prompt
stringlengths
54
1.42k
classes
sequencelengths
2
4
answer_index
int32
0
3
round
int32
2
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A tape measure with a precision of +/- 0.001 meters measures a distance of 0.747 meters and a coincidence telemeter with a precision of +/- 30 meters reads 78970 meters when measuring a distance between two different points. Using a calculator app, you multiply the former value by the latter and get the solution 58990.590000000000. Using the correct level of precision, what is the result? A. 59000 meters^2 B. 58990.590 meters^2 C. 58990 meters^2 Answer:
[ " A", " B", " C" ]
0
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A balance with a precision of +/- 0.2 grams measures a mass of 91.7 grams and a hydraulic scale with a precision of +/- 0.04 grams reads 1.19 grams when measuring a mass of a different object. You multiply the two values with a computer and get the output 109.123000000000. If we report this output to the proper number of significant figures, what is the answer? A. 109.1 grams^2 B. 109 grams^2 C. 109.123 grams^2 Answer:
[ " A", " B", " C" ]
1
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A stadimeter with a precision of +/- 300 meters measures a distance of 773700 meters and a measuring tape with a precision of +/- 0.01 meters measures a distance between two different points as 0.06 meters. After multiplying the former value by the latter your calculator produces the output 46422.000000000000. If we round this output to the correct number of significant figures, what is the result? A. 46422.0 meters^2 B. 50000 meters^2 C. 46400 meters^2 Answer:
[ " A", " B", " C" ]
1
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A clickwheel with a precision of +/- 0.03 meters measures a distance of 37.13 meters and a hydraulic scale with a precision of +/- 200 grams reads 4200 grams when measuring a mass. After multiplying the first value by the second value your calculator produces the solution 155946.000000000000. Report this solution using the suitable number of significant figures. A. 160000 gram-meters B. 155900 gram-meters C. 155946.00 gram-meters Answer:
[ " A", " B", " C" ]
0
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A measuring tape with a precision of +/- 0.4 meters measures a distance of 453.9 meters and a radar-based method with a precision of +/- 400 meters reads 200 meters when measuring a distance between two different points. Using a calculator app, you multiply the former number by the latter and get the output 90780.000000000000. When this output is written to the suitable number of significant figures, what do we get? A. 90700 meters^2 B. 90000 meters^2 C. 90780.0 meters^2 Answer:
[ " A", " B", " C" ]
1
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A measuring tape with a precision of +/- 0.01 meters takes a measurement of 97.33 meters, and an odometer with a precision of +/- 3000 meters measures a distance between two different points as 8000 meters. Your calculator app yields the solution 778640.000000000000 when multiplying the two values. How can we round this solution to the suitable number of significant figures? A. 800000 meters^2 B. 778000 meters^2 C. 778640.0 meters^2 Answer:
[ " A", " B", " C" ]
0
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- An analytical balance with a precision of +/- 10 grams measures a mass of 380 grams and a measuring stick with a precision of +/- 0.4 meters reads 6.3 meters when measuring a distance. Using a calculator, you multiply the first value by the second value and get the output 2394.000000000000. When this output is written to the appropriate level of precision, what do we get? A. 2400 gram-meters B. 2394.00 gram-meters C. 2390 gram-meters Answer:
[ " A", " B", " C" ]
0
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A measuring flask with a precision of +/- 0.01 liters takes a measurement of 7.15 liters, and a coincidence telemeter with a precision of +/- 0.1 meters reads 94.7 meters when measuring a distance. Using a calculator, you multiply the former value by the latter and get the output 677.105000000000. How would this answer look if we reported it with the proper number of significant figures? A. 677.105 liter-meters B. 677.1 liter-meters C. 677 liter-meters Answer:
[ " A", " B", " C" ]
2
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A measuring rod with a precision of +/- 0.001 meters measures a distance of 0.001 meters and a coincidence telemeter with a precision of +/- 400 meters measures a distance between two different points as 469500 meters. You multiply the former value by the latter with a computer and get the solution 469.500000000000. Round this solution using the suitable level of precision. A. 500 meters^2 B. 400 meters^2 C. 469.5 meters^2 Answer:
[ " A", " B", " C" ]
0
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A radar-based method with a precision of +/- 30 meters takes a measurement of 4390 meters, and a Biltmore stick with a precision of +/- 0.03 meters reads 0.43 meters when measuring a distance between two different points. Your computer produces the output 1887.700000000000 when multiplying the first number by the second number. How would this answer look if we reported it with the correct number of significant figures? A. 1900 meters^2 B. 1887.70 meters^2 C. 1880 meters^2 Answer:
[ " A", " B", " C" ]
0
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A radar-based method with a precision of +/- 1 meters takes a measurement of 9 meters, and a graduated cylinder with a precision of +/- 0.001 liters measures a volume as 0.952 liters. You multiply the former number by the latter with a calculator and get the solution 8.568000000000. Round this solution using the appropriate number of significant figures. A. 8.6 liter-meters B. 8 liter-meters C. 9 liter-meters Answer:
[ " A", " B", " C" ]
2
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A storage container with a precision of +/- 2 liters takes a measurement of 5 liters, and a hydraulic scale with a precision of +/- 1 grams reads 9853 grams when measuring a mass. Your computer produces the output 49265.000000000000 when multiplying the two values. How can we round this output to the appropriate level of precision? A. 49265.0 gram-liters B. 50000 gram-liters C. 49265 gram-liters Answer:
[ " A", " B", " C" ]
1
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A tape measure with a precision of +/- 0.004 meters takes a measurement of 4.438 meters, and a rangefinder with a precision of +/- 0.04 meters measures a distance between two different points as 45.12 meters. After multiplying the former value by the latter your calculator app gets the solution 200.242560000000. How would this answer look if we reported it with the suitable level of precision? A. 200.24 meters^2 B. 200.2 meters^2 C. 200.2426 meters^2 Answer:
[ " A", " B", " C" ]
1
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A chronograph with a precision of +/- 0.4 seconds takes a measurement of 851.2 seconds, and a rangefinder with a precision of +/- 0.004 meters measures a distance as 0.515 meters. Using a calculator, you multiply the first number by the second number and get the solution 438.368000000000. How would this result look if we wrote it with the right number of significant figures? A. 438.368 meter-seconds B. 438.4 meter-seconds C. 438 meter-seconds Answer:
[ " A", " B", " C" ]
2
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A stopwatch with a precision of +/- 0.03 seconds takes a measurement of 0.10 seconds, and an odometer with a precision of +/- 1000 meters measures a distance as 538000 meters. You multiply the numbers with a calculator app and get the output 53800.000000000000. Report this output using the appropriate number of significant figures. A. 53800.00 meter-seconds B. 53000 meter-seconds C. 54000 meter-seconds Answer:
[ " A", " B", " C" ]
2
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A radar-based method with a precision of +/- 300 meters measures a distance of 52100 meters and a stopwatch with a precision of +/- 0.001 seconds measures a duration as 0.003 seconds. Your calculator yields the solution 156.300000000000 when multiplying the two numbers. Round this solution using the appropriate number of significant figures. A. 200 meter-seconds B. 156.3 meter-seconds C. 100 meter-seconds Answer:
[ " A", " B", " C" ]
0
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A biltmore stick with a precision of +/- 0.2 meters takes a measurement of 43.0 meters, and an odometer with a precision of +/- 2000 meters reads 67000 meters when measuring a distance between two different points. Using a calculator app, you multiply the former number by the latter and get the solution 2881000.000000000000. How can we write this solution to the suitable number of significant figures? A. 2881000 meters^2 B. 2900000 meters^2 C. 2881000.00 meters^2 Answer:
[ " A", " B", " C" ]
1
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A spring scale with a precision of +/- 0.03 grams measures a mass of 9.08 grams and a clickwheel with a precision of +/- 0.4 meters measures a distance as 947.1 meters. You multiply the former number by the latter with a computer and get the output 8599.668000000000. If we report this output correctly with respect to the number of significant figures, what is the answer? A. 8599.668 gram-meters B. 8599.7 gram-meters C. 8600 gram-meters Answer:
[ " A", " B", " C" ]
2
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A measuring tape with a precision of +/- 0.3 meters measures a distance of 954.2 meters and an analytical balance with a precision of +/- 0.4 grams measures a mass as 929.8 grams. You multiply the two numbers with a calculator app and get the solution 887215.160000000000. Round this solution using the suitable level of precision. A. 887215.1600 gram-meters B. 887215.2 gram-meters C. 887200 gram-meters Answer:
[ " A", " B", " C" ]
2
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A rangefinder with a precision of +/- 0.4 meters takes a measurement of 890.8 meters, and an odometer with a precision of +/- 4000 meters reads 2000 meters when measuring a distance between two different points. You multiply the first value by the second value with a computer and get the solution 1781600.000000000000. When this solution is reported to the correct number of significant figures, what do we get? A. 2000000 meters^2 B. 1781000 meters^2 C. 1781600.0 meters^2 Answer:
[ " A", " B", " C" ]
0
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A hydraulic scale with a precision of +/- 2000 grams takes a measurement of 937000 grams, and a measuring stick with a precision of +/- 0.01 meters measures a distance as 0.03 meters. Using a calculator app, you multiply the two values and get the output 28110.000000000000. How can we report this output to the proper level of precision? A. 30000 gram-meters B. 28000 gram-meters C. 28110.0 gram-meters Answer:
[ " A", " B", " C" ]
0
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A rangefinder with a precision of +/- 30 meters measures a distance of 4440 meters and a coincidence telemeter with a precision of +/- 2 meters reads 56 meters when measuring a distance between two different points. Using a computer, you multiply the two numbers and get the solution 248640.000000000000. When this solution is written to the appropriate number of significant figures, what do we get? A. 250000 meters^2 B. 248640 meters^2 C. 248640.00 meters^2 Answer:
[ " A", " B", " C" ]
0
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A stopwatch with a precision of +/- 0.001 seconds measures a duration of 9.886 seconds and a storage container with a precision of +/- 10 liters measures a volume as 50 liters. You multiply the former value by the latter with a calculator app and get the solution 494.300000000000. Write this solution using the suitable number of significant figures. A. 490 liter-seconds B. 494.3 liter-seconds C. 500 liter-seconds Answer:
[ " A", " B", " C" ]
2
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A caliper with a precision of +/- 0.002 meters measures a distance of 9.168 meters and a stadimeter with a precision of +/- 4 meters measures a distance between two different points as 282 meters. You multiply the former value by the latter with a computer and get the solution 2585.376000000000. If we report this solution properly with respect to the number of significant figures, what is the result? A. 2590 meters^2 B. 2585 meters^2 C. 2585.376 meters^2 Answer:
[ " A", " B", " C" ]
0
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A radar-based method with a precision of +/- 300 meters takes a measurement of 87200 meters, and a timer with a precision of +/- 0.02 seconds measures a duration as 0.43 seconds. You multiply the two numbers with a calculator app and get the solution 37496.000000000000. How can we express this solution to the proper number of significant figures? A. 37400 meter-seconds B. 37496.00 meter-seconds C. 37000 meter-seconds Answer:
[ " A", " B", " C" ]
2
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A radar-based method with a precision of +/- 1 meters takes a measurement of 9 meters, and an opisometer with a precision of +/- 3 meters reads 565 meters when measuring a distance between two different points. Your calculator app yields the output 5085.000000000000 when multiplying the two values. If we round this output correctly with respect to the number of significant figures, what is the result? A. 5085.0 meters^2 B. 5085 meters^2 C. 5000 meters^2 Answer:
[ " A", " B", " C" ]
2
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A measuring rod with a precision of +/- 0.04 meters takes a measurement of 87.71 meters, and a ruler with a precision of +/- 0.3 meters reads 172.7 meters when measuring a distance between two different points. After multiplying the two numbers your calculator gets the solution 15147.517000000000. If we express this solution correctly with respect to the level of precision, what is the answer? A. 15147.5 meters^2 B. 15150 meters^2 C. 15147.5170 meters^2 Answer:
[ " A", " B", " C" ]
1
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A spring scale with a precision of +/- 0.1 grams takes a measurement of 760.6 grams, and a storage container with a precision of +/- 20 liters reads 270 liters when measuring a volume. You multiply the two numbers with a calculator app and get the output 205362.000000000000. Express this output using the appropriate level of precision. A. 205362.00 gram-liters B. 210000 gram-liters C. 205360 gram-liters Answer:
[ " A", " B", " C" ]
1
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A timer with a precision of +/- 0.004 seconds takes a measurement of 8.796 seconds, and an analytical balance with a precision of +/- 4 grams measures a mass as 1 grams. After multiplying the former value by the latter your computer yields the solution 8.796000000000. If we round this solution suitably with respect to the level of precision, what is the answer? A. 8.8 gram-seconds B. 9 gram-seconds C. 8 gram-seconds Answer:
[ " A", " B", " C" ]
1
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A storage container with a precision of +/- 0.2 liters measures a volume of 69.9 liters and a Biltmore stick with a precision of +/- 0.03 meters reads 0.51 meters when measuring a distance. After multiplying the two numbers your computer yields the solution 35.649000000000. Report this solution using the right level of precision. A. 36 liter-meters B. 35.65 liter-meters C. 35.6 liter-meters Answer:
[ " A", " B", " C" ]
0
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A clickwheel with a precision of +/- 0.02 meters measures a distance of 94.38 meters and a storage container with a precision of +/- 3 liters reads 2519 liters when measuring a volume. After multiplying the first number by the second number your calculator gets the output 237743.220000000000. Express this output using the appropriate level of precision. A. 237743.2200 liter-meters B. 237700 liter-meters C. 237743 liter-meters Answer:
[ " A", " B", " C" ]
1
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A stadimeter with a precision of +/- 100 meters takes a measurement of 637600 meters, and a coincidence telemeter with a precision of +/- 200 meters measures a distance between two different points as 9100 meters. Using a computer, you multiply the first number by the second number and get the solution 5802160000.000000000000. When this solution is rounded to the suitable level of precision, what do we get? A. 5802160000 meters^2 B. 5802160000.00 meters^2 C. 5800000000 meters^2 Answer:
[ " A", " B", " C" ]
2
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A graduated cylinder with a precision of +/- 0.002 liters takes a measurement of 8.796 liters, and a spring scale with a precision of +/- 1 grams reads 608 grams when measuring a mass. Using a calculator, you multiply the two numbers and get the solution 5347.968000000000. Using the correct number of significant figures, what is the answer? A. 5347 gram-liters B. 5347.968 gram-liters C. 5350 gram-liters Answer:
[ " A", " B", " C" ]
2
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A radar-based method with a precision of +/- 200 meters measures a distance of 131200 meters and an odometer with a precision of +/- 4000 meters reads 8071000 meters when measuring a distance between two different points. Using a calculator app, you multiply the first value by the second value and get the output 1058915200000.000000000000. Using the suitable level of precision, what is the result? A. 1058915200000 meters^2 B. 1059000000000 meters^2 C. 1058915200000.0000 meters^2 Answer:
[ " A", " B", " C" ]
1
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A radar-based method with a precision of +/- 1 meters measures a distance of 628 meters and a meter stick with a precision of +/- 0.0002 meters measures a distance between two different points as 0.0085 meters. Your calculator gives the output 5.338000000000 when multiplying the numbers. Using the right number of significant figures, what is the answer? A. 5.3 meters^2 B. 5 meters^2 C. 5.34 meters^2 Answer:
[ " A", " B", " C" ]
0
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A spring scale with a precision of +/- 3000 grams measures a mass of 5961000 grams and a balance with a precision of +/- 0.01 grams measures a mass of a different object as 0.59 grams. Using a calculator app, you multiply the two numbers and get the output 3516990.000000000000. When this output is rounded to the correct level of precision, what do we get? A. 3500000 grams^2 B. 3516990.00 grams^2 C. 3516000 grams^2 Answer:
[ " A", " B", " C" ]
0
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A measuring stick with a precision of +/- 0.3 meters takes a measurement of 4.6 meters, and a clickwheel with a precision of +/- 0.2 meters reads 180.2 meters when measuring a distance between two different points. You multiply the two values with a calculator app and get the solution 828.920000000000. How can we express this solution to the proper number of significant figures? A. 828.92 meters^2 B. 828.9 meters^2 C. 830 meters^2 Answer:
[ " A", " B", " C" ]
2
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- An analytical balance with a precision of +/- 40 grams takes a measurement of 470 grams, and a clickwheel with a precision of +/- 0.4 meters measures a distance as 40.3 meters. Your calculator gives the solution 18941.000000000000 when multiplying the numbers. If we round this solution suitably with respect to the level of precision, what is the result? A. 18940 gram-meters B. 19000 gram-meters C. 18941.00 gram-meters Answer:
[ " A", " B", " C" ]
1
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- An analytical balance with a precision of +/- 1 grams takes a measurement of 1 grams, and a storage container with a precision of +/- 4 liters reads 5526 liters when measuring a volume. You multiply the former value by the latter with a calculator app and get the output 5526.000000000000. How would this result look if we wrote it with the suitable level of precision? A. 6000 gram-liters B. 5526 gram-liters C. 5526.0 gram-liters Answer:
[ " A", " B", " C" ]
0
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A caliper with a precision of +/- 0.04 meters takes a measurement of 34.75 meters, and a graduated cylinder with a precision of +/- 0.004 liters measures a volume as 9.306 liters. After multiplying the first value by the second value your calculator app gets the output 323.383500000000. Report this output using the appropriate level of precision. A. 323.3835 liter-meters B. 323.38 liter-meters C. 323.4 liter-meters Answer:
[ " A", " B", " C" ]
2
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A coincidence telemeter with a precision of +/- 0.4 meters takes a measurement of 660.0 meters, and a caliper with a precision of +/- 0.01 meters reads 2.01 meters when measuring a distance between two different points. You multiply the former value by the latter with a calculator and get the output 1326.600000000000. When this output is written to the appropriate level of precision, what do we get? A. 1330 meters^2 B. 1326.6 meters^2 C. 1326.600 meters^2 Answer:
[ " A", " B", " C" ]
0
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A meter stick with a precision of +/- 0.0001 meters takes a measurement of 0.0241 meters, and a spring scale with a precision of +/- 0.0002 grams reads 0.0383 grams when measuring a mass. After multiplying the two numbers your calculator produces the solution 0.000923030000. If we report this solution suitably with respect to the number of significant figures, what is the answer? A. 0.001 gram-meters B. 0.0009 gram-meters C. 0.000923 gram-meters Answer:
[ " A", " B", " C" ]
2
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A coincidence telemeter with a precision of +/- 10 meters measures a distance of 75250 meters and a clickwheel with a precision of +/- 0.001 meters reads 1.471 meters when measuring a distance between two different points. You multiply the two numbers with a computer and get the solution 110692.750000000000. When this solution is rounded to the proper number of significant figures, what do we get? A. 110692.7500 meters^2 B. 110690 meters^2 C. 110700 meters^2 Answer:
[ " A", " B", " C" ]
2
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A stadimeter with a precision of +/- 2 meters measures a distance of 2 meters and a radar-based method with a precision of +/- 1 meters measures a distance between two different points as 8203 meters. After multiplying the two numbers your computer gives the solution 16406.000000000000. How would this result look if we expressed it with the proper number of significant figures? A. 16406.0 meters^2 B. 16406 meters^2 C. 20000 meters^2 Answer:
[ " A", " B", " C" ]
2
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A storage container with a precision of +/- 40 liters takes a measurement of 760 liters, and a graduated cylinder with a precision of +/- 0.003 liters measures a volume of a different quantity of liquid as 0.077 liters. Your calculator yields the solution 58.520000000000 when multiplying the two values. If we write this solution to the appropriate number of significant figures, what is the result? A. 59 liters^2 B. 58.52 liters^2 C. 50 liters^2 Answer:
[ " A", " B", " C" ]
0
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A balance with a precision of +/- 0.004 grams takes a measurement of 0.012 grams, and a clickwheel with a precision of +/- 0.001 meters measures a distance as 0.667 meters. Your calculator app gets the output 0.008004000000 when multiplying the former number by the latter. When this output is reported to the suitable level of precision, what do we get? A. 0.01 gram-meters B. 0.0080 gram-meters C. 0.008 gram-meters Answer:
[ " A", " B", " C" ]
1
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A balance with a precision of +/- 100 grams takes a measurement of 5400 grams, and a timer with a precision of +/- 0.2 seconds measures a duration as 8.2 seconds. After multiplying the two values your calculator app yields the output 44280.000000000000. Round this output using the proper number of significant figures. A. 44200 gram-seconds B. 44280.00 gram-seconds C. 44000 gram-seconds Answer:
[ " A", " B", " C" ]
2
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A measuring rod with a precision of +/- 0.04 meters measures a distance of 9.36 meters and a hydraulic scale with a precision of +/- 0.02 grams measures a mass as 13.57 grams. After multiplying the former value by the latter your computer gets the output 127.015200000000. How would this answer look if we reported it with the correct number of significant figures? A. 127.015 gram-meters B. 127.02 gram-meters C. 127 gram-meters Answer:
[ " A", " B", " C" ]
2
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A rangefinder with a precision of +/- 0.01 meters measures a distance of 13.81 meters and a tape measure with a precision of +/- 0.0001 meters reads 0.2060 meters when measuring a distance between two different points. After multiplying the values your calculator yields the solution 2.844860000000. If we report this solution to the proper level of precision, what is the answer? A. 2.845 meters^2 B. 2.84 meters^2 C. 2.8449 meters^2 Answer:
[ " A", " B", " C" ]
0
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A hydraulic scale with a precision of +/- 2 grams takes a measurement of 94 grams, and a chronograph with a precision of +/- 0.1 seconds measures a duration as 61.1 seconds. After multiplying the two numbers your calculator app yields the solution 5743.400000000000. Using the right number of significant figures, what is the result? A. 5743 gram-seconds B. 5700 gram-seconds C. 5743.40 gram-seconds Answer:
[ " A", " B", " C" ]
1
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A measuring stick with a precision of +/- 0.1 meters takes a measurement of 295.3 meters, and a tape measure with a precision of +/- 0.003 meters measures a distance between two different points as 0.612 meters. Using a calculator, you multiply the two numbers and get the solution 180.723600000000. How would this result look if we rounded it with the correct number of significant figures? A. 181 meters^2 B. 180.7 meters^2 C. 180.724 meters^2 Answer:
[ " A", " B", " C" ]
0
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A radar-based method with a precision of +/- 300 meters takes a measurement of 46800 meters, and a spring scale with a precision of +/- 2000 grams reads 8000 grams when measuring a mass. Using a calculator app, you multiply the first value by the second value and get the solution 374400000.000000000000. If we express this solution to the right number of significant figures, what is the result? A. 400000000 gram-meters B. 374400000 gram-meters C. 374400000.0 gram-meters Answer:
[ " A", " B", " C" ]
0
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A hydraulic scale with a precision of +/- 300 grams takes a measurement of 244800 grams, and a rangefinder with a precision of +/- 30 meters measures a distance as 10 meters. You multiply the two values with a computer and get the solution 2448000.000000000000. When this solution is expressed to the right level of precision, what do we get? A. 2448000 gram-meters B. 2000000 gram-meters C. 2448000.0 gram-meters Answer:
[ " A", " B", " C" ]
1
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A measuring rod with a precision of +/- 0.001 meters takes a measurement of 3.778 meters, and a coincidence telemeter with a precision of +/- 4 meters measures a distance between two different points as 5 meters. Your calculator gets the solution 18.890000000000 when multiplying the two values. If we round this solution properly with respect to the number of significant figures, what is the result? A. 18 meters^2 B. 18.9 meters^2 C. 20 meters^2 Answer:
[ " A", " B", " C" ]
2
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A stopwatch with a precision of +/- 0.03 seconds takes a measurement of 0.05 seconds, and an odometer with a precision of +/- 200 meters reads 9400 meters when measuring a distance. After multiplying the first number by the second number your calculator yields the solution 470.000000000000. If we round this solution suitably with respect to the level of precision, what is the answer? A. 470.0 meter-seconds B. 400 meter-seconds C. 500 meter-seconds Answer:
[ " A", " B", " C" ]
2
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A radar-based method with a precision of +/- 100 meters measures a distance of 400 meters and a stadimeter with a precision of +/- 10 meters measures a distance between two different points as 60 meters. Using a calculator, you multiply the former value by the latter and get the solution 24000.000000000000. How would this answer look if we reported it with the suitable number of significant figures? A. 24000.0 meters^2 B. 20000 meters^2 C. 24000 meters^2 Answer:
[ " A", " B", " C" ]
1
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A caliper with a precision of +/- 0.003 meters takes a measurement of 0.395 meters, and a coincidence telemeter with a precision of +/- 300 meters measures a distance between two different points as 700 meters. Your computer yields the solution 276.500000000000 when multiplying the two numbers. If we write this solution to the suitable number of significant figures, what is the answer? A. 300 meters^2 B. 200 meters^2 C. 276.5 meters^2 Answer:
[ " A", " B", " C" ]
0
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A ruler with a precision of +/- 0.3 meters measures a distance of 59.5 meters and a chronometer with a precision of +/- 0.0004 seconds measures a duration as 0.0229 seconds. You multiply the two values with a calculator and get the output 1.362550000000. When this output is reported to the appropriate number of significant figures, what do we get? A. 1.4 meter-seconds B. 1.363 meter-seconds C. 1.36 meter-seconds Answer:
[ " A", " B", " C" ]
2
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A coincidence telemeter with a precision of +/- 10 meters takes a measurement of 9170 meters, and an odometer with a precision of +/- 4000 meters reads 8000 meters when measuring a distance between two different points. After multiplying the numbers your calculator app gets the solution 73360000.000000000000. Round this solution using the appropriate number of significant figures. A. 73360000.0 meters^2 B. 70000000 meters^2 C. 73360000 meters^2 Answer:
[ " A", " B", " C" ]
1
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A coincidence telemeter with a precision of +/- 2 meters takes a measurement of 4058 meters, and an opisometer with a precision of +/- 1 meters measures a distance between two different points as 8 meters. Using a calculator, you multiply the numbers and get the solution 32464.000000000000. Round this solution using the proper level of precision. A. 32464.0 meters^2 B. 32464 meters^2 C. 30000 meters^2 Answer:
[ " A", " B", " C" ]
2
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A measuring stick with a precision of +/- 0.001 meters takes a measurement of 7.126 meters, and an opisometer with a precision of +/- 0.3 meters measures a distance between two different points as 91.6 meters. Using a calculator app, you multiply the two numbers and get the solution 652.741600000000. How can we report this solution to the suitable level of precision? A. 653 meters^2 B. 652.7 meters^2 C. 652.742 meters^2 Answer:
[ " A", " B", " C" ]
0
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A coincidence telemeter with a precision of +/- 40 meters takes a measurement of 300 meters, and a tape measure with a precision of +/- 0.0001 meters reads 0.0609 meters when measuring a distance between two different points. Your computer yields the output 18.270000000000 when multiplying the first number by the second number. If we report this output to the right number of significant figures, what is the answer? A. 18.27 meters^2 B. 10 meters^2 C. 18 meters^2 Answer:
[ " A", " B", " C" ]
2
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A radar-based method with a precision of +/- 2 meters takes a measurement of 32 meters, and a measuring stick with a precision of +/- 0.002 meters measures a distance between two different points as 3.884 meters. Your calculator app gives the output 124.288000000000 when multiplying the former number by the latter. How can we write this output to the suitable number of significant figures? A. 124 meters^2 B. 120 meters^2 C. 124.29 meters^2 Answer:
[ " A", " B", " C" ]
1
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A hydraulic scale with a precision of +/- 100 grams measures a mass of 943200 grams and a spring scale with a precision of +/- 1 grams measures a mass of a different object as 935 grams. After multiplying the former value by the latter your calculator produces the output 881892000.000000000000. Write this output using the appropriate level of precision. A. 881892000.000 grams^2 B. 882000000 grams^2 C. 881892000 grams^2 Answer:
[ " A", " B", " C" ]
1
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A stopwatch with a precision of +/- 0.04 seconds takes a measurement of 8.17 seconds, and a storage container with a precision of +/- 0.3 liters reads 91.0 liters when measuring a volume. Using a calculator, you multiply the former value by the latter and get the output 743.470000000000. Using the correct level of precision, what is the result? A. 743.5 liter-seconds B. 743 liter-seconds C. 743.470 liter-seconds Answer:
[ " A", " B", " C" ]
1
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A cathetometer with a precision of +/- 0.00001 meters takes a measurement of 0.00915 meters, and a radar-based method with a precision of +/- 100 meters reads 55900 meters when measuring a distance between two different points. Your computer gets the solution 511.485000000000 when multiplying the two numbers. How would this answer look if we expressed it with the proper number of significant figures? A. 511.485 meters^2 B. 511 meters^2 C. 500 meters^2 Answer:
[ " A", " B", " C" ]
1
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A spring scale with a precision of +/- 40 grams takes a measurement of 4800 grams, and a spring scale with a precision of +/- 0.0003 grams reads 0.5520 grams when measuring a mass of a different object. You multiply the two numbers with a calculator app and get the output 2649.600000000000. How can we write this output to the right level of precision? A. 2649.600 grams^2 B. 2640 grams^2 C. 2650 grams^2 Answer:
[ " A", " B", " C" ]
2
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- An odometer with a precision of +/- 1000 meters measures a distance of 55000 meters and a storage container with a precision of +/- 2 liters measures a volume as 13 liters. Using a calculator app, you multiply the numbers and get the output 715000.000000000000. Write this output using the right level of precision. A. 715000.00 liter-meters B. 720000 liter-meters C. 715000 liter-meters Answer:
[ " A", " B", " C" ]
1
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A measuring flask with a precision of +/- 0.04 liters measures a volume of 0.04 liters and a spring scale with a precision of +/- 400 grams measures a mass as 727000 grams. Your calculator app yields the output 29080.000000000000 when multiplying the first value by the second value. If we express this output to the correct level of precision, what is the answer? A. 29000 gram-liters B. 30000 gram-liters C. 29080.0 gram-liters Answer:
[ " A", " B", " C" ]
1
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A graduated cylinder with a precision of +/- 0.004 liters measures a volume of 7.319 liters and a coincidence telemeter with a precision of +/- 4 meters measures a distance as 1636 meters. Using a calculator, you multiply the two values and get the output 11973.884000000000. If we report this output to the proper number of significant figures, what is the answer? A. 11973.8840 liter-meters B. 11973 liter-meters C. 11970 liter-meters Answer:
[ " A", " B", " C" ]
2
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A measuring rod with a precision of +/- 0.001 meters takes a measurement of 3.974 meters, and a spring scale with a precision of +/- 2000 grams reads 37000 grams when measuring a mass. Your calculator gives the solution 147038.000000000000 when multiplying the former value by the latter. Write this solution using the suitable level of precision. A. 150000 gram-meters B. 147038.00 gram-meters C. 147000 gram-meters Answer:
[ " A", " B", " C" ]
0
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A ruler with a precision of +/- 0.01 meters measures a distance of 0.04 meters and a storage container with a precision of +/- 20 liters reads 720 liters when measuring a volume. Your computer gets the output 28.800000000000 when multiplying the two numbers. If we write this output to the proper number of significant figures, what is the answer? A. 28.8 liter-meters B. 20 liter-meters C. 30 liter-meters Answer:
[ " A", " B", " C" ]
2
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A spring scale with a precision of +/- 40 grams takes a measurement of 630 grams, and a rangefinder with a precision of +/- 1 meters reads 414 meters when measuring a distance. Your calculator app yields the output 260820.000000000000 when multiplying the first value by the second value. How would this answer look if we rounded it with the suitable number of significant figures? A. 260820 gram-meters B. 260000 gram-meters C. 260820.00 gram-meters Answer:
[ " A", " B", " C" ]
1
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A radar-based method with a precision of +/- 40 meters takes a measurement of 100 meters, and a graduated cylinder with a precision of +/- 0.001 liters reads 0.345 liters when measuring a volume. After multiplying the two values your calculator app gives the solution 34.500000000000. How would this result look if we expressed it with the appropriate level of precision? A. 30 liter-meters B. 34 liter-meters C. 34.50 liter-meters Answer:
[ " A", " B", " C" ]
1
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A radar-based method with a precision of +/- 10 meters measures a distance of 60 meters and an analytical balance with a precision of +/- 300 grams measures a mass as 53000 grams. After multiplying the two values your calculator gets the solution 3180000.000000000000. When this solution is reported to the right number of significant figures, what do we get? A. 3000000 gram-meters B. 3180000.0 gram-meters C. 3180000 gram-meters Answer:
[ " A", " B", " C" ]
0
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- An opisometer with a precision of +/- 0.2 meters takes a measurement of 508.1 meters, and a stadimeter with a precision of +/- 200 meters reads 700 meters when measuring a distance between two different points. Your calculator gets the solution 355670.000000000000 when multiplying the former value by the latter. Write this solution using the appropriate level of precision. A. 355600 meters^2 B. 355670.0 meters^2 C. 400000 meters^2 Answer:
[ " A", " B", " C" ]
2
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A radar-based method with a precision of +/- 1 meters takes a measurement of 7 meters, and a chronograph with a precision of +/- 0.1 seconds measures a duration as 0.4 seconds. Your calculator app gets the solution 2.800000000000 when multiplying the numbers. If we report this solution appropriately with respect to the level of precision, what is the answer? A. 2.8 meter-seconds B. 3 meter-seconds C. 2 meter-seconds Answer:
[ " A", " B", " C" ]
1
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A spring scale with a precision of +/- 40 grams takes a measurement of 6750 grams, and an odometer with a precision of +/- 300 meters measures a distance as 500 meters. You multiply the former value by the latter with a calculator and get the output 3375000.000000000000. Round this output using the proper number of significant figures. A. 3375000 gram-meters B. 3375000.0 gram-meters C. 3000000 gram-meters Answer:
[ " A", " B", " C" ]
2
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A stopwatch with a precision of +/- 0.02 seconds measures a duration of 0.10 seconds and a coincidence telemeter with a precision of +/- 200 meters reads 3300 meters when measuring a distance. Your computer produces the output 330.000000000000 when multiplying the numbers. How can we write this output to the proper number of significant figures? A. 330 meter-seconds B. 300 meter-seconds C. 330.00 meter-seconds Answer:
[ " A", " B", " C" ]
0
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- An analytical balance with a precision of +/- 0.0003 grams measures a mass of 0.0429 grams and a storage container with a precision of +/- 4 liters reads 6960 liters when measuring a volume. Using a calculator, you multiply the two numbers and get the solution 298.584000000000. When this solution is expressed to the suitable number of significant figures, what do we get? A. 299 gram-liters B. 298.584 gram-liters C. 298 gram-liters Answer:
[ " A", " B", " C" ]
0
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A biltmore stick with a precision of +/- 0.4 meters takes a measurement of 383.3 meters, and a graduated cylinder with a precision of +/- 0.001 liters reads 0.530 liters when measuring a volume. Using a calculator, you multiply the two values and get the output 203.149000000000. How would this answer look if we reported it with the suitable number of significant figures? A. 203.149 liter-meters B. 203 liter-meters C. 203.1 liter-meters Answer:
[ " A", " B", " C" ]
1
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A clickwheel with a precision of +/- 0.3 meters takes a measurement of 22.9 meters, and an odometer with a precision of +/- 3000 meters reads 7765000 meters when measuring a distance between two different points. Your calculator app gives the output 177818500.000000000000 when multiplying the former value by the latter. If we round this output properly with respect to the number of significant figures, what is the answer? A. 178000000 meters^2 B. 177818000 meters^2 C. 177818500.000 meters^2 Answer:
[ " A", " B", " C" ]
0
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A rangefinder with a precision of +/- 0.03 meters measures a distance of 41.89 meters and a measuring tape with a precision of +/- 0.1 meters reads 4.8 meters when measuring a distance between two different points. Using a calculator, you multiply the two values and get the solution 201.072000000000. How can we report this solution to the right level of precision? A. 200 meters^2 B. 201.1 meters^2 C. 201.07 meters^2 Answer:
[ " A", " B", " C" ]
0
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- An opisometer with a precision of +/- 0.3 meters takes a measurement of 75.5 meters, and a coincidence telemeter with a precision of +/- 4 meters reads 970 meters when measuring a distance between two different points. Your calculator app yields the output 73235.000000000000 when multiplying the two numbers. Round this output using the right number of significant figures. A. 73235.000 meters^2 B. 73235 meters^2 C. 73200 meters^2 Answer:
[ " A", " B", " C" ]
2
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A hydraulic scale with a precision of +/- 4 grams measures a mass of 10 grams and a clickwheel with a precision of +/- 0.1 meters reads 276.8 meters when measuring a distance. You multiply the former number by the latter with a computer and get the solution 2768.000000000000. How can we round this solution to the suitable number of significant figures? A. 2800 gram-meters B. 2768 gram-meters C. 2768.00 gram-meters Answer:
[ " A", " B", " C" ]
0
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A clickwheel with a precision of +/- 0.1 meters takes a measurement of 65.2 meters, and a stadimeter with a precision of +/- 3 meters reads 8193 meters when measuring a distance between two different points. You multiply the former value by the latter with a calculator and get the output 534183.600000000000. Using the appropriate level of precision, what is the answer? A. 534183 meters^2 B. 534183.600 meters^2 C. 534000 meters^2 Answer:
[ " A", " B", " C" ]
2
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A radar-based method with a precision of +/- 4 meters takes a measurement of 980 meters, and a coincidence telemeter with a precision of +/- 40 meters reads 410 meters when measuring a distance between two different points. After multiplying the first value by the second value your calculator yields the output 401800.000000000000. Report this output using the suitable level of precision. A. 401800.00 meters^2 B. 401800 meters^2 C. 400000 meters^2 Answer:
[ " A", " B", " C" ]
2
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A hydraulic scale with a precision of +/- 3 grams takes a measurement of 337 grams, and a hydraulic scale with a precision of +/- 4 grams reads 6 grams when measuring a mass of a different object. Using a calculator app, you multiply the first number by the second number and get the solution 2022.000000000000. When this solution is reported to the right level of precision, what do we get? A. 2022.0 grams^2 B. 2022 grams^2 C. 2000 grams^2 Answer:
[ " A", " B", " C" ]
2
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A cathetometer with a precision of +/- 0.0002 meters measures a distance of 0.0626 meters and an analytical balance with a precision of +/- 0.3 grams measures a mass as 38.0 grams. You multiply the former number by the latter with a calculator app and get the output 2.378800000000. Using the right level of precision, what is the answer? A. 2.379 gram-meters B. 2.38 gram-meters C. 2.4 gram-meters Answer:
[ " A", " B", " C" ]
1
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A measuring tape with a precision of +/- 0.4 meters takes a measurement of 0.6 meters, and a radar-based method with a precision of +/- 2 meters reads 4242 meters when measuring a distance between two different points. Using a calculator app, you multiply the former value by the latter and get the output 2545.200000000000. When this output is written to the suitable level of precision, what do we get? A. 2545.2 meters^2 B. 2545 meters^2 C. 3000 meters^2 Answer:
[ " A", " B", " C" ]
2
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- An odometer with a precision of +/- 4000 meters takes a measurement of 4643000 meters, and an odometer with a precision of +/- 300 meters reads 438500 meters when measuring a distance between two different points. Using a computer, you multiply the former number by the latter and get the solution 2035955500000.000000000000. If we express this solution to the correct number of significant figures, what is the answer? A. 2035955500000 meters^2 B. 2035955500000.0000 meters^2 C. 2036000000000 meters^2 Answer:
[ " A", " B", " C" ]
2
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- An odometer with a precision of +/- 400 meters takes a measurement of 67000 meters, and a ruler with a precision of +/- 0.0003 meters measures a distance between two different points as 0.0429 meters. Using a computer, you multiply the values and get the output 2874.300000000000. If we express this output appropriately with respect to the level of precision, what is the answer? A. 2870 meters^2 B. 2800 meters^2 C. 2874.300 meters^2 Answer:
[ " A", " B", " C" ]
0
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A balance with a precision of +/- 400 grams measures a mass of 867600 grams and a caliper with a precision of +/- 0.02 meters reads 0.62 meters when measuring a distance. Using a calculator, you multiply the first number by the second number and get the output 537912.000000000000. Using the right level of precision, what is the answer? A. 537900 gram-meters B. 540000 gram-meters C. 537912.00 gram-meters Answer:
[ " A", " B", " C" ]
1
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A chronograph with a precision of +/- 0.1 seconds measures a duration of 83.9 seconds and a measuring flask with a precision of +/- 0.02 liters measures a volume as 0.41 liters. Using a calculator, you multiply the former number by the latter and get the output 34.399000000000. If we round this output to the appropriate number of significant figures, what is the answer? A. 34.4 liter-seconds B. 34.40 liter-seconds C. 34 liter-seconds Answer:
[ " A", " B", " C" ]
2
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A balance with a precision of +/- 300 grams measures a mass of 68900 grams and a radar-based method with a precision of +/- 10 meters reads 60 meters when measuring a distance. Your calculator gets the output 4134000.000000000000 when multiplying the former value by the latter. If we round this output to the right number of significant figures, what is the result? A. 4134000.0 gram-meters B. 4134000 gram-meters C. 4000000 gram-meters Answer:
[ " A", " B", " C" ]
2
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A storage container with a precision of +/- 10 liters takes a measurement of 64030 liters, and a rangefinder with a precision of +/- 30 meters measures a distance as 81680 meters. You multiply the former value by the latter with a computer and get the solution 5229970400.000000000000. How would this result look if we rounded it with the suitable level of precision? A. 5230000000 liter-meters B. 5229970400 liter-meters C. 5229970400.0000 liter-meters Answer:
[ " A", " B", " C" ]
0
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A coincidence telemeter with a precision of +/- 300 meters takes a measurement of 751300 meters, and a measuring stick with a precision of +/- 0.003 meters reads 0.420 meters when measuring a distance between two different points. After multiplying the two values your calculator gets the solution 315546.000000000000. Express this solution using the appropriate number of significant figures. A. 315546.000 meters^2 B. 316000 meters^2 C. 315500 meters^2 Answer:
[ " A", " B", " C" ]
1
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A measuring rod with a precision of +/- 0.01 meters takes a measurement of 2.82 meters, and a chronograph with a precision of +/- 0.04 seconds measures a duration as 4.88 seconds. Using a computer, you multiply the numbers and get the solution 13.761600000000. How would this result look if we rounded it with the correct number of significant figures? A. 13.8 meter-seconds B. 13.76 meter-seconds C. 13.762 meter-seconds Answer:
[ " A", " B", " C" ]
0
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A stopwatch with a precision of +/- 0.4 seconds measures a duration of 0.5 seconds and an analytical balance with a precision of +/- 10 grams reads 820 grams when measuring a mass. After multiplying the former number by the latter your computer produces the solution 410.000000000000. How would this answer look if we expressed it with the right level of precision? A. 410 gram-seconds B. 410.0 gram-seconds C. 400 gram-seconds Answer:
[ " A", " B", " C" ]
2
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A hydraulic scale with a precision of +/- 2 grams measures a mass of 27 grams and a measuring flask with a precision of +/- 0.02 liters reads 22.03 liters when measuring a volume. After multiplying the two values your calculator yields the solution 594.810000000000. How would this answer look if we wrote it with the right level of precision? A. 594.81 gram-liters B. 594 gram-liters C. 590 gram-liters Answer:
[ " A", " B", " C" ]
2
2