flag to wake up the object and fetch all data
:type complete: bool
:returns: A list of extracted data items
:rtype: list |
7,014 | def can_delete_objectives(self):
url_path = construct_url(,
bank_id=self._catalog_idstr)
return self._get_request(url_path)[][] | Tests if this user can delete Objectives.
A return of true does not guarantee successful authorization. A
return of false indicates that it is known deleting an Objective
will result in a PermissionDenied. This is intended as a hint
to an application that may opt not to offer delete operations to
an unauthorized user.
return: (boolean) - false if Objective deletion is not
authorized, true otherwise
compliance: mandatory - This method must be implemented. |
7,015 | def get_portal_url_base(self):
api_url = urlparse(self.url).hostname
portal_url = re.sub(, , api_url)
portal_url = re.sub(r, , portal_url)
return portal_url | Determine root url of the data service from the url specified.
:return: str root url of the data service (eg: https://dataservice.duke.edu) |
7,016 | def running_conversions(self, folder_id=None):
params = {: folder_id} if folder_id else {}
return self._get(, params=params) | Shows running file converts by folder
Note:
If folder_id is not provided, ``Home`` folder will be used.
Args:
folder_id (:obj:`str`, optional): id of the folder to list conversions of files exist in it.
Returns:
list: list of dictionaries, each dictionary represents a file conversion info. ::
[
{
"name": "Geysir.AVI",
"id": "3565411",
"status": "pending",
"last_update": "2015-08-23 19:41:40",
"progress": 0.32,
"retries": "0",
"link": "https://openload.co/f/f02JFG293J8/Geysir.AVI",
"linkextid": "f02JFG293J8"
},
....
] |
7,017 | def _make_probs(self, *sequences):
sequences = self._get_counters(*sequences)
counts = self._sum_counters(*sequences)
if self.terminator is not None:
counts[self.terminator] = 1
total_letters = sum(counts.values())
prob_pairs = {}
cumulative_count = 0
counts = sorted(counts.items(), key=lambda x: (x[1], x[0]), reverse=True)
for char, current_count in counts:
prob_pairs[char] = (
Fraction(cumulative_count, total_letters),
Fraction(current_count, total_letters),
)
cumulative_count += current_count
assert cumulative_count == total_letters
return prob_pairs | https://github.com/gw-c/arith/blob/master/arith.py |
7,018 | def correctX(args):
p = OptionParser(correctX.__doc__)
opts, args = p.parse_args(args)
if len(args) != 2:
sys.exit(not p.print_help())
folder, tag = args
tag = tag.split(",")
for p, pf in iter_project(folder):
correct_pairs(p, pf, tag) | %prog correctX folder tag
Run ALLPATHS correction on a folder of paired reads and apply tag. |
7,019 | def render(self, name=None, template=None, context={}):
Render Template meta from jinja2 templates.
'
if isinstance(template, Template):
_template = template
else:
_template = Template.objects.get(name=name)
response = self.env.from_string(
_template.content).render(context)
return response | Render Template meta from jinja2 templates. |
7,020 | def tricu(P, k=0):
tri = numpy.sum(numpy.mgrid[[slice(0,_,1) for _ in P.shape]], 0)
tri = tri<len(tri) + k
if isinstance(P, Poly):
A = P.A.copy()
B = {}
for key in P.keys:
B[key] = A[key]*tri
return Poly(B, shape=P.shape, dim=P.dim, dtype=P.dtype)
out = P*tri
return out | Cross-diagonal upper triangle. |
7,021 | def add_access_list(self, accesslist, rank=None):
self.conditions.append(
dict(access_list_ref=accesslist.href,
type=,
rank=rank)) | Add an access list to the match condition. Valid
access list types are IPAccessList (v4 and v6),
IPPrefixList (v4 and v6), AS Path, CommunityAccessList,
ExtendedCommunityAccessList. |
7,022 | def syscall(self, func):
retvalueexception
if getattr(self, , None) is not None:
return None
self.syscallfunc = func
self.syscallmatcher = SyscallReturnEvent.createMatcher()
return self.syscallmatcher | Call the func in core context (main loop).
func should like::
def syscall_sample(scheduler, processor):
something...
where processor is a function which accept an event. When calling processor, scheduler directly process this event without
sending it to queue.
An event matcher is returned to the caller, and the caller should wait for the event immediately to get the return value from the system call.
The SyscallReturnEvent will have 'retvalue' as the return value, or 'exception' as the exception thrown: (type, value, traceback)
:param func: syscall function
:returns: an event matcher to wait for the SyscallReturnEvent. If None is returned, a syscall is already scheduled;
return to core context at first. |
7,023 | def is_tuple_type(tp):
if NEW_TYPING:
return (tp is Tuple or isinstance(tp, _GenericAlias) and
tp.__origin__ is tuple or
isinstance(tp, type) and issubclass(tp, Generic) and
issubclass(tp, tuple))
return type(tp) is TupleMeta | Test if the type is a generic tuple type, including subclasses excluding
non-generic classes.
Examples::
is_tuple_type(int) == False
is_tuple_type(tuple) == False
is_tuple_type(Tuple) == True
is_tuple_type(Tuple[str, int]) == True
class MyClass(Tuple[str, int]):
...
is_tuple_type(MyClass) == True
For more general tests use issubclass(..., tuple), for more precise test
(excluding subclasses) use::
get_origin(tp) is tuple # Tuple prior to Python 3.7 |
7,024 | def _get_value_from_match(self, key, match):
value = match.groups(1)[0]
clean_value = str(value).lstrip().rstrip()
if clean_value == :
self._log.info(, key)
return True
if clean_value == :
self._log.info(, key)
return False
try:
float_value = float(clean_value)
self._log.info(,
key,
float_value)
return float_value
except ValueError:
self._log.info(,
key,
clean_value)
return clean_value | Gets the value of the property in the given MatchObject.
Args:
key (str): Key of the property looked-up.
match (MatchObject): The matched property.
Return:
The discovered value, as a string or boolean. |
7,025 | def get_checkerboard_matrix(kernel_width):
return np.vstack((
np.hstack((
-1 * np.ones((kernel_width, kernel_width)), np.ones((kernel_width, kernel_width))
)),
np.hstack((
np.ones((kernel_width, kernel_width)), -1 * np.ones((kernel_width, kernel_width))
))
)) | example matrix for width = 2
-1 -1 1 1
-1 -1 1 1
1 1 -1 -1
1 1 -1 -1
:param kernel_width:
:return: |
7,026 | def stripped_db_url(url):
parsed = urlparse(url)
if parsed.password is None:
return url
return parsed._replace(
netloc="{}:***@{}".format(parsed.username, parsed.hostname)
).geturl() | Return a version of the DB url with the password stripped out. |
7,027 | def format_config(sensor_graph):
cmdfile = CommandFile("Config Variables", "1.0")
for slot in sorted(sensor_graph.config_database, key=lambda x: x.encode()):
for conf_var, conf_def in sorted(sensor_graph.config_database[slot].items()):
conf_type, conf_val = conf_def
if conf_type == :
conf_val = + hexlify(conf_val)
cmdfile.add("set_variable", slot, conf_var, conf_type, conf_val)
return cmdfile.dump() | Extract the config variables from this sensor graph in ASCII format.
Args:
sensor_graph (SensorGraph): the sensor graph that we want to format
Returns:
str: The ascii output lines concatenated as a single string |
7,028 | def start(component, exact):
from peltak.extra.gitflow import logic
logic.release.start(component, exact) | Create a new release.
It will bump the current version number and create a release branch called
`release/<version>` with one new commit (the version bump).
**Example Config**::
\b
version_file: 'src/mypkg/__init__.py'
**Examples**::
\b
$ peltak release start patch # Make a new patch release
$ peltak release start minor # Make a new minor release
$ peltak release start major # Make a new major release
$ peltak release start # same as start patch |
7,029 | def setShadowed(self, state):
self._shadowed = state
if state:
self._colored = False
for child in self.findChildren(XToolButton):
child.setShadowed(state) | Sets whether or not this toolbar is shadowed.
:param state | <bool> |
7,030 | def subnet_get(auth=None, **kwargs):
*
cloud = get_operator_cloud(auth)
kwargs = _clean_kwargs(**kwargs)
return cloud.get_subnet(**kwargs) | Get a single subnet
filters
A Python dictionary of filter conditions to push down
CLI Example:
.. code-block:: bash
salt '*' neutronng.subnet_get name=subnet1 |
7,031 | def add_algorithm(self, parser):
help = % {
: ca_settings.CA_DIGEST_ALGORITHM.name, }
parser.add_argument(
, metavar=, default=ca_settings.CA_DIGEST_ALGORITHM,
action=AlgorithmAction, help=help) | Add the --algorithm option. |
7,032 | def sphergal_to_rectgal(l,b,d,vr,pmll,pmbb,degree=False):
XYZ= lbd_to_XYZ(l,b,d,degree=degree)
vxvyvz= vrpmllpmbb_to_vxvyvz(vr,pmll,pmbb,l,b,d,XYZ=False,degree=degree)
if sc.array(l).shape == ():
return sc.array([XYZ[0],XYZ[1],XYZ[2],vxvyvz[0],vxvyvz[1],vxvyvz[2]])
else:
out=sc.zeros((len(l),6))
out[:,0:3]= XYZ
out[:,3:6]= vxvyvz
return out | NAME:
sphergal_to_rectgal
PURPOSE:
transform phase-space coordinates in spherical Galactic coordinates to rectangular Galactic coordinates (can take vector inputs)
INPUT:
l - Galactic longitude (rad)
b - Galactic lattitude (rad)
d - distance (kpc)
vr - line-of-sight velocity (km/s)
pmll - proper motion in the Galactic longitude direction (mu_l*cos(b) ) (mas/yr)
pmbb - proper motion in the Galactic lattitude (mas/yr)
degree - (bool) if True, l and b are in degrees
OUTPUT:
(X,Y,Z,vx,vy,vz) in (kpc,kpc,kpc,km/s,km/s,km/s)
HISTORY:
2009-10-25 - Written - Bovy (NYU) |
7,033 | def key(self, *args, **kwargs):
if not args and not kwargs:
return self.class_path
try:
if args and not kwargs:
return "%s:%s" % (self.class_path, self.hash(args))
return "%s:%s:%s:%s" % (self.class_path,
self.hash(args),
self.hash([k for k in sorted(kwargs)]),
self.hash([kwargs[k] for k in sorted(kwargs)]))
except TypeError:
raise RuntimeError(
"Unable to generate cache key due to unhashable"
"args or kwargs - you need to implement your own"
"key generation method to avoid this problem") | Return the cache key to use.
If you're passing anything but primitive types to the ``get`` method,
it's likely that you'll need to override this method. |
7,034 | def execution():
client = salt.client.get_local_client(__opts__[])
docs = {}
try:
for ret in client.cmd_iter(, , timeout=__opts__[]):
for v in six.itervalues(ret):
docs.update(v)
except SaltClientError as exc:
print(exc)
return []
i = itertools.chain.from_iterable([six.iteritems(docs[])])
ret = dict(list(i))
return ret | Collect all the sys.doc output from each minion and return the aggregate
CLI Example:
.. code-block:: bash
salt-run doc.execution |
7,035 | def flush(self):
if self.redirect is not None:
self.redirect.flush()
super(TeeStringIO, self).flush() | Flush to this and the redirected stream |
7,036 | def data(self):
if self._next_update and datetime.now() > self._next_update:
self.update()
return self._data | Get a cached post-processed result of a GitHub API call. Uses Trac cache
to avoid constant querying of the remote API. If a previous API call did
not succeed, automatically retries after a timeout. |
7,037 | def ternarize(x, thresh=0.05):
shape = x.get_shape()
thre_x = tf.stop_gradient(tf.reduce_max(tf.abs(x)) * thresh)
w_p = tf.get_variable(, initializer=1.0, dtype=tf.float32)
w_n = tf.get_variable(, initializer=1.0, dtype=tf.float32)
tf.summary.scalar(w_p.op.name + , w_p)
tf.summary.scalar(w_n.op.name + , w_n)
mask = tf.ones(shape)
mask_p = tf.where(x > thre_x, tf.ones(shape) * w_p, mask)
mask_np = tf.where(x < -thre_x, tf.ones(shape) * w_n, mask_p)
mask_z = tf.where((x < thre_x) & (x > - thre_x), tf.zeros(shape), mask)
@tf.custom_gradient
def _sign_mask(x):
return tf.sign(x) * mask_z, lambda dy: dy
w = _sign_mask(x)
w = w * mask_np
tf.summary.histogram(w.name, w)
return w | Implemented Trained Ternary Quantization:
https://arxiv.org/abs/1612.01064
Code modified from the authors' at:
https://github.com/czhu95/ternarynet/blob/master/examples/Ternary-Net/ternary.py |
7,038 | def from_env(cls, prefix, kms_decrypt=False, aws_profile=None):
if len(prefix) < 1:
raise ValueError("prefix can_'!")
if not prefix.endswith("_"):
prefix = prefix + "_"
data = dict(
host=os.getenv(prefix + "HOST"),
port=os.getenv(prefix + "PORT"),
database=os.getenv(prefix + "DATABASE"),
username=os.getenv(prefix + "USERNAME"),
password=os.getenv(prefix + "PASSWORD"),
)
if kms_decrypt is True:
import boto3
from base64 import b64decode
if aws_profile is not None:
kms = boto3.client("kms")
else:
ses = boto3.Session(profile_name=aws_profile)
kms = ses.client("kms")
def decrypt(kms, text):
return kms.decrypt(
CiphertextBlob=b64decode(text.encode("utf-8"))
)["Plaintext"].decode("utf-8")
data = {
key: value if value is None else decrypt(kms, str(value))
for key, value in data.items()
}
return cls(**data) | Load database credential from env variable.
- host: ENV.{PREFIX}_HOST
- port: ENV.{PREFIX}_PORT
- database: ENV.{PREFIX}_DATABASE
- username: ENV.{PREFIX}_USERNAME
- password: ENV.{PREFIX}_PASSWORD
:param prefix: str
:param kms_decrypt: bool
:param aws_profile: str |
7,039 | def red_ext(request, message=None):
t have site access to the external page.
Parameters:
request - the request in the calling function
message - a message from the caller function
external')) | The external landing.
Also a convenience function for redirecting users who don't have site access to the external page.
Parameters:
request - the request in the calling function
message - a message from the caller function |
7,040 | def evaluate(data_source, batch_size, ctx=None):
total_L = 0
hidden = cache_cell.\
begin_state(func=mx.nd.zeros, batch_size=batch_size, ctx=context[0])
next_word_history = None
cache_history = None
for i in range(0, len(data_source) - 1, args.bptt):
if i > 0:
print(%
(i, len(data_source), math.exp(total_L/i)))
data, target = get_batch(data_source, i)
data = data.as_in_context(ctx)
target = target.as_in_context(ctx)
L = 0
outs, next_word_history, cache_history, hidden = \
cache_cell(data, target, next_word_history, cache_history, hidden)
for out in outs:
L += (-mx.nd.log(out)).asscalar()
total_L += L / data.shape[1]
hidden = detach(hidden)
return total_L / len(data_source) | Evaluate the model on the dataset with cache model.
Parameters
----------
data_source : NDArray
The dataset is evaluated on.
batch_size : int
The size of the mini-batch.
ctx : mx.cpu() or mx.gpu()
The context of the computation.
Returns
-------
loss: float
The loss on the dataset |
7,041 | def node_hist_fig(
node_color_distribution,
title="Graph Node Distribution",
width=400,
height=300,
top=60,
left=25,
bottom=60,
right=25,
bgcolor="rgb(240,240,240)",
y_gridcolor="white",
):
text = [
"{perc}%".format(**locals())
for perc in [d["perc"] for d in node_color_distribution]
]
pl_hist = go.Bar(
y=[d["height"] for d in node_color_distribution],
marker=dict(color=[d["color"] for d in node_color_distribution]),
text=text,
hoverinfo="y+text",
)
hist_layout = dict(
title=title,
width=width,
height=height,
font=dict(size=12),
xaxis=dict(showline=True, zeroline=False, showgrid=False, showticklabels=False),
yaxis=dict(showline=False, gridcolor=y_gridcolor, tickfont=dict(size=10)),
bargap=0.01,
margin=dict(l=left, r=right, b=bottom, t=top),
hovermode="x",
plot_bgcolor=bgcolor,
)
return go.FigureWidget(data=[pl_hist], layout=hist_layout) | Define the plotly plot representing the node histogram
Parameters
----------
node_color_distribution: list of dicts describing the build_histogram
width, height: integers - width and height of the histogram FigureWidget
left, top, right, bottom: ints; number of pixels around the FigureWidget
bgcolor: rgb of hex color code for the figure background color
y_gridcolor: rgb of hex color code for the yaxis y_gridcolor
Returns
-------
FigureWidget object representing the histogram of the graph nodes |
7,042 | def __set_URL(self, url):
if isinstance(url, str):
url.encode("ascii")
self.url = url
elif sys.version_info < (3, 0):
self.url = url.encode("ascii")
else:
self.url = url.decode("ascii") | URL is stored as a str internally and must not contain ASCII chars.
Raised exception in case of detected non-ASCII URL characters may be
either UnicodeEncodeError or UnicodeDecodeError, depending on the used
Python version's str type and the exact value passed as URL input data. |
7,043 | def get_events(self, **kwargs):
force = kwargs.pop(, False)
response = api.request_sync_events(self.blink,
self.network_id,
force=force)
try:
return response[]
except (TypeError, KeyError):
_LOGGER.error("Could not extract events: %s",
response,
exc_info=True)
return False | Retrieve events from server. |
7,044 | def _build_sql_query(
self):
self.log.info()
ra1, ra2, dec1, dec2 = self.ra1, self.ra2, self.dec1, self.dec2
if self.galaxyType == "all":
self.sqlQuery = u % locals()
elif self.galaxyType == "specz":
self.sqlQuery = u % locals()
elif self.galaxyType == "photoz":
self.sqlQuery = u % locals()
elif self.galaxyType == False or not self.galaxyType:
self.sqlQuery = u % locals()
self.sqlQuery = self.sqlQuery.strip()
self.log.info()
return None | *build sql query for the sdss square search*
**Key Arguments:**
# -
**Return:**
- None
.. todo:: |
7,045 | def _update_targets(vesseldicts, environment_dict):
nodelist = []
for vesseldict in vesseldicts:
nodeip_port = vesseldict[]++str(vesseldict[])
if not nodeip_port in nodelist:
nodelist.append(nodeip_port)
seash_global_variables.targets[] = []
print nodelist
retdict = seash_helper.contact_targets(
nodelist,
seash_helper.browse_target,
environment_dict[],
)
for nodename in retdict:
if retdict[nodename][0]:
newidlist = newidlist + retdict[nodename][1]
else:
faillist.append(nodename)
seash_helper.print_vessel_errors(retdict)
if len(newidlist) == 0:
print "Could not add any new targets."
else:
print "Added targets: "+", ".join(newidlist)
if len(seash_global_variables.targets[]) > 0:
num_targets = str(len(seash_global_variables.targets[]))
print "Added group with "+num_targets+" targets" | <Purpose>
Connects to the nodes in the vesseldicts and adds them to the list
of valid targets.
<Arguments>
vesseldicts:
A list of vesseldicts obtained through
SeattleClearinghouseClient calls.
<Side Effects>
All valid targets that the user can access on the specified nodes
are added to the list of targets.
<Exceptions>
None
<Returns>
None |
7,046 | def list_networks(**kwargs):
*
conn = __get_conn(**kwargs)
try:
return [net.name() for net in conn.listAllNetworks()]
finally:
conn.close() | List all virtual networks.
:param connection: libvirt connection URI, overriding defaults
:param username: username to connect with, overriding defaults
:param password: password to connect with, overriding defaults
.. versionadded:: 2019.2.0
CLI Example:
.. code-block:: bash
salt '*' virt.list_networks |
7,047 | def accept(self, origin, protocol):
for factory in self.store.powerupsFor(IBoxReceiverFactory):
raise ProtocolUnknown() | Create a new route attached to a L{IBoxReceiver} created by the
L{IBoxReceiverFactory} with the indicated protocol.
@type origin: C{unicode}
@param origin: The identifier of a route on the peer which will be
associated with this connection. Boxes sent back by the protocol
which is created in this call will be sent back to this route.
@type protocol: C{unicode}
@param protocol: The name of the protocol to which to establish a
connection.
@raise ProtocolUnknown: If no factory can be found for the named
protocol.
@return: A newly created C{unicode} route identifier for this
connection (as the value of a C{dict} with a C{'route'} key). |
7,048 | def paintEvent(self, event):
pixmap = self.currentPixmap()
rect = self.currentPixmapRect()
with XPainter(self) as painter:
painter.drawPixmap(rect.x(), rect.y(), pixmap) | Draws the pixmap for this widget.
:param event | <QPaintEvent> |
7,049 | def cp(hdfs_src, hdfs_dst):
cmd = "hadoop fs -cp %s %s" % (hdfs_src, hdfs_dst)
rcode, stdout, stderr = _checked_hadoop_fs_command(cmd) | Copy a file
:param hdfs_src: Source (str)
:param hdfs_dst: Destination (str)
:raises: IOError: If unsuccessful |
7,050 | def _readClusterSettings(self):
mdUrl = "http://169.254.169.254/metadata/instance?api-version=2017-08-01"
header = {: }
request = urllib.request.Request(url=mdUrl, headers=header)
response = urllib.request.urlopen(request)
data = response.read()
dataStr = data.decode("utf-8")
metadata = json.loads(dataStr)
self._zone = metadata[][]
self.clusterName = metadata[][]
tagsStr = metadata[][]
tags = dict(item.split(":") for item in tagsStr.split(";"))
self._owner = tags.get(, )
leader = self.getLeader()
self._leaderPrivateIP = leader.privateIP
self._setSSH()
self._masterPublicKeyFile = self.LEADER_HOME_DIR +
map(lambda x: self._addToHosts(x), self.getProvisionedWorkers(None)) | Read the current instance's meta-data to get the cluster settings. |
7,051 | def get_top_paths(self):
headers, data = self._requester.requestJsonAndCheck(
"GET",
self.url + "/traffic/popular/paths"
)
if isinstance(data, list):
return [
github.Path.Path(self._requester, headers, item, completed=True)
for item in data
] | :calls: `GET /repos/:owner/:repo/traffic/popular/paths <https://developer.github.com/v3/repos/traffic/>`_
:rtype: :class:`list` of :class:`github.Path.Path` |
7,052 | def apply(self, s, active=None):
if active is None:
active = self.active
return self.group.apply(s, active=active) | Apply the REPP's rewrite rules to the input string *s*.
Args:
s (str): the input string to process
active (optional): a collection of external module names
that may be applied if called
Returns:
a :class:`REPPResult` object containing the processed
string and characterization maps |
7,053 | def merge_dict(self, *args, **kwargs):
input_dict = self._convert_input(*args, **kwargs)
if input_dict:
self._sift_and_init_configs(input_dict)
self.token_dict.merge_serialization(input_dict) | Takes variable inputs, compiles them into a dictionary then merges it to the current nomenclate's state
:param args: (dict, Nomenclate), any number of dictionary inputs or Nomenclates to be converted to dicts
:param kwargs: str, any number of kwargs that represent token:value pairs |
7,054 | def _run_train_step(self, data, mode=):
epoch_size = ((len(data) // self.batch_size) - 1) // self.num_steps
costs = 0.0
iters = 0
step = 0
state = self._init_state.eval()
op = self._train_op if mode == else tf.no_op()
for step, (x, y) in enumerate(
utilities.seq_data_iterator(
data, self.batch_size, self.num_steps)):
cost, state, _ = self.tf_session.run(
[self.cost, self.final_state, op],
{self.input_data: x,
self.input_labels: y,
self._init_state: state})
costs += cost
iters += self.num_steps
if step % (epoch_size // 10) == 10:
print("%.3f perplexity" % (step * 1.0 / epoch_size))
return np.exp(costs / iters) | Run a single training step.
:param data: input data
:param mode: 'train' or 'test'. |
7,055 | def partition_agent(host):
network.save_iptables(host)
network.flush_all_rules(host)
network.allow_all_traffic(host)
network.run_iptables(host, ALLOW_SSH)
network.run_iptables(host, ALLOW_PING)
network.run_iptables(host, DISALLOW_MESOS)
network.run_iptables(host, DISALLOW_INPUT) | Partition a node from all network traffic except for SSH and loopback
:param hostname: host or IP of the machine to partition from the cluster |
7,056 | def get_context_dict(self):
context_dict = {}
for s in self.sections():
for k, v in self.manifest.items(s):
context_dict["%s:%s" % (s, k)] = v
for k, v in self.inputs.values().items():
context_dict["config:{0}".format(k)] = v
context_dict.update(self.additional_context_variables.items())
context_dict.update(dict([("%s|escaped" % k, re.escape(str(v) or "")) for k, v in context_dict.items()]))
return context_dict | return a context dict of the desired state |
7,057 | def unset(self, host, *args):
self.__check_host_args(host, args)
remove_idx = [idx for idx, x in enumerate(self.lines_)
if x.host == host and x.key.lower() in args]
for idx in reversed(sorted(remove_idx)):
del self.lines_[idx] | Removes settings for a host.
Parameters
----------
host : the host to remove settings from.
*args : list of settings to removes. |
7,058 | def search_elementnames(self, *substrings: str,
name: str = ) -> :
try:
selection = Selection(name)
for element in self.elements:
for substring in substrings:
if substring in element.name:
selection.elements += element
break
return selection
except BaseException:
values = objecttools.enumeration(substrings)
objecttools.augment_excmessage(
f
f
f) | Return a new selection containing all elements of the current
selection with a name containing at least one of the given substrings.
>>> from hydpy.core.examples import prepare_full_example_2
>>> hp, pub, _ = prepare_full_example_2()
Pass the (sub)strings as positional arguments and, optionally, the
name of the newly created |Selection| object as a keyword argument:
>>> test = pub.selections.complete.copy('test')
>>> from hydpy import prepare_model
>>> test.search_elementnames('dill', 'lahn_1')
Selection("elementnames",
nodes=(),
elements=("land_dill", "land_lahn_1", "stream_dill_lahn_2",
"stream_lahn_1_lahn_2"))
Wrong string specifications result in errors like the following:
>>> test.search_elementnames(['dill', 'lahn_1'])
Traceback (most recent call last):
...
TypeError: While trying to determine the elements of selection \
`test` with names containing at least one of the given substrings \
`['dill', 'lahn_1']`, the following error occurred: 'in <string>' \
requires string as left operand, not list
Method |Selection.select_elementnames| restricts the current selection
to the one determined with the method |Selection.search_elementnames|:
>>> test.select_elementnames('dill', 'lahn_1')
Selection("test",
nodes=("dill", "lahn_1", "lahn_2", "lahn_3"),
elements=("land_dill", "land_lahn_1", "stream_dill_lahn_2",
"stream_lahn_1_lahn_2"))
On the contrary, the method |Selection.deselect_elementnames|
restricts the current selection to all devices not determined
by the method |Selection.search_elementnames|:
>>> pub.selections.complete.deselect_elementnames('dill', 'lahn_1')
Selection("complete",
nodes=("dill", "lahn_1", "lahn_2", "lahn_3"),
elements=("land_lahn_2", "land_lahn_3",
"stream_lahn_2_lahn_3")) |
7,059 | def _create_index_content(words):
content = ["<h1>Index</h1>", "<ul>"]
for word in words:
content.append(
.format(word=word)
)
content.append("</ul>")
if not words:
content.append("<i>Nothing to see here ...yet!</i>")
return "\n".join(content) | Create html string of index file.
Parameters
----------
words : list of str
List of cached words.
Returns
-------
str
html string. |
7,060 | def setOverlayAlpha(self, ulOverlayHandle, fAlpha):
fn = self.function_table.setOverlayAlpha
result = fn(ulOverlayHandle, fAlpha)
return result | Sets the alpha of the overlay quad. Use 1.0 for 100 percent opacity to 0.0 for 0 percent opacity. |
7,061 | def get_info(self, full=False):
" Return printable information about current site. "
if full:
context = self.as_dict()
return "".join("{0:<25} = {1}\n".format(
key, context[key]) for key in sorted(context.iterkeys()))
return "%s [%s]" % (self.get_name(), self.template) | Return printable information about current site. |
7,062 | def ProcessPathSpec(self, mediator, path_spec):
self.last_activity_timestamp = time.time()
self.processing_status = definitions.STATUS_INDICATOR_RUNNING
file_entry = path_spec_resolver.Resolver.OpenFileEntry(
path_spec, resolver_context=mediator.resolver_context)
if file_entry is None:
display_name = mediator.GetDisplayNameForPathSpec(path_spec)
logger.warning(
.format(
display_name))
self.processing_status = definitions.STATUS_INDICATOR_IDLE
return
mediator.SetFileEntry(file_entry)
try:
if file_entry.IsDirectory():
self._ProcessDirectory(mediator, file_entry)
self._ProcessFileEntry(mediator, file_entry)
finally:
mediator.ResetFileEntry()
self.last_activity_timestamp = time.time()
self.processing_status = definitions.STATUS_INDICATOR_IDLE | Processes a path specification.
Args:
mediator (ParserMediator): mediates the interactions between
parsers and other components, such as storage and abort signals.
path_spec (dfvfs.PathSpec): path specification. |
7,063 | def b64_decode(data: bytes) -> bytes:
missing_padding = len(data) % 4
if missing_padding != 0:
data += b * (4 - missing_padding)
return urlsafe_b64decode(data) | :param data: Base 64 encoded data to decode.
:type data: bytes
:return: Base 64 decoded data.
:rtype: bytes |
7,064 | def slicing_singlevalue(arg, length):
if isinstance(arg, slice):
start, stop, step = arg.indices(length)
i = start
if step > 0:
while i < stop:
yield i
i += step
else:
while i > stop:
yield i
i += step
else:
try:
i = arg.__index__()
except AttributeError:
raise TypeError("indices must be integers or slices, not " + arg.__class__.__name__)
if i < 0:
i += length
yield i | Internally used. |
7,065 | def _check_reach_env():
path_to_reach = get_config()
if path_to_reach is None:
path_to_reach = environ.get(, None)
if path_to_reach is None or not path.exists(path_to_reach):
raise ReachError(
)
logger.debug( % path_to_reach)
reach_version = get_config()
if reach_version is None:
reach_version = environ.get(, None)
if reach_version is None:
logger.debug()
m = re.match(, path.basename(path_to_reach))
reach_version = re.sub(, , m.groups()[0])
logger.debug( % reach_version)
return path_to_reach, reach_version | Check that the environment supports runnig reach. |
7,066 | def volumes(self, assets, dt):
market_open, prev_dt, dt_value, entries = self._prelude(dt, )
volumes = []
session_label = self._trading_calendar.minute_to_session_label(dt)
for asset in assets:
if not asset.is_alive_for_session(session_label):
volumes.append(0)
continue
if prev_dt is None:
val = self._minute_reader.get_value(asset, dt, )
entries[asset] = (dt_value, val)
volumes.append(val)
continue
else:
try:
last_visited_dt, last_total = entries[asset]
if last_visited_dt == dt_value:
volumes.append(last_total)
continue
elif last_visited_dt == prev_dt:
val = self._minute_reader.get_value(
asset, dt, )
val += last_total
entries[asset] = (dt_value, val)
volumes.append(val)
continue
else:
after_last = pd.Timestamp(
last_visited_dt + self._one_min, tz=)
window = self._minute_reader.load_raw_arrays(
[],
after_last,
dt,
[asset],
)[0]
val = np.nansum(window) + last_total
entries[asset] = (dt_value, val)
volumes.append(val)
continue
except KeyError:
window = self._minute_reader.load_raw_arrays(
[],
market_open,
dt,
[asset],
)[0]
val = np.nansum(window)
entries[asset] = (dt_value, val)
volumes.append(val)
continue
return np.array(volumes) | The volume field's aggregation returns the sum of all volumes
between the market open and the `dt`
If there has been no data on or before the `dt` the volume is 0.
Returns
-------
np.array with dtype=int64, in order of assets parameter. |
7,067 | def _post_init(self):
try:
return self.postinit()
except Exception as exc:
return self._onerror(Result.from_exception(exc, uuid=self.uuid)) | A post init trigger |
7,068 | def is_active(self):
if not self.multiplexer:
return False
if self._is_active:
return True
if self._thread_for_determining_is_active:
return self._is_active
new_thread = threading.Thread(
target=self._determine_is_active,
name=)
self._thread_for_determining_is_active = new_thread
new_thread.start()
return False | Determines whether this plugin is active.
This plugin is only active if any run has an embedding.
Returns:
Whether any run has embedding data to show in the projector. |
7,069 | def remove_product_version(self, id, product_version_id, **kwargs):
kwargs[] = True
if kwargs.get():
return self.remove_product_version_with_http_info(id, product_version_id, **kwargs)
else:
(data) = self.remove_product_version_with_http_info(id, product_version_id, **kwargs)
return data | Removes a product version from the specified config set
This method makes a synchronous HTTP request by default. To make an
asynchronous HTTP request, please define a `callback` function
to be invoked when receiving the response.
>>> def callback_function(response):
>>> pprint(response)
>>>
>>> thread = api.remove_product_version(id, product_version_id, callback=callback_function)
:param callback function: The callback function
for asynchronous request. (optional)
:param int id: Build configuration set id (required)
:param int product_version_id: Product version id (required)
:return: None
If the method is called asynchronously,
returns the request thread. |
7,070 | def add_dns(ip, interface=, index=1):
*
servers = get_dns_servers(interface)
if servers is False:
return False
try:
if servers[index - 1] == ip:
return True
except IndexError:
pass
if ip in servers:
rm_dns(ip, interface)
cmd = [, , , , ,
interface, ip, .format(index), ]
return __salt__[](cmd, python_shell=False) == 0 | Add the DNS server to the network interface
(index starts from 1)
Note: if the interface DNS is configured by DHCP, all the DNS servers will
be removed from the interface and the requested DNS will be the only one
CLI Example:
.. code-block:: bash
salt '*' win_dns_client.add_dns <ip> <interface> <index> |
7,071 | async def load_credentials(self, credentials):
split = credentials.split()
self.identifier = split[0]
self.srp.initialize(binascii.unhexlify(split[1]))
_LOGGER.debug(, credentials) | Load existing credentials. |
7,072 | def _serialize_normalized_array(array, fmt=, quality=70):
dtype = array.dtype
assert np.issubdtype(dtype, np.unsignedinteger)
assert np.max(array) <= np.iinfo(dtype).max
assert array.shape[-1] > 1
image = PIL.Image.fromarray(array)
image_bytes = BytesIO()
image.save(image_bytes, fmt, quality=quality)
image_data = image_bytes.getvalue()
return image_data | Given a normalized array, returns byte representation of image encoding.
Args:
array: NumPy array of dtype uint8 and range 0 to 255
fmt: string describing desired file format, defaults to 'png'
quality: specifies compression quality from 0 to 100 for lossy formats
Returns:
image data as BytesIO buffer |
7,073 | def start(self):
if self.use_user_options:
user_options = self.user_options
else:
user_options = {}
self.log.warn("user_options: {}".format(user_options))
service = yield self.get_service()
if service is None:
if in user_options:
self.server_name = user_options[]
if hasattr(self, ) and self.container_spec is not None:
container_spec = dict(**self.container_spec)
elif user_options == {}:
raise("A container_spec is needed in to create a service")
container_spec.update(user_options.get(, {}))
container_spec[] = []
for mount in self.container_spec[]:
m = dict(**mount)
if in m:
m[] = m[].format(
username=self.service_owner)
if in m:
device = m[][][].format(
username=self.service_owner
)
m[][][] = device
m[] = docker.types.DriverConfig(
**m[])
container_spec[].append(docker.types.Mount(**m))
container_spec[] = self.get_env()
if hasattr(self, ):
resource_spec = self.resource_spec
resource_spec.update(user_options.get(, {}))
if hasattr(self, ):
networks = self.networks
if user_options.get() is not None:
networks = user_options.get()
if hasattr(self, ):
placement = self.placement
if user_options.get() is not None:
placement = user_options.get()
image = container_spec[]
del container_spec[]
container_spec = docker.types.ContainerSpec(
image, **container_spec)
resources = docker.types.Resources(**resource_spec)
task_spec = {: container_spec,
: resources,
: placement
}
task_tmpl = docker.types.TaskTemplate(**task_spec)
resp = yield self.docker(,
task_tmpl,
name=self.service_name,
networks=networks)
self.service_id = resp[]
self.log.info(
"Created Docker service (id: %s) from image %s",
self.service_name, self.service_id[:7], image)
else:
self.log.info(
"Found existing Docker service (id: %s)",
self.service_name, self.service_id[:7])
envs = service[][][][]
for line in envs:
if line.startswith():
self.api_token = line.split(, 1)[1]
break
ip = self.service_name
port = self.service_port
return (ip, port) | Start the single-user server in a docker service.
You can specify the params for the service through jupyterhub_config.py
or using the user_options |
7,074 | def traceroute(target, dport=80, minttl=1, maxttl=30, sport=RandShort(), l4=None, filter=None, timeout=2, verbose=None, **kargs):
if verbose is None:
verbose = conf.verb
if filter is None:
filter = "(icmp and (icmp[0]=3 or icmp[0]=4 or icmp[0]=5 or icmp[0]=11 or icmp[0]=12)) or (tcp and (tcp[13] & 0x16 > 0x10))"
if l4 is None:
a, b = sr(IP(dst=target, id=RandShort(), ttl=(minttl, maxttl)) / TCP(seq=RandInt(), sport=sport, dport=dport),
timeout=timeout, filter=filter, verbose=verbose, **kargs)
else:
filter = "ip"
a, b = sr(IP(dst=target, id=RandShort(), ttl=(minttl, maxttl)) / l4,
timeout=timeout, filter=filter, verbose=verbose, **kargs)
a = TracerouteResult(a.res)
if verbose:
a.show()
return a, b | Instant TCP traceroute
traceroute(target, [maxttl=30,] [dport=80,] [sport=80,] [verbose=conf.verb]) -> None # noqa: E501 |
7,075 | def get_weekly_charts(self, chart_kind, from_date=None, to_date=None):
method = ".getWeekly" + chart_kind.title() + "Chart"
chart_type = eval(chart_kind.title())
params = self._get_params()
if from_date and to_date:
params["from"] = from_date
params["to"] = to_date
doc = self._request(self.ws_prefix + method, True, params)
seq = []
for node in doc.getElementsByTagName(chart_kind.lower()):
if chart_kind == "artist":
item = chart_type(_extract(node, "name"), self.network)
else:
item = chart_type(
_extract(node, "artist"), _extract(node, "name"), self.network
)
weight = _number(_extract(node, "playcount"))
seq.append(TopItem(item, weight))
return seq | Returns the weekly charts for the week starting from the
from_date value to the to_date value.
chart_kind should be one of "album", "artist" or "track" |
7,076 | def start_rpc_listeners(self):
self._setup_rpc()
if not self.endpoints:
return []
self.conn = n_rpc.create_connection()
self.conn.create_consumer(self.topic, self.endpoints,
fanout=False)
return self.conn.consume_in_threads() | Configure all listeners here |
7,077 | def date_of_birth(self, value):
if value:
self._date_of_birth = parse(value).date() if isinstance(value, type_check) else value | The date of birth of the individual.
:param value:
:return: |
7,078 | def load_config(self, path, environments, fill_with_defaults=False):
yaml.add_implicit_resolver("!environ", self.__environ_pattern)
yaml.add_constructor(, self.__get_from_environment)
yaml.add_implicit_resolver("!vault", self.__vault_pattern)
yaml.add_constructor(, self.__get_from_vault)
if not path.endswith():
path +=
if type(environments) != list:
environments = [environments]
config = {}
try:
for env in environments:
with open(path + env + , ) as configFile:
env_config = yaml.load(configFile.read()) or {}
config.update(env_config)
if fill_with_defaults:
if in config:
defaults = config[]
for target in defaults:
for index, item in enumerate(config[target]):
tmp = defaults[target].copy()
tmp.update(config[target][index])
config[target][index] = tmp
return config
except exceptions.VaultError as error:
raise ConfigLoaderError("Could not read vault secrets [" + error.__class__.__name__ + "]")
except yaml.YAMLError as error:
raise ConfigLoaderError("Configuration files malformed [" + error.__class__.__name__ + "]")
except json.decoder.JSONDecodeError as error:
raise ConfigLoaderError("Vault response was not json [" + error.__class__.__name__ + "]")
except Exception as error:
raise ConfigLoaderError("WTF? [" + error.__class__.__name__ + "]") | Will load default.yaml and <environment>.yaml at given path.
The environment config will override the default values.
:param path: directory where to find your config files. If the last character is not a slash (/) it will be appended. Example: resources/
:param environments: list of environment configs to load. File name pattern: <environment>.yaml. Example: develop.yaml. Latter configs will override previous ones.
:param fill_with_defaults: use 'defaults' keyword in config file to fill up following config entrys.
:return: your config as dictionary. |
7,079 | def sufar4(ascfile, meas_output=, aniso_output=,
spec_infile=None, spec_outfile=, samp_outfile=,
site_outfile=, specnum=0, sample_naming_con=, user="",
locname="unknown", instrument=, static_15_position_mode=False,
dir_path=, input_dir_path=, data_model_num=3):
citation =
cont = 0
Z = 1
AniRecSs, AniRecs, SpecRecs, SampRecs, SiteRecs, MeasRecs = [], [], [], [], [], []
isspec =
spin = 0
data_model_num = int(float(data_model_num))
if data_model_num == 2:
if meas_output == :
meas_output =
if spec_outfile == :
spec_outfile =
if samp_outfile == :
samp_outfile =
if site_outfile == :
site_outfile =
spec_name_col =
samp_name_col =
site_name_col =
loc_name_col =
citation_col =
method_col =
site_description_col =
expedition_col =
instrument_col =
experiment_col =
analyst_col =
quality_col =
aniso_quality_col =
meas_standard_col =
meas_description_col =
aniso_type_col =
aniso_unit_col =
aniso_n_col =
azimuth_col =
spec_volume_col =
samp_dip_col =
bed_dip_col =
bed_dip_direction_col =
chi_vol_col =
aniso_sigma_col =
aniso_unit_col =
aniso_tilt_corr_col =
meas_table_name =
spec_table_name =
samp_table_name =
site_table_name =
if data_model_num == 2:
spec_name_col =
samp_name_col =
site_name_col =
loc_name_col =
citation_col =
method_col =
site_description_col =
expedition_col =
instrument_col =
experiment_col =
analyst_col =
quality_col =
aniso_quality_col =
meas_standard_col =
meas_description_col =
aniso_type_col =
aniso_unit_col =
aniso_n_col =
azimuth_col =
spec_volume_col =
samp_dip_col =
bed_dip_col =
bed_dip_direction_col =
chi_vol_col =
aniso_sigma_col =
aniso_unit_col =
aniso_tilt_corr_col =
meas_table_name =
spec_table_name =
samp_table_name =
site_table_name =
input_dir_path, output_dir_path = pmag.fix_directories(input_dir_path, dir_path)
ascfile = os.path.join(input_dir_path, ascfile)
aniso_output = os.path.join(output_dir_path, aniso_output)
meas_output = os.path.join(output_dir_path, meas_output)
spec_outfile = os.path.join(output_dir_path, spec_outfile)
samp_outfile = os.path.join(output_dir_path, samp_outfile)
site_outfile = os.path.join(output_dir_path, site_outfile)
if "4" in sample_naming_con:
if "-" not in sample_naming_con:
print("option [4] must be in form 4-Z where Z is an integer")
return False, "option [4] must be in form 4-Z where Z is an integer"
else:
Z = sample_naming_con.split("-")[1]
sample_naming_con = "4"
if "7" in sample_naming_con:
if "-" not in sample_naming_con:
print("option [7] must be in form 7-Z where Z is an integer")
return False, "option [7] must be in form 7-Z where Z is an integer"
else:
Z = sample_naming_con.split("-")[1]
sample_naming_con = "7"
if static_15_position_mode:
spin = 0
if spec_infile:
if os.path.isfile(os.path.join(input_dir_path, str(spec_infile))):
isspec =
specnum = int(specnum)
if isspec == "1":
specs, file_type = pmag.magic_read(spec_infile)
specnames, sampnames, sitenames = [], [], []
try:
file_input = open(ascfile, )
except:
print(, ascfile)
return False, .format(ascfile)
Data = file_input.readlines()
file_input.close()
k = 0
while k < len(Data):
line = Data[k]
words = line.split()
if "ANISOTROPY" in words:
MeasRec, AniRec, SpecRec, SampRec, SiteRec = {}, {}, {}, {}, {}
specname = words[0]
AniRec[spec_name_col] = specname
if isspec == "1":
for spec in specs:
if spec[spec_name_col] == specname:
AniRec[samp_name_col] = spec[samp_name_col]
AniRec[site_name_col] = spec[site_name_col]
AniRec[loc_name_col] = spec[loc_name_col]
break
elif isspec == "0":
if specnum != 0:
sampname = specname[:-specnum]
else:
sampname = specname
AniRec[samp_name_col] = sampname
SpecRec[spec_name_col] = specname
SpecRec[samp_name_col] = sampname
SampRec[samp_name_col] = sampname
SiteRec[samp_name_col] = sampname
SiteRec[site_description_col] =
if sample_naming_con != "9":
AniRec[site_name_col] = pmag.parse_site(
AniRec[samp_name_col], sample_naming_con, Z)
SpecRec[site_name_col] = pmag.parse_site(
AniRec[samp_name_col], sample_naming_con, Z)
SampRec[site_name_col] = pmag.parse_site(
AniRec[samp_name_col], sample_naming_con, Z)
SiteRec[site_name_col] = pmag.parse_site(
AniRec[samp_name_col], sample_naming_con, Z)
else:
AniRec[site_name_col] = specname
SpecRec[site_name_col] = specname
SampRec[site_name_col] = specname
SiteRec[site_name_col] = specname
pieces = specname.split()
AniRec[expedition_col] = pieces[0]
SpecRec[expedition_col] = pieces[0]
SampRec[expedition_col] = pieces[0]
SiteRec[expedition_col] = pieces[0]
location = pieces[1]
AniRec[loc_name_col] = locname
SpecRec[loc_name_col] = locname
SampRec[loc_name_col] = locname
SiteRec[loc_name_col] = locname
AniRec[citation_col] = "This study"
SpecRec[citation_col] = "This study"
SampRec[citation_col] = "This study"
SiteRec[citation_col] = "This study"
AniRec[citation_col] = "This study"
AniRec[instrument_col] = instrument
AniRec[method_col] = "LP-X:AE-H:LP-AN-MS"
AniRec[experiment_col] = specname + ":" + "LP-AN-MS"
AniRec[analyst_col] = user
for key in list(AniRec.keys()):
MeasRec[key] = AniRec[key]
if data_model_num == 2:
MeasRec[] = AniRec.get(, )
if in MeasRec:
MeasRec.pop()
if data_model_num == 3:
MeasRec[] = AniRec.get(, )
if in MeasRec:
MeasRec.pop()
MeasRec[quality_col] =
AniRec[aniso_quality_col] =
MeasRec[meas_standard_col] =
MeasRec[meas_description_col] =
AniRec[aniso_type_col] = "AMS"
AniRec[aniso_unit_col] = "Normalized by trace"
if spin == 1:
AniRec[aniso_n_col] = "192"
else:
AniRec[aniso_n_col] = "15"
if in words and isspec == :
az = float(words[1])
P1 = float(words[4])
P2 = float(words[5])
P3 = float(words[6])
P4 = float(words[7])
az = az + P1 * 360. / 12. - P3 * 360. / 12.
if az >= 360:
az = az - 360
elif az <= -360:
az = az + 360
labaz = az
SampRec[azimuth_col] = str(round(az, 1))
if in words:
SpecRec[spec_volume_col] = % (float(words[10]) * 1e-6)
dip = float(words[1])
if P2 == 90:
dip = dip - 90.
labdip = dip
SampRec[samp_dip_col] = str(round(dip, 1))
if in words and in words:
k += 2
line = Data[k]
rec = line.split()
dd = rec[1].split()
dip_direction = int(dd[0]) + 90
SampRec[bed_dip_direction_col] = % (dip_direction)
SampRec[bed_dip_col] = dd[1]
bed_dip = float(dd[1])
if "Mean" in words:
k += 4
line = Data[k]
rec = line.split()
MeasRec[chi_vol_col] = rec[1]
sigma = .01 * float(rec[2]) / 3.
AniRec[aniso_sigma_col] = % (sigma)
AniRec[aniso_unit_col] =
if "factors" in words:
k += 4
line = Data[k]
rec = line.split()
if "Specimen" in words:
s1_val = % (float(words[5]) / 3.)
s2_val = % (float(words[6]) / 3.)
s3_val = % (float(words[7]) / 3.)
k += 1
line = Data[k]
rec = line.split()
s4_val= % (float(rec[5]) / 3.)
s5_val = % (float(rec[6]) / 3.)
s6_val = % (float(rec[7]) / 3.)
if data_model_num == 2:
AniRec[] = s1_val
AniRec[] = s2_val
AniRec[] = s3_val
AniRec[] = s4_val
AniRec[] = s5_val
AniRec[] = s6_val
else:
vals = (s1_val, s2_val, s3_val, s4_val, s5_val, s6_val)
AniRec[] = ":".join([v.strip() for v in vals])
AniRec[aniso_tilt_corr_col] =
AniRecs.append(AniRec)
AniRecG, AniRecT = {}, {}
for key in list(AniRec.keys()):
AniRecG[key] = AniRec[key]
for key in list(AniRec.keys()):
AniRecT[key] = AniRec[key]
sbar = []
sbar.append(float(s1_val))
sbar.append(float(s2_val))
sbar.append(float(s3_val))
sbar.append(float(s4_val))
sbar.append(float(s5_val))
sbar.append(float(s6_val))
sbarg = pmag.dosgeo(sbar, labaz, labdip)
s1_g = % (sbarg[0])
s2_g = % (sbarg[1])
s3_g = % (sbarg[2])
s4_g = % (sbarg[3])
s5_g = % (sbarg[4])
s6_g = % (sbarg[5])
if data_model_num == 2:
AniRecG["anisotropy_s1"] = s1_g
AniRecG["anisotropy_s2"] = s2_g
AniRecG["anisotropy_s3"] = s3_g
AniRecG["anisotropy_s4"] = s4_g
AniRecG["anisotropy_s5"] = s5_g
AniRecG["anisotropy_s6"] = s6_g
else:
vals = (s1_g, s2_g, s3_g, s4_g, s5_g, s6_g)
AniRecG[] = ":".join([v.strip() for v in vals])
AniRecG[aniso_tilt_corr_col] =
AniRecs.append(AniRecG)
if bed_dip != "" and bed_dip != 0:
sbart = pmag.dostilt(sbarg, dip_direction, bed_dip)
s1_t = % (sbart[0])
s2_t = % (sbart[1])
s3_t = % (sbart[2])
s4_t = % (sbart[3])
s5_t = % (sbart[4])
s6_t = % (sbart[5])
if data_model_num == 2:
AniRecT["anisotropy_s1"] = s1_t
AniRecT["anisotropy_s2"] = s2_t
AniRecT["anisotropy_s3"] = s3_t
AniRecT["anisotropy_s4"] = s4_t
AniRecT["anisotropy_s5"] = s5_t
AniRecT["anisotropy_s6"] = s6_t
else:
vals = (s1_t, s2_t, s3_t, s4_t, s5_t, s6_t)
AniRecT["aniso_s"] = ":".join([v.strip() for v in vals])
AniRecT[aniso_tilt_corr_col] =
AniRecs.append(AniRecT)
MeasRecs.append(MeasRec)
if SpecRec[spec_name_col] not in specnames:
SpecRecs.append(SpecRec)
specnames.append(SpecRec[spec_name_col])
if SampRec[samp_name_col] not in sampnames:
SampRecs.append(SampRec)
sampnames.append(SampRec[samp_name_col])
if SiteRec[site_name_col] not in sitenames:
SiteRecs.append(SiteRec)
sitenames.append(SiteRec[site_name_col])
k += 1
pmag.magic_write(meas_output, MeasRecs, meas_table_name)
print("bulk measurements put in ", meas_output)
SpecOut, keys = pmag.fillkeys(SpecRecs)
if data_model_num == 2:
pmag.magic_write(aniso_output, AniRecs, )
print("anisotropy tensors put in ", aniso_output)
if data_model_num == 3:
full_SpecOut = []
spec_list = []
for rec in SpecOut:
full_SpecOut.append(rec)
spec_name = rec[spec_name_col]
if spec_name not in spec_list:
spec_list.append(spec_name)
ani_recs = pmag.get_dictitem(AniRecs, spec_name_col, spec_name, )
full_SpecOut.extend(ani_recs)
full_SpecOut, keys = pmag.fillkeys(full_SpecOut)
else:
full_SpecOut = SpecOut
pmag.magic_write(spec_outfile, full_SpecOut, spec_table_name)
print("specimen/anisotropy info put in ", spec_outfile)
SampOut, keys = pmag.fillkeys(SampRecs)
pmag.magic_write(samp_outfile, SampOut, samp_table_name)
print("sample info put in ", samp_outfile)
SiteOut, keys = pmag.fillkeys(SiteRecs)
pmag.magic_write(site_outfile, SiteOut, site_table_name)
print("site info put in ", site_outfile)
return True, meas_output | Converts ascii files generated by SUFAR ver.4.0 to MagIC files
Parameters
----------
ascfile : str
input ASC file, required
meas_output : str
measurement output filename, default "measurements.txt"
aniso_output : str
anisotropy output filename, MagIC 2 only, "rmag_anisotropy.txt"
spec_infile : str
specimen infile, default None
spec_outfile : str
specimen outfile, default "specimens.txt"
samp_outfile : str
sample outfile, default "samples.txt"
site_outfile : str
site outfile, default "sites.txt"
specnum : int
number of characters to designate a specimen, default 0
sample_naming_con : str
sample/site naming convention, default '1', see info below
user : str
user name, default ""
locname : str
location name, default "unknown"
instrument : str
instrument name, default ""
static_15_position_mode : bool
specify static 15 position mode - default False (is spinning)
dir_path : str
output directory, default "."
input_dir_path : str
input file directory IF different from dir_path, default ""
data_model_num : int
MagIC data model 2 or 3, default 3
Returns
--------
type - Tuple : (True or False indicating if conversion was sucessful, file name written)
Info
--------
Sample naming convention:
[1] XXXXY: where XXXX is an arbitrary length site designation and Y
is the single character sample designation. e.g., TG001a is the
first sample from site TG001. [default]
[2] XXXX-YY: YY sample from site XXXX (XXX, YY of arbitary length)
[3] XXXX.YY: YY sample from site XXXX (XXX, YY of arbitary length)
[4-Z] XXXX[YYY]: YYY is sample designation with Z characters from site XXX
[5] site name = sample name
[6] site name entered in site_name column in the orient.txt format input file -- NOT CURRENTLY SUPPORTED
[7-Z] [XXX]YYY: XXX is site designation with Z characters from samples XXXYYY |
7,080 | def diffuse(self, *args):
mode = diffusingModeEnum.unknown
if (isinstance(args[0], str) and (len(args) == 3)):
mode = diffusingModeEnum.element
elif (hasattr(args[0], "__len__") and (len(args) == 2)):
mode = diffusingModeEnum.elements
else:
raise TypeError(
"Called diffuse method using bad argments, receive this" +
" , but expected or" +
" ."
.format(args))
self._diffuse(mode, *args) | this is a dispatcher of diffuse implementation.
Depending of the arguments used. |
7,081 | def post_request(profile, resource, payload):
url = get_url(profile, resource)
headers = get_headers(profile)
response = requests.post(url, json=payload, headers=headers)
return response.json() | Do a POST request to Github's API.
Args:
profile
A profile generated from ``simplygithub.authentication.profile``.
Such profiles tell this module (i) the ``repo`` to connect to,
and (ii) the ``token`` to connect with.
resource
The part of a Github API URL that comes after ``.../:repo/git``.
For instance, for ``.../:repo/git/commits``, it's ``/commits``.
payload
A dict of values to send as the payload of the POST request.
The data will be JSON-encoded.
Returns:
The body of the response, converted from JSON into a Python dict. |
7,082 | def QA_indicator_RSI(DataFrame, N1=12, N2=26, N3=9):
CLOSE = DataFrame[]
LC = REF(CLOSE, 1)
RSI1 = SMA(MAX(CLOSE - LC, 0), N1) / SMA(ABS(CLOSE - LC), N1) * 100
RSI2 = SMA(MAX(CLOSE - LC, 0), N2) / SMA(ABS(CLOSE - LC), N2) * 100
RSI3 = SMA(MAX(CLOSE - LC, 0), N3) / SMA(ABS(CLOSE - LC), N3) * 100
DICT = {: RSI1, : RSI2, : RSI3}
return pd.DataFrame(DICT) | 相对强弱指标RSI1:SMA(MAX(CLOSE-LC,0),N1,1)/SMA(ABS(CLOSE-LC),N1,1)*100; |
7,083 | def fdrcorrection(pvals, alpha=0.05):
pvals = np.asarray(pvals)
pvals_sortind = np.argsort(pvals)
pvals_sorted = np.take(pvals, pvals_sortind)
ecdffactor = _ecdf(pvals_sorted)
reject = pvals_sorted <= ecdffactor*alpha
if reject.any():
rejectmax = max(np.nonzero(reject)[0])
reject[:rejectmax] = True
pvals_corrected_raw = pvals_sorted / ecdffactor
pvals_corrected = np.minimum.accumulate(pvals_corrected_raw[::-1])[::-1]
del pvals_corrected_raw
pvals_corrected[pvals_corrected>1] = 1
pvals_corrected_ = np.empty_like(pvals_corrected)
pvals_corrected_[pvals_sortind] = pvals_corrected
del pvals_corrected
reject_ = np.empty_like(reject)
reject_[pvals_sortind] = reject
return reject_, pvals_corrected_ | benjamini hocheberg fdr correction. inspired by statsmodels |
7,084 | def save(self, *args, **kwargs):
auto_update = kwargs.get(, True)
if auto_update:
self.updated = now()
if in kwargs:
kwargs.pop()
super(BaseDate, self).save(*args, **kwargs) | automatically update updated date field |
7,085 | def sys_open(self, buf, flags, mode):
filename = self.current.read_string(buf)
try:
f = self._sys_open_get_file(filename, flags)
logger.debug(f"Opening file {filename} for real fd {f.fileno()}")
except IOError as e:
logger.warning(f"Could not open file {filename}. Reason: {e!s}")
return -e.errno if e.errno is not None else -errno.EINVAL
return self._open(f) | :param buf: address of zero-terminated pathname
:param flags: file access bits
:param mode: file permission mode |
7,086 | def prepare_mainsubstituter():
substituter = Substituter()
for module in (builtins, numpy, datetime, unittest, doctest, inspect, io,
os, sys, time, collections, itertools, subprocess, scipy,
typing):
substituter.add_module(module)
for subpackage in (auxs, core, cythons, exe):
for dummy, name, dummy in pkgutil.walk_packages(subpackage.__path__):
full_name = subpackage.__name__ + + name
substituter.add_module(importlib.import_module(full_name))
substituter.add_modules(models)
for cymodule in (annutils, smoothutils, pointerutils):
substituter.add_module(cymodule, cython=True)
substituter._short2long[] =
substituter._short2long[] =
return substituter | Prepare and return a |Substituter| object for the main `__init__`
file of *HydPy*. |
7,087 | def _make_multidim_func(one_d_func, n, *args):
_args = list(args)
n = np.atleast_1d(n)
args = list(map(np.atleast_1d, _args))
if all([x.size == 1 for x in [n] + args]):
return one_d_func(n[0], *_args)
d = n.size
for i in range(len(args)):
if args[i].size == 1:
args[i] = np.repeat(args[i], d)
nodes = []
weights = []
for i in range(d):
ai = [x[i] for x in args]
_1d = one_d_func(n[i], *ai)
nodes.append(_1d[0])
weights.append(_1d[1])
weights = ckron(*weights[::-1])
nodes = gridmake(*nodes)
return nodes, weights | A helper function to cut down on code repetition. Almost all of the
code in qnwcheb, qnwlege, qnwsimp, qnwtrap is just dealing
various forms of input arguments and then shelling out to the
corresponding 1d version of the function.
This routine does all the argument checking and passes things
through the appropriate 1d function before using a tensor product
to combine weights and nodes.
Parameters
----------
one_d_func : function
The 1d function to be called along each dimension
n : int or array_like(float)
A length-d iterable of the number of nodes in each dimension
args :
These are the arguments to various qnw____ functions. For the
majority of the functions this is just a and b, but some differ.
Returns
-------
func : function
The multi-dimensional version of the parameter ``one_d_func`` |
7,088 | def get_comments(self):
return github.PaginatedList.PaginatedList(
github.GistComment.GistComment,
self._requester,
self.url + "/comments",
None
) | :calls: `GET /gists/:gist_id/comments <http://developer.github.com/v3/gists/comments>`_
:rtype: :class:`github.PaginatedList.PaginatedList` of :class:`github.GistComment.GistComment` |
7,089 | def java_install(self):
sudo()
java_home = run(
)
append(bigdata_conf.global_env_home, .format(
java_home
), use_sudo=True)
run(.format(bigdata_conf.global_env_home)) | install java
:return: |
7,090 | def _bind_sources_to_destination(self):
seen = set()
for src in self._spec.sources:
for src_ase in src.files(
self._creds, self._spec.options,
self._general_options.dry_run):
dest = [
dst_ase for dst_ase in
self._generate_destination_for_source(src_ase)
]
if len(dest) == 0:
continue
primary_dst = dest[0]
uid = blobxfer.operations.synccopy.SyncCopy.create_deletion_id(
primary_dst._client, primary_dst.container,
primary_dst.name)
if uid in seen:
raise RuntimeError(
.format(
primary_dst._client.primary_endpoint,
primary_dst.path))
seen.add(uid)
if self._spec.options.delete_extraneous_destination:
self._delete_exclude.add(uid)
if len(dest[1:]) > 0:
if primary_dst.replica_targets is None:
primary_dst.replica_targets = []
primary_dst.replica_targets.extend(dest[1:])
for rt in primary_dst.replica_targets:
ruid = (
blobxfer.operations.synccopy.SyncCopy.
create_deletion_id(
rt._client, rt.container, rt.name)
)
if ruid in seen:
raise RuntimeError(
(
).format(
rt._client.primary_endpoint, rt.path))
seen.add(ruid)
if self._spec.options.delete_extraneous_destination:
self._delete_exclude.add(ruid)
yield src_ase, primary_dst | Bind source storage entity to destination storage entities
:param SyncCopy self: this
:rtype: tuple
:return: (source storage entity, destination storage entity) |
7,091 | def _reuse_pre_installed_setuptools(env, installer):
if not env.setuptools_version:
return
reuse_old = config.reuse_old_setuptools
reuse_best = config.reuse_best_setuptools
reuse_future = config.reuse_future_setuptools
reuse_comment = None
if reuse_old or reuse_best or reuse_future:
pv_old = parse_version(env.setuptools_version)
pv_new = parse_version(installer.setuptools_version())
if pv_old < pv_new:
if reuse_old:
reuse_comment = "%s+ recommended" % (
installer.setuptools_version(),)
elif pv_old > pv_new:
if reuse_future:
reuse_comment = "%s+ required" % (
installer.setuptools_version(),)
elif reuse_best:
reuse_comment = ""
if reuse_comment is None:
return
if reuse_comment:
reuse_comment = " (%s)" % (reuse_comment,)
print("Reusing pre-installed setuptools %s distribution%s." % (
env.setuptools_version, reuse_comment))
return True | Return whether a pre-installed setuptools distribution should be reused. |
7,092 | def on_attribute(self, name):
def decorator(fn):
if isinstance(name, list):
for n in name:
self.add_attribute_listener(n, fn)
else:
self.add_attribute_listener(name, fn)
return decorator | Decorator for attribute listeners.
The decorated function (``observer``) is invoked differently depending on the *type of attribute*.
Attributes that represent sensor values or which are used to monitor connection status are updated
whenever a message is received from the vehicle. Attributes which reflect vehicle "state" are
only updated when their values change (for example :py:func:`Vehicle.system_status`,
:py:attr:`Vehicle.armed`, and :py:attr:`Vehicle.mode`).
The argument list for the callback is ``observer(object, attr_name, attribute_value)``
* ``self`` - the associated :py:class:`Vehicle`. This may be compared to a global vehicle handle
to implement vehicle-specific callback handling (if needed).
* ``attr_name`` - the attribute name. This can be used to infer which attribute has triggered
if the same callback is used for watching several attributes.
* ``msg`` - the attribute value (so you don't need to re-query the vehicle object).
.. note::
There is no way to remove an attribute listener added with this decorator. Use
:py:func:`add_attribute_listener` if you need to be able to remove
the :py:func:`attribute listener <remove_attribute_listener>`.
The code fragment below shows how you can create a listener for the attitude attribute.
.. code:: python
@vehicle.on_attribute('attitude')
def attitude_listener(self, name, msg):
print '%s attribute is: %s' % (name, msg)
See :ref:`vehicle_state_observe_attributes` for more information.
:param String name: The name of the attribute to watch (or '*' to watch all attributes).
:param observer: The callback to invoke when a change in the attribute is detected. |
7,093 | def uridecode(uristring, encoding=, errors=):
if not isinstance(uristring, bytes):
uristring = uristring.encode(encoding or , errors)
parts = uristring.split(b)
result = [parts[0]]
append = result.append
decode = _decoded.get
for s in parts[1:]:
append(decode(s[:2], b + s[:2]))
append(s[2:])
if encoding is not None:
return b.join(result).decode(encoding, errors)
else:
return b.join(result) | Decode a URI string or string component. |
7,094 | def to_bytes(self):
out = [PNG_SIGN]
other_chunks = []
seq = 0
png, control = self.frames[0]
out.append(png.hdr)
out.append(make_chunk("acTL", struct.pack("!II", len(self.frames), self.num_plays)))
if control:
out.append(make_chunk("fcTL", struct.pack("!I", seq) + control.to_bytes()))
seq += 1
idat_chunks = []
for type_, data in png.chunks:
if type_ in ("IHDR", "IEND"):
continue
if type_ == "IDAT":
idat_chunks.append(data)
continue
out.append(data)
out.extend(idat_chunks)
for png, control in self.frames[1:]:
out.append(
make_chunk("fcTL", struct.pack("!I", seq) + control.to_bytes())
)
seq += 1
for type_, data in png.chunks:
if type_ in ("IHDR", "IEND") or type_ in CHUNK_BEFORE_IDAT:
continue
elif type_ == "IDAT":
out.append(
make_chunk("fdAT", struct.pack("!I", seq) + data[8:-4])
)
seq += 1
else:
other_chunks.append(data)
out.extend(other_chunks)
out.append(png.end)
return b"".join(out) | Convert the entire image to bytes.
:rtype: bytes |
7,095 | async def set_position(self, position, wait_for_completion=True):
command_send = CommandSend(
pyvlx=self.pyvlx,
wait_for_completion=wait_for_completion,
node_id=self.node_id,
parameter=position)
await command_send.do_api_call()
if not command_send.success:
raise PyVLXException("Unable to send command")
await self.after_update() | Set window to desired position.
Parameters:
* position: Position object containing the target position.
* wait_for_completion: If set, function will return
after device has reached target position. |
7,096 | def generate_ill_conditioned_dot_product(n, c, dps=100):
assert n >= 6
n2 = round(n / 2)
x = numpy.zeros(n)
y = numpy.zeros(n)
b = math.log2(c)
e = numpy.rint(numpy.random.rand(n2) * b / 2).astype(int)
e[0] = round(b / 2) + 1
e[-1] = 0
rx, ry = numpy.random.rand(2, n2)
x[:n2] = (2 * rx - 1) * 2 ** e
y[:n2] = (2 * ry - 1) * 2 ** e
def dot_exact(x, y):
mp.dps = dps
return mp.fdot(x.tolist(), y.tolist())
e = numpy.rint(numpy.linspace(b / 2, 0, n - n2)).astype(int)
rx, ry = numpy.random.rand(2, n2)
for i in range(n2, n):
x[i] = (2 * rx[i - n2] - 1) * 2 ** e[i - n2]
y[i] = (
(2 * ry[i - n2] - 1) * 2 ** e[i - n2] - dot_exact(x[: i + 1], y[: i + 1])
) / x[i]
x, y = numpy.random.permutation((x, y))
d = dot_exact(x, y)
C = 2 * dot_exact(abs(x), abs(y)) / abs(d)
return x, y, d, C | n ... length of vector
c ... target condition number |
7,097 | def get_partition_by_name(self, db_name, tbl_name, part_name):
self.send_get_partition_by_name(db_name, tbl_name, part_name)
return self.recv_get_partition_by_name() | Parameters:
- db_name
- tbl_name
- part_name |
7,098 | def changed(self, name):
if self.first:
return self.first.changed(name)
else:
return False | Returns true if the parameter with the specified name has its value changed by
the *first* module procedure in the interface.
:arg name: the name of the parameter to check changed status for. |
7,099 | def env(self, **kw):
self._original_env = kw
if self._env is None:
self._env = dict(os.environ)
self._env.update({k: unicode(v) for k, v in kw.iteritems()})
return self | Allows adding/overriding env vars in the execution context.
:param kw: Key-value pairs
:return: self |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.