Unnamed: 0
int64
0
389k
code
stringlengths
26
79.6k
docstring
stringlengths
1
46.9k
8,800
def add_content(obj, language, slot, content): placeholder = obj.placeholders.get(slot=slot) add_plugin(placeholder, TextPlugin, language, body=content)
Adds a TextPlugin with given content to given slot
8,801
def get_film(film_id): result = _get(film_id, settings.FILMS) return Film(result.content)
Return a single film
8,802
def _calc_min_width(self, table): width = len(table.name) cap = table.consumed_capacity["__table__"] width = max(width, 4 + len("%.1f/%d" % (cap["read"], table.read_throughput))) width = max(width, 4 + len("%.1f/%d" % (cap["write"], table.write_throughput))) for index_name, cap in iteritems(table.consumed_capacity): if index_name == "__table__": continue index = table.global_indexes[index_name] width = max( width, 4 + len(index_name + "%.1f/%d" % (cap["read"], index.read_throughput)), ) width = max( width, 4 + len(index_name + "%.1f/%d" % (cap["write"], index.write_throughput)), ) return width
Calculate the minimum allowable width for a table
8,803
def prepare_url(self, url, params): url = to_native_string(url) if not path: path = if is_py2: if isinstance(scheme, str): scheme = scheme.encode() if isinstance(netloc, str): netloc = netloc.encode() if isinstance(path, str): path = path.encode() if isinstance(query, str): query = query.encode() if isinstance(fragment, str): fragment = fragment.encode() enc_params = self._encode_params(params) if enc_params: if query: query = % (query, enc_params) else: query = enc_params url = requote_uri(urlunparse([scheme, netloc, path, None, query, fragment])) self.url = url
Prepares the given HTTP URL.
8,804
def delimit(delimiters, content): if len(delimiters) != 2: raise ValueError( "`delimiters` must be of length 2. Got %r" % delimiters ) return .join([delimiters[0], content, delimiters[1]])
Surround `content` with the first and last characters of `delimiters`. >>> delimit('[]', "foo") # doctest: +SKIP '[foo]' >>> delimit('""', "foo") # doctest: +SKIP '"foo"'
8,805
def _set_lastpage(self): self.last_page = (len(self._page_data) - 1) // self.screen.page_size
Calculate value of class attribute ``last_page``.
8,806
def verify_signature(certificate, signing_pub_key=None, signing_pub_key_passphrase=None): * cert = _get_certificate_obj(certificate) if signing_pub_key: signing_pub_key = get_public_key(signing_pub_key, passphrase=signing_pub_key_passphrase, asObj=True) return bool(cert.verify(pkey=signing_pub_key) == 1)
Verify that ``certificate`` has been signed by ``signing_pub_key`` certificate: The certificate to verify. Can be a path or string containing a PEM formatted certificate. signing_pub_key: The public key to verify, can be a string or path to a PEM formatted certificate, csr, or private key. signing_pub_key_passphrase: Passphrase to the signing_pub_key if it is an encrypted private key. CLI Example: .. code-block:: bash salt '*' x509.verify_signature /etc/pki/mycert.pem \\ signing_pub_key=/etc/pki/myca.crt
8,807
def optimise_partition_multiplex(self, partitions, layer_weights=None, n_iterations=2): if not layer_weights: layer_weights = [1]*len(partitions) itr = 0 diff = 0 continue_iteration = itr < n_iterations or n_iterations < 0 while continue_iteration: diff_inc = _c_leiden._Optimiser_optimise_partition_multiplex( self._optimiser, [partition._partition for partition in partitions], layer_weights) diff += diff_inc itr += 1 if n_iterations < 0: continue_iteration = (diff_inc > 0) else: continue_iteration = itr < n_iterations for partition in partitions: partition._update_internal_membership() return diff
Optimise the given partitions simultaneously. Parameters ---------- partitions List of :class:`~VertexPartition.MutableVertexPartition` layers to optimise. layer_weights List of weights of layers. n_iterations : int Number of iterations to run the Leiden algorithm. By default, 2 iterations are run. If the number of iterations is negative, the Leiden algorithm is run until an iteration in which there was no improvement. Returns ------- float Improvement in quality of combined partitions, see `Notes <#notes-multiplex>`_. .. _notes-multiplex: Notes ----- This method assumes that the partitions are defined for graphs with the same vertices. The connections between the vertices may be different, but the vertices themselves should be identical. In other words, all vertices should have identical indices in all graphs (i.e. node `i` is assumed to be the same node in all graphs). The quality of the overall partition is simply the sum of the individual qualities for the various partitions, weighted by the layer_weight. If we denote by :math:`Q_k` the quality of layer :math:`k` and the weight by :math:`\\lambda_k`, the overall quality is then .. math:: Q = \sum_k \\lambda_k Q_k. This is particularly useful for graphs containing negative links. When separating the graph in two graphs, the one containing only the positive links, and the other only the negative link, by supplying a negative weight to the latter layer, we try to find relatively many positive links within a community and relatively many negative links between communities. Note that in this case it may be better to assign a node to a community to which it is not connected so that :attr:`consider_comms` may be better set to :attr:`leidenalg.ALL_COMMS`. Besides multiplex graphs where each node is assumed to have a single community, it is also useful in the case of for example multiple time slices, or in situations where nodes can have different communities in different slices. The package includes some special helper functions for using :func:`optimise_partition_multiplex` in such cases, where there is a conversion required from (time) slices to layers suitable for use in this function. See Also -------- :func:`slices_to_layers` :func:`time_slices_to_layers` :func:`find_partition_multiplex` :func:`find_partition_temporal` Examples -------- >>> G_pos = ig.Graph.SBM(100, pref_matrix=[[0.5, 0.1], [0.1, 0.5]], block_sizes=[50, 50]) >>> G_neg = ig.Graph.SBM(100, pref_matrix=[[0.1, 0.5], [0.5, 0.1]], block_sizes=[50, 50]) >>> optimiser = la.Optimiser() >>> partition_pos = la.ModularityVertexPartition(G_pos) >>> partition_neg = la.ModularityVertexPartition(G_neg) >>> diff = optimiser.optimise_partition_multiplex( ... partitions=[partition_pos, partition_neg], ... layer_weights=[1,-1])
8,808
def ind_nodes(self, graph=None): if graph is None: graph = self.graph dependent_nodes = set( node for dependents in six.itervalues(graph) for node in dependents ) return [node for node in graph.keys() if node not in dependent_nodes]
Returns a list of all nodes in the graph with no dependencies.
8,809
def transform_config_from_estimator(estimator, task_id, task_type, instance_count, instance_type, data, data_type=, content_type=None, compression_type=None, split_type=None, job_name=None, model_name=None, strategy=None, assemble_with=None, output_path=None, output_kms_key=None, accept=None, env=None, max_concurrent_transforms=None, max_payload=None, tags=None, role=None, volume_kms_key=None, model_server_workers=None, image=None, vpc_config_override=None): model_base_config = model_config_from_estimator(instance_type=instance_type, estimator=estimator, task_id=task_id, task_type=task_type, role=role, image=image, name=model_name, model_server_workers=model_server_workers, vpc_config_override=vpc_config_override) if isinstance(estimator, sagemaker.estimator.Framework): transformer = estimator.transformer(instance_count, instance_type, strategy, assemble_with, output_path, output_kms_key, accept, env, max_concurrent_transforms, max_payload, tags, role, model_server_workers, volume_kms_key) else: transformer = estimator.transformer(instance_count, instance_type, strategy, assemble_with, output_path, output_kms_key, accept, env, max_concurrent_transforms, max_payload, tags, role, volume_kms_key) transformer.model_name = model_base_config[] transform_base_config = transform_config(transformer, data, data_type, content_type, compression_type, split_type, job_name) config = { : model_base_config, : transform_base_config } return config
Export Airflow transform config from a SageMaker estimator Args: estimator (sagemaker.model.EstimatorBase): The SageMaker estimator to export Airflow config from. It has to be an estimator associated with a training job. task_id (str): The task id of any airflow.contrib.operators.SageMakerTrainingOperator or airflow.contrib.operators.SageMakerTuningOperator that generates training jobs in the DAG. The transform config is built based on the training job generated in this operator. task_type (str): Whether the task is from SageMakerTrainingOperator or SageMakerTuningOperator. Values can be 'training', 'tuning' or None (which means training job is not from any task). instance_count (int): Number of EC2 instances to use. instance_type (str): Type of EC2 instance to use, for example, 'ml.c4.xlarge'. data (str): Input data location in S3. data_type (str): What the S3 location defines (default: 'S3Prefix'). Valid values: * 'S3Prefix' - the S3 URI defines a key name prefix. All objects with this prefix will be used as inputs for the transform job. * 'ManifestFile' - the S3 URI points to a single manifest file listing each S3 object to use as an input for the transform job. content_type (str): MIME type of the input data (default: None). compression_type (str): Compression type of the input data, if compressed (default: None). Valid values: 'Gzip', None. split_type (str): The record delimiter for the input object (default: 'None'). Valid values: 'None', 'Line', 'RecordIO', and 'TFRecord'. job_name (str): transform job name (default: None). If not specified, one will be generated. model_name (str): model name (default: None). If not specified, one will be generated. strategy (str): The strategy used to decide how to batch records in a single request (default: None). Valid values: 'MULTI_RECORD' and 'SINGLE_RECORD'. assemble_with (str): How the output is assembled (default: None). Valid values: 'Line' or 'None'. output_path (str): S3 location for saving the transform result. If not specified, results are stored to a default bucket. output_kms_key (str): Optional. KMS key ID for encrypting the transform output (default: None). accept (str): The content type accepted by the endpoint deployed during the transform job. env (dict): Environment variables to be set for use during the transform job (default: None). max_concurrent_transforms (int): The maximum number of HTTP requests to be made to each individual transform container at one time. max_payload (int): Maximum size of the payload in a single HTTP request to the container in MB. tags (list[dict]): List of tags for labeling a transform job. If none specified, then the tags used for the training job are used for the transform job. role (str): The ``ExecutionRoleArn`` IAM Role ARN for the ``Model``, which is also used during transform jobs. If not specified, the role from the Estimator will be used. volume_kms_key (str): Optional. KMS key ID for encrypting the volume attached to the ML compute instance (default: None). model_server_workers (int): Optional. The number of worker processes used by the inference server. If None, server will use one worker per vCPU. image (str): An container image to use for deploying the model vpc_config_override (dict[str, list[str]]): Override for VpcConfig set on the model. Default: use subnets and security groups from this Estimator. * 'Subnets' (list[str]): List of subnet ids. * 'SecurityGroupIds' (list[str]): List of security group ids. Returns: dict: Transform config that can be directly used by SageMakerTransformOperator in Airflow.
8,810
def understand(self): if self._understand is None: self._understand = Understand(self) return self._understand
:returns: Version understand of preview :rtype: twilio.rest.preview.understand.Understand
8,811
def fix_parameters(self): for W, b in zip(self.W_list, self.b_list): W.fix() b.fix()
Helper function that fixes all parameters
8,812
def get_correlation_matrix_from_columns(self): header_to_column = {} for header in self.headers: header_to_column[header] = self.headers.index(header) data_to_test = [] for header in self.headers_to_test: header_column = Matrix(self.data) \ .get_column(header_to_column[header]) for i, value in enumerate(header_column): header_column[i] = float(value) data_to_test.append(header_column) return self.get_correlation_matrix(data_to_test)
Computes correlation matrix of columns :return: Correlation matrix of columns
8,813
def to_pandas_closed_closed(date_range, add_tz=True): if not date_range: return None start = date_range.start end = date_range.end if start: start = to_dt(start, mktz()) if add_tz else start if date_range.startopen: start += timedelta(milliseconds=1) if end: end = to_dt(end, mktz()) if add_tz else end if date_range.endopen: end -= timedelta(milliseconds=1) return DateRange(start, end)
Pandas DateRange slicing is CLOSED-CLOSED inclusive at both ends. Parameters ---------- date_range : `DateRange` object converted to CLOSED_CLOSED form for Pandas slicing add_tz : `bool` Adds a TimeZone to the daterange start and end if it doesn't have one. Returns ------- Returns a date_range with start-end suitable for slicing in pandas.
8,814
def index(self): config_list = self.config layout = self.layout for (dirpath, dirnames, filenames) in os.walk(self.path): layout_file = self.layout.config_filename if layout_file in filenames: filenames.remove(layout_file) for f in filenames: abs_fn = os.path.join(self.path, f) if not self.force_index and not layout._validate_file(abs_fn): continue bf = BIDSFile(abs_fn, self) match_vals = {} for e in self.available_entities.values(): m = e.match_file(bf) if m is None and e.mandatory: break if m is not None: match_vals[e.name] = (e, m) if match_vals: for name, (ent, val) in match_vals.items(): bf.entities[name] = val ent.add_file(bf.path, val) self.files.append(bf) if check_path_matches_patterns(d, self.layout.force_index): self.force_index = True else: valid_dir = layout._validate_dir(d) if not valid_dir and not self.layout.force_index: continue child_class = self._get_child_class(d) child = child_class(d, config_list, root_node, self, force_index=self.force_index) if self.force_index or valid_dir: self.children.append(child) break
Index all files/directories below the current BIDSNode.
8,815
def decode_terminated(data, encoding, strict=True): codec_info = codecs.lookup(encoding) encoding = codec_info.name if encoding in ("utf-8", "iso8859-1"): index = data.find(b"\x00") if index == -1: res = data.decode(encoding), b"" if strict: raise ValueError("not null terminated") else: return res return data[:index].decode(encoding), data[index + 1:] decoder = codec_info.incrementaldecoder() r = [] for i, b in enumerate(iterbytes(data)): c = decoder.decode(b) if c == u"\x00": return u"".join(r), data[i + 1:] r.append(c) else: r.append(decoder.decode(b"", True)) if strict: raise ValueError("not null terminated") return u"".join(r), b""
Returns the decoded data until the first NULL terminator and all data after it. Args: data (bytes): data to decode encoding (str): The codec to use strict (bool): If True will raise ValueError in case no NULL is found but the available data decoded successfully. Returns: Tuple[`text`, `bytes`]: A tuple containing the decoded text and the remaining data after the found NULL termination. Raises: UnicodeError: In case the data can't be decoded. LookupError:In case the encoding is not found. ValueError: In case the data isn't null terminated (even if it is encoded correctly) except if strict is False, then the decoded string will be returned anyway.
8,816
def avoid(self) -> Tuple[Tuple[int], Tuple[int]]: to_avoid = set() for i, state in enumerate(self.global_avoid_states): for word_id in state.avoid(): if word_id > 0: to_avoid.add((i, word_id)) for i, state in enumerate(self.local_avoid_states): for word_id in state.avoid(): if word_id > 0: to_avoid.add((i, word_id)) return tuple(zip(*to_avoid))
Assembles a list of per-hypothesis words to avoid. The indices are (x, y) pairs into the scores array, which has dimensions (beam_size, target_vocab_size). These values are then used by the caller to set these items to np.inf so they won't be selected. Words to be avoided are selected by consulting both the global trie of phrases and the sentence-specific one. :return: Two lists of indices: the x coordinates and y coordinates.
8,817
def json_response(request, data): data["messages"] = [] for msg in messages.get_messages(request): data["messages"].append({: msg.message, : msg.level_tag}) return HttpResponse(json.dumps(data), content_type="application/json")
Wrapper dumping `data` to a json and sending it to the user with an HttpResponse :param django.http.HttpRequest request: The request object used to generate this response. :param dict data: The python dictionnary to return as a json :return: The content of ``data`` serialized in json :rtype: django.http.HttpResponse
8,818
def confd_state_loaded_data_models_data_model_namespace(self, **kwargs): config = ET.Element("config") confd_state = ET.SubElement(config, "confd-state", xmlns="http://tail-f.com/yang/confd-monitoring") loaded_data_models = ET.SubElement(confd_state, "loaded-data-models") data_model = ET.SubElement(loaded_data_models, "data-model") name_key = ET.SubElement(data_model, "name") name_key.text = kwargs.pop() namespace = ET.SubElement(data_model, "namespace") namespace.text = kwargs.pop() callback = kwargs.pop(, self._callback) return callback(config)
Auto Generated Code
8,819
def _calculate_timestamps(self): self._timestamps_data = [] if not self._is_reversed: self._calc_timestamps(self.st_time, self.end_time) else: self._calc_timestamps(self.st_time, DateTime.from_hoy(8759)) self._calc_timestamps(DateTime.from_hoy(0), self.end_time)
Return a list of Ladybug DateTime in this analysis period.
8,820
def kill_tasks(self, app_id, scale=False, wipe=False, host=None, batch_size=0, batch_delay=0): def batch(iterable, size): sourceiter = iter(iterable) while True: batchiter = itertools.islice(sourceiter, size) yield itertools.chain([next(batchiter)], batchiter) if batch_size == 0: params = {: scale, : wipe} if host: params[] = host response = self._do_request( , .format(app_id=app_id), params) if "tasks" in response.json(): return self._parse_response(response, MarathonTask, is_list=True, resource_name=) else: return response.json() else: tasks = self.list_tasks( app_id, host=host) if host else self.list_tasks(app_id) for tbatch in batch(tasks, batch_size): killed_tasks = [self.kill_task(app_id, t.id, scale=scale, wipe=wipe) for t in tbatch] killed_task_ids = set(t.id for t in killed_tasks) running_task_ids = killed_task_ids while killed_task_ids.intersection(running_task_ids): time.sleep(1) running_task_ids = set( t.id for t in self.get_app(app_id).tasks) if batch_delay == 0: desired_instances = self.get_app(app_id).instances running_instances = 0 while running_instances < desired_instances: time.sleep(1) running_instances = sum( t.started_at is None for t in self.get_app(app_id).tasks) else: time.sleep(batch_delay) return tasks
Kill all tasks belonging to app. :param str app_id: application ID :param bool scale: if true, scale down the app by the number of tasks killed :param str host: if provided, only terminate tasks on this Mesos slave :param int batch_size: if non-zero, terminate tasks in groups of this size :param int batch_delay: time (in seconds) to wait in between batched kills. If zero, automatically determine :returns: list of killed tasks :rtype: list[:class:`marathon.models.task.MarathonTask`]
8,821
def require_scopes_exact(self, scope_string): num_scopes = len(_process_scopes(scope_string)) pks = [v[] for v in self.annotate(models.Count()).require_scopes(scope_string).filter( scopes__count=num_scopes).values(, )] return self.filter(pk__in=pks)
:param scope_string: The required scopes. :type scope_string: Union[str, list] :return: The tokens with only the requested scopes. :rtype: :class:`esi.managers.TokenQueryset`
8,822
def excess_sharpe(returns, factor_returns, out=None): allocated_output = out is None if allocated_output: out = np.empty(returns.shape[1:]) returns_1d = returns.ndim == 1 if len(returns) < 2: out[()] = np.nan if returns_1d: out = out.item() return out active_return = _adjust_returns(returns, factor_returns) tracking_error = np.nan_to_num(nanstd(active_return, ddof=1, axis=0)) out = np.divide( nanmean(active_return, axis=0, out=out), tracking_error, out=out, ) if returns_1d: out = out.item() return out
Determines the Excess Sharpe of a strategy. Parameters ---------- returns : pd.Series or np.ndarray Daily returns of the strategy, noncumulative. - See full explanation in :func:`~empyrical.stats.cum_returns`. factor_returns: float / series Benchmark return to compare returns against. out : array-like, optional Array to use as output buffer. If not passed, a new array will be created. Returns ------- excess_sharpe : float Note ----- The excess Sharpe is a simplified Information Ratio that uses tracking error rather than "active risk" as the denominator.
8,823
def get_terms_in_subset(ont, subset): namedGraph = get_named_graph(ont) query = .format(s=subset, g=namedGraph) bindings = run_sparql(query) return [(r[][],r[][]) for r in bindings]
Find all nodes in a subset. We assume the oboInOwl encoding of subsets, and subset IDs are IRIs
8,824
def set_theme(self, theme_name, toplevel=None, themebg=None): if self._toplevel is not None and toplevel is None: toplevel = self._toplevel if self._themebg is not None and themebg is None: themebg = self._themebg ThemedWidget.set_theme(self, theme_name) color = self._get_bg_color() if themebg is True: self.config(background=color) if toplevel is True: self._setup_toplevel_hook(color)
Redirect the set_theme call to also set Tk background color
8,825
def _make_namespace(self) -> Namespace: namespace = Namespace( name=self._get_namespace_name(), keyword=self._get_namespace_keyword(), url=self._get_namespace_url(), version=str(time.asctime()), ) self.session.add(namespace) entries = self._get_namespace_entries(namespace) self.session.add_all(entries) t = time.time() log.info() self.session.commit() log.info(, time.time() - t) return namespace
Make a namespace.
8,826
def _writeData(self, config=None): if config is None: config = ID3SaveConfig() if config.v2_version == 3: frame = self._get_v23_frame(sep=config.v23_separator) else: frame = self data = [] for writer in self._framespec: try: data.append( writer.write(config, frame, getattr(frame, writer.name))) except SpecError as e: raise error(e) for writer in self._optionalspec: try: data.append( writer.write(config, frame, getattr(frame, writer.name))) except AttributeError: break except SpecError as e: raise error(e) return b.join(data)
Raises error
8,827
def check_version_info(conn, version_table, expected_version): version_from_table = conn.execute( sa.select((version_table.c.version,)), ).scalar() if version_from_table is None: version_from_table = 0 if (version_from_table != expected_version): raise AssetDBVersionError(db_version=version_from_table, expected_version=expected_version)
Checks for a version value in the version table. Parameters ---------- conn : sa.Connection The connection to use to perform the check. version_table : sa.Table The version table of the asset database expected_version : int The expected version of the asset database Raises ------ AssetDBVersionError If the version is in the table and not equal to ASSET_DB_VERSION.
8,828
def datetime_period(base=None, hours=None, minutes=None, seconds=None): if base is None: base = utcnow() base -= timedelta( hours = 0 if hours is None else (base.hour % hours), minutes = (base.minute if hours else 0) if minutes is None else (base.minute % minutes), seconds = (base.second if minutes or hours else 0) if seconds is None else (base.second % seconds), microseconds = base.microsecond ) return base
Round a datetime object down to the start of a defined period. The `base` argument may be used to find the period start for an arbitrary datetime, defaults to `utcnow()`.
8,829
def init_logger( name="", handler_path_levels=None, level=logging.INFO, formatter=None, formatter_str=None, datefmt="%Y-%m-%d %H:%M:%S", ): levels = { "NOTSET": logging.NOTSET, "DEBUG": logging.DEBUG, "INFO": logging.INFO, "WARNING": logging.WARNING, "ERROR": logging.ERROR, "CRITICAL": logging.CRITICAL, } if not formatter: if formatter_str: formatter_str = formatter_str else: formatter_str = "%(asctime)s %(levelname)-5s [%(name)s] %(filename)s(%(lineno)s): %(message)s" formatter = logging.Formatter(formatter_str, datefmt=datefmt) logger = name if isinstance(name, logging.Logger) else logging.getLogger(str(name)) logger.setLevel(level) handler_path_levels = handler_path_levels or [["", "INFO"]] for each_handler in handler_path_levels: path, handler_level = each_handler handler = logging.FileHandler(path) if path else logging.StreamHandler() handler.setLevel( levels.get(handler_level.upper(), 1) if isinstance(handler_level, str) else handler_level ) handler.setFormatter(formatter) logger.addHandler(handler) return logger
Add a default handler for logger. Args: name = '' or logger obj. handler_path_levels = [['loggerfile.log',13],['','DEBUG'],['','info'],['','notSet']] # [[path,level]] level = the least level for the logger. formatter = logging.Formatter( '%(levelname)-7s %(asctime)s %(name)s (%(filename)s: %(lineno)s): %(message)s', "%Y-%m-%d %H:%M:%S") formatter_str = '%(levelname)-7s %(asctime)s %(name)s (%(funcName)s: %(lineno)s): %(message)s' custom formatter: %(asctime)s %(created)f %(filename)s %(funcName)s %(levelname)s %(levelno)s %(lineno)s %(message)s %(module)s %(name)s %(pathname)s %(process)s %(relativeCreated)s %(thread)s %(threadName)s
8,830
def get_service_instance(host, username=None, password=None, protocol=None, port=None, mechanism=, principal=None, domain=None): if protocol is None: protocol = if port is None: port = 443 service_instance = GetSi() if service_instance: stub = GetStub() if (salt.utils.platform.is_proxy() or (hasattr(stub, ) and stub.host != .join([host, six.text_type(port)]))): Disconnect(service_instance) service_instance = None else: return service_instance if not service_instance: service_instance = _get_service_instance(host, username, password, protocol, port, mechanism, principal, domain) log.trace() try: service_instance.CurrentTime() except vim.fault.NotAuthenticated: log.trace() Disconnect(service_instance) service_instance = _get_service_instance(host, username, password, protocol, port, mechanism, principal, domain) except vim.fault.NoPermission as exc: log.exception(exc) raise salt.exceptions.VMwareApiError( .format(exc.privilegeId)) except vim.fault.VimFault as exc: log.exception(exc) raise salt.exceptions.VMwareApiError(exc.msg) except vmodl.RuntimeFault as exc: log.exception(exc) raise salt.exceptions.VMwareRuntimeError(exc.msg) return service_instance
Authenticate with a vCenter server or ESX/ESXi host and return the service instance object. host The location of the vCenter server or ESX/ESXi host. username The username used to login to the vCenter server or ESX/ESXi host. Required if mechanism is ``userpass`` password The password used to login to the vCenter server or ESX/ESXi host. Required if mechanism is ``userpass`` protocol Optionally set to alternate protocol if the vCenter server or ESX/ESXi host is not using the default protocol. Default protocol is ``https``. port Optionally set to alternate port if the vCenter server or ESX/ESXi host is not using the default port. Default port is ``443``. mechanism pyVmomi connection mechanism. Can either be ``userpass`` or ``sspi``. Default mechanism is ``userpass``. principal Kerberos service principal. Required if mechanism is ``sspi`` domain Kerberos user domain. Required if mechanism is ``sspi``
8,831
def goto_assignments(request_data): code = request_data[] line = request_data[] + 1 column = request_data[] path = request_data[] encoding = script = jedi.Script(code, line, column, path, encoding) try: definitions = script.goto_assignments() except jedi.NotFoundError: pass else: ret_val = [(d.module_path, d.line - 1 if d.line else None, d.column, d.full_name) for d in definitions] return ret_val
Go to assignements worker.
8,832
def _sid_subdir_path(sid): padded_sid = format(sid, ) return os.path.join( padded_sid[0:2], padded_sid[2:4], "{0}.bcolz".format(str(padded_sid)) )
Format subdir path to limit the number directories in any given subdirectory to 100. The number in each directory is designed to support at least 100000 equities. Parameters ---------- sid : int Asset identifier. Returns ------- out : string A path for the bcolz rootdir, including subdirectory prefixes based on the padded string representation of the given sid. e.g. 1 is formatted as 00/00/000001.bcolz
8,833
def readString(self, st): if not isinstance(st, str) and not isinstance(st, bytes): raise ValueError("String must be of type string or bytes, not %s" % type(st)) return etree.fromstring(st)
Parse a WFS capabilities document, returning an instance of WFSCapabilitiesInfoset string should be an XML capabilities document
8,834
def geom2localortho(geom): cx, cy = geom.Centroid().GetPoint_2D() lon, lat, z = cT_helper(cx, cy, 0, geom.GetSpatialReference(), wgs_srs) local_srs = localortho(lon,lat) local_geom = geom_dup(geom) geom_transform(local_geom, local_srs) return local_geom
Convert existing geom to local orthographic projection Useful for local cartesian distance/area calculations
8,835
def tablecopy(tablename, newtablename, deep=False, valuecopy=False, dminfo={}, endian=, memorytable=False, copynorows=False): t = table(tablename, ack=False) return t.copy(newtablename, deep=deep, valuecopy=valuecopy, dminfo=dminfo, endian=endian, memorytable=memorytable, copynorows=copynorows)
Copy a table. It is the same as :func:`table.copy`, but without the need to open the table first.
8,836
def _create_subepochs(x, nperseg, step): axis = x.ndim - 1 nsmp = x.shape[axis] stride = x.strides[axis] noverlap = nperseg - step v_shape = *x.shape[:axis], (nsmp - noverlap) // step, nperseg v_strides = *x.strides[:axis], stride * step, stride v = as_strided(x, shape=v_shape, strides=v_strides, writeable=False) return v
Transform the data into a matrix for easy manipulation Parameters ---------- x : 1d ndarray actual data values nperseg : int number of samples in each row to create step : int distance in samples between rows Returns ------- 2d ndarray a view (i.e. doesn't copy data) of the original x, with shape determined by nperseg and step. You should use the last dimension
8,837
def _bg_combine(self, bgs): out = np.ones(self.h5["raw"].shape, dtype=float) for bg in bgs: out *= bg[:] return out
Combine several background amplitude images
8,838
def grep(self, path, content, flags): try: match = re.compile(content, flags) except sre_constants.error as ex: print("Bad regexp: %s" % (ex)) return for gpath, matches in self.do_grep(path, match): yield (gpath, matches)
grep every child path under path for content
8,839
def start_server(self, host=, port=9000, app=None): from wsgiref.simple_server import make_server if app is None: app = self.wsgi server = make_server(host, port, app) server_addr = "%s:%s" % (server.server_name, server.server_port) print "Server listening at http://%s/" % server_addr server.serve_forever()
Start a `wsgiref.simple_server` based server to run this mapper.
8,840
def leader_get(attribute=None): cmd = [, ] + [attribute or ] return json.loads(subprocess.check_output(cmd).decode())
Juju leader get value(s)
8,841
def set_pending_symbol(self, pending_symbol=None): if pending_symbol is None: pending_symbol = CodePointArray() self.value = bytearray() self.pending_symbol = pending_symbol self.line_comment = False return self
Sets the context's ``pending_symbol`` with the given unicode sequence and resets the context's ``value``. If the input is None, an empty :class:`CodePointArray` is used.
8,842
def encode(data, encoding=None, errors=, keep=False, preserve_dict_class=False, preserve_tuples=False): if isinstance(data, Mapping): return encode_dict(data, encoding, errors, keep, preserve_dict_class, preserve_tuples) elif isinstance(data, list): return encode_list(data, encoding, errors, keep, preserve_dict_class, preserve_tuples) elif isinstance(data, tuple): return encode_tuple(data, encoding, errors, keep, preserve_dict_class) \ if preserve_tuples \ else encode_list(data, encoding, errors, keep, preserve_dict_class, preserve_tuples) else: try: return salt.utils.stringutils.to_bytes(data, encoding, errors) except TypeError: pass except UnicodeEncodeError: if not keep: raise return data
Generic function which will encode whichever type is passed, if necessary If `strict` is True, and `keep` is False, and we fail to encode, a UnicodeEncodeError will be raised. Passing `keep` as True allows for the original value to silently be returned in cases where encoding fails. This can be useful for cases where the data passed to this function is likely to contain binary blobs.
8,843
def sg_flatten(tensor, opt): r dim = np.prod(tensor.get_shape().as_list()[1:]) return tf.reshape(tensor, [-1, dim], name=opt.name)
r"""Reshapes a tensor to `batch_size x -1`. See `tf.reshape()` in tensorflow. Args: tensor: A `Tensor` (automatically given by chain). opt: name: If provided, it replaces current tensor's name. Returns: A 2-D tensor.
8,844
def name(self): basename = self.basename if basename is None: return None parent = self.Naming_parent if parent is None: return basename else: return parent.generate_unique_name(basename)
The unique name of this object, relative to the parent.
8,845
def compute_freq(self, csd=False): progress = QProgressDialog(, , 0, len(self.data) - 1, self) progress.setWindowModality(Qt.ApplicationModal) freq = self.frequency prep = freq[].get_value() scaling = freq[].get_value() log_trans = freq[].get_value() taper = freq[].get_value() halfbandwidth = freq[].get_value() NW = freq[].get_value() duration = freq[].get_value() overlap = freq[].value() step = freq[].get_value() centend = freq[].get_value() detrend = freq[].get_value() norm = freq[].get_value() norm_concat = freq[].get_value() if csd: output = elif freq[].isChecked(): output = else: output = sides = if freq[].isChecked(): step = None else: overlap = None if NW == 0 or not freq[].get_value(): NW = None if duration == 0 or not freq[].get_value(): duration = None if step == 0: step = None if detrend == : detrend = None if freq[].isChecked(): n_fft = int(freq[].get_value()) elif freq[].isChecked(): n_fft = max([x[].number_of()[0] for x in self.data]) lg.info( + str(n_fft)) elif freq[].isChecked(): n_fft = None if norm not in [, ]: norm_evt_type = None norm_stage = None norm_chan = None ncat = (0, 0, 0, 0) if norm == : norm_chan = [x + + self.idx_group.currentText() + for x in self.one_grp[]] norm_evt_type = [x.text() for x in \ freq[].selectedItems()] if norm == : norm_stage = [x.text() for x in \ freq[].selectedItems()] if norm_concat: ncat = (1, 1, 1, 1) lg.info(.join([, str(ncat), , str(norm_evt_type), , str(norm_stage), , str(norm_chan)])) norm_seg = fetch(self.parent.info.dataset, self.parent.notes.annot, ncat, evt_type=norm_evt_type, stage=norm_stage, chan_full=norm_chan) if not norm_seg.segments: msg = error_dialog = QErrorMessage(self) error_dialog.setWindowTitle() error_dialog.showMessage(msg) progress.cancel() return norm_seg.read_data(self.chan, ref_chan=self.one_grp[], grp_name=self.one_grp[], parent=None) if prep: norm_seg = self.transform_data(norm_seg) all_Sxx = [] for seg in norm_seg: dat = seg[] if prep: dat = seg[] try: Sxx = frequency(dat, output=output, scaling=scaling, sides=sides, taper=taper, halfbandwidth=halfbandwidth, NW=NW, duration=duration, overlap=overlap, step=step, detrend=detrend, n_fft=n_fft, log_trans=log_trans, centend=centend) except ValueError: msg = ( ) error_dialog = QErrorMessage(self) error_dialog.setWindowTitle() error_dialog.showMessage(msg) progress.cancel() return all_Sxx.append(Sxx) nSxx = ChanFreq() nSxx.s_freq = Sxx.s_freq nSxx.axis[] = Sxx.axis[] nSxx.axis[] = Sxx.axis[] nSxx.data = empty(1, dtype=) nSxx.data[0] = empty((Sxx.number_of()[0], Sxx.number_of()[0]), dtype=) nSxx.data[0] = mean( stack([x()[0] for x in all_Sxx], axis=2), axis=2) lg.info(.join([, output, scaling, , str(sides), taper, , str(halfbandwidth), , str(NW), , str(duration), , str(overlap), , str(step), , str(detrend), , str(n_fft), , str(norm), , str(log_trans), , str(centend)])) xfreq = [] for i, seg in enumerate(self.data): new_seg = dict(seg) data = seg[] if prep: data = seg[] timeline = seg[].axis[][0] new_seg[] = timeline[0] new_seg[] = timeline[-1] new_seg[] = len(timeline) / data.s_freq try: Sxx = frequency(data, output=output, scaling=scaling, sides=sides, taper=taper, halfbandwidth=halfbandwidth, NW=NW, duration=duration, overlap=overlap, step=step, detrend=detrend, n_fft=n_fft, log_trans=log_trans, centend=centend) except SyntaxError: msg = error_dialog = QErrorMessage(self) error_dialog.setWindowTitle() error_dialog.showMessage(msg) progress.cancel() return if norm != : for j, chan in enumerate(Sxx.axis[][0]): dat = Sxx.data[0][j,:] sf = Sxx.axis[][0] f_res = sf[1] - sf[0] if norm == : norm_dat = sum(dat) * f_res else: norm_dat = nSxx(chan=chan)[0] Sxx.data[0][j,:] = dat / norm_dat new_seg[] = Sxx xfreq.append(new_seg) progress.setValue(i) if progress.wasCanceled(): msg = self.parent.statusBar().showMessage(msg) return progress.close() return xfreq
Compute frequency domain analysis. Returns ------- list of dict each item is a dict where 'data' is an instance of ChanFreq for a single segment of signal, 'name' is the event type, if applicable, 'times' is a tuple of the start and end times in sec, 'duration' is the actual duration of the segment, in seconds (can be dissociated from 'times' if the signal was concatenated) and with 'chan' (str), 'stage' (str) and 'cycle' (int)
8,846
def get_cgi_parameter_list(form: cgi.FieldStorage, key: str) -> List[str]: return form.getlist(key)
Extracts a list of values, all with the same key, from a CGI form.
8,847
def self_register_user(self, user_name, account_id, user_terms_of_use, pseudonym_unique_id, communication_channel_address=None, communication_channel_type=None, user_birthdate=None, user_locale=None, user_short_name=None, user_sortable_name=None, user_time_zone=None): path = {} data = {} params = {} path["account_id"] = account_id data["user[name]"] = user_name if user_short_name is not None: data["user[short_name]"] = user_short_name if user_sortable_name is not None: data["user[sortable_name]"] = user_sortable_name if user_time_zone is not None: data["user[time_zone]"] = user_time_zone if user_locale is not None: data["user[locale]"] = user_locale if user_birthdate is not None: data["user[birthdate]"] = user_birthdate data["user[terms_of_use]"] = user_terms_of_use data["pseudonym[unique_id]"] = pseudonym_unique_id if communication_channel_type is not None: data["communication_channel[type]"] = communication_channel_type if communication_channel_address is not None: data["communication_channel[address]"] = communication_channel_address self.logger.debug("POST /api/v1/accounts/{account_id}/self_registration with query params: {params} and form data: {data}".format(params=params, data=data, **path)) return self.generic_request("POST", "/api/v1/accounts/{account_id}/self_registration".format(**path), data=data, params=params, single_item=True)
Self register a user. Self register and return a new user and pseudonym for an account. If self-registration is enabled on the account, you can use this endpoint to self register new users.
8,848
def send(self, to, message): super(ProtobufProcess, self).send(to, message.DESCRIPTOR.full_name, message.SerializeToString())
Send a message to another process. Same as ``Process.send`` except that ``message`` is a protocol buffer. Returns immediately. :param to: The pid of the process to send a message. :type to: :class:`PID` :param message: The message to send :type method: A protocol buffer instance. :raises: Will raise a ``Process.UnboundProcess`` exception if the process is not bound to a context. :return: Nothing
8,849
def italic(s, *, escape=True): r if escape: s = escape_latex(s) return NoEscape(r + s + )
r"""Make a string appear italicized in LaTeX formatting. italic() wraps a given string in the LaTeX command \textit{}. Args ---- s : str The string to be formatted. escape: bool If true the italic text will be escaped Returns ------- NoEscape The formatted string. Examples -------- >>> italic("hello") '\\textit{hello}' >>> print(italic("hello")) \textit{hello}
8,850
def get_datetime_type(to_string): from datetime import datetime def datetime_type(string): accepted_date_formats = [, , , ] for form in accepted_date_formats: try: if to_string: return datetime.strptime(string, form).strftime(form) return datetime.strptime(string, form) except ValueError: continue raise ValueError("Input not valid. Valid example: 2000-12-31T12:59:59Z".format(string)) return datetime_type
Validates UTC datetime. Examples of accepted forms: 2017-12-31T01:11:59Z,2017-12-31T01:11Z or 2017-12-31T01Z or 2017-12-31
8,851
def container_stop(name, timeout=30, force=True, remote_addr=None, cert=None, key=None, verify_cert=True): container = container_get( name, remote_addr, cert, key, verify_cert, _raw=True ) container.stop(timeout, force, wait=True) return _pylxd_model_to_dict(container)
Stop a container name : Name of the container to stop remote_addr : An URL to a remote Server, you also have to give cert and key if you provide remote_addr and its a TCP Address! Examples: https://myserver.lan:8443 /var/lib/mysocket.sock cert : PEM Formatted SSL Certificate. Examples: ~/.config/lxc/client.crt key : PEM Formatted SSL Key. Examples: ~/.config/lxc/client.key verify_cert : True Wherever to verify the cert, this is by default True but in the most cases you want to set it off as LXD normaly uses self-signed certificates.
8,852
def unflatten_list(flat_dict, separator=): _unflatten_asserts(flat_dict, separator) unflattened_dict = unflatten(flat_dict, separator) def _convert_dict_to_list(object_, parent_object, parent_object_key): if isinstance(object_, dict): for key in object_: if isinstance(object_[key], dict): _convert_dict_to_list(object_[key], object_, key) try: keys = [int(key) for key in object_] keys.sort() except (ValueError, TypeError): keys = [] keys_len = len(keys) if (keys_len > 0 and sum(keys) == int(((keys_len - 1) * keys_len) / 2) and keys[0] == 0 and keys[-1] == keys_len - 1 and check_if_numbers_are_consecutive(keys)): parent_object[parent_object_key] = [] for key_index, key in enumerate(keys): parent_object[parent_object_key].append(object_[str(key)]) _convert_dict_to_list(parent_object[parent_object_key][-1], parent_object[parent_object_key], key_index) _convert_dict_to_list(unflattened_dict, None, None) return unflattened_dict
Unflattens a dictionary, first assuming no lists exist and then tries to identify lists and replaces them This is probably not very efficient and has not been tested extensively Feel free to add test cases or rewrite the logic Issues that stand out to me: - Sorting all the keys in the dictionary, which specially for the root dictionary can be a lot of keys - Checking that numbers are consecutive is O(N) in number of keys :param flat_dict: dictionary with no hierarchy :param separator: a string that separates keys :return: a dictionary with hierarchy
8,853
def get_win32_short_path_name(long_name): import ctypes from ctypes import wintypes _GetShortPathNameW = ctypes.windll.kernel32.GetShortPathNameW _GetShortPathNameW.argtypes = [wintypes.LPCWSTR, wintypes.LPWSTR, wintypes.DWORD] _GetShortPathNameW.restype = wintypes.DWORD output_buf_size = 0 while True: output_buf = ctypes.create_unicode_buffer(output_buf_size) needed = _GetShortPathNameW(long_name, output_buf, output_buf_size) if output_buf_size >= needed: short_name = output_buf.value break else: output_buf_size = needed return short_name
Gets the short path name of a given long path. References: http://stackoverflow.com/a/23598461/200291 http://stackoverflow.com/questions/23598289/get-win-short-fname-python Example: >>> # DISABLE_DOCTEST >>> from utool.util_path import * # NOQA >>> import utool as ut # NOQA >>> # build test data >>> #long_name = unicode(normpath(ut.get_resource_dir())) >>> long_name = unicode(r'C:/Program Files (x86)') >>> #long_name = unicode(r'C:/Python27') #unicode(normpath(ut.get_resource_dir())) >>> # execute function >>> result = get_win32_short_path_name(long_name) >>> # verify results >>> print(result) C:/PROGRA~2
8,854
def makeDependencyMap(aMap): index = {} for i in aMap.keys(): iNode = index.get(i,None) if not iNode: iNode = Node(i) index[i] = iNode for c in aMap[i]: cNode = index.get(c,None) if not cNode: cNode = Node(c) index[c] = cNode iNode.addChild(cNode) return index
create a dependency data structure as follows: - Each key in aMap represents an item that depends on each item in the iterable which is that key's value - Each Node represents an item which is a precursor to its parents and depends on its children Returns a map whose keys are the items described in aMap and whose values are the dependency (sub)tree for that item Thus, for aMap = {a:(b,c), b:(d,), c:[]}, returns {a:Node(a),b:Node(b),c:Node(c),d:Node(d)} where - Node(a) has no parent and children: Node(b) and Node(c) - Node(b) has parent: Node(a) and child: Node(d) - Node(c) has parent: Node(a) and no child - Node(d) which was not a key in aMap was created. It has parent: Node(b) and no child This map is used to find the precursors for a given item by using BottomUpVisitor on the Node associated with that item
8,855
def ip_hide_as_path_holder_as_path_access_list_name(self, **kwargs): config = ET.Element("config") ip = ET.SubElement(config, "ip", xmlns="urn:brocade.com:mgmt:brocade-common-def") hide_as_path_holder = ET.SubElement(ip, "hide-as-path-holder", xmlns="urn:brocade.com:mgmt:brocade-ip-policy") as_path = ET.SubElement(hide_as_path_holder, "as-path") access_list = ET.SubElement(as_path, "access-list") seq_keyword_key = ET.SubElement(access_list, "seq-keyword") seq_keyword_key.text = kwargs.pop() instance_key = ET.SubElement(access_list, "instance") instance_key.text = kwargs.pop() name = ET.SubElement(access_list, "name") name.text = kwargs.pop() callback = kwargs.pop(, self._callback) return callback(config)
Auto Generated Code
8,856
def drain_K(self): drain_K = minorloss.PIPE_ENTRANCE_K_MINOR + minorloss.PIPE_ENTRANCE_K_MINOR + minorloss.PIPE_EXIT_K_MINOR return drain_K
Return the minor loss coefficient of the drain pipe. :returns: Minor Loss Coefficient :return: float
8,857
def dehtml(text): try: from HTMLParser import HTMLParser except ImportError: from html.parser import HTMLParser class _DeHTMLParser(HTMLParser): def __init__(self): HTMLParser.__init__(self) self.__text = [] def handle_data(self, data): text = data.strip() if len(text) > 0: text = re.sub(, , text) self.__text.append(text + ) def handle_starttag(self, tag, attrs): if tag == : self.__text.append() elif tag == : self.__text.append() elif tag == : self.__text.append() elif tag == : self.__text.append() def handle_endtag(self, tag): if tag == : self.__text.append() if tag == : self.__text.append() def handle_startendtag(self, tag, attrs): if tag == : self.__text.append() def text(self): return .join(self.__text).strip() try: parser = _DeHTMLParser() parser.feed(text) parser.close() return parser.text() except Exception as e: return text
Remove HTML tag in input text and format the texts accordingly.
8,858
def stream(self,Tsec = 2,numChan = 1): self.Tsec = Tsec self.numChan = numChan self.N_samples = int(self.fs*Tsec) self.data_capture = [] self.data_capture_left = [] self.data_capture_right = [] self.capture_sample_count = 0 self.DSP_tic = [] self.DSP_toc = [] self.start_time = time.time() self.stop_stream = False stream = self.p.open(format=pyaudio.paInt16, channels=numChan, rate=self.fs, input=True, output=True, input_device_index = self.in_idx, output_device_index = self.out_idx, frames_per_buffer = self.frame_length, stream_callback=self.stream_callback) stream.start_stream() if(Tsec == 0): while stream.is_active(): if self.stop_stream: stream.stop_stream() time.sleep(self.sleep_time) else: while stream.is_active(): if self.capture_sample_count >= self.N_samples: stream.stop_stream() if self.stop_stream: stream.stop_stream() time.sleep(self.sleep_time) stream.stop_stream() stream.close() self.p.terminate() self.stream_data = True if(self.interactiveFG): self.play.children[0].value = else: if(self.print_when_done == 1): print()
Stream audio using callback Parameters ---------- Tsec : stream time in seconds if Tsec > 0. If Tsec = 0, then stream goes to infinite mode. When in infinite mode, Tsec.stop() can be used to stop the stream. numChan : number of channels. Use 1 for mono and 2 for stereo.
8,859
def get_qcqp_form(prob): if not prob.objective.args[0].is_quadratic(): raise Exception("Objective is not quadratic.") if not all([constr._expr.is_quadratic() for constr in prob.constraints]): raise Exception("Not all constraints are quadratic.") if prob.is_dcp(): logging.warning("Problem is already convex; specifying solve method is unnecessary.") extractor = QuadCoeffExtractor(*get_id_map(prob.variables())) P0, q0, r0 = extractor.get_coeffs(prob.objective.args[0]) P0, q0, r0 = (P0[0]+P0[0].T)/2., q0.T.tocsc(), r0[0] if prob.objective.NAME == "maximize": P0, q0, r0 = -P0, -q0, -r0 f0 = QuadraticFunction(P0, q0, r0) fs = [] for constr in prob.constraints: sz = constr._expr.size[0]*constr._expr.size[1] Pc, qc, rc = extractor.get_coeffs(constr._expr) for i in range(sz): fs.append(QuadraticFunction((Pc[i]+Pc[i].T)/2., qc[i, :].T.tocsc(), rc[i], constr.OP_NAME)) return QCQPForm(f0, fs)
Returns the problem metadata in QCQP class
8,860
def build_application_map(vertices_applications, placements, allocations, core_resource=Cores): application_map = defaultdict(lambda: defaultdict(set)) for vertex, application in iteritems(vertices_applications): chip_cores = application_map[application][placements[vertex]] core_slice = allocations[vertex].get(core_resource, slice(0, 0)) chip_cores.update(range(core_slice.start, core_slice.stop)) return application_map
Build a mapping from application to a list of cores where the application is used. This utility function assumes that each vertex is associated with a specific application. Parameters ---------- vertices_applications : {vertex: application, ...} Applications are represented by the path of their APLX file. placements : {vertex: (x, y), ...} allocations : {vertex: {resource: slice, ...}, ...} One of these resources should match the `core_resource` argument. core_resource : object The resource identifier which represents cores. Returns ------- {application: {(x, y) : set([c, ...]), ...}, ...} For each application, for each used chip a set of core numbers onto which the application should be loaded.
8,861
def _catalog_report_helper(catalog, catalog_validation, url, catalog_id, catalog_org): fields = OrderedDict() fields["catalog_metadata_url"] = url fields["catalog_federation_id"] = catalog_id fields["catalog_federation_org"] = catalog_org fields["catalog_title"] = catalog.get("title") fields["catalog_description"] = catalog.get("description") fields["valid_catalog_metadata"] = ( 1 if catalog_validation["status"] == "OK" else 0) return fields
Toma un dict con la metadata de un catálogo, y devuelve un dict con los valores que catalog_report() usa para reportar sobre él. Args: catalog (dict): Diccionario con la metadata de un catálogo. validation (dict): Resultado, únicamente a nivel catálogo, de la validación completa de `catalog`. Returns: dict: Diccionario con los campos a nivel catálogo que requiere catalog_report().
8,862
def reformat_python_docstrings(top_dirs: List[str], correct_copyright_lines: List[str], show_only: bool = True, rewrite: bool = False, process_only_filenum: int = None) -> None: filenum = 0 for top_dir in top_dirs: for dirpath, dirnames, filenames in walk(top_dir): for filename in filenames: fullname = join(dirpath, filename) extension = splitext(filename)[1] if extension != PYTHON_EXTENSION: continue filenum += 1 if process_only_filenum and filenum != process_only_filenum: continue log.info("Processing file {}: {}", filenum, fullname) proc = PythonProcessor( full_path=fullname, top_dir=top_dir, correct_copyright_lines=correct_copyright_lines) if show_only: proc.show() elif rewrite: proc.rewrite_file()
Walk a directory, finding Python files and rewriting them. Args: top_dirs: list of directories to descend into correct_copyright_lines: list of lines (without newlines) representing the copyright docstring block, including the transition lines of equals symbols show_only: show results (to stdout) only; don't rewrite rewrite: write the changes process_only_filenum: only process this file number (1-based index); for debugging only
8,863
def scale(self, sx, sy=None): if sy is None: sy = sx cairo.cairo_scale(self._pointer, sx, sy) self._check_status()
Modifies the current transformation matrix (CTM) by scaling the X and Y user-space axes by :obj:`sx` and :obj:`sy` respectively. The scaling of the axes takes place after any existing transformation of user space. If :obj:`sy` is omitted, it is the same as :obj:`sx` so that scaling preserves aspect ratios. :param sx: Scale factor in the X direction. :param sy: Scale factor in the Y direction. :type sx: float :type sy: float
8,864
def list_roles(self, principal_name, principal_type): self.send_list_roles(principal_name, principal_type) return self.recv_list_roles()
Parameters: - principal_name - principal_type
8,865
def item_dict(self, item): ret_dict = {"terms":{"category":[],"post_tag":[]}} for e in item: if "category" in e.tag: slug = e.attrib["nicename"] name = htmlparser.unescape(e.text) cat_dict = self.category_dict.get(slug) or {"slug":slug, "name":name, "taxonomy":"category"} ret_dict[][].append(cat_dict) elif e.tag[-3:] == : slug = e.attrib.get("tag_slug") name = htmlparser.unescape(e.text) tag_dict = self.tags_dict.get(slug) or {"slug":slug, "name":name, "taxonomy":"post_tag"} ret_dict[][].append(tag_dict) else: ret_dict[e.tag] = e.text empty_keys = [k for k,v in ret_dict["terms"].items() if not v] for k in empty_keys: ret_dict["terms"].pop(k) return ret_dict
create a default dict of values, including category and tag lookup
8,866
async def __handle_ping(self, _ : Ping): self.__last_ping = time.time() await ZMQUtils.send(self.__backend_socket, Pong())
Handle a Ping message. Pong the backend
8,867
def compute_ranks(x): assert x.ndim == 1 ranks = np.empty(len(x), dtype=int) ranks[x.argsort()] = np.arange(len(x)) return ranks
Returns ranks in [0, len(x)) Note: This is different from scipy.stats.rankdata, which returns ranks in [1, len(x)].
8,868
def OpenFile(filename, binary=False, newline=None, encoding=None): \n\r\r\nio.opens encoding. If not None, contents obtained from file will be decoded using this `encoding`. :returns file: The open file, it must be closed by the caller @raise: FileNotFoundError When the given filename cannot be found .. seealso:: FTP LIMITATIONS at this module from six.moves.urllib.parse import urlparse filename_url = urlparse(filename) if _UrlIsLocal(filename_url): if not os.path.isfile(filename): from ._exceptions import FileNotFoundError raise FileNotFoundError(filename) mode = if binary else return io.open(filename, mode, encoding=encoding, newline=newline) from ._exceptions import NotImplementedProtocol raise NotImplementedProtocol(target_url.scheme)
Open a file and returns it. Consider the possibility of a remote file (HTTP, HTTPS, FTP) :param unicode filename: Local or remote filename. :param bool binary: If True returns the file as is, ignore any EOL conversion. If set ignores univeral_newlines parameter. :param None|''|'\n'|'\r'|'\r\n' newline: Controls universal newlines. See 'io.open' newline parameter documentation for more details. :param unicode encoding: File's encoding. If not None, contents obtained from file will be decoded using this `encoding`. :returns file: The open file, it must be closed by the caller @raise: FileNotFoundError When the given filename cannot be found .. seealso:: FTP LIMITATIONS at this module's doc for performance issues information
8,869
def match(self, name): if self.method == Ex.Method.PREFIX: return name.startswith(self.value) elif self.method == Ex.Method.SUFFIX: return name.endswith(self.value) elif self.method == Ex.Method.CONTAINS: return self.value in name elif self.method == Ex.Method.EXACT: return self.value == name elif self.method == Ex.Method.REGEX: return re.search(self.value, name) return False
Check if given name matches. Args: name (str): name to check. Returns: bool: matches name.
8,870
def rpc_method(func=None, name=None, entry_point=ALL, protocol=ALL, str_standardization=settings.MODERNRPC_PY2_STR_TYPE, str_standardization_encoding=settings.MODERNRPC_PY2_STR_ENCODING): def decorated(_func): _func.modernrpc_enabled = True _func.modernrpc_name = name or _func.__name__ _func.modernrpc_entry_point = entry_point _func.modernrpc_protocol = protocol _func.str_standardization = str_standardization _func.str_standardization_encoding = str_standardization_encoding return _func if func is None: return decorated return decorated(func)
Mark a standard python function as RPC method. All arguments are optional :param func: A standard function :param name: Used as RPC method name instead of original function name :param entry_point: Default: ALL. Used to limit usage of the RPC method for a specific set of entry points :param protocol: Default: ALL. Used to limit usage of the RPC method for a specific protocol (JSONRPC or XMLRPC) :param str_standardization: Default: settings.MODERNRPC_PY2_STR_TYPE. Configure string standardization on python 2. Ignored on python 3. :param str_standardization_encoding: Default: settings.MODERNRPC_PY2_STR_ENCODING. Configure the encoding used to perform string standardization conversion. Ignored on python 3. :type name: str :type entry_point: str :type protocol: str :type str_standardization: type str or unicode :type str_standardization_encoding: str
8,871
def update(self, ng_template_id, name=NotUpdated, plugin_name=NotUpdated, hadoop_version=NotUpdated, flavor_id=NotUpdated, description=NotUpdated, volumes_per_node=NotUpdated, volumes_size=NotUpdated, node_processes=NotUpdated, node_configs=NotUpdated, floating_ip_pool=NotUpdated, security_groups=NotUpdated, auto_security_group=NotUpdated, availability_zone=NotUpdated, volumes_availability_zone=NotUpdated, volume_type=NotUpdated, image_id=NotUpdated, is_proxy_gateway=NotUpdated, volume_local_to_instance=NotUpdated, use_autoconfig=NotUpdated, shares=NotUpdated, is_public=NotUpdated, is_protected=NotUpdated, volume_mount_prefix=NotUpdated): data = {} self._copy_if_updated( data, name=name, plugin_name=plugin_name, hadoop_version=hadoop_version, flavor_id=flavor_id, description=description, volumes_per_node=volumes_per_node, volumes_size=volumes_size, node_processes=node_processes, node_configs=node_configs, floating_ip_pool=floating_ip_pool, security_groups=security_groups, auto_security_group=auto_security_group, availability_zone=availability_zone, volumes_availability_zone=volumes_availability_zone, volume_type=volume_type, image_id=image_id, is_proxy_gateway=is_proxy_gateway, volume_local_to_instance=volume_local_to_instance, use_autoconfig=use_autoconfig, shares=shares, is_public=is_public, is_protected=is_protected, volume_mount_prefix=volume_mount_prefix ) return self._update( % ng_template_id, data, )
Update a Node Group Template.
8,872
def get_ftr(self): if not self.ftr: return self.ftr width = self.size()[0] return re.sub( "%time", "%s\n" % time.strftime("%H:%M:%S"), self.ftr).rjust(width)
Process footer and return the processed string
8,873
def load_toml_path_config(filename): if not os.path.exists(filename): LOGGER.info( "Skipping path loading from non-existent config file: %s", filename) return PathConfig() LOGGER.info("Loading path information from config: %s", filename) try: with open(filename) as fd: raw_config = fd.read() except IOError as e: raise LocalConfigurationError( "Unable to load path configuration file: {}".format(str(e))) toml_config = toml.loads(raw_config) invalid_keys = set(toml_config.keys()).difference( [, , , ]) if invalid_keys: raise LocalConfigurationError("Invalid keys in path config: {}".format( ", ".join(sorted(list(invalid_keys))))) config = PathConfig( config_dir=None, data_dir=toml_config.get(, None), key_dir=toml_config.get(, None), log_dir=toml_config.get(, None), policy_dir=toml_config.get(, None) ) return config
Returns a PathConfig created by loading a TOML file from the filesystem.
8,874
def put_item(TableName=None, Item=None, Expected=None, ReturnValues=None, ReturnConsumedCapacity=None, ReturnItemCollectionMetrics=None, ConditionalOperator=None, ConditionExpression=None, ExpressionAttributeNames=None, ExpressionAttributeValues=None): pass
Creates a new item, or replaces an old item with a new item. If an item that has the same primary key as the new item already exists in the specified table, the new item completely replaces the existing item. You can perform a conditional put operation (add a new item if one with the specified primary key doesn't exist), or replace an existing item if it has certain attribute values. In addition to putting an item, you can also return the item's attribute values in the same operation, using the ReturnValues parameter. When you add an item, the primary key attribute(s) are the only required attributes. Attribute values cannot be null. String and Binary type attributes must have lengths greater than zero. Set type attributes cannot be empty. Requests with empty values will be rejected with a ValidationException exception. For more information about PutItem , see Working with Items in the Amazon DynamoDB Developer Guide . See also: AWS API Documentation Examples This example adds a new item to the Music table. Expected Output: :example: response = client.put_item( TableName='string', Item={ 'string': { 'S': 'string', 'N': 'string', 'B': b'bytes', 'SS': [ 'string', ], 'NS': [ 'string', ], 'BS': [ b'bytes', ], 'M': { 'string': {'... recursive ...'} }, 'L': [ {'... recursive ...'}, ], 'NULL': True|False, 'BOOL': True|False } }, Expected={ 'string': { 'Value': { 'S': 'string', 'N': 'string', 'B': b'bytes', 'SS': [ 'string', ], 'NS': [ 'string', ], 'BS': [ b'bytes', ], 'M': { 'string': {'... recursive ...'} }, 'L': [ {'... recursive ...'}, ], 'NULL': True|False, 'BOOL': True|False }, 'Exists': True|False, 'ComparisonOperator': 'EQ'|'NE'|'IN'|'LE'|'LT'|'GE'|'GT'|'BETWEEN'|'NOT_NULL'|'NULL'|'CONTAINS'|'NOT_CONTAINS'|'BEGINS_WITH', 'AttributeValueList': [ { 'S': 'string', 'N': 'string', 'B': b'bytes', 'SS': [ 'string', ], 'NS': [ 'string', ], 'BS': [ b'bytes', ], 'M': { 'string': {'... recursive ...'} }, 'L': [ {'... recursive ...'}, ], 'NULL': True|False, 'BOOL': True|False }, ] } }, ReturnValues='NONE'|'ALL_OLD'|'UPDATED_OLD'|'ALL_NEW'|'UPDATED_NEW', ReturnConsumedCapacity='INDEXES'|'TOTAL'|'NONE', ReturnItemCollectionMetrics='SIZE'|'NONE', ConditionalOperator='AND'|'OR', ConditionExpression='string', ExpressionAttributeNames={ 'string': 'string' }, ExpressionAttributeValues={ 'string': { 'S': 'string', 'N': 'string', 'B': b'bytes', 'SS': [ 'string', ], 'NS': [ 'string', ], 'BS': [ b'bytes', ], 'M': { 'string': {'... recursive ...'} }, 'L': [ {'... recursive ...'}, ], 'NULL': True|False, 'BOOL': True|False } } ) :type TableName: string :param TableName: [REQUIRED] The name of the table to contain the item. :type Item: dict :param Item: [REQUIRED] A map of attribute name/value pairs, one for each attribute. Only the primary key attributes are required; you can optionally provide other attribute name-value pairs for the item. You must provide all of the attributes for the primary key. For example, with a simple primary key, you only need to provide a value for the partition key. For a composite primary key, you must provide both values for both the partition key and the sort key. If you specify any attributes that are part of an index key, then the data types for those attributes must match those of the schema in the table's attribute definition. For more information about primary keys, see Primary Key in the Amazon DynamoDB Developer Guide . Each element in the Item map is an AttributeValue object. (string) -- (dict) --Represents the data for an attribute. Each attribute value is described as a name-value pair. The name is the data type, and the value is the data itself. For more information, see Data Types in the Amazon DynamoDB Developer Guide . S (string) --An attribute of type String. For example: 'S': 'Hello' N (string) --An attribute of type Number. For example: 'N': '123.45' Numbers are sent across the network to DynamoDB as strings, to maximize compatibility across languages and libraries. However, DynamoDB treats them as number type attributes for mathematical operations. B (bytes) --An attribute of type Binary. For example: 'B': 'dGhpcyB0ZXh0IGlzIGJhc2U2NC1lbmNvZGVk' SS (list) --An attribute of type String Set. For example: 'SS': ['Giraffe', 'Hippo' ,'Zebra'] (string) -- NS (list) --An attribute of type Number Set. For example: 'NS': ['42.2', '-19', '7.5', '3.14'] Numbers are sent across the network to DynamoDB as strings, to maximize compatibility across languages and libraries. However, DynamoDB treats them as number type attributes for mathematical operations. (string) -- BS (list) --An attribute of type Binary Set. For example: 'BS': ['U3Vubnk=', 'UmFpbnk=', 'U25vd3k='] (bytes) -- M (dict) --An attribute of type Map. For example: 'M': {'Name': {'S': 'Joe'}, 'Age': {'N': '35'}} (string) -- (dict) --Represents the data for an attribute. Each attribute value is described as a name-value pair. The name is the data type, and the value is the data itself. For more information, see Data Types in the Amazon DynamoDB Developer Guide . L (list) --An attribute of type List. For example: 'L': ['Cookies', 'Coffee', 3.14159] (dict) --Represents the data for an attribute. Each attribute value is described as a name-value pair. The name is the data type, and the value is the data itself. For more information, see Data Types in the Amazon DynamoDB Developer Guide . NULL (boolean) --An attribute of type Null. For example: 'NULL': true BOOL (boolean) --An attribute of type Boolean. For example: 'BOOL': true :type Expected: dict :param Expected: This is a legacy parameter. Use ConditionExpresssion instead. For more information, see Expected in the Amazon DynamoDB Developer Guide . (string) -- (dict) --Represents a condition to be compared with an attribute value. This condition can be used with DeleteItem , PutItem or UpdateItem operations; if the comparison evaluates to true, the operation succeeds; if not, the operation fails. You can use ExpectedAttributeValue in one of two different ways: Use AttributeValueList to specify one or more values to compare against an attribute. Use ComparisonOperator to specify how you want to perform the comparison. If the comparison evaluates to true, then the conditional operation succeeds. Use Value to specify a value that DynamoDB will compare against an attribute. If the values match, then ExpectedAttributeValue evaluates to true and the conditional operation succeeds. Optionally, you can also set Exists to false, indicating that you do not expect to find the attribute value in the table. In this case, the conditional operation succeeds only if the comparison evaluates to false. Value and Exists are incompatible with AttributeValueList and ComparisonOperator . Note that if you use both sets of parameters at once, DynamoDB will return a ValidationException exception. Value (dict) --Represents the data for the expected attribute. Each attribute value is described as a name-value pair. The name is the data type, and the value is the data itself. For more information, see Data Types in the Amazon DynamoDB Developer Guide . S (string) --An attribute of type String. For example: 'S': 'Hello' N (string) --An attribute of type Number. For example: 'N': '123.45' Numbers are sent across the network to DynamoDB as strings, to maximize compatibility across languages and libraries. However, DynamoDB treats them as number type attributes for mathematical operations. B (bytes) --An attribute of type Binary. For example: 'B': 'dGhpcyB0ZXh0IGlzIGJhc2U2NC1lbmNvZGVk' SS (list) --An attribute of type String Set. For example: 'SS': ['Giraffe', 'Hippo' ,'Zebra'] (string) -- NS (list) --An attribute of type Number Set. For example: 'NS': ['42.2', '-19', '7.5', '3.14'] Numbers are sent across the network to DynamoDB as strings, to maximize compatibility across languages and libraries. However, DynamoDB treats them as number type attributes for mathematical operations. (string) -- BS (list) --An attribute of type Binary Set. For example: 'BS': ['U3Vubnk=', 'UmFpbnk=', 'U25vd3k='] (bytes) -- M (dict) --An attribute of type Map. For example: 'M': {'Name': {'S': 'Joe'}, 'Age': {'N': '35'}} (string) -- (dict) --Represents the data for an attribute. Each attribute value is described as a name-value pair. The name is the data type, and the value is the data itself. For more information, see Data Types in the Amazon DynamoDB Developer Guide . L (list) --An attribute of type List. For example: 'L': ['Cookies', 'Coffee', 3.14159] (dict) --Represents the data for an attribute. Each attribute value is described as a name-value pair. The name is the data type, and the value is the data itself. For more information, see Data Types in the Amazon DynamoDB Developer Guide . NULL (boolean) --An attribute of type Null. For example: 'NULL': true BOOL (boolean) --An attribute of type Boolean. For example: 'BOOL': true Exists (boolean) --Causes DynamoDB to evaluate the value before attempting a conditional operation: If Exists is true , DynamoDB will check to see if that attribute value already exists in the table. If it is found, then the operation succeeds. If it is not found, the operation fails with a ConditionalCheckFailedException . If Exists is false , DynamoDB assumes that the attribute value does not exist in the table. If in fact the value does not exist, then the assumption is valid and the operation succeeds. If the value is found, despite the assumption that it does not exist, the operation fails with a ConditionalCheckFailedException . The default setting for Exists is true . If you supply a Value all by itself, DynamoDB assumes the attribute exists: You don't have to set Exists to true , because it is implied. DynamoDB returns a ValidationException if: Exists is true but there is no Value to check. (You expect a value to exist, but don't specify what that value is.) Exists is false but you also provide a Value . (You cannot expect an attribute to have a value, while also expecting it not to exist.) ComparisonOperator (string) --A comparator for evaluating attributes in the AttributeValueList . For example, equals, greater than, less than, etc. The following comparison operators are available: EQ | NE | LE | LT | GE | GT | NOT_NULL | NULL | CONTAINS | NOT_CONTAINS | BEGINS_WITH | IN | BETWEEN The following are descriptions of each comparison operator. EQ : Equal. EQ is supported for all data types, including lists and maps. AttributeValueList can contain only one AttributeValue element of type String, Number, Binary, String Set, Number Set, or Binary Set. If an item contains an AttributeValue element of a different type than the one provided in the request, the value does not match. For example, {'S':'6'} does not equal {'N':'6'} . Also, {'N':'6'} does not equal {'NS':['6', '2', '1']} . NE : Not equal. NE is supported for all data types, including lists and maps. AttributeValueList can contain only one AttributeValue of type String, Number, Binary, String Set, Number Set, or Binary Set. If an item contains an AttributeValue of a different type than the one provided in the request, the value does not match. For example, {'S':'6'} does not equal {'N':'6'} . Also, {'N':'6'} does not equal {'NS':['6', '2', '1']} . LE : Less than or equal. AttributeValueList can contain only one AttributeValue element of type String, Number, or Binary (not a set type). If an item contains an AttributeValue element of a different type than the one provided in the request, the value does not match. For example, {'S':'6'} does not equal {'N':'6'} . Also, {'N':'6'} does not compare to {'NS':['6', '2', '1']} . LT : Less than. AttributeValueList can contain only one AttributeValue of type String, Number, or Binary (not a set type). If an item contains an AttributeValue element of a different type than the one provided in the request, the value does not match. For example, {'S':'6'} does not equal {'N':'6'} . Also, {'N':'6'} does not compare to {'NS':['6', '2', '1']} . GE : Greater than or equal. AttributeValueList can contain only one AttributeValue element of type String, Number, or Binary (not a set type). If an item contains an AttributeValue element of a different type than the one provided in the request, the value does not match. For example, {'S':'6'} does not equal {'N':'6'} . Also, {'N':'6'} does not compare to {'NS':['6', '2', '1']} . GT : Greater than. AttributeValueList can contain only one AttributeValue element of type String, Number, or Binary (not a set type). If an item contains an AttributeValue element of a different type than the one provided in the request, the value does not match. For example, {'S':'6'} does not equal {'N':'6'} . Also, {'N':'6'} does not compare to {'NS':['6', '2', '1']} . NOT_NULL : The attribute exists. NOT_NULL is supported for all data types, including lists and maps. Note This operator tests for the existence of an attribute, not its data type. If the data type of attribute 'a ' is null, and you evaluate it using NOT_NULL , the result is a Boolean true . This result is because the attribute 'a ' exists; its data type is not relevant to the NOT_NULL comparison operator. NULL : The attribute does not exist. NULL is supported for all data types, including lists and maps. Note This operator tests for the nonexistence of an attribute, not its data type. If the data type of attribute 'a ' is null, and you evaluate it using NULL , the result is a Boolean false . This is because the attribute 'a ' exists; its data type is not relevant to the NULL comparison operator. CONTAINS : Checks for a subsequence, or value in a set. AttributeValueList can contain only one AttributeValue element of type String, Number, or Binary (not a set type). If the target attribute of the comparison is of type String, then the operator checks for a substring match. If the target attribute of the comparison is of type Binary, then the operator looks for a subsequence of the target that matches the input. If the target attribute of the comparison is a set ('SS ', 'NS ', or 'BS '), then the operator evaluates to true if it finds an exact match with any member of the set. CONTAINS is supported for lists: When evaluating 'a CONTAINS b ', 'a ' can be a list; however, 'b ' cannot be a set, a map, or a list. NOT_CONTAINS : Checks for absence of a subsequence, or absence of a value in a set. AttributeValueList can contain only one AttributeValue element of type String, Number, or Binary (not a set type). If the target attribute of the comparison is a String, then the operator checks for the absence of a substring match. If the target attribute of the comparison is Binary, then the operator checks for the absence of a subsequence of the target that matches the input. If the target attribute of the comparison is a set ('SS ', 'NS ', or 'BS '), then the operator evaluates to true if it does not find an exact match with any member of the set. NOT_CONTAINS is supported for lists: When evaluating 'a NOT CONTAINS b ', 'a ' can be a list; however, 'b ' cannot be a set, a map, or a list. BEGINS_WITH : Checks for a prefix. AttributeValueList can contain only one AttributeValue of type String or Binary (not a Number or a set type). The target attribute of the comparison must be of type String or Binary (not a Number or a set type). IN : Checks for matching elements in a list. AttributeValueList can contain one or more AttributeValue elements of type String, Number, or Binary. These attributes are compared against an existing attribute of an item. If any elements of the input are equal to the item attribute, the expression evaluates to true. BETWEEN : Greater than or equal to the first value, and less than or equal to the second value. AttributeValueList must contain two AttributeValue elements of the same type, either String, Number, or Binary (not a set type). A target attribute matches if the target value is greater than, or equal to, the first element and less than, or equal to, the second element. If an item contains an AttributeValue element of a different type than the one provided in the request, the value does not match. For example, {'S':'6'} does not compare to {'N':'6'} . Also, {'N':'6'} does not compare to {'NS':['6', '2', '1']} AttributeValueList (list) --One or more values to evaluate against the supplied attribute. The number of values in the list depends on the ComparisonOperator being used. For type Number, value comparisons are numeric. String value comparisons for greater than, equals, or less than are based on ASCII character code values. For example, a is greater than A , and a is greater than B . For a list of code values, see http://en.wikipedia.org/wiki/ASCII#ASCII_printable_characters . For Binary, DynamoDB treats each byte of the binary data as unsigned when it compares binary values. For information on specifying data types in JSON, see JSON Data Format in the Amazon DynamoDB Developer Guide . (dict) --Represents the data for an attribute. Each attribute value is described as a name-value pair. The name is the data type, and the value is the data itself. For more information, see Data Types in the Amazon DynamoDB Developer Guide . S (string) --An attribute of type String. For example: 'S': 'Hello' N (string) --An attribute of type Number. For example: 'N': '123.45' Numbers are sent across the network to DynamoDB as strings, to maximize compatibility across languages and libraries. However, DynamoDB treats them as number type attributes for mathematical operations. B (bytes) --An attribute of type Binary. For example: 'B': 'dGhpcyB0ZXh0IGlzIGJhc2U2NC1lbmNvZGVk' SS (list) --An attribute of type String Set. For example: 'SS': ['Giraffe', 'Hippo' ,'Zebra'] (string) -- NS (list) --An attribute of type Number Set. For example: 'NS': ['42.2', '-19', '7.5', '3.14'] Numbers are sent across the network to DynamoDB as strings, to maximize compatibility across languages and libraries. However, DynamoDB treats them as number type attributes for mathematical operations. (string) -- BS (list) --An attribute of type Binary Set. For example: 'BS': ['U3Vubnk=', 'UmFpbnk=', 'U25vd3k='] (bytes) -- M (dict) --An attribute of type Map. For example: 'M': {'Name': {'S': 'Joe'}, 'Age': {'N': '35'}} (string) -- (dict) --Represents the data for an attribute. Each attribute value is described as a name-value pair. The name is the data type, and the value is the data itself. For more information, see Data Types in the Amazon DynamoDB Developer Guide . L (list) --An attribute of type List. For example: 'L': ['Cookies', 'Coffee', 3.14159] (dict) --Represents the data for an attribute. Each attribute value is described as a name-value pair. The name is the data type, and the value is the data itself. For more information, see Data Types in the Amazon DynamoDB Developer Guide . NULL (boolean) --An attribute of type Null. For example: 'NULL': true BOOL (boolean) --An attribute of type Boolean. For example: 'BOOL': true :type ReturnValues: string :param ReturnValues: Use ReturnValues if you want to get the item attributes as they appeared before they were updated with the PutItem request. For PutItem , the valid values are: NONE - If ReturnValues is not specified, or if its value is NONE , then nothing is returned. (This setting is the default for ReturnValues .) ALL_OLD - If PutItem overwrote an attribute name-value pair, then the content of the old item is returned. Note The ReturnValues parameter is used by several DynamoDB operations; however, PutItem does not recognize any values other than NONE or ALL_OLD . :type ReturnConsumedCapacity: string :param ReturnConsumedCapacity: Determines the level of detail about provisioned throughput consumption that is returned in the response: INDEXES - The response includes the aggregate ConsumedCapacity for the operation, together with ConsumedCapacity for each table and secondary index that was accessed. Note that some operations, such as GetItem and BatchGetItem , do not access any indexes at all. In these cases, specifying INDEXES will only return ConsumedCapacity information for table(s). TOTAL - The response includes only the aggregate ConsumedCapacity for the operation. NONE - No ConsumedCapacity details are included in the response. :type ReturnItemCollectionMetrics: string :param ReturnItemCollectionMetrics: Determines whether item collection metrics are returned. If set to SIZE , the response includes statistics about item collections, if any, that were modified during the operation are returned in the response. If set to NONE (the default), no statistics are returned. :type ConditionalOperator: string :param ConditionalOperator: This is a legacy parameter. Use ConditionExpression instead. For more information, see ConditionalOperator in the Amazon DynamoDB Developer Guide . :type ConditionExpression: string :param ConditionExpression: A condition that must be satisfied in order for a conditional PutItem operation to succeed. An expression can contain any of the following: Functions: attribute_exists | attribute_not_exists | attribute_type | contains | begins_with | size These function names are case-sensitive. Comparison operators: = | | | | = | = | BETWEEN | IN Logical operators: AND | OR | NOT For more information on condition expressions, see Specifying Conditions in the Amazon DynamoDB Developer Guide . :type ExpressionAttributeNames: dict :param ExpressionAttributeNames: One or more substitution tokens for attribute names in an expression. The following are some use cases for using ExpressionAttributeNames : To access an attribute whose name conflicts with a DynamoDB reserved word. To create a placeholder for repeating occurrences of an attribute name in an expression. To prevent special characters in an attribute name from being misinterpreted in an expression. Use the # character in an expression to dereference an attribute name. For example, consider the following attribute name: Percentile The name of this attribute conflicts with a reserved word, so it cannot be used directly in an expression. (For the complete list of reserved words, see Reserved Words in the Amazon DynamoDB Developer Guide ). To work around this, you could specify the following for ExpressionAttributeNames : {'#P':'Percentile'} You could then use this substitution in an expression, as in this example: #P = :val Note Tokens that begin with the : character are expression attribute values , which are placeholders for the actual value at runtime. For more information on expression attribute names, see Accessing Item Attributes in the Amazon DynamoDB Developer Guide . (string) -- (string) -- :type ExpressionAttributeValues: dict :param ExpressionAttributeValues: One or more values that can be substituted in an expression. Use the : (colon) character in an expression to dereference an attribute value. For example, suppose that you wanted to check whether the value of the ProductStatus attribute was one of the following: Available | Backordered | Discontinued You would first need to specify ExpressionAttributeValues as follows: { ':avail':{'S':'Available'}, ':back':{'S':'Backordered'}, ':disc':{'S':'Discontinued'} } You could then use these values in an expression, such as this: ProductStatus IN (:avail, :back, :disc) For more information on expression attribute values, see Specifying Conditions in the Amazon DynamoDB Developer Guide . (string) -- (dict) --Represents the data for an attribute. Each attribute value is described as a name-value pair. The name is the data type, and the value is the data itself. For more information, see Data Types in the Amazon DynamoDB Developer Guide . S (string) --An attribute of type String. For example: 'S': 'Hello' N (string) --An attribute of type Number. For example: 'N': '123.45' Numbers are sent across the network to DynamoDB as strings, to maximize compatibility across languages and libraries. However, DynamoDB treats them as number type attributes for mathematical operations. B (bytes) --An attribute of type Binary. For example: 'B': 'dGhpcyB0ZXh0IGlzIGJhc2U2NC1lbmNvZGVk' SS (list) --An attribute of type String Set. For example: 'SS': ['Giraffe', 'Hippo' ,'Zebra'] (string) -- NS (list) --An attribute of type Number Set. For example: 'NS': ['42.2', '-19', '7.5', '3.14'] Numbers are sent across the network to DynamoDB as strings, to maximize compatibility across languages and libraries. However, DynamoDB treats them as number type attributes for mathematical operations. (string) -- BS (list) --An attribute of type Binary Set. For example: 'BS': ['U3Vubnk=', 'UmFpbnk=', 'U25vd3k='] (bytes) -- M (dict) --An attribute of type Map. For example: 'M': {'Name': {'S': 'Joe'}, 'Age': {'N': '35'}} (string) -- (dict) --Represents the data for an attribute. Each attribute value is described as a name-value pair. The name is the data type, and the value is the data itself. For more information, see Data Types in the Amazon DynamoDB Developer Guide . L (list) --An attribute of type List. For example: 'L': ['Cookies', 'Coffee', 3.14159] (dict) --Represents the data for an attribute. Each attribute value is described as a name-value pair. The name is the data type, and the value is the data itself. For more information, see Data Types in the Amazon DynamoDB Developer Guide . NULL (boolean) --An attribute of type Null. For example: 'NULL': true BOOL (boolean) --An attribute of type Boolean. For example: 'BOOL': true :rtype: dict :return: { 'Attributes': { 'string': { 'S': 'string', 'N': 'string', 'B': b'bytes', 'SS': [ 'string', ], 'NS': [ 'string', ], 'BS': [ b'bytes', ], 'M': { 'string': {'... recursive ...'} }, 'L': [ {'... recursive ...'}, ], 'NULL': True|False, 'BOOL': True|False } }, 'ConsumedCapacity': { 'TableName': 'string', 'CapacityUnits': 123.0, 'Table': { 'CapacityUnits': 123.0 }, 'LocalSecondaryIndexes': { 'string': { 'CapacityUnits': 123.0 } }, 'GlobalSecondaryIndexes': { 'string': { 'CapacityUnits': 123.0 } } }, 'ItemCollectionMetrics': { 'ItemCollectionKey': { 'string': { 'S': 'string', 'N': 'string', 'B': b'bytes', 'SS': [ 'string', ], 'NS': [ 'string', ], 'BS': [ b'bytes', ], 'M': { 'string': {'... recursive ...'} }, 'L': [ {'... recursive ...'}, ], 'NULL': True|False, 'BOOL': True|False } }, 'SizeEstimateRangeGB': [ 123.0, ] } } :returns: (string) --
8,875
def __getDependenciesRecursiveWithProvider(self, available_components = None, search_dirs = None, target = None, traverse_links = False, update_installed = False, provider = None, test = False, _processed = None ): s similarTo list will be used in resolving dependencies. If None, then only target-independent dependencies will be installed traverse_links: False (default) or True: whether to recurse into linked dependencies. You normally want to set this to "True" when getting a list of dependencies, and False when installing them (unless the user has explicitly asked dependencies to be installed in linked components). provider: None (default) or function: provider( dependency_spec, available_components, search_dirs, working_directory, update_if_installed ) test: True, False, : should test-only dependencies be included (yes, no, or only at this level, not recursively) do not recurse into failed componentt recurse into failed components return False if c.getName() in _processed: logger.debug( % c) return False if c.installedLinked() and not traverse_links: return False return True available_components = self.ensureOrderedDict(available_components) if search_dirs is None: search_dirs = [] if _processed is None: _processed = set() assert(test in [True, False, ]) search_dirs.append(self.modulesPath()) logger.debug( % (self.getName(), search_dirs)) if self.isTestDependency(): logger.debug("wonFailed to satisfy dependencies of %s:processed %s\nneed recursion: %s\navailable:%s\nsearch dirs:%stoplevelt perform this step in parallel, since the available for c in need_recursion: dep_components, dep_errors = c.__getDependenciesRecursiveWithProvider( available_components = available_components, search_dirs = search_dirs, target = target, traverse_links = traverse_links, update_installed = update_installed, provider = provider, test = test, _processed = _processed ) available_components.update(dep_components) components.update(dep_components) errors += dep_errors return (components, errors)
Get installed components using "provider" to find (and possibly install) components. This function is called with different provider functions in order to retrieve a list of all of the dependencies, or install all dependencies. Returns ======= (components, errors) components: dictionary of name:Component errors: sequence of errors Parameters ========== available_components: None (default) or a dictionary of name:component. This is searched before searching directories or fetching remote components search_dirs: None (default), or sequence of directories to search for already installed, (but not yet loaded) components. Used so that manually installed or linked components higher up the dependency tree are found by their users lower down. These directories are searched in order, and finally the current directory is checked. target: None (default), or a Target object. If specified the target name and it's similarTo list will be used in resolving dependencies. If None, then only target-independent dependencies will be installed traverse_links: False (default) or True: whether to recurse into linked dependencies. You normally want to set this to "True" when getting a list of dependencies, and False when installing them (unless the user has explicitly asked dependencies to be installed in linked components). provider: None (default) or function: provider( dependency_spec, available_components, search_dirs, working_directory, update_if_installed ) test: True, False, 'toplevel': should test-only dependencies be included (yes, no, or only at this level, not recursively)
8,876
def view_matrix(self): self._update_yaw_and_pitch() return self._gl_look_at(self.position, self.position + self.dir, self._up)
:return: The current view matrix for the camera
8,877
def police_priority_map_exceed_map_pri7_exceed(self, **kwargs): config = ET.Element("config") police_priority_map = ET.SubElement(config, "police-priority-map", xmlns="urn:brocade.com:mgmt:brocade-policer") name_key = ET.SubElement(police_priority_map, "name") name_key.text = kwargs.pop() exceed = ET.SubElement(police_priority_map, "exceed") map_pri7_exceed = ET.SubElement(exceed, "map-pri7-exceed") map_pri7_exceed.text = kwargs.pop() callback = kwargs.pop(, self._callback) return callback(config)
Auto Generated Code
8,878
def max(self, spec): if not isinstance(spec, (list, tuple)): raise TypeError("spec must be an instance of list or tuple") self.__check_okay_to_chain() self.__max = SON(spec) return self
Adds `max` operator that specifies upper bound for specific index. :Parameters: - `spec`: a list of field, limit pairs specifying the exclusive upper bound for all keys of a specific index in order. .. versionadded:: 2.7
8,879
def options(self, *args, **kwargs): data = OrderedDict([(k, v.options(*args, **kwargs)) for k, v in self.data.items()]) return self.clone(data)
Applies simplified option definition returning a new object Applies options defined in a flat format to the objects returned by the DynamicMap. If the options are to be set directly on the objects in the HoloMap a simple format may be used, e.g.: obj.options(cmap='viridis', show_title=False) If the object is nested the options must be qualified using a type[.group][.label] specification, e.g.: obj.options('Image', cmap='viridis', show_title=False) or using: obj.options({'Image': dict(cmap='viridis', show_title=False)}) Args: *args: Sets of options to apply to object Supports a number of formats including lists of Options objects, a type[.group][.label] followed by a set of keyword options to apply and a dictionary indexed by type[.group][.label] specs. backend (optional): Backend to apply options to Defaults to current selected backend clone (bool, optional): Whether to clone object Options can be applied inplace with clone=False **kwargs: Keywords of options Set of options to apply to the object Returns: Returns the cloned object with the options applied
8,880
def get_generator(self, field): if isinstance(field, fields.AutoField): return None if self.is_inheritance_parent(field): return None if ( field.default is not fields.NOT_PROVIDED and not self.overwrite_defaults and field.name not in self.field_values): return None kwargs = {} if field.name in self.field_values: value = self.field_values[field.name] if isinstance(value, generators.Generator): return value elif isinstance(value, AutoFixture): return generators.InstanceGenerator(autofixture=value) elif callable(value): return generators.CallableGenerator(value=value) return generators.StaticGenerator(value=value) if field.null: kwargs[] = self.none_p if field.choices: return generators.ChoicesGenerator(choices=field.choices, **kwargs) if isinstance(field, related.ForeignKey): is_self_fk = (get_remote_field_to(field)().__class__ == self.model) if field.name in self.generate_fk and not is_self_fk: return generators.InstanceGenerator( autofixture.get( get_remote_field_to(field), follow_fk=self.follow_fk.get_deep_links(field.name), generate_fk=self.generate_fk.get_deep_links(field.name)), limit_choices_to=get_remote_field(field).limit_choices_to) if field.name in self.follow_fk: selected = generators.InstanceSelector( get_remote_field_to(field), limit_choices_to=get_remote_field(field).limit_choices_to) if selected.get_value() is not None: return selected if field.blank or field.null: return generators.NoneGenerator() if is_self_fk and not field.null: raise CreateInstanceError( u % ( field.name, % ( get_remote_field_to(field)._meta.app_label, get_remote_field_to(field)._meta.object_name, ) )) raise CreateInstanceError( u u % ( field.name, % ( get_remote_field_to(field)._meta.app_label, get_remote_field_to(field)._meta.object_name, ) )) if isinstance(field, related.ManyToManyField): if field.name in self.generate_m2m: min_count, max_count = self.generate_m2m[field.name] return generators.MultipleInstanceGenerator( autofixture.get(get_remote_field_to(field)), limit_choices_to=get_remote_field(field).limit_choices_to, min_count=min_count, max_count=max_count, **kwargs) if field.name in self.follow_m2m: min_count, max_count = self.follow_m2m[field.name] return generators.InstanceSelector( get_remote_field_to(field), limit_choices_to=get_remote_field(field).limit_choices_to, min_count=min_count, max_count=max_count, **kwargs) if field.blank or field.null: return generators.StaticGenerator([]) raise CreateInstanceError( u u % ( % ( get_remote_field_to(field)._meta.app_label, get_remote_field_to(field)._meta.object_name, ), field.name, )) if isinstance(field, fields.FilePathField): return generators.FilePathGenerator( path=field.path, match=field.match, recursive=field.recursive, max_length=field.max_length, **kwargs) if isinstance(field, fields.CharField): if isinstance(field, fields.SlugField): generator = generators.SlugGenerator elif isinstance(field, fields.EmailField): return generators.EmailGenerator( max_length=min(field.max_length, 30)) elif isinstance(field, fields.URLField): return generators.URLGenerator( max_length=min(field.max_length, 25)) elif field.max_length > 15: return generators.LoremSentenceGenerator( common=False, max_length=field.max_length) else: generator = generators.StringGenerator return generator(max_length=field.max_length) if isinstance(field, fields.DecimalField): return generators.DecimalGenerator( decimal_places=field.decimal_places, max_digits=field.max_digits) if hasattr(fields, ): if isinstance(field, fields.BigIntegerField): return generators.IntegerGenerator( min_value=-field.MAX_BIGINT - 1, max_value=field.MAX_BIGINT, **kwargs) if isinstance(field, ImageField): return generators.ImageGenerator(storage=field.storage, **kwargs) for field_class, generator in self.field_to_generator.items(): if isinstance(field, field_class): return generator(**kwargs) return None
Return a value generator based on the field instance that is passed to this method. This function may return ``None`` which means that the specified field will be ignored (e.g. if no matching generator was found).
8,881
def _find_parenthesis(self, position, forward=True): commas = depth = 0 document = self._text_edit.document() char = document.characterAt(position) while category(char) != and position > 0: if char == and depth == 0: commas += 1 elif char == : if forward and depth == 0: break depth += 1 elif char == : if not forward and depth == 0: break depth -= 1 position += 1 if forward else -1 char = document.characterAt(position) else: position = -1 return position, commas
If 'forward' is True (resp. False), proceed forwards (resp. backwards) through the line that contains 'position' until an unmatched closing (resp. opening) parenthesis is found. Returns a tuple containing the position of this parenthesis (or -1 if it is not found) and the number commas (at depth 0) found along the way.
8,882
def tangency_portfolio(cov_mat, exp_rets, allow_short=False): if not isinstance(cov_mat, pd.DataFrame): raise ValueError("Covariance matrix is not a DataFrame") if not isinstance(exp_rets, pd.Series): raise ValueError("Expected returns is not a Series") if not cov_mat.index.equals(exp_rets.index): raise ValueError("Indices do not match") n = len(cov_mat) P = opt.matrix(cov_mat.values) q = opt.matrix(0.0, (n, 1)) if not allow_short: G = opt.matrix(np.vstack((-exp_rets.values, -np.identity(n)))) h = opt.matrix(np.vstack((-1.0, np.zeros((n, 1))))) else: G = opt.matrix(-exp_rets.values).T h = opt.matrix(-1.0) optsolvers.options[] = False sol = optsolvers.qp(P, q, G, h) if sol[] != : warnings.warn("Convergence problem") weights = pd.Series(sol[], index=cov_mat.index) weights /= weights.sum() return weights
Computes a tangency portfolio, i.e. a maximum Sharpe ratio portfolio. Note: As the Sharpe ratio is not invariant with respect to leverage, it is not possible to construct non-trivial market neutral tangency portfolios. This is because for a positive initial Sharpe ratio the sharpe grows unbound with increasing leverage. Parameters ---------- cov_mat: pandas.DataFrame Covariance matrix of asset returns. exp_rets: pandas.Series Expected asset returns (often historical returns). allow_short: bool, optional If 'False' construct a long-only portfolio. If 'True' allow shorting, i.e. negative weights. Returns ------- weights: pandas.Series Optimal asset weights.
8,883
def import_from_string(self, text, title=None): data = self.model.get_data() if not hasattr(data, "keys"): return editor = ImportWizard(self, text, title=title, contents_title=_("Clipboard contents"), varname=fix_reference_name("data", blacklist=list(data.keys()))) if editor.exec_(): var_name, clip_data = editor.get_data() self.new_value(var_name, clip_data)
Import data from string
8,884
def mknts(self, add_dct): nts = [] assert len(add_dct) == len(self.nts) flds = list(next(iter(self.nts))._fields) + list(next(iter(add_dct)).keys()) ntobj = cx.namedtuple("ntgoea", " ".join(flds)) for dct_new, ntgoea in zip(add_dct, self.nts): dct_curr = ntgoea._asdict() for key, val in dct_new.items(): dct_curr[key] = val nts.append(ntobj(**dct_curr)) return nts
Add information from add_dct to a new copy of namedtuples stored in nts.
8,885
def channels(self): if self._channels is None: self._channels = ChannelList(self._version, service_sid=self._solution[], ) return self._channels
Access the channels :returns: twilio.rest.chat.v2.service.channel.ChannelList :rtype: twilio.rest.chat.v2.service.channel.ChannelList
8,886
def _init_metadata(self): self._min_integer_value = None self._max_integer_value = None self._integer_value_metadata = { : Id(self.my_osid_object_form._authority, self.my_osid_object_form._namespace, ), : , : , : False, : False, : False, : False, : [None], : , : self._min_integer_value, : self._max_integer_value, : [] }
stub
8,887
def match_serializers(self, serializers, default_media_type): return self._match_serializers_by_query_arg(serializers) or self.\ _match_serializers_by_accept_headers(serializers, default_media_type)
Choose serializer for a given request based on query arg or headers. Checks if query arg `format` (by default) is present and tries to match the serializer based on the arg value, by resolving the mimetype mapped to the arg value. Otherwise, chooses the serializer by retrieving the best quality `Accept` headers and matching its value (mimetype). :param serializers: Dictionary of serializers. :param default_media_type: The default media type. :returns: Best matching serializer based on `format` query arg first, then client `Accept` headers or None if no matching serializer.
8,888
def binary_dilation(x, radius=3): mask = disk(radius) x = _binary_dilation(x, selem=mask) return x
Return fast binary morphological dilation of an image. see `skimage.morphology.binary_dilation <http://scikit-image.org/docs/dev/api/skimage.morphology.html#skimage.morphology.binary_dilation>`__. Parameters ----------- x : 2D array A binary image. radius : int For the radius of mask. Returns ------- numpy.array A processed binary image.
8,889
def read_namespaced_event(self, name, namespace, **kwargs): kwargs[] = True if kwargs.get(): return self.read_namespaced_event_with_http_info(name, namespace, **kwargs) else: (data) = self.read_namespaced_event_with_http_info(name, namespace, **kwargs) return data
read_namespaced_event # noqa: E501 read the specified Event # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.read_namespaced_event(name, namespace, async_req=True) >>> result = thread.get() :param async_req bool :param str name: name of the Event (required) :param str namespace: object name and auth scope, such as for teams and projects (required) :param str pretty: If 'true', then the output is pretty printed. :param bool exact: Should the export be exact. Exact export maintains cluster-specific fields like 'Namespace'. :param bool export: Should this value be exported. Export strips fields that a user can not specify. :return: V1beta1Event If the method is called asynchronously, returns the request thread.
8,890
def destroy(self): if self._running is False: return self._running = False if hasattr(self, ): del self.schedule if hasattr(self, ) and self.pub_channel is not None: self.pub_channel.on_recv(None) if hasattr(self.pub_channel, ): self.pub_channel.close() del self.pub_channel if hasattr(self, ): for cb in six.itervalues(self.periodic_callbacks): cb.stop()
Tear down the minion
8,891
def set_cache_complex_value(self, name, value): for item in self.json_state.get(): if item.get() == name: item[] = str(value)
Set a variable in the local complex state dictionary. This does not change the physical device. Useful if you want the device state to refect a new value which has not yet updated from Vera.
8,892
def _join_json_files(cls, prefix, clear=False): filetype_list = [, , ] json_dict = {} try: for filetype in filetype_list: fname = prefix + + filetype + with open(fname, ) as f: json_dict[filetype] = json.load(f) if clear: remove(fname) logger.debug("Removed %s." % fname) except IOError as e: logger.error( % prefix ) logger.exception(e) return None return json_dict
Join different REACH output JSON files into a single JSON object. The output of REACH is broken into three files that need to be joined before processing. Specifically, there will be three files of the form: `<prefix>.uaz.<subcategory>.json`. Parameters ---------- prefix : str The absolute path up to the extensions that reach will add. clear : bool Default False - if True, delete the files as soon as they are loaded. Returns ------- json_obj : dict The result of joining the files, keyed by the three subcategories.
8,893
def on_install(self, editor): EditorExtension.on_install(self, editor) self.setParent(editor) self.setPalette(QApplication.instance().palette()) self.setFont(QApplication.instance().font()) self.editor.panels.refresh() self._background_brush = QBrush(QColor( self.palette().window().color())) self._foreground_pen = QPen(QColor( self.palette().windowText().color())) if self.position == self.Position.FLOATING: self.setAttribute(Qt.WA_TransparentForMouseEvents)
Extends :meth:`spyder.api.EditorExtension.on_install` method to set the editor instance as the parent widget. .. warning:: Don't forget to call **super** if you override this method! :param editor: editor instance :type editor: spyder.plugins.editor.widgets.codeeditor.CodeEditor
8,894
def main(args): args = parse_args(args) setup_logging(args.loglevel) _logger.debug("Starting crazy calculations...") print("The {}-th Fibonacci number is {}".format(args.n, fib(args.n))) _logger.info("Script ends here")
Main entry point allowing external calls Args: args ([str]): command line parameter list
8,895
def facilities(self): facilities = [] try: list_items = self._ad_page_content.select(" except Exception as e: if self._debug: logging.error( "Error getting facilities. Error message: " + e.args[0]) return for li in list_items: facilities.append(li.text) return facilities
This method returns the properties facilities. :return:
8,896
def fingerprint(P, obs1, obs2=None, p0=None, tau=1, k=None, ncv=None): r if obs2 is None: obs2 = obs1 R, D, L = rdl_decomposition(P, k=k, ncv=ncv) mu = L[0, :] w = np.diagonal(D) timescales = timescales_from_eigenvalues(w, tau) if p0 is None: amplitudes = np.dot(mu * obs1, R) * np.dot(L, obs2) else: amplitudes = np.dot(p0 * obs1, R) * np.dot(L, obs2) return timescales, amplitudes
r"""Dynamical fingerprint for equilibrium or relaxation experiment The dynamical fingerprint is given by the implied time-scale spectrum together with the corresponding amplitudes. Parameters ---------- P : (M, M) scipy.sparse matrix Transition matrix obs1 : (M,) ndarray Observable, represented as vector on state space obs2 : (M,) ndarray (optional) Second observable, for cross-correlations p0 : (M,) ndarray (optional) Initial distribution for a relaxation experiment tau : int (optional) Lag time of given transition matrix, for correct time-scales k : int (optional) Number of time-scales and amplitudes to compute ncv : int (optional) The number of Lanczos vectors generated, `ncv` must be greater than k; it is recommended that ncv > 2*k Returns ------- timescales : (N,) ndarray Time-scales of the transition matrix amplitudes : (N,) ndarray Amplitudes for the given observable(s)
8,897
def from_db_value(self, value, expression, connection, context): if value is None: return value return json_decode(value)
"Called in all circumstances when the data is loaded from the database, including in aggregates and values() calls."
8,898
def get_system_config_dir(): from appdirs import site_config_dir return site_config_dir( appname=Config.APPNAME, appauthor=Config.APPAUTHOR )
Returns system config location. E.g. /etc/dvc.conf. Returns: str: path to the system config directory.
8,899
def get_element_mass(self, element): result = [0] for compound in self.material.compounds: c = self.get_compound_mass(compound) f = [c * x for x in emf(compound, [element])] result = [v+f[ix] for ix, v in enumerate(result)] return result[0]
Determine the masses of elements in the package. :returns: [kg] An array of element masses. The sequence of the elements in the result corresponds with the sequence of elements in the element list of the material.