Unnamed: 0
int64 0
389k
| code
stringlengths 26
79.6k
| docstring
stringlengths 1
46.9k
|
---|---|---|
800 | def autocorrelation(x, lag):
if type(x) is pd.Series:
x = x.values
if len(x) < lag:
return np.nan
y1 = x[:(len(x)-lag)]
y2 = x[lag:]
x_mean = np.mean(x)
sum_product = np.sum((y1 - x_mean) * (y2 - x_mean))
v = np.var(x)
if np.isclose(v, 0):
return np.NaN
else:
return sum_product / ((len(x) - lag) * v) | Calculates the autocorrelation of the specified lag, according to the formula [1]
.. math::
\\frac{1}{(n-l)\sigma^{2}} \\sum_{t=1}^{n-l}(X_{t}-\\mu )(X_{t+l}-\\mu)
where :math:`n` is the length of the time series :math:`X_i`, :math:`\sigma^2` its variance and :math:`\mu` its
mean. `l` denotes the lag.
.. rubric:: References
[1] https://en.wikipedia.org/wiki/Autocorrelation#Estimation
:param x: the time series to calculate the feature of
:type x: numpy.ndarray
:param lag: the lag
:type lag: int
:return: the value of this feature
:return type: float |
801 | def paste_clipboard(self, event):
log.critical("paste clipboard")
clipboard = self.root.clipboard_get()
for line in clipboard.splitlines():
log.critical("paste line: %s", repr(line))
self.add_user_input(line + "\r") | Send the clipboard content as user input to the CPU. |
802 | def _method_error_handler(self, response: Dict[str, Any]):
exp = response.get()
code = response.get("CODE")
ID = exp.get("ID")
raise abort(code, ID=ID, message=exp.get()) | 处理400~499段状态码,为对应的任务设置异常.
Parameters:
(response): - 响应的python字典形式数据
Return:
(bool): - 准确地说没有错误就会返回True |
803 | def _must_be_deleted(local_path, r_st):
if not os.path.lexists(local_path):
return True
l_st = os.lstat(local_path)
if S_IFMT(r_st.st_mode) != S_IFMT(l_st.st_mode):
return True
return False | Return True if the remote correspondent of local_path has to be deleted.
i.e. if it doesn't exists locally or if it has a different type from the remote one. |
804 | def receive(self):
try:
buffer = self._socket.recv(BUFFER_SIZE)
except socket.timeout as error:
buffering = False
else:
try:
more = self._socket.recv(BUFFER_SIZE)
except socket.timeout:
more = None
if not more:
buffering = False
response = buffer.decode("utf8")
else:
buffer += more
return response | Receive TCP response, looping to get whole thing or timeout. |
805 | def binarize_signal(signal, treshold="auto", cut="higher"):
if treshold == "auto":
treshold = (np.max(np.array(signal)) - np.min(np.array(signal)))/2
signal = list(signal)
binary_signal = []
for i in range(len(signal)):
if cut == "higher":
if signal[i] > treshold:
binary_signal.append(1)
else:
binary_signal.append(0)
else:
if signal[i] < treshold:
binary_signal.append(1)
else:
binary_signal.append(0)
return(binary_signal) | Binarize a channel based on a continuous channel.
Parameters
----------
signal = array or list
The signal channel.
treshold = float
The treshold value by which to select the events. If "auto", takes the value between the max and the min.
cut = str
"higher" or "lower", define the events as above or under the treshold. For photosensors, a white screen corresponds usually to higher values. Therefore, if your events were signalled by a black colour, events values would be the lower ones, and you should set the cut to "lower".
Returns
----------
list
binary_signal
Example
----------
>>> import neurokit as nk
>>> binary_signal = nk.binarize_signal(signal, treshold=4)
Authors
----------
- `Dominique Makowski <https://dominiquemakowski.github.io/>`_
Dependencies
----------
None |
806 | def _tracked_model_diff(self):
initial_state = self._tracked_model_initial_state
current_state = serializer.dump_model(self)
if current_state == initial_state:
return None
change_log = {}
for field in initial_state:
old_value = initial_state[field][Field.VALUE]
new_value = current_state[field][Field.VALUE]
if old_value == new_value:
continue
field_data = initial_state.copy()[field]
del field_data[Field.VALUE]
field_data[Field.OLD] = old_value
field_data[Field.NEW] = new_value
change_log[field] = field_data
return change_log or None | Returns changes made to model instance.
Returns None if no changes were made. |
807 | def wp_status(self):
try:
print("Have %u of %u waypoints" % (self.wploader.count()+len(self.wp_received), self.wploader.expected_count))
except Exception:
print("Have %u waypoints" % (self.wploader.count()+len(self.wp_received))) | show status of wp download |
808 | def is_rfc2822(instance: str):
if not isinstance(instance, str):
return True
return email.utils.parsedate(instance) is not None | Validates RFC2822 format |
809 | def stream(self):
self._connection.request(
,
{: [{: self.artist.id,
: ,
: self.id,
: 1}],
: self._connection.session.queue},
self._connection.header(, ))
stream_info = self._connection.request(
,
{: self.id, : self._connection.session.country,
: False, : False},
self._connection.header(, ))[1]
return Stream(stream_info[], stream_info[],
self._connection) | :class:`Stream` object for playing |
810 | def format(self, tokensource, outfile):
self._create_drawables(tokensource)
self._draw_line_numbers()
im = Image.new(
,
self._get_image_size(self.maxcharno, self.maxlineno),
self.background_color
)
self._paint_line_number_bg(im)
draw = ImageDraw.Draw(im)
if self.hl_lines:
x = self.image_pad + self.line_number_width - self.line_number_pad + 1
recth = self._get_line_height()
rectw = im.size[0] - x
for linenumber in self.hl_lines:
y = self._get_line_y(linenumber - 1)
draw.rectangle([(x, y), (x + rectw, y + recth)],
fill=self.hl_color)
for pos, value, font, kw in self.drawables:
draw.text(pos, value, font=font, **kw)
im.save(outfile, self.image_format.upper()) | Format ``tokensource``, an iterable of ``(tokentype, tokenstring)``
tuples and write it into ``outfile``.
This implementation calculates where it should draw each token on the
pixmap, then calculates the required pixmap size and draws the items. |
811 | def has_frames(self, destination):
session = meta.Session()
sel = select([model.frames_table.c.message_id]).where(
model.frames_table.c.destination == destination)
result = session.execute(sel)
first = result.fetchone()
return first is not None | Whether specified queue has any frames.
@param destination: The queue name (destinationination).
@type destination: C{str}
@return: Whether there are any frames in the specified queue.
@rtype: C{bool} |
812 | def enableGroup(self):
radioButtonListInGroup = PygWidgetsRadioButton.__PygWidgets__Radio__Buttons__Groups__Dicts__[self.group]
for radioButton in radioButtonListInGroup:
radioButton.enable() | Enables all radio buttons in the group. |
813 | def fuzzy_index_match(possiblities, label, **kwargs):
possibilities = list(possiblities)
if isinstance(label, basestring):
return fuzzy_get(possibilities, label, **kwargs)
if isinstance(label, int):
return possibilities[label]
if isinstance(label, list):
return [fuzzy_get(possibilities, lbl) for lbl in label] | Find the closest matching column label, key, or integer indexed value
Returns:
type(label): sequence of immutable objects corresponding to best matches to each object in label
if label is an int returns the object (value) in the list of possibilities at that index
if label is a str returns the closest str match in possibilities
>>> from collections import OrderedDict as odict
>>> fuzzy_index_match(pd.DataFrame(pd.np.random.randn(9,4), columns=list('ABCD'), index=range(9)), 'b')
'B'
>>> fuzzy_index_match(odict(zip('12345','ABCDE')), 'r2d2')
'2'
>>> fuzzy_index_match(odict(zip('12345','ABCDE')), 1)
'2'
>>> fuzzy_index_match(odict(zip('12345','ABCDE')), -1)
'5'
>>> fuzzy_index_match(odict(zip(range(4),'FOUR')), -4)
0 |
814 | def delete_group_policy(self, group_name, policy_name):
params = { : group_name,
: policy_name}
return self.get_response(, params, verb=) | Deletes the specified policy document for the specified group.
:type group_name: string
:param group_name: The name of the group the policy is associated with.
:type policy_name: string
:param policy_name: The policy document to delete. |
815 | def load_copy_of_template(self, name, *parameters):
template, fields, header_fields = self._set_templates_fields_and_header_fields(name, parameters)
copy_of_template = copy.deepcopy(template)
copy_of_fields = copy.deepcopy(fields)
self._init_new_message_stack(copy_of_template, copy_of_fields, header_fields) | Load a copy of message template saved with `Save template` when originally saved values need to be preserved
from test to test.
Optional parameters are default values for message header separated with
colon.
Examples:
| Load Copy Of Template | MyMessage | header_field:value | |
816 | def expand(string, vars, local_vars={}):
def exp(m):
var = m.group(1)
if var == :
return
return local_vars.get(var, vars.get(var, ))
return re.sub(r, exp, string) | Expand a string containing $vars as Ninja would.
Note: doesn't handle the full Ninja variable syntax, but it's enough
to make configure.py's use of it work. |
817 | def __init(self):
if self._portalId is None:
from .administration import Administration
portalSelf = Administration(url=self._securityHandler.org_url,
securityHandler=self._securityHandler,
proxy_url=self._proxy_url,
proxy_port=self._proxy_port).portals.portalSelf
self._portalId = portalSelf.id
self._currentUser = portalSelf.user[] | loads the property data into the class |
818 | def on_conflict(self, fields: List[Union[str, Tuple[str]]], action, index_predicate: str=None):
self.conflict_target = fields
self.conflict_action = action
self.index_predicate = index_predicate
return self | Sets the action to take when conflicts arise when attempting
to insert/create a new row.
Arguments:
fields:
The fields the conflicts can occur in.
action:
The action to take when the conflict occurs.
index_predicate:
The index predicate to satisfy an arbiter partial index (i.e. what partial index to use for checking
conflicts) |
819 | def _get_values(values, skipna, fill_value=None, fill_value_typ=None,
isfinite=False, copy=True, mask=None):
if is_datetime64tz_dtype(values):
dtype = values.dtype
values = getattr(values, "_values", values)
else:
values = com.values_from_object(values)
dtype = values.dtype
if mask is None:
if isfinite:
mask = _isfinite(values)
else:
mask = isna(values)
if is_datetime_or_timedelta_dtype(values) or is_datetime64tz_dtype(values):
values = getattr(values, "asi8", values)
values = values.view(np.int64)
dtype_ok = _na_ok_dtype(dtype)
fill_value = _get_fill_value(dtype, fill_value=fill_value,
fill_value_typ=fill_value_typ)
if skipna:
if copy:
values = values.copy()
if dtype_ok:
np.putmask(values, mask, fill_value)
else:
values, changed = maybe_upcast_putmask(values, mask, fill_value)
elif copy:
values = values.copy()
dtype_max = dtype
if is_integer_dtype(dtype) or is_bool_dtype(dtype):
dtype_max = np.int64
elif is_float_dtype(dtype):
dtype_max = np.float64
return values, mask, dtype, dtype_max, fill_value | utility to get the values view, mask, dtype
if necessary copy and mask using the specified fill_value
copy = True will force the copy |
820 | def distribute_equally(daily_data, divide=False):
index = hourly_index(daily_data.index)
hourly_data = daily_data.reindex(index)
hourly_data = hourly_data.groupby(hourly_data.index.day).transform(
lambda x: x.fillna(method=, limit=23))
if divide:
hourly_data /= 24
return hourly_data | Obtains hourly values by equally distributing the daily values.
Args:
daily_data: daily values
divide: if True, divide resulting values by the number of hours in
order to preserve the daily sum (required e.g. for precipitation).
Returns:
Equally distributed hourly values. |
821 | def is_enhanced_rr_cap_valid(self):
if not self.recv_open_msg:
raise ValueError()
err_cap_enabled = False
local_caps = self.sent_open_msg.opt_param
peer_caps = self.recv_open_msg.opt_param
local_cap = [cap for cap in local_caps
if cap.cap_code == BGP_CAP_ENHANCED_ROUTE_REFRESH]
peer_cap = [cap for cap in peer_caps
if cap.cap_code == BGP_CAP_ENHANCED_ROUTE_REFRESH]
if local_cap and peer_cap:
err_cap_enabled = True
return err_cap_enabled | Checks is enhanced route refresh capability is enabled/valid.
Checks sent and received `Open` messages to see if this session with
peer is capable of enhanced route refresh capability. |
822 | def tachogram(data, sample_rate, signal=False, in_seconds=False, out_seconds=False):
if signal is False:
data_copy = data
time_axis = numpy.array(data)
if out_seconds is True and in_seconds is False:
time_axis = time_axis / sample_rate
else:
data_copy = detect_r_peaks(data, sample_rate, time_units=out_seconds, volts=False,
resolution=None, plot_result=False)[0]
time_axis = data_copy
tachogram_data = numpy.diff(time_axis)
tachogram_time = time_axis[1:]
return tachogram_data, tachogram_time | Function for generation of ECG Tachogram.
----------
Parameters
----------
data : list
ECG signal or R peak list. When the input is a raw signal the input flag signal should be
True.
sample_rate : int
Sampling frequency.
signal : boolean
If True, then the data argument contains the set of the ECG acquired samples.
in_seconds : boolean
If the R peaks list defined as the input argument "data" contains the sample numbers where
the R peaks occur, then in_seconds needs to be False.
out_seconds : boolean
If True then each sample of the returned time axis is expressed in seconds.
Returns
-------
out : list, list
List of tachogram samples. List of instants where each cardiac cycle ends. |
823 | def range(start, finish, step):
value = start
while value <= finish:
yield value
value += step | Like built-in :func:`~builtins.range`, but with float support |
824 | def find(collection, query=None, user=None, password=None,
host=None, port=None, database=, authdb=None):
*[{"foo": "FOO", "bar": "BAR"}]
conn = _connect(user, password, host, port, database, authdb)
if not conn:
return
try:
query = _to_dict(query)
except Exception as err:
return err
try:
log.info("Searching for %r in %s", query, collection)
mdb = pymongo.database.Database(conn, database)
col = getattr(mdb, collection)
ret = col.find(query)
return list(ret)
except pymongo.errors.PyMongoError as err:
log.error("Searching objects failed with error: %s", err)
return err | Find an object or list of objects in a collection
CLI Example:
.. code-block:: bash
salt '*' mongodb.find mycollection '[{"foo": "FOO", "bar": "BAR"}]' <user> <password> <host> <port> <database> |
825 | def protorpc_to_endpoints_error(self, status, body):
try:
rpc_error = self.__PROTOJSON.decode_message(remote.RpcStatus, body)
except (ValueError, messages.ValidationError):
rpc_error = remote.RpcStatus()
if rpc_error.state == remote.RpcStatus.State.APPLICATION_ERROR:
error_class = _ERROR_NAME_MAP.get(rpc_error.error_name)
if error_class:
status, body = self.__write_error(error_class.http_status,
rpc_error.error_message)
return status, body | Convert a ProtoRPC error to the format expected by Google Endpoints.
If the body does not contain an ProtoRPC message in state APPLICATION_ERROR
the status and body will be returned unchanged.
Args:
status: HTTP status of the response from the backend
body: JSON-encoded error in format expected by Endpoints frontend.
Returns:
Tuple of (http status, body) |
826 | def _append_unknown_char(self):
if self.unknown_strategy == UNKNOWN_INCLUDE and \
self.unknown_char is not None:
self._append_to_stack(self.unknown_char)
self.unknown_char = None | Appends the unknown character, in case one was encountered. |
827 | def create_enterprise_session(url, token=None):
gh_session = github3.enterprise_login(url=url, token=token)
if gh_session is None:
msg =
raise RuntimeError(msg, url)
return gh_session | Create a github3.py session for a GitHub Enterprise instance
If token is not provided, will attempt to use the GITHUB_API_TOKEN
environment variable if present. |
828 | def set_result(self, result, from_tree=False):
if self._read_only:
if not from_tree:
LOGGER.warning("Tried to set address %s on a"
" read-only context.",
self.address)
return
with self._condition:
if self._read_only:
if not from_tree:
LOGGER.warning("Tried to set address %s on a"
" read-only context.",
self.address)
return
if from_tree:
if not self._result_set_in_context:
self._result = result
self._tree_has_set = True
else:
self._result = result
self._result_set_in_context = True
self._deleted = False
self._condition.notify_all() | Set the addresses's value unless the future has been declared
read only.
Args:
result (bytes): The value at an address.
from_tree (bool): Whether the value is being set by a read from
the merkle tree.
Returns:
None |
829 | def confine(x,low,high):
y=x.copy()
y[y < low] = low
y[y > high] = high
return y | Confine x to [low,high]. Values outside are set to low/high.
See also restrict. |
830 | def _autocomplete(client, url_part, input_text, session_token=None,
offset=None, location=None, radius=None, language=None,
types=None, components=None, strict_bounds=False):
params = {"input": input_text}
if session_token:
params["sessiontoken"] = session_token
if offset:
params["offset"] = offset
if location:
params["location"] = convert.latlng(location)
if radius:
params["radius"] = radius
if language:
params["language"] = language
if types:
params["types"] = types
if components:
if len(components) != 1 or list(components.keys())[0] != "country":
raise ValueError("Only country components are supported")
params["components"] = convert.components(components)
if strict_bounds:
params["strictbounds"] = "true"
url = "/maps/api/place/%sautocomplete/json" % url_part
return client._request(url, params).get("predictions", []) | Internal handler for ``autocomplete`` and ``autocomplete_query``.
See each method's docs for arg details. |
831 | def _append_integer(self, value, _file):
_tabs = * self._tctr
_text = value
_labs = .format(tabs=_tabs, text=_text)
_file.write(_labs) | Call this function to write integer contents.
Keyword arguments:
* value - dict, content to be dumped
* _file - FileIO, output file |
832 | def allow_rwe(self, name):
assert name in PERMISSIONS.keys()
os.chmod(self.file_path, PERMISSIONS[name][]) | Allow all privileges for a particular name group (user, group, other). |
833 | def check_result(data, key=):
if not isinstance(data, dict):
return False
if key:
if key in data:
return True
return False
if in data.keys():
return True if data.get(, -1) == 0 else False
elif in data.keys():
return True if data.get(, -1) == 0 else False
return False | Check the result of an API response.
Ideally, this should be done by checking that the value of the ``resultCode``
attribute is 0, but there are endpoints that simply do not follow this rule.
Args:
data (dict): Response obtained from the API endpoint.
key (string): Key to check for existence in the dict.
Returns:
bool: True if result was correct, False otherwise. |
834 | def prepare(self):
accept_header = self.request.headers.get(, )
parsed_accept_header = [cgi.parse_header(h)[0] for h in accept_header.split()]
def find_acceptable_content_type(parsed_accept_header):
for media_range in parsed_accept_header:
for content_type, dumper in self.ct_out_map:
if fnmatch.fnmatch(content_type, media_range):
return content_type, dumper
return None, None
content_type, dumper = find_acceptable_content_type(parsed_accept_header)
if not content_type:
self.send_error(406)
self.content_type = content_type
self.dumper = dumper
self.start = time.time()
self.connected = True
self.lowstate = self._get_lowstate() | Run before get/posts etc. Pre-flight checks:
- verify that we can speak back to them (compatible accept header) |
835 | def findViewType(self, viewTypeName):
for viewType in self._viewTypes:
if ( viewType.viewTypeName() == viewTypeName ):
return viewType
return None | Looks up the view type based on the inputed view type name.
:param viewTypeName | <str> |
836 | def repr_as_line(self, additional_columns=None, only_show=None, sep=):
additional_columns = additional_columns or []
if only_show is not None:
columns = _uniquify(only_show)
else:
columns = _uniquify(self.DEFAULT_COLUMNS + additional_columns)
to_display = [self._get_attrib(c, convert_to_str=True) for c in columns]
return sep.join(to_display) | Returns a representation of the host as a single line, with columns
joined by ``sep``.
:param additional_columns: Columns to show in addition to defaults.
:type additional_columns: ``list`` of ``str``
:param only_show: A specific list of columns to show.
:type only_show: ``NoneType`` or ``list`` of ``str``
:param sep: The column separator to use.
:type sep: ``str``
:rtype: ``str`` |
837 | def delete_data_source(self, data_source):
source_type = [k for k in data_source.keys()][0]
complete_source = self.get_data_sources(
source_id=data_source[source_type][])
folder_id = complete_source[source_type][0][]
self.delete_folders(folder_ids=[folder_id])
return self.request(, data_source) | Delete data source with it's name or ID.
data_source = { 'imap': {'name': 'data-source-name'}}
or
data_source = { 'pop3': {'id': 'data-source-id'}} |
838 | def _enqueueIntoAllRemotes(self, msg: Any, signer: Signer) -> None:
for rid in self.remotes.keys():
self._enqueue(msg, rid, signer) | Enqueue the specified message into all the remotes in the nodestack.
:param msg: the message to enqueue |
839 | def send_command(self, command, arg=None):
if arg is not None:
command = % (command, arg)
self._write(six.StringIO(command), len(command)) | Sends a command to the device.
Args:
command: The command to send.
arg: Optional argument to the command. |
840 | def do_api_calls_update_cache(self):
zones = self.parse_env_zones()
data = self.group_instances(zones)
self.cache.write_to_cache(data)
self.inventory = data | Do API calls and save data in cache. |
841 | def create_table(
self,
table_name,
obj=None,
schema=None,
database=None,
external=False,
force=False,
format=,
location=None,
partition=None,
like_parquet=None,
):
if like_parquet is not None:
raise NotImplementedError
if obj is not None:
if isinstance(obj, pd.DataFrame):
from ibis.impala.pandas_interop import write_temp_dataframe
writer, to_insert = write_temp_dataframe(self, obj)
else:
to_insert = obj
ast = self._build_ast(to_insert, ImpalaDialect.make_context())
select = ast.queries[0]
statement = ddl.CTAS(
table_name,
select,
database=database,
can_exist=force,
format=format,
external=external,
partition=partition,
path=location,
)
elif schema is not None:
statement = ddl.CreateTableWithSchema(
table_name,
schema,
database=database,
format=format,
can_exist=force,
external=external,
path=location,
partition=partition,
)
else:
raise com.IbisError()
return self._execute(statement) | Create a new table in Impala using an Ibis table expression. This is
currently designed for tables whose data is stored in HDFS (or
eventually other filesystems).
Parameters
----------
table_name : string
obj : TableExpr or pandas.DataFrame, optional
If passed, creates table from select statement results
schema : ibis.Schema, optional
Mutually exclusive with expr, creates an empty table with a
particular schema
database : string, default None (optional)
force : boolean, default False
Do not create table if table with indicated name already exists
external : boolean, default False
Create an external table; Impala will not delete the underlying data
when the table is dropped
format : {'parquet'}
location : string, default None
Specify the directory location where Impala reads and writes files
for the table
partition : list of strings
Must pass a schema to use this. Cannot partition from an expression
(create-table-as-select)
like_parquet : string (HDFS path), optional
Can specify in lieu of a schema
Examples
--------
>>> con.create_table('new_table_name', table_expr) # doctest: +SKIP |
842 | def get_filter(self, header=None, origin=1):
from .region_to_filter import as_region_filter
if header is None:
if not self.check_imagecoord():
raise RuntimeError("the region has non-image coordinate. header is required.")
reg_in_imagecoord = self
else:
reg_in_imagecoord = self.as_imagecoord(header)
region_filter = as_region_filter(reg_in_imagecoord, origin=origin)
return region_filter | Get filter.
Often, the regions files implicitly assume the lower-left
corner of the image as a coordinate (1,1). However, the python
convetion is that the array index starts from 0. By default
(``origin=1``), coordinates of the returned mpl artists have
coordinate shifted by (1, 1). If you do not want this shift,
use ``origin=0``.
Parameters
----------
header : `astropy.io.fits.Header`
FITS header
origin : {0, 1}
Pixel coordinate origin
Returns
-------
filter : TODO
Filter object |
843 | def calc_list(request, id=None):
base_url = _get_base_url(request)
calc_data = logs.dbcmd(, request.GET,
utils.get_valid_users(request),
utils.get_acl_on(request), id)
response_data = []
username = psutil.Process(os.getpid()).username()
for (hc_id, owner, status, calculation_mode, is_running, desc, pid,
parent_id, size_mb) in calc_data:
url = urlparse.urljoin(base_url, % hc_id)
abortable = False
if is_running:
try:
if psutil.Process(pid).username() == username:
abortable = True
except psutil.NoSuchProcess:
pass
response_data.append(
dict(id=hc_id, owner=owner,
calculation_mode=calculation_mode, status=status,
is_running=bool(is_running), description=desc, url=url,
parent_id=parent_id, abortable=abortable, size_mb=size_mb))
if id is not None:
[response_data] = response_data
return HttpResponse(content=json.dumps(response_data),
content_type=JSON) | Get a list of calculations and report their id, status, calculation_mode,
is_running, description, and a url where more detailed information
can be accessed. This is called several times by the Javascript.
Responses are in JSON. |
844 | def set_content_disposition(self,
disptype: str,
quote_fields: bool=True,
**params: Any) -> None:
self._headers[hdrs.CONTENT_DISPOSITION] = content_disposition_header(
disptype, quote_fields=quote_fields, **params) | Sets ``Content-Disposition`` header. |
845 | def nice_pkg_name(name):
logger.debug("%s", name)
root, ext = os.path.splitext(name)
logger.debug("root :, ext: ", root, ext)
if ext in ugly_ext:
logger.debug("remove ext %s to get %s", ext, root)
return root
logger.debug("no change %s", name)
return name | todo: Docstring for nice_pkg_name
:param name: arg description
:type name: type description
:return:
:rtype: |
846 | def render_with(template=None, json=False, jsonp=False):
if jsonp:
templates = {
: dict_jsonp,
: dict_jsonp,
}
elif json:
templates = {
: dict_jsonify,
}
else:
templates = {}
if isinstance(template, six.string_types):
templates[] = template
elif isinstance(template, dict):
templates.update(template)
elif template is None and (json or jsonp):
pass
else:
raise ValueError("Expected string or dict for template")
default_mimetype =
if not in templates:
templates[] = six.text_type
default_mimetype =
for mimetype in (, , ):
if mimetype in templates:
templates[] = templates[mimetype]
default_mimetype = mimetype
if isinstance(result, (Response, WerkzeugResponse, current_app.response_class)):
return result
if isinstance(result, tuple):
resultset = result
result = resultset[0]
if len(resultset) > 1:
status_code = resultset[1]
else:
status_code = None
if len(resultset) > 2:
headers = Headers(resultset[2])
else:
headers = Headers()
else:
status_code = None
headers = Headers()
if len(templates) > 1:
if in headers:
vary_values = [item.strip() for item in headers[].split()]
if not in vary_values:
vary_values.append()
headers[] = .join(vary_values)
else:
headers[] =
use_mimetype = None
if render and request:
use_mimetype = _best_mimetype_match(template_mimetypes, request.accept_mimetypes, )
if use_mimetype is not None:
if callable(templates[use_mimetype]):
rendered = templates[use_mimetype](result)
if isinstance(rendered, Response):
if status_code is not None:
rendered.status_code = status_code
if headers is not None:
rendered.headers.extend(headers)
else:
rendered = current_app.response_class(
rendered,
status=status_code,
headers=headers,
mimetype=default_mimetype if use_mimetype == else use_mimetype)
else:
rendered = current_app.response_class(
render_template(templates[use_mimetype], **result),
status=status_code or 200, headers=headers,
mimetype=default_mimetype if use_mimetype == else use_mimetype)
return rendered
else:
return result
return decorated_function
return inner | Decorator to render the wrapped function with the given template (or dictionary
of mimetype keys to templates, where the template is a string name of a template
file or a callable that returns a Response). The function's return value must be
a dictionary and is passed to the template as parameters. Callable templates get
a single parameter with the function's return value. Usage::
@app.route('/myview')
@render_with('myview.html')
def myview():
return {'data': 'value'}
@app.route('/myview_with_json')
@render_with('myview.html', json=True)
def myview_no_json():
return {'data': 'value'}
@app.route('/otherview')
@render_with({
'text/html': 'otherview.html',
'text/xml': 'otherview.xml'})
def otherview():
return {'data': 'value'}
@app.route('/404view')
@render_with('myview.html')
def myview():
return {'error': '404 Not Found'}, 404
@app.route('/headerview')
@render_with('myview.html')
def myview():
return {'data': 'value'}, 200, {'X-Header': 'Header value'}
When a mimetype is specified and the template is not a callable, the response is
returned with the same mimetype. Callable templates must return Response objects
to ensure the correct mimetype is set.
If a dictionary of templates is provided and does not include a handler for ``*/*``,
render_with will attempt to use the handler for (in order) ``text/html``, ``text/plain``
and the various JSON types, falling back to rendering the value into a unicode string.
If the method is called outside a request context, the wrapped method's original
return value is returned. This is meant to facilitate testing and should not be
used to call the method from within another view handler as the presence of a
request context will trigger template rendering.
Rendering may also be suspended by calling the view handler with ``_render=False``.
render_with provides JSON and JSONP handlers for the ``application/json``,
``text/json`` and ``text/x-json`` mimetypes if ``json`` or ``jsonp`` is True
(default is False).
:param template: Single template, or dictionary of MIME type to templates. If the
template is a callable, it is called with the output of the wrapped function
:param json: Helper to add a JSON handler (default is False)
:param jsonp: Helper to add a JSONP handler (if True, also provides JSON, default is False) |
847 | def getStartNodes(fdefs,calls):
s=[]
for source in fdefs:
for fn in fdefs[source]:
inboundEdges=False
for call in calls:
if call.target==fn:
inboundEdges=True
if not inboundEdges:
s.append(fn)
return s | Return a list of nodes in fdefs that have no inbound edges |
848 | def _queue_into_buffer(transfersession):
last_saved_by_conditions = []
filter_prefixes = Filter(transfersession.filter)
server_fsic = json.loads(transfersession.server_fsic)
client_fsic = json.loads(transfersession.client_fsic)
if transfersession.push:
fsics = _fsic_queuing_calc(client_fsic, server_fsic)
else:
fsics = _fsic_queuing_calc(server_fsic, client_fsic)
if not fsics:
return
for instance, counter in six.iteritems(fsics):
last_saved_by_conditions += ["(last_saved_instance = AND last_saved_counter > {1})".format(instance, counter)]
if fsics:
last_saved_by_conditions = [_join_with_logical_operator(last_saved_by_conditions, )]
partition_conditions = []
for prefix in filter_prefixes:
partition_conditions += ["partition LIKE ".format(prefix)]
if filter_prefixes:
partition_conditions = [_join_with_logical_operator(partition_conditions, )]
fsic_and_partition_conditions = _join_with_logical_operator(last_saved_by_conditions + partition_conditions, )
where_condition = _join_with_logical_operator([fsic_and_partition_conditions, "profile = ".format(transfersession.sync_session.profile)], )
with connection.cursor() as cursor:
queue_buffer = .format(outgoing_buffer=Buffer._meta.db_table,
transfer_session_id=transfersession.id,
condition=where_condition,
store=Store._meta.db_table)
cursor.execute(queue_buffer)
queue_rmc_buffer = .format(outgoing_rmcb=RecordMaxCounterBuffer._meta.db_table,
transfer_session_id=transfersession.id,
record_max_counter=RecordMaxCounter._meta.db_table,
outgoing_buffer=Buffer._meta.db_table)
cursor.execute(queue_rmc_buffer) | Takes a chunk of data from the store to be put into the buffer to be sent to another morango instance. |
849 | def from_zeros(self, lmax, gm, r0, omega=None, errors=False,
normalization=, csphase=1):
if normalization.lower() not in (, , , ):
raise ValueError(
"The normalization must be , , , "
"or . Input value was {:s}."
.format(repr(normalization))
)
if csphase != 1 and csphase != -1:
raise ValueError(
"csphase must be either 1 or -1. Input value was {:s}."
.format(repr(csphase))
)
if normalization.lower() == and lmax > 85:
_warnings.warn("Calculations using unnormalized coefficients "
"are stable only for degrees less than or equal "
"to 85. lmax for the coefficients will be set to "
"85. Input value was {:d}.".format(lmax),
category=RuntimeWarning)
lmax = 85
coeffs = _np.zeros((2, lmax + 1, lmax + 1))
coeffs[0, 0, 0] = 1.0
if errors is False:
clm = SHGravRealCoeffs(coeffs, gm=gm, r0=r0, omega=omega,
normalization=normalization.lower(),
csphase=csphase)
else:
clm = SHGravRealCoeffs(coeffs, gm=gm, r0=r0, omega=omega,
errors=_np.zeros((2, lmax + 1, lmax + 1)),
normalization=normalization.lower(),
csphase=csphase)
return clm | Initialize the class with spherical harmonic coefficients set to zero
from degree 1 to lmax, and set the degree 0 term to 1.
Usage
-----
x = SHGravCoeffs.from_zeros(lmax, gm, r0, [omega, errors,
normalization, csphase])
Returns
-------
x : SHGravCoeffs class instance.
Parameters
----------
lmax : int
The maximum spherical harmonic degree l of the coefficients.
gm : float
The gravitational constant times the mass that is associated with
the gravitational potential coefficients.
r0 : float
The reference radius of the spherical harmonic coefficients.
omega : float, optional, default = None
The angular rotation rate of the body.
errors : bool, optional, default = False
If True, initialize the attribute errors with zeros.
normalization : str, optional, default = '4pi'
'4pi', 'ortho', 'schmidt', or 'unnorm' for geodesy 4pi normalized,
orthonormalized, Schmidt semi-normalized, or unnormalized
coefficients, respectively.
csphase : int, optional, default = 1
Condon-Shortley phase convention: 1 to exclude the phase factor,
or -1 to include it. |
850 | def _ask_for_ledger_status(self, node_name: str, ledger_id):
self.request_msg(LEDGER_STATUS, {f.LEDGER_ID.nm: ledger_id},
[node_name, ])
logger.info("{} asking {} for ledger status of ledger {}".format(self, node_name, ledger_id)) | Ask other node for LedgerStatus |
851 | def reissue(self, order_id, csr, software_id, organization_handle, approver_email=None,
signature_hash_algorithm=None, domain_validation_methods=None, hostnames=None,
technical_handle=None):
response = self.request(E.reissueSslCertRequest(
E.id(order_id),
E.csr(csr),
E.softwareId(software_id),
E.organizationHandle(organization_handle),
OE(, approver_email),
OE(, signature_hash_algorithm),
OE(, domain_validation_methods, transform=_domain_validation_methods),
OE(, hostnames, transform=_simple_array),
OE(, technical_handle),
))
return int(response.data.id) | Reissue an SSL certificate order |
852 | def order_by(self, **kwargs):
if kwargs:
col, order = kwargs.popitem()
self.order_clause = "order by {col} {order} ".format(
col=col, order=order)
return self | Analog to SQL "ORDER BY". +kwargs+ should only contain one item.
examples)
NO: repo.order_by()
NO: repo.order_by(id="desc", name="asc")
YES: repo.order_by(id="asc) |
853 | def move_file_to_file(old_path, new_path):
try:
os.rename(old_path, new_path)
except:
old_file = os.path.basename(old_path)
target_directory, target_file = os.path.dirname(
os.path.abspath(new_path)), os.path.basename(new_path)
Document.move_file_to_directory(
old_path,
target_directory
)
os.rename(os.path.join(target_directory, old_file),
os.path.join(target_directory, target_file)) | Moves file from old location to new one
:param old_path: path of file to move
:param new_path: new path |
854 | def parse_args(arguments=None, root=None, apply_config=False):
if arguments is None:
arguments = []
parser = create_parser()
args = parser.parse_args(arguments)
if apply_config:
parser = apply_config_defaults(parser, args, root=root)
args = parser.parse_args(arguments)
if args.max_line_length <= 0:
parser.error()
if args.select:
args.select = _split_comma_separated(args.select)
if args.ignore:
args.ignore = _split_comma_separated(args.ignore)
elif not args.select and args.aggressive:
args.select = [, ]
else:
args.ignore = _split_comma_separated(DEFAULT_IGNORE)
if args.exclude:
args.exclude = _split_comma_separated(args.exclude)
else:
args.exclude = []
return args | Parse the arguments from the CLI.
If apply_config then we first look up and apply configs using
apply_config_defaults. |
855 | def filter_db_names(paths: List[str]) -> List[str]:
return [
db_path
for db_path in paths
if VERSION_RE.match(os.path.basename(db_path))
] | Returns a filtered list of `paths`, where every name matches our format.
Args:
paths: A list of file names. |
856 | def to_op(self):
if not self._adds and not self._removes:
return None
changes = {}
if self._adds:
changes[] = list(self._adds)
if self._removes:
changes[] = list(self._removes)
return changes | Extracts the modification operation from the set.
:rtype: dict, None |
857 | def send_message(self, message, room_id, **kwargs):
return SendMessage(settings=self.settings, **kwargs).call(
message=message,
room_id=room_id,
**kwargs
) | Send a message to a given room |
858 | def index_document(self, text, url):
"Index the text of a document."
title = text[:text.index()].strip()
docwords = words(text)
docid = len(self.documents)
self.documents.append(Document(title, url, len(docwords)))
for word in docwords:
if word not in self.stopwords:
self.index[word][docid] += 1 | Index the text of a document. |
859 | def get_file(self, fax_id, **kwargs):
kwargs[] = True
if kwargs.get():
return self.get_file_with_http_info(fax_id, **kwargs)
else:
(data) = self.get_file_with_http_info(fax_id, **kwargs)
return data | get a file # noqa: E501
Get your fax archive file using it's id. # noqa: E501
This method makes a synchronous HTTP request by default. To make an
asynchronous HTTP request, please pass async=True
>>> thread = api.get_file(fax_id, async=True)
>>> result = thread.get()
:param async bool
:param str fax_id: (required)
:param str format: can be 'pdf' or 'tiff'
:return: file
If the method is called asynchronously,
returns the request thread. |
860 | def to_singular(word):
if word[-1] != "s":
return word
elif word.endswith("ies"):
return word[:-3] + "y"
elif word.endswith("ses"):
return word[:-2]
else:
return word[:-1] | Attempts to singularize a word. |
861 | def multihead_attention_2d(query_antecedent,
memory_antecedent,
total_key_depth,
total_value_depth,
output_depth,
num_heads,
attention_type="local_attention_2d",
query_shape=(8, 16),
memory_flange=(8, 16),
name=None):
if total_key_depth % num_heads != 0:
raise ValueError("Key depth (%d) must be divisible by the number of "
"attention heads (%d)." % (total_key_depth, num_heads))
if total_value_depth % num_heads != 0:
raise ValueError("Value depth (%d) must be divisible by the number of "
"attention heads (%d)." % (total_value_depth, num_heads))
with tf.variable_scope(
name,
default_name="multihead_attention_2d",
values=[query_antecedent, memory_antecedent]):
q, k, v = compute_qkv(query_antecedent, memory_antecedent, total_key_depth,
total_value_depth)
q = split_heads_2d(q, num_heads)
k = split_heads_2d(k, num_heads)
v = split_heads_2d(v, num_heads)
key_depth_per_head = total_key_depth // num_heads
q *= key_depth_per_head**-0.5
if attention_type == "local_attention_2d":
x = local_attention_2d(
q, k, v, query_shape=query_shape, memory_flange=memory_flange)
elif attention_type == "masked_local_attention_2d":
assert attention_type == "masked_local_attention_2d"
x = masked_local_attention_2d(
q, k, v, query_shape=query_shape, memory_flange=memory_flange)
else:
assert attention_type == "unmasked_local_attention_2d_tpu"
x = dot_product_unmasked_attention_local_2d_tpu(
q, k, v, None, max_relative_position=None, query_shape=query_shape)
x = combine_heads_2d(x)
x = common_layers.dense(
x, output_depth, use_bias=False, name="output_transform")
return x | 2d Multihead scaled-dot-product attention with inp/output transformations.
Args:
query_antecedent: a Tensor with shape [batch, h, w, depth_k]
memory_antecedent: a Tensor with shape [batch, h, w, depth_k]
total_key_depth: an integer
total_value_depth: an integer
output_depth: an integer
num_heads: an integer dividing total_key_depth and total_value_depth
attention_type: String, type of attention function to use.
query_shape: an tuple indicating the height and width of each query block.
memory_flange: an integer indicating how much to look in height and width
name: an optional string
Returns:
A Tensor of shape [batch, h, w, output_depth]
Raises:
ValueError: if the key depth or value depth are not divisible by the
number of attention heads. |
862 | def backward(self, speed=1):
self.left_motor.backward(speed)
self.right_motor.backward(speed) | Drive the robot backward by running both motors backward.
:param float speed:
Speed at which to drive the motors, as a value between 0 (stopped)
and 1 (full speed). The default is 1. |
863 | def extract(self, variable_idx):
branch = self._define_branch(variable_idx)
label = self.profiles[variable_idx].replace("\n", "")
self.label[variable_idx] = label
self.data[variable_idx] = [[], []]
with open(self.abspath) as fobj:
for line in fobj.readlines()[
variable_idx+1+self._attributes[]::
self._attributes[]+1]:
points = []
for point in line.split():
try:
points.append(float(point))
except ValueError:
pass
self.data[variable_idx][1].append(np.array(points))
x_st = self.geometries[branch][0]
x_no_st = [(x0+x1)/2 for x0, x1 in zip(x_st[:-1], x_st[1:])]
if len(self.data[variable_idx][1][0]) == len(x_st):
self.data[variable_idx][0] = np.array(x_st)
else:
self.data[variable_idx][0] = np.array(x_no_st) | Extract a specific varaible |
864 | def loadTextureD3D11_Async(self, textureId, pD3D11Device):
fn = self.function_table.loadTextureD3D11_Async
ppD3D11Texture2D = c_void_p()
result = fn(textureId, pD3D11Device, byref(ppD3D11Texture2D))
return result, ppD3D11Texture2D.value | Creates a D3D11 texture and loads data into it. |
865 | def send_loop():
while True:
while not Message.objects.all():
logging.debug("sleeping for %s seconds before checking queue again" % EMPTY_QUEUE_SLEEP)
time.sleep(EMPTY_QUEUE_SLEEP)
send_all() | Loop indefinitely, checking queue at intervals of EMPTY_QUEUE_SLEEP and
sending messages if any are on queue. |
866 | def _get_I(self, a, b, size, plus_transpose=True):
r_sum = np.zeros((3, 3), dtype=, order=)
for r in self._rotations_cartesian:
for i in range(3):
for j in range(3):
r_sum[i, j] += r[a, i] * r[b, j]
if plus_transpose:
r_sum += r_sum.T
if (np.abs(r_sum) < 1e-10).all():
return None
I_mat = np.zeros((3 * size, 3 * size), dtype=, order=)
for i in range(size):
I_mat[(i * 3):((i + 1) * 3), (i * 3):((i + 1) * 3)] = r_sum
return I_mat | Return I matrix in Chaput's PRL paper.
None is returned if I is zero matrix. |
867 | def byte_size(self, selection=False, virtual=False):
bytes_per_row = 0
N = self.count(selection=selection)
extra = 0
for column in list(self.get_column_names(virtual=virtual)):
dtype = self.dtype(column)
dtype_internal = self.dtype(column, internal=True)
if isinstance(self.columns[column], ColumnString):
extra += self.columns[column].nbytes
else:
bytes_per_row += dtype_internal.itemsize
if np.ma.isMaskedArray(self.columns[column]):
bytes_per_row += 1
return bytes_per_row * self.count(selection=selection) + extra | Return the size in bytes the whole DataFrame requires (or the selection), respecting the active_fraction. |
868 | def CreateBitmap(self, artid, client, size):
if artid in self.extra_icons:
return wx.Bitmap(self.extra_icons[artid], wx.BITMAP_TYPE_ANY)
else:
return wx.ArtProvider.GetBitmap(artid, client, size) | Adds custom images to Artprovider |
869 | def read_version():
regex = re.compile()
with open() as f:
for line in f:
match = regex.match(line)
if match:
return match.group() | Read version from the first line starting with digit |
870 | def request(
self,
method,
url,
data=None,
headers=None,
withhold_token=False,
client_id=None,
client_secret=None,
**kwargs
):
if not is_secure_transport(url):
raise InsecureTransportError()
if self.token and not withhold_token:
log.debug(
"Invoking %d protected resource request hooks.",
len(self.compliance_hook["protected_request"]),
)
for hook in self.compliance_hook["protected_request"]:
log.debug("Invoking hook %s.", hook)
url, headers, data = hook(url, headers, data)
log.debug("Adding token %s to request.", self.token)
try:
url, headers, data = self._client.add_token(
url, http_method=method, body=data, headers=headers
)
except TokenExpiredError:
if self.auto_refresh_url:
log.debug(
"Auto refresh is set, attempting to refresh at %s.",
self.auto_refresh_url,
)
client_id,
)
auth = requests.auth.HTTPBasicAuth(client_id, client_secret)
token = self.refresh_token(
self.auto_refresh_url, auth=auth, **kwargs
)
if self.token_updater:
log.debug(
"Updating token to %s using %s.", token, self.token_updater
)
self.token_updater(token)
url, headers, data = self._client.add_token(
url, http_method=method, body=data, headers=headers
)
else:
raise TokenUpdated(token)
else:
raise
log.debug("Requesting url %s using method %s.", url, method)
log.debug("Supplying headers %s and data %s", headers, data)
log.debug("Passing through key word arguments %s.", kwargs)
return super(OAuth2Session, self).request(
method, url, headers=headers, data=data, **kwargs
) | Intercept all requests and add the OAuth 2 token if present. |
871 | def parse(self, line):
csv_list = line.split(",")
date_time_message = csv_list.pop(0).split(" ", 2)
otherinfo = dict()
for item in csv_list:
key_value_pair = item.split(":", 1)
key = key_value_pair[0].strip()
if len(key_value_pair) > 1:
value = key_value_pair[1].strip()
if not value:
value = "-"
else:
value = "-"
otherinfo[key] = value
self.message = \
\
\
\
\
\
\
\
self.params = [
date_time_message[2],
date_time_message[0],
date_time_message[1],
otherinfo.get("request", "-"),
otherinfo.get("referrer", "-"),
otherinfo.get("server", "-"),
otherinfo.get("client", "-"),
otherinfo.get("host", "-"),
otherinfo.get("upstream", "-"),
]
self.site = otherinfo.get("referrer", "-") | Parse a line of the Nginx error log |
872 | def get_tag(note_store, my_tags):
tag_id = []
listtags = note_store.listTags()
for my_tag in my_tags.split():
for tag in listtags:
if tag.name.lower() == my_tag.lower().lstrip().rstrip():
tag_id.append(tag.guid)
break
return tag_id | get the tags from his Evernote account
:param note_store Evernote Instance
:param my_tags string
:return: array of the tag to create |
873 | def __record_progress(self, next_step=None):
config.SUSHI_BAR_CLIENT.report_progress(
self.get_status(), self.get_status().value/Status.DONE.value)
if next_step:
now = time.time()
config.SUSHI_BAR_CLIENT.report_stage(self.get_status(), now - self.timestamp)
self.timestamp = now
self.status = next_step
with open(self.get_restore_path(Status.LAST), ) as handle, open(self.get_restore_path(), ) as step_handle:
pickle.dump(self, handle)
pickle.dump(self, step_handle) | __record_progress: save progress to respective restoration file
Args: None
Returns: None |
874 | def trace(self, data, callback=None):
conn_id = self._find_connection(self.conn_string)
if conn_id is not None:
self.adapter.notify_event_nowait(self.conn_string, , data)
if callback is not None:
callback(conn_id is not None) | Queue data for tracing
Args:
data (bytearray, string): Unstructured data to trace to any
connected client.
callback (callable): An optional callback that will be called with
a bool value of True when this data actually gets traced.
If the client disconnects and the data is dropped instead,
callback will be called with False. |
875 | def on_graphs_menu_close(self, update):
logging.info("closing sensor menu, update=%s", update)
if update:
for sensor, visible_sensors in \
self.graphs_menu.active_sensors.items():
self.graphs[sensor].set_visible_graphs(visible_sensors)
if sensor in self.visible_graphs and not any(visible_sensors):
del self.visible_graphs[sensor]
elif not any(visible_sensors):
pass
else:
self.visible_graphs[sensor] = self.graphs[sensor]
self.show_graphs()
self.original_widget = self.main_window_w | Return to main screen and update sensor that
are active in the view |
876 | def pointerEvent(self, x, y, buttonmask=0):
self.transport.write(pack("!BBHH", 5, buttonmask, x, y)) | Indicates either pointer movement or a pointer button press or release. The pointer is
now at (x-position, y-position), and the current state of buttons 1 to 8 are represented
by bits 0 to 7 of button-mask respectively, 0 meaning up, 1 meaning down (pressed). |
877 | def indent(rows, hasHeader=False, headerChar=, delim=, justify=,
separateRows=False, prefix=, postfix=, wrapfunc=lambda x: x):
names.
- headerChar: Character to be used for the row separator line
(if hasHeader==True or separateRows==True).
- delim: The column delimiter.
- justify: Determines how are data justified in their column.
Valid values are , and .
- separateRows: True if rows are to be separated by a line
of s.
- prefix: A string prepended to each printed row.
- postfix: A string appended to each printed row.
- wrapfunc: A function f(text) for wrapping text; each element in
the table is first wrapped by this function.\ncenterrightleft': str.ljust}[justify.lower()]
output = cStringIO.StringIO()
if separateRows:
print >> output, rowSeparator
for physicalRows in logicalRows:
for row in physicalRows:
print >> output, prefix \
+ delim.join([justify(str(item), width) for (item, width) in zip(row, maxWidths)]) + postfix
if separateRows or hasHeader:
print >> output, rowSeparator
hasHeader = False
return output.getvalue() | Indents a table by column.
- rows: A sequence of sequences of items, one sequence per row.
- hasHeader: True if the first row consists of the columns' names.
- headerChar: Character to be used for the row separator line
(if hasHeader==True or separateRows==True).
- delim: The column delimiter.
- justify: Determines how are data justified in their column.
Valid values are 'left','right' and 'center'.
- separateRows: True if rows are to be separated by a line
of 'headerChar's.
- prefix: A string prepended to each printed row.
- postfix: A string appended to each printed row.
- wrapfunc: A function f(text) for wrapping text; each element in
the table is first wrapped by this function. |
878 | def register_on_medium_changed(self, callback):
event_type = library.VBoxEventType.on_medium_changed
return self.event_source.register_callback(callback, event_type) | Set the callback function to consume on medium changed events.
Callback receives a IMediumChangedEvent object.
Returns the callback_id |
879 | def display_results(repo_name, contributors, api_len):
print("\n")
print("All Contributors:")
seen = []
for user in sorted(contributors, key=_sort_by_name):
if user.get("name"):
key = user["name"]
else:
key = user["user_name"]
if key not in seen:
seen.append(key)
if key != user["user_name"]:
print("%s (%s)" % (user["name"], user["user_name"]))
else:
print(user["user_name"])
print("")
print("Repo: %s" % repo_name)
print("GitHub Contributors: %s" % api_len)
print("All Contributors: %s 👏" % len(seen)) | Fancy display. |
880 | def get_clean_factor_and_forward_returns(factor,
prices,
groupby=None,
binning_by_group=False,
quantiles=5,
bins=None,
periods=(1, 5, 10),
filter_zscore=20,
groupby_labels=None,
max_loss=0.35,
zero_aware=False,
cumulative_returns=True):
forward_returns = compute_forward_returns(factor, prices, periods,
filter_zscore,
cumulative_returns)
factor_data = get_clean_factor(factor, forward_returns, groupby=groupby,
groupby_labels=groupby_labels,
quantiles=quantiles, bins=bins,
binning_by_group=binning_by_group,
max_loss=max_loss, zero_aware=zero_aware)
return factor_data | Formats the factor data, pricing data, and group mappings into a DataFrame
that contains aligned MultiIndex indices of timestamp and asset. The
returned data will be formatted to be suitable for Alphalens functions.
It is safe to skip a call to this function and still make use of Alphalens
functionalities as long as the factor data conforms to the format returned
from get_clean_factor_and_forward_returns and documented here
Parameters
----------
factor : pd.Series - MultiIndex
A MultiIndex Series indexed by timestamp (level 0) and asset
(level 1), containing the values for a single alpha factor.
::
-----------------------------------
date | asset |
-----------------------------------
| AAPL | 0.5
-----------------------
| BA | -1.1
-----------------------
2014-01-01 | CMG | 1.7
-----------------------
| DAL | -0.1
-----------------------
| LULU | 2.7
-----------------------
prices : pd.DataFrame
A wide form Pandas DataFrame indexed by timestamp with assets
in the columns.
Pricing data must span the factor analysis time period plus an
additional buffer window that is greater than the maximum number
of expected periods in the forward returns calculations.
It is important to pass the correct pricing data in depending on
what time of period your signal was generated so to avoid lookahead
bias, or delayed calculations.
'Prices' must contain at least an entry for each timestamp/asset
combination in 'factor'. This entry should reflect the buy price
for the assets and usually it is the next available price after the
factor is computed but it can also be a later price if the factor is
meant to be traded later (e.g. if the factor is computed at market
open but traded 1 hour after market open the price information should
be 1 hour after market open).
'Prices' must also contain entries for timestamps following each
timestamp/asset combination in 'factor', as many more timestamps
as the maximum value in 'periods'. The asset price after 'period'
timestamps will be considered the sell price for that asset when
computing 'period' forward returns.
::
----------------------------------------------------
| AAPL | BA | CMG | DAL | LULU |
----------------------------------------------------
Date | | | | | |
----------------------------------------------------
2014-01-01 |605.12| 24.58| 11.72| 54.43 | 37.14 |
----------------------------------------------------
2014-01-02 |604.35| 22.23| 12.21| 52.78 | 33.63 |
----------------------------------------------------
2014-01-03 |607.94| 21.68| 14.36| 53.94 | 29.37 |
----------------------------------------------------
groupby : pd.Series - MultiIndex or dict
Either A MultiIndex Series indexed by date and asset,
containing the period wise group codes for each asset, or
a dict of asset to group mappings. If a dict is passed,
it is assumed that group mappings are unchanged for the
entire time period of the passed factor data.
binning_by_group : bool
If True, compute quantile buckets separately for each group.
This is useful when the factor values range vary considerably
across gorups so that it is wise to make the binning group relative.
You should probably enable this if the factor is intended
to be analyzed for a group neutral portfolio
quantiles : int or sequence[float]
Number of equal-sized quantile buckets to use in factor bucketing.
Alternately sequence of quantiles, allowing non-equal-sized buckets
e.g. [0, .10, .5, .90, 1.] or [.05, .5, .95]
Only one of 'quantiles' or 'bins' can be not-None
bins : int or sequence[float]
Number of equal-width (valuewise) bins to use in factor bucketing.
Alternately sequence of bin edges allowing for non-uniform bin width
e.g. [-4, -2, -0.5, 0, 10]
Chooses the buckets to be evenly spaced according to the values
themselves. Useful when the factor contains discrete values.
Only one of 'quantiles' or 'bins' can be not-None
periods : sequence[int]
periods to compute forward returns on.
filter_zscore : int or float, optional
Sets forward returns greater than X standard deviations
from the the mean to nan. Set it to 'None' to avoid filtering.
Caution: this outlier filtering incorporates lookahead bias.
groupby_labels : dict
A dictionary keyed by group code with values corresponding
to the display name for each group.
max_loss : float, optional
Maximum percentage (0.00 to 1.00) of factor data dropping allowed,
computed comparing the number of items in the input factor index and
the number of items in the output DataFrame index.
Factor data can be partially dropped due to being flawed itself
(e.g. NaNs), not having provided enough price data to compute
forward returns for all factor values, or because it is not possible
to perform binning.
Set max_loss=0 to avoid Exceptions suppression.
zero_aware : bool, optional
If True, compute quantile buckets separately for positive and negative
signal values. This is useful if your signal is centered and zero is
the separation between long and short signals, respectively.
cumulative_returns : bool, optional
If True, forward returns columns will contain cumulative returns.
Setting this to False is useful if you want to analyze how predictive
a factor is for a single forward day.
Returns
-------
merged_data : pd.DataFrame - MultiIndex
A MultiIndex Series indexed by date (level 0) and asset (level 1),
containing the values for a single alpha factor, forward returns for
each period, the factor quantile/bin that factor value belongs to, and
(optionally) the group the asset belongs to.
- forward returns column names follow the format accepted by
pd.Timedelta (e.g. '1D', '30m', '3h15m', '1D1h', etc)
- 'date' index freq property (merged_data.index.levels[0].freq) will be
set to a trading calendar (pandas DateOffset) inferred from the input
data (see infer_trading_calendar for more details). This is currently
used only in cumulative returns computation
::
-------------------------------------------------------------------
| | 1D | 5D | 10D |factor|group|factor_quantile
-------------------------------------------------------------------
date | asset | | | | | |
-------------------------------------------------------------------
| AAPL | 0.09|-0.01|-0.079| 0.5 | G1 | 3
--------------------------------------------------------
| BA | 0.02| 0.06| 0.020| -1.1 | G2 | 5
--------------------------------------------------------
2014-01-01 | CMG | 0.03| 0.09| 0.036| 1.7 | G2 | 1
--------------------------------------------------------
| DAL |-0.02|-0.06|-0.029| -0.1 | G3 | 5
--------------------------------------------------------
| LULU |-0.03| 0.05|-0.009| 2.7 | G1 | 2
-------------------------------------------------------- |
881 | def get_selection(self, name="default"):
name = _normalize_selection_name(name)
selection_history = self.selection_histories[name]
index = self.selection_history_indices[name]
if index == -1:
return None
else:
return selection_history[index] | Get the current selection object (mostly for internal use atm). |
882 | def wait_to_end(self, pids=[]):
actual_pids = self._get_pids(pids)
return self.wait_for(pids=actual_pids, status_list=process_result_statuses) | wait_to_end(self, pids=[])
Wait for processes to finish
:Parameters:
* *pids* (`list`) -- list of processes to wait to finish |
883 | def get_plugins(**kwargs):
plugins = []
plugin_paths = []
base_plugin_dir = config.get(, )
plugin_xsd_path = config.get(, )
base_plugin_dir_contents = os.listdir(base_plugin_dir)
for directory in base_plugin_dir_contents:
if directory[0] == or directory == :
continue
path = os.path.join(base_plugin_dir, directory)
if os.path.isdir(path):
plugin_paths.append(path)
xmlschema_doc = etree.parse(plugin_xsd_path)
xmlschema = etree.XMLSchema(xmlschema_doc)
for plugin_dir in plugin_paths:
full_plugin_path = os.path.join(plugin_dir, )
dir_contents = os.listdir(full_plugin_path)
for file_name in dir_contents:
file_path = os.path.join(full_plugin_path, file_name)
if file_name == :
f = open(file_path, )
try:
y = open(file_path, )
xml_tree = etree.parse(y)
xmlschema.assertValid(xml_tree)
plugins.append(etree.tostring(xml_tree))
except Exception as e:
log.critical("Schema %s did not validate! (error was %s)"%(file_name, e))
break
else:
log.warning("No xml plugin details found for %s. Ignoring", plugin_dir)
return plugins | Get all available plugins |
884 | def supportsType(self, type_uri):
return (
(type_uri in self.type_uris) or
(type_uri == OPENID_2_0_TYPE and self.isOPIdentifier())
) | Does this endpoint support this type?
I consider C{/server} endpoints to implicitly support C{/signon}. |
885 | def _generate_token(self):
session = self.get_session()
url = self.__base_url()
try:
auth = requests.auth.HTTPBasicAuth(self._user, self._password)
req = session.get(url, auth=auth, timeout=self._timeout_default)
if not req.ok:
auth = requests.auth.HTTPDigestAuth(
self._user, self._password)
req = session.get(
url, auth=auth, timeout=self._timeout_default)
req.raise_for_status()
except requests.RequestException as error:
_LOGGER.error(error)
raise CommError()
result = req.text.lower()
if in result or in result:
_LOGGER.error(,
req.text.strip().replace(, ))
raise LoginError()
return auth | Create authentation to use with requests. |
886 | def run(self, eps=1e-4, kill=True, max_steps=50, verbose=False):
r
old_distance = np.finfo(np.float64).max
new_distance = np.finfo(np.float64).max
if verbose:
print( % len(self.g.components))
converged = False
for step in range(1, max_steps + 1):
self._cleanup(kill, verbose)
self._regroup()
self._refit()
new_distance = self._distance()
assert new_distance >= 0, % new_distance
if verbose:
print( % (step, new_distance))
if new_distance == old_distance:
converged = True
if verbose:
print( % step)
break
rel_change = (old_distance - new_distance) / old_distance
assert not (rel_change < -1e-13),
if rel_change < eps and not converged and step > 0:
converged = True
if verbose and new_distance != old_distance:
print( % step)
break
old_distance = new_distance
self._cleanup(kill, verbose)
if verbose:
print( % len(self.g.components))
if converged:
return step | r"""Perform the clustering on the input components updating the initial
guess. The result is available in the member ``self.g``.
Return the number of iterations at convergence, or None.
:param eps:
If relative change of distance between current and last step falls below ``eps``,
declare convergence:
.. math::
0 < \frac{d^t - d^{t-1}}{d^t} < \varepsilon
:param kill:
If a component is assigned zero weight (no input components), it is removed.
:param max_steps:
Perform a maximum number of update steps.
:param verbose:
Output information on progress of algorithm. |
887 | def _padding_to_conv_op_padding(padding):
if not isinstance(padding, tuple):
raise ValueError("padding should be a tuple.")
if all(p == SAME for p in padding):
return SAME
else:
return VALID | Whether to use SAME or VALID for the underlying convolution op.
Args:
padding: A tuple of members of ALLOWED_PADDINGS, e.g. as returned from
`_fill_and_verify_padding`.
Returns:
One of CONV_OP_ALLOWED_PADDINGS, the padding method to use for the
underlying convolution op.
Raises:
ValueError: If padding is not a tuple. |
888 | def renew_item(self, item, expiration):
conn = self._conn()
self._run_expiration(conn)
expiration += time.time()
script = conn.register_script()
result = script(keys=[self._key_expiration(), self._key_workers()],
args=[item, expiration, self._get_worker_id(conn)])
if result == -1:
raise LostLease(item)
return | Update the expiration time for ``item``.
The item will remain checked out for ``expiration`` seconds
beyond the current time. This queue instance must have
already checked out ``item``, and this method can fail if
``item`` is already overdue. |
889 | def _run_all(cmd, log_lvl=None, log_msg=None, exitcode=0):
t exitcode
cmd.run_allretcodestdoutstdoutstderr'])
return False | Simple wrapper around cmd.run_all
log_msg can contain {0} for stderr
:return: True or stdout, False if retcode wasn't exitcode |
890 | def _normalize_dir(string_):
return os.path.normpath(salt.utils.stringutils.to_unicode(string_)) | Normalize the directory to make comparison possible |
891 | def do_group(self):
group_id = self.config.group
systems = {: generate_machine_id()}
self.group_systems(group_id, systems) | Do grouping on register |
892 | def personsAtHome(self, home=None):
if not home: home = self.default_home
home_data = self.homeByName(home)
atHome = []
for p in home_data[]:
if in p:
if not p["out_of_sight"]:
atHome.append(p[])
return atHome | Return the list of known persons who are currently at home |
893 | def safe_copyfile(src, dest):
fd, tmpname = tempfile.mkstemp(dir=os.path.dirname(dest))
shutil.copyfileobj(open(src, ), os.fdopen(fd, ))
shutil.copystat(src, tmpname)
os.rename(tmpname, dest) | safely copy src to dest using a temporary intermediate and then renaming
to dest |
894 | def get_resource_query_session(self, proxy):
if not self.supports_resource_query():
raise errors.Unimplemented()
return sessions.ResourceQuerySession(proxy=proxy, runtime=self._runtime) | Gets a resource query session.
arg: proxy (osid.proxy.Proxy): a proxy
return: (osid.resource.ResourceQuerySession) - ``a
ResourceQuerySession``
raise: NullArgument - ``proxy`` is ``null``
raise: OperationFailed - unable to complete request
raise: Unimplemented - ``supports_resource_query()`` is
``false``
*compliance: optional -- This method must be implemented if
``supports_resource_query()`` is ``true``.* |
895 | def _raise_from_invalid_response(error):
response = error.response
error_message = str(error)
message = u"{method} {url}: {error}".format(
method=response.request.method, url=response.request.url, error=error_message
)
raise exceptions.from_http_status(response.status_code, message, response=response) | Re-wrap and raise an ``InvalidResponse`` exception.
:type error: :exc:`google.resumable_media.InvalidResponse`
:param error: A caught exception from the ``google-resumable-media``
library.
:raises: :class:`~google.cloud.exceptions.GoogleCloudError` corresponding
to the failed status code |
896 | def logsumexp(arr, axis=0):
arr = np.rollaxis(arr, axis)
vmax = arr.max(axis=0)
out = np.log(np.sum(np.exp(arr - vmax), axis=0))
out += vmax
return out | Computes the sum of arr assuming arr is in the log domain.
Returns log(sum(exp(arr))) while minimizing the possibility of
over/underflow.
Examples
--------
>>> import numpy as np
>>> from sklearn.utils.extmath import logsumexp
>>> a = np.arange(10)
>>> np.log(np.sum(np.exp(a)))
9.4586297444267107
>>> logsumexp(a)
9.4586297444267107 |
897 | def from_dict(data, ctx):
data = data.copy()
if data.get() is not None:
data[] = ctx.convert_decimal_number(
data.get()
)
if data.get() is not None:
data[] = ctx.convert_decimal_number(
data.get()
)
return GuaranteedStopLossOrderLevelRestriction(**data) | Instantiate a new GuaranteedStopLossOrderLevelRestriction from a dict
(generally from loading a JSON response). The data used to instantiate
the GuaranteedStopLossOrderLevelRestriction is a shallow copy of the
dict passed in, with any complex child types instantiated
appropriately. |
898 | def get_stories(self, story_type=, limit=30):
if limit is None or limit < 1 or limit > 30:
limit = 30
stories_found = 0
while stories_found < limit:
soup = get_soup(page=story_type)
all_rows = self._get_zipped_rows(soup)
stories = self._build_story(all_rows)
for story in stories:
yield story
stories_found += 1
if stories_found == limit:
return | Yields a list of stories from the passed page
of HN.
'story_type' can be:
\t'' = top stories (homepage) (default)
\t'news2' = page 2 of top stories
\t'newest' = most recent stories
\t'best' = best stories
'limit' is the number of stories required from the given page.
Defaults to 30. Cannot be more than 30. |
899 | def copy_and_sum_families(family_source, family_target):
for every in family_source:
if every not in family_target:
family_target[every] = family_source[every]
else:
family_target[every] += family_source[every] | methods iterates thru source family and copies its entries to target family
in case key already exists in both families - then the values are added |
Subsets and Splits
No saved queries yet
Save your SQL queries to embed, download, and access them later. Queries will appear here once saved.