prompt
stringlengths 54
1.42k
| classes
sequencelengths 2
4
| answer_index
int32 0
3
| round
int32 2
2
|
---|---|---|---|
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures .
Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule).
---
A coincidence telemeter with a precision of +/- 1 meters takes a measurement of 5121 meters, and a clickwheel with a precision of +/- 0.004 meters measures a distance between two different points as 0.002 meters. You divide the numbers with a calculator and get the output. Using the right level of precision, what is the result?
A. 2560500
B. 2560500.0
C. 3000000
Answer: | [
" A",
" B",
" C"
] | 2 | 2 |
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures .
Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule).
---
A measuring rod with a precision of +/- 0.0004 meters takes a measurement of 0.3685 meters, and a chronometer with a precision of +/- 0.0002 seconds reads 0.0573 seconds when measuring a duration. Using a calculator, you divide the first number by the second number and get the solution. Using the correct number of significant figures, what is the result?
A. 6.4311 meters/second
B. 6.431 meters/second
C. 6.43 meters/second
Answer: | [
" A",
" B",
" C"
] | 2 | 2 |
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures .
Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule).
---
A stadimeter with a precision of +/- 300 meters measures a distance of 719000 meters and a measuring rod with a precision of +/- 0.0003 meters measures a distance between two different points as 0.0361 meters. Using a computer, you divide the two values and get the output. Write this output using the proper number of significant figures.
A. 19916800
B. 19900000
C. 19916897.507
Answer: | [
" A",
" B",
" C"
] | 1 | 2 |
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures .
Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule).
---
A graduated cylinder with a precision of +/- 0.002 liters takes a measurement of 5.599 liters, and a Biltmore stick with a precision of +/- 0.01 meters reads 38.53 meters when measuring a distance. You multiply the former number by the latter with a calculator app and get the solution. How would this answer look if we reported it with the proper level of precision?
A. 215.7 liter-meters
B. 215.7295 liter-meters
C. 215.73 liter-meters
Answer: | [
" A",
" B",
" C"
] | 0 | 2 |
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures .
Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule).
---
A cathetometer with a precision of +/- 0.00004 meters takes a measurement of 0.00770 meters, and a caliper with a precision of +/- 0.04 meters measures a distance between two different points as 6.56 meters. You multiply the numbers with a calculator app and get the output. If we round this output to the right number of significant figures, what is the result?
A. 0.051 meters^2
B. 0.05 meters^2
C. 0.0505 meters^2
Answer: | [
" A",
" B",
" C"
] | 2 | 2 |
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures .
Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule).
---
A hydraulic scale with a precision of +/- 10 grams measures a mass of 200 grams and a coincidence telemeter with a precision of +/- 3 meters reads 343 meters when measuring a distance. You multiply the numbers with a computer and get the solution. When this solution is written to the correct level of precision, what do we get?
A. 68600.00 gram-meters
B. 69000 gram-meters
C. 68600 gram-meters
Answer: | [
" A",
" B",
" C"
] | 1 | 2 |
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures .
Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule).
---
A storage container with a precision of +/- 1 liters measures a volume of 7796 liters and a measuring tape with a precision of +/- 0.03 meters measures a distance as 0.08 meters. You divide the two numbers with a calculator and get the output. Write this output using the right level of precision.
A. 97450.0 liters/meter
B. 100000 liters/meter
C. 97450 liters/meter
Answer: | [
" A",
" B",
" C"
] | 1 | 2 |
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures .
Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule).
---
A coincidence telemeter with a precision of +/- 300 meters measures a distance of 7500 meters and a stadimeter with a precision of +/- 30 meters reads 54290 meters when measuring a distance between two different points. Using a calculator app, you multiply the values and get the solution. Report this solution using the appropriate number of significant figures.
A. 407175000 meters^2
B. 410000000 meters^2
C. 407175000.00 meters^2
Answer: | [
" A",
" B",
" C"
] | 1 | 2 |
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures .
Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule).
---
An opisometer with a precision of +/- 0.02 meters takes a measurement of 9.01 meters, and a Biltmore stick with a precision of +/- 0.01 meters reads 6.04 meters when measuring a distance between two different points. After multiplying the first number by the second number your computer yields the output. When this output is written to the correct number of significant figures, what do we get?
A. 54.4 meters^2
B. 54.420 meters^2
C. 54.42 meters^2
Answer: | [
" A",
" B",
" C"
] | 0 | 2 |
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures .
Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule).
---
A hydraulic scale with a precision of +/- 20 grams takes a measurement of 70 grams, and a storage container with a precision of +/- 3 liters reads 12 liters when measuring a volume. Your computer produces the output when multiplying the numbers. If we write this output to the suitable level of precision, what is the result?
A. 800 gram-liters
B. 840 gram-liters
C. 840.0 gram-liters
Answer: | [
" A",
" B",
" C"
] | 0 | 2 |
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures .
Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule).
---
A biltmore stick with a precision of +/- 0.4 meters measures a distance of 2.7 meters and a rangefinder with a precision of +/- 0.004 meters measures a distance between two different points as 0.037 meters. After multiplying the two numbers your computer yields the output. If we round this output suitably with respect to the number of significant figures, what is the result?
A. 0.100 meters^2
B. 0.10 meters^2
C. 0.1 meters^2
Answer: | [
" A",
" B",
" C"
] | 0 | 2 |
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures .
Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule).
---
A measuring stick with a precision of +/- 0.3 meters takes a measurement of 9.7 meters, and an odometer with a precision of +/- 100 meters measures a distance between two different points as 830300 meters. Your calculator gives the output when multiplying the two values. When this output is expressed to the right level of precision, what do we get?
A. 8053900 meters^2
B. 8100000 meters^2
C. 8053910.00 meters^2
Answer: | [
" A",
" B",
" C"
] | 1 | 2 |
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures .
Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule).
---
A graduated cylinder with a precision of +/- 0.002 liters measures a volume of 0.434 liters and a Biltmore stick with a precision of +/- 0.01 meters reads 0.03 meters when measuring a distance. After dividing the two numbers your computer produces the solution. If we report this solution to the appropriate number of significant figures, what is the answer?
A. 14.5 liters/meter
B. 10 liters/meter
C. 14.47 liters/meter
Answer: | [
" A",
" B",
" C"
] | 1 | 2 |
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures .
Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule).
---
A clickwheel with a precision of +/- 0.004 meters takes a measurement of 0.855 meters, and a coincidence telemeter with a precision of +/- 10 meters reads 90 meters when measuring a distance between two different points. After multiplying the first number by the second number your calculator yields the output. Using the right level of precision, what is the result?
A. 77.0 meters^2
B. 70 meters^2
C. 80 meters^2
Answer: | [
" A",
" B",
" C"
] | 2 | 2 |
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures .
Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule).
---
A clickwheel with a precision of +/- 0.003 meters takes a measurement of 0.665 meters, and an odometer with a precision of +/- 200 meters reads 600 meters when measuring a distance between two different points. Using a computer, you multiply the former value by the latter and get the solution. Round this solution using the correct number of significant figures.
A. 399.0 meters^2
B. 400 meters^2
C. 300 meters^2
Answer: | [
" A",
" B",
" C"
] | 1 | 2 |
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures .
Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule).
---
A timer with a precision of +/- 0.2 seconds measures a duration of 775.1 seconds and a tape measure with a precision of +/- 0.0001 meters measures a distance as 0.0010 meters. Using a calculator app, you divide the first number by the second number and get the solution. How can we express this solution to the correct level of precision?
A. 775100.00 seconds/meter
B. 780000 seconds/meter
C. 775100.0 seconds/meter
Answer: | [
" A",
" B",
" C"
] | 1 | 2 |
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures .
Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule).
---
A storage container with a precision of +/- 2 liters measures a volume of 98 liters and an odometer with a precision of +/- 4000 meters measures a distance as 202000 meters. After multiplying the two values your calculator gets the solution. How would this answer look if we reported it with the suitable level of precision?
A. 19796000.00 liter-meters
B. 19796000 liter-meters
C. 20000000 liter-meters
Answer: | [
" A",
" B",
" C"
] | 2 | 2 |
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures .
Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule).
---
A ruler with a precision of +/- 0.2 meters takes a measurement of 0.4 meters, and a storage container with a precision of +/- 30 liters measures a volume as 40 liters. After multiplying the first value by the second value your calculator app yields the solution. Using the correct level of precision, what is the result?
A. 20 liter-meters
B. 16.0 liter-meters
C. 10 liter-meters
Answer: | [
" A",
" B",
" C"
] | 0 | 2 |
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures .
Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule).
---
A measuring stick with a precision of +/- 0.01 meters takes a measurement of 0.65 meters, and a timer with a precision of +/- 0.3 seconds reads 29.6 seconds when measuring a duration. After multiplying the numbers your calculator yields the solution. Write this solution using the suitable number of significant figures.
A. 19.2 meter-seconds
B. 19 meter-seconds
C. 19.24 meter-seconds
Answer: | [
" A",
" B",
" C"
] | 1 | 2 |
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures .
Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule).
---
A radar-based method with a precision of +/- 3 meters measures a distance of 27 meters and a measuring flask with a precision of +/- 0.01 liters measures a volume as 5.15 liters. You divide the former number by the latter with a computer and get the output. If we round this output to the right level of precision, what is the answer?
A. 5.24 meters/liter
B. 5 meters/liter
C. 5.2 meters/liter
Answer: | [
" A",
" B",
" C"
] | 2 | 2 |
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures .
Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule).
---
A balance with a precision of +/- 100 grams measures a mass of 61900 grams and a measuring flask with a precision of +/- 0.01 liters reads 0.56 liters when measuring a volume. After dividing the two numbers your calculator gets the output. Report this output using the correct level of precision.
A. 110000 grams/liter
B. 110500 grams/liter
C. 110535.71 grams/liter
Answer: | [
" A",
" B",
" C"
] | 0 | 2 |
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures .
Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule).
---
A spring scale with a precision of +/- 1000 grams measures a mass of 6785000 grams and a measuring flask with a precision of +/- 0.02 liters reads 2.40 liters when measuring a volume. Your calculator gives the output when multiplying the values. How can we report this output to the proper number of significant figures?
A. 16284000 gram-liters
B. 16284000.000 gram-liters
C. 16300000 gram-liters
Answer: | [
" A",
" B",
" C"
] | 2 | 2 |
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures .
Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule).
---
A chronograph with a precision of +/- 0.4 seconds takes a measurement of 9.7 seconds, and a measuring flask with a precision of +/- 0.03 liters measures a volume as 92.34 liters. Your calculator produces the solution when multiplying the first value by the second value. Using the correct level of precision, what is the result?
A. 895.7 liter-seconds
B. 895.70 liter-seconds
C. 900 liter-seconds
Answer: | [
" A",
" B",
" C"
] | 2 | 2 |
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures .
Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule).
---
A measuring stick with a precision of +/- 0.4 meters measures a distance of 957.0 meters and a caliper with a precision of +/- 0.001 meters reads 0.057 meters when measuring a distance between two different points. Your calculator produces the output when multiplying the values. How can we write this output to the appropriate level of precision?
A. 54.55 meters^2
B. 54.5 meters^2
C. 55 meters^2
Answer: | [
" A",
" B",
" C"
] | 2 | 2 |
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures .
Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule).
---
A hydraulic scale with a precision of +/- 2000 grams takes a measurement of 384000 grams, and a measuring flask with a precision of +/- 0.002 liters reads 3.326 liters when measuring a volume. You multiply the numbers with a computer and get the solution. Report this solution using the proper level of precision.
A. 1277184.000 gram-liters
B. 1280000 gram-liters
C. 1277000 gram-liters
Answer: | [
" A",
" B",
" C"
] | 1 | 2 |
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures .
Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule).
---
An analytical balance with a precision of +/- 1 grams measures a mass of 9368 grams and a coincidence telemeter with a precision of +/- 10 meters reads 8070 meters when measuring a distance. You multiply the first value by the second value with a calculator and get the output. How can we write this output to the right level of precision?
A. 75599760 gram-meters
B. 75599760.000 gram-meters
C. 75600000 gram-meters
Answer: | [
" A",
" B",
" C"
] | 2 | 2 |
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures .
Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule).
---
An odometer with a precision of +/- 3000 meters measures a distance of 6090000 meters and a cathetometer with a precision of +/- 0.00003 meters reads 0.00919 meters when measuring a distance between two different points. Using a calculator app, you multiply the two values and get the solution. If we round this solution to the proper level of precision, what is the result?
A. 55967.100 meters^2
B. 56000 meters^2
C. 55000 meters^2
Answer: | [
" A",
" B",
" C"
] | 1 | 2 |
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures .
Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule).
---
A spring scale with a precision of +/- 3000 grams takes a measurement of 212000 grams, and a measuring rod with a precision of +/- 0.004 meters reads 6.791 meters when measuring a distance. After dividing the two numbers your computer gets the output. When this output is written to the correct number of significant figures, what do we get?
A. 31000 grams/meter
B. 31217.788 grams/meter
C. 31200 grams/meter
Answer: | [
" A",
" B",
" C"
] | 2 | 2 |
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures .
Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule).
---
A biltmore stick with a precision of +/- 0.3 meters takes a measurement of 26.1 meters, and a spring scale with a precision of +/- 0.003 grams reads 0.012 grams when measuring a mass. Your calculator produces the solution when dividing the former value by the latter. How would this result look if we wrote it with the proper number of significant figures?
A. 2175.0 meters/gram
B. 2175.00 meters/gram
C. 2200 meters/gram
Answer: | [
" A",
" B",
" C"
] | 2 | 2 |
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures .
Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule).
---
A tape measure with a precision of +/- 0.004 meters measures a distance of 5.664 meters and a graduated cylinder with a precision of +/- 0.004 liters reads 0.002 liters when measuring a volume. Using a computer, you divide the first number by the second number and get the solution. How would this answer look if we expressed it with the proper level of precision?
A. 2832.0 meters/liter
B. 3000 meters/liter
C. 2832.000 meters/liter
Answer: | [
" A",
" B",
" C"
] | 1 | 2 |
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures .
Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule).
---
A graduated cylinder with a precision of +/- 0.003 liters measures a volume of 0.962 liters and a radar-based method with a precision of +/- 30 meters reads 2900 meters when measuring a distance. You multiply the two numbers with a calculator app and get the output. How would this answer look if we reported it with the right level of precision?
A. 2790 liter-meters
B. 2780 liter-meters
C. 2789.800 liter-meters
Answer: | [
" A",
" B",
" C"
] | 0 | 2 |
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures .
Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule).
---
An odometer with a precision of +/- 3000 meters measures a distance of 76000 meters and an opisometer with a precision of +/- 0.01 meters reads 0.02 meters when measuring a distance between two different points. Your calculator yields the output when dividing the values. Using the appropriate number of significant figures, what is the answer?
A. 3800000
B. 4000000
C. 3800000.0
Answer: | [
" A",
" B",
" C"
] | 1 | 2 |
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures .
Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule).
---
A balance with a precision of +/- 30 grams takes a measurement of 69120 grams, and a coincidence telemeter with a precision of +/- 20 meters measures a distance as 6460 meters. Using a computer, you multiply the numbers and get the output. How would this answer look if we wrote it with the proper number of significant figures?
A. 446515200.000 gram-meters
B. 447000000 gram-meters
C. 446515200 gram-meters
Answer: | [
" A",
" B",
" C"
] | 1 | 2 |
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures .
Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule).
---
A radar-based method with a precision of +/- 3 meters takes a measurement of 5 meters, and a measuring stick with a precision of +/- 0.001 meters measures a distance between two different points as 0.038 meters. After dividing the former value by the latter your computer gives the solution. If we express this solution to the right level of precision, what is the result?
A. 100
B. 131.6
C. 131
Answer: | [
" A",
" B",
" C"
] | 0 | 2 |
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures .
Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule).
---
A storage container with a precision of +/- 40 liters measures a volume of 3690 liters and a clickwheel with a precision of +/- 0.4 meters reads 8.5 meters when measuring a distance. Your calculator app yields the output when multiplying the former number by the latter. If we round this output appropriately with respect to the number of significant figures, what is the answer?
A. 31365.00 liter-meters
B. 31360 liter-meters
C. 31000 liter-meters
Answer: | [
" A",
" B",
" C"
] | 2 | 2 |
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures .
Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule).
---
A coincidence telemeter with a precision of +/- 3 meters measures a distance of 9 meters and a stadimeter with a precision of +/- 0.4 meters measures a distance between two different points as 4.8 meters. After dividing the first value by the second value your calculator app produces the output. How would this answer look if we wrote it with the appropriate number of significant figures?
A. 1
B. 1.9
C. 2
Answer: | [
" A",
" B",
" C"
] | 2 | 2 |
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures .
Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule).
---
A measuring rod with a precision of +/- 0.002 meters takes a measurement of 0.408 meters, and a coincidence telemeter with a precision of +/- 4 meters measures a distance between two different points as 10 meters. You multiply the values with a calculator app and get the solution. If we round this solution appropriately with respect to the level of precision, what is the result?
A. 4.08 meters^2
B. 4 meters^2
C. 4.1 meters^2
Answer: | [
" A",
" B",
" C"
] | 2 | 2 |
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures .
Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule).
---
A balance with a precision of +/- 2 grams takes a measurement of 8 grams, and a graduated cylinder with a precision of +/- 0.001 liters measures a volume as 0.638 liters. Using a calculator app, you divide the former value by the latter and get the output. How can we round this output to the appropriate number of significant figures?
A. 12 grams/liter
B. 12.5 grams/liter
C. 10 grams/liter
Answer: | [
" A",
" B",
" C"
] | 2 | 2 |
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures .
Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule).
---
A coincidence telemeter with a precision of +/- 0.3 meters takes a measurement of 0.1 meters, and a coincidence telemeter with a precision of +/- 2 meters measures a distance between two different points as 36 meters. Your computer gets the output when multiplying the former number by the latter. Round this output using the right number of significant figures.
A. 3 meters^2
B. 3.6 meters^2
C. 4 meters^2
Answer: | [
" A",
" B",
" C"
] | 2 | 2 |
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures .
Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule).
---
A measuring tape with a precision of +/- 0.1 meters measures a distance of 0.7 meters and a radar-based method with a precision of +/- 300 meters reads 5900 meters when measuring a distance between two different points. Your calculator gives the solution when multiplying the numbers. Round this solution using the right number of significant figures.
A. 4130.0 meters^2
B. 4000 meters^2
C. 4100 meters^2
Answer: | [
" A",
" B",
" C"
] | 1 | 2 |
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures .
Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule).
---
A clickwheel with a precision of +/- 0.3 meters takes a measurement of 50.1 meters, and a stadimeter with a precision of +/- 4 meters reads 39 meters when measuring a distance between two different points. After multiplying the former number by the latter your calculator app gives the solution. How can we round this solution to the right number of significant figures?
A. 1953.90 meters^2
B. 2000 meters^2
C. 1953 meters^2
Answer: | [
" A",
" B",
" C"
] | 1 | 2 |
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures .
Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule).
---
An odometer with a precision of +/- 400 meters measures a distance of 366100 meters and a graduated cylinder with a precision of +/- 0.001 liters reads 5.856 liters when measuring a volume. You divide the former number by the latter with a calculator and get the solution. When this solution is written to the correct number of significant figures, what do we get?
A. 62517.0765 meters/liter
B. 62520 meters/liter
C. 62500 meters/liter
Answer: | [
" A",
" B",
" C"
] | 1 | 2 |
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures .
Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule).
---
An odometer with a precision of +/- 4000 meters measures a distance of 8000 meters and a storage container with a precision of +/- 1 liters measures a volume as 4 liters. Your calculator app produces the solution when multiplying the former number by the latter. How can we write this solution to the right level of precision?
A. 32000 liter-meters
B. 32000.0 liter-meters
C. 30000 liter-meters
Answer: | [
" A",
" B",
" C"
] | 2 | 2 |
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures .
Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule).
---
An opisometer with a precision of +/- 0.0003 meters takes a measurement of 0.0060 meters, and a clickwheel with a precision of +/- 0.004 meters measures a distance between two different points as 0.006 meters. You divide the two numbers with a calculator and get the solution. If we express this solution to the appropriate level of precision, what is the answer?
A. 1
B. 1.000
C. 1.0
Answer: | [
" A",
" B",
" C"
] | 0 | 2 |
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures .
Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule).
---
A biltmore stick with a precision of +/- 0.01 meters takes a measurement of 35.15 meters, and a measuring tape with a precision of +/- 0.04 meters reads 0.06 meters when measuring a distance between two different points. Your calculator yields the solution when multiplying the values. If we report this solution correctly with respect to the number of significant figures, what is the result?
A. 2 meters^2
B. 2.1 meters^2
C. 2.11 meters^2
Answer: | [
" A",
" B",
" C"
] | 0 | 2 |
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures .
Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule).
---
A ruler with a precision of +/- 0.004 meters measures a distance of 4.318 meters and a rangefinder with a precision of +/- 20 meters reads 260 meters when measuring a distance between two different points. Your computer gives the solution when multiplying the former number by the latter. If we report this solution to the correct level of precision, what is the answer?
A. 1120 meters^2
B. 1100 meters^2
C. 1122.68 meters^2
Answer: | [
" A",
" B",
" C"
] | 1 | 2 |
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures .
Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule).
---
A stopwatch with a precision of +/- 0.01 seconds measures a duration of 9.89 seconds and a rangefinder with a precision of +/- 0.3 meters measures a distance as 581.2 meters. You multiply the former number by the latter with a calculator and get the solution. Express this solution using the proper level of precision.
A. 5750 meter-seconds
B. 5748.068 meter-seconds
C. 5748.1 meter-seconds
Answer: | [
" A",
" B",
" C"
] | 0 | 2 |
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures .
Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule).
---
A measuring stick with a precision of +/- 0.001 meters takes a measurement of 0.094 meters, and an odometer with a precision of +/- 3000 meters measures a distance between two different points as 58000 meters. Your calculator app gives the solution when multiplying the two numbers. How would this result look if we rounded it with the proper number of significant figures?
A. 5452.00 meters^2
B. 5500 meters^2
C. 5000 meters^2
Answer: | [
" A",
" B",
" C"
] | 1 | 2 |
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures .
Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule).
---
A rangefinder with a precision of +/- 0.02 meters takes a measurement of 0.62 meters, and a measuring tape with a precision of +/- 0.04 meters reads 0.06 meters when measuring a distance between two different points. You divide the numbers with a calculator and get the solution. How can we report this solution to the right number of significant figures?
A. 10.33
B. 10
C. 10.3
Answer: | [
" A",
" B",
" C"
] | 1 | 2 |
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures .
Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule).
---
A measuring flask with a precision of +/- 0.04 liters measures a volume of 0.03 liters and a measuring tape with a precision of +/- 0.01 meters measures a distance as 63.75 meters. Your calculator yields the solution when multiplying the two values. Using the right number of significant figures, what is the result?
A. 1.91 liter-meters
B. 1.9 liter-meters
C. 2 liter-meters
Answer: | [
" A",
" B",
" C"
] | 2 | 2 |
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures .
Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule).
---
A caliper with a precision of +/- 0.01 meters measures a distance of 41.10 meters and a hydraulic scale with a precision of +/- 0.0004 grams reads 0.0009 grams when measuring a mass. You divide the two values with a calculator app and get the solution. If we write this solution to the appropriate number of significant figures, what is the answer?
A. 45666.7 meters/gram
B. 45666.67 meters/gram
C. 50000 meters/gram
Answer: | [
" A",
" B",
" C"
] | 2 | 2 |
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures .
Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule).
---
A radar-based method with a precision of +/- 1 meters measures a distance of 463 meters and a clickwheel with a precision of +/- 0.002 meters measures a distance between two different points as 0.006 meters. You divide the numbers with a calculator and get the solution. When this solution is written to the suitable number of significant figures, what do we get?
A. 77166.7
B. 80000
C. 77166
Answer: | [
" A",
" B",
" C"
] | 1 | 2 |
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures .
Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule).
---
An analytical balance with a precision of +/- 0.002 grams measures a mass of 8.679 grams and a measuring stick with a precision of +/- 0.03 meters reads 0.06 meters when measuring a distance. Using a calculator, you divide the first number by the second number and get the output. If we write this output to the appropriate level of precision, what is the result?
A. 144.6 grams/meter
B. 144.65 grams/meter
C. 100 grams/meter
Answer: | [
" A",
" B",
" C"
] | 2 | 2 |
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures .
Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule).
---
A hydraulic scale with a precision of +/- 4000 grams measures a mass of 9000 grams and a measuring tape with a precision of +/- 0.3 meters measures a distance as 2.0 meters. You multiply the former value by the latter with a calculator app and get the output. How can we write this output to the correct level of precision?
A. 18000 gram-meters
B. 18000.0 gram-meters
C. 20000 gram-meters
Answer: | [
" A",
" B",
" C"
] | 2 | 2 |
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures .
Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule).
---
A measuring stick with a precision of +/- 0.004 meters measures a distance of 8.078 meters and a cathetometer with a precision of +/- 0.00003 meters reads 0.07655 meters when measuring a distance between two different points. Your calculator app yields the output when dividing the first number by the second number. If we report this output correctly with respect to the number of significant figures, what is the result?
A. 105.526
B. 105.5258
C. 105.5
Answer: | [
" A",
" B",
" C"
] | 2 | 2 |
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures .
Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule).
---
An opisometer with a precision of +/- 0.0003 meters measures a distance of 0.0005 meters and a chronometer with a precision of +/- 0.00003 seconds measures a duration as 0.00001 seconds. You divide the former value by the latter with a calculator and get the output. If we report this output to the correct number of significant figures, what is the result?
A. 50.0000 meters/second
B. 50 meters/second
C. 50.0 meters/second
Answer: | [
" A",
" B",
" C"
] | 1 | 2 |
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures .
Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule).
---
A measuring tape with a precision of +/- 0.01 meters takes a measurement of 2.56 meters, and a radar-based method with a precision of +/- 4 meters measures a distance between two different points as 10 meters. After multiplying the values your calculator produces the solution. When this solution is expressed to the proper number of significant figures, what do we get?
A. 25.60 meters^2
B. 25 meters^2
C. 26 meters^2
Answer: | [
" A",
" B",
" C"
] | 2 | 2 |
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures .
Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule).
---
A clickwheel with a precision of +/- 0.002 meters measures a distance of 2.638 meters and a clickwheel with a precision of +/- 0.003 meters measures a distance between two different points as 0.003 meters. After dividing the two numbers your calculator app gets the solution. Report this solution using the proper level of precision.
A. 900
B. 879.3
C. 879.333
Answer: | [
" A",
" B",
" C"
] | 0 | 2 |
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures .
Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule).
---
An analytical balance with a precision of +/- 30 grams measures a mass of 61780 grams and a measuring tape with a precision of +/- 0.2 meters reads 34.0 meters when measuring a distance. You multiply the first number by the second number with a calculator app and get the solution. If we report this solution to the proper number of significant figures, what is the result?
A. 2100520.000 gram-meters
B. 2100520 gram-meters
C. 2100000 gram-meters
Answer: | [
" A",
" B",
" C"
] | 2 | 2 |
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures .
Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule).
---
A storage container with a precision of +/- 40 liters takes a measurement of 12810 liters, and a stadimeter with a precision of +/- 0.2 meters reads 0.8 meters when measuring a distance. After dividing the two values your calculator gets the output. Using the correct level of precision, what is the answer?
A. 16012.5 liters/meter
B. 16010 liters/meter
C. 20000 liters/meter
Answer: | [
" A",
" B",
" C"
] | 2 | 2 |
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures .
Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule).
---
A radar-based method with a precision of +/- 2 meters measures a distance of 166 meters and a Biltmore stick with a precision of +/- 0.2 meters measures a distance between two different points as 91.3 meters. You divide the two numbers with a calculator and get the output. Using the appropriate level of precision, what is the result?
A. 1
B. 1.82
C. 1.818
Answer: | [
" A",
" B",
" C"
] | 1 | 2 |
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures .
Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule).
---
A radar-based method with a precision of +/- 20 meters measures a distance of 7960 meters and a cathetometer with a precision of +/- 0.00004 meters reads 0.00059 meters when measuring a distance between two different points. After dividing the first number by the second number your calculator app produces the output. If we round this output to the appropriate level of precision, what is the answer?
A. 13491525.42
B. 13491520
C. 13000000
Answer: | [
" A",
" B",
" C"
] | 2 | 2 |
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures .
Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule).
---
A cathetometer with a precision of +/- 0.00001 meters measures a distance of 0.00457 meters and a ruler with a precision of +/- 0.0001 meters measures a distance between two different points as 0.7446 meters. You multiply the two values with a calculator and get the output. Express this output using the appropriate level of precision.
A. 0.0034 meters^2
B. 0.00340 meters^2
C. 0.003 meters^2
Answer: | [
" A",
" B",
" C"
] | 1 | 2 |
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures .
Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule).
---
A timer with a precision of +/- 0.3 seconds measures a duration of 43.0 seconds and a coincidence telemeter with a precision of +/- 20 meters measures a distance as 7190 meters. You multiply the numbers with a calculator and get the solution. If we report this solution to the suitable number of significant figures, what is the answer?
A. 309000 meter-seconds
B. 309170.000 meter-seconds
C. 309170 meter-seconds
Answer: | [
" A",
" B",
" C"
] | 0 | 2 |
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures .
Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule).
---
A clickwheel with a precision of +/- 0.02 meters takes a measurement of 0.02 meters, and a hydraulic scale with a precision of +/- 0.0004 grams measures a mass as 0.0001 grams. Using a calculator, you divide the two values and get the solution. How can we report this solution to the suitable number of significant figures?
A. 200 meters/gram
B. 200.00 meters/gram
C. 200.0 meters/gram
Answer: | [
" A",
" B",
" C"
] | 0 | 2 |
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures .
Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule).
---
A spring scale with a precision of +/- 0.002 grams takes a measurement of 0.707 grams, and a hydraulic scale with a precision of +/- 0.0001 grams reads 0.0038 grams when measuring a mass of a different object. Your computer produces the solution when dividing the former value by the latter. How would this result look if we wrote it with the correct level of precision?
A. 190
B. 186.05
C. 186.053
Answer: | [
" A",
" B",
" C"
] | 0 | 2 |
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures .
Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule).
---
A clickwheel with a precision of +/- 0.003 meters measures a distance of 0.002 meters and a stadimeter with a precision of +/- 2 meters measures a distance between two different points as 7846 meters. After multiplying the former value by the latter your computer yields the output. How would this result look if we rounded it with the right number of significant figures?
A. 15 meters^2
B. 15.7 meters^2
C. 20 meters^2
Answer: | [
" A",
" B",
" C"
] | 2 | 2 |
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures .
Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule).
---
A cathetometer with a precision of +/- 0.00001 meters takes a measurement of 0.00046 meters, and an opisometer with a precision of +/- 0.001 meters measures a distance between two different points as 0.005 meters. Your calculator produces the solution when dividing the values. If we round this solution to the proper level of precision, what is the result?
A. 0.09
B. 0.092
C. 0.1
Answer: | [
" A",
" B",
" C"
] | 0 | 2 |
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures .
Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule).
---
A biltmore stick with a precision of +/- 0.1 meters measures a distance of 93.8 meters and a measuring stick with a precision of +/- 0.02 meters reads 0.22 meters when measuring a distance between two different points. Your calculator app yields the solution when dividing the former number by the latter. When this solution is rounded to the appropriate number of significant figures, what do we get?
A. 426.36
B. 430
C. 426.4
Answer: | [
" A",
" B",
" C"
] | 1 | 2 |
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures .
Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule).
---
A stopwatch with a precision of +/- 0.02 seconds measures a duration of 0.49 seconds and a stadimeter with a precision of +/- 2 meters reads 1829 meters when measuring a distance. You multiply the former value by the latter with a calculator app and get the output. How would this answer look if we rounded it with the right level of precision?
A. 896 meter-seconds
B. 896.21 meter-seconds
C. 900 meter-seconds
Answer: | [
" A",
" B",
" C"
] | 2 | 2 |
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures .
Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule).
---
A caliper with a precision of +/- 0.04 meters takes a measurement of 8.52 meters, and a caliper with a precision of +/- 0.004 meters measures a distance between two different points as 0.008 meters. Using a calculator app, you divide the two numbers and get the solution. How would this result look if we reported it with the proper number of significant figures?
A. 1000
B. 1065.0
C. 1065.00
Answer: | [
" A",
" B",
" C"
] | 0 | 2 |
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures .
Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule).
---
An odometer with a precision of +/- 4000 meters takes a measurement of 4000 meters, and a Biltmore stick with a precision of +/- 0.03 meters measures a distance between two different points as 59.42 meters. You multiply the former number by the latter with a calculator and get the solution. Using the right level of precision, what is the answer?
A. 237000 meters^2
B. 200000 meters^2
C. 237680.0 meters^2
Answer: | [
" A",
" B",
" C"
] | 1 | 2 |
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures .
Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule).
---
A measuring tape with a precision of +/- 0.2 meters measures a distance of 7.0 meters and a clickwheel with a precision of +/- 0.001 meters reads 9.685 meters when measuring a distance between two different points. Your calculator app yields the output when multiplying the values. How would this result look if we reported it with the suitable level of precision?
A. 67.8 meters^2
B. 68 meters^2
C. 67.80 meters^2
Answer: | [
" A",
" B",
" C"
] | 1 | 2 |
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures .
Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule).
---
An analytical balance with a precision of +/- 0.0002 grams measures a mass of 0.4096 grams and a chronometer with a precision of +/- 0.00004 seconds reads 0.00057 seconds when measuring a duration. Your calculator app gets the output when dividing the numbers. How would this answer look if we reported it with the appropriate number of significant figures?
A. 718.5965 grams/second
B. 718.60 grams/second
C. 720 grams/second
Answer: | [
" A",
" B",
" C"
] | 2 | 2 |
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures .
Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule).
---
A graduated cylinder with a precision of +/- 0.003 liters takes a measurement of 0.005 liters, and a chronometer with a precision of +/- 0.0004 seconds reads 0.0029 seconds when measuring a duration. After dividing the first number by the second number your computer produces the output. If we express this output suitably with respect to the level of precision, what is the answer?
A. 1.7 liters/second
B. 1.724 liters/second
C. 2 liters/second
Answer: | [
" A",
" B",
" C"
] | 2 | 2 |
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures .
Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule).
---
A measuring stick with a precision of +/- 0.3 meters takes a measurement of 4.6 meters, and a stadimeter with a precision of +/- 1 meters reads 8266 meters when measuring a distance between two different points. Using a computer, you multiply the two numbers and get the solution. If we express this solution correctly with respect to the level of precision, what is the result?
A. 38023 meters^2
B. 38023.60 meters^2
C. 38000 meters^2
Answer: | [
" A",
" B",
" C"
] | 2 | 2 |
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures .
Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule).
---
An analytical balance with a precision of +/- 10 grams measures a mass of 20 grams and a chronograph with a precision of +/- 0.04 seconds measures a duration as 85.01 seconds. Using a computer, you multiply the first number by the second number and get the solution. When this solution is expressed to the appropriate level of precision, what do we get?
A. 1700 gram-seconds
B. 1700.2 gram-seconds
C. 2000 gram-seconds
Answer: | [
" A",
" B",
" C"
] | 2 | 2 |
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures .
Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule).
---
A chronograph with a precision of +/- 0.2 seconds measures a duration of 7.4 seconds and a chronometer with a precision of +/- 0.0003 seconds reads 0.0087 seconds when measuring a duration of a different event. After multiplying the two values your computer gets the solution. How would this answer look if we reported it with the right level of precision?
A. 0.064 seconds^2
B. 0.1 seconds^2
C. 0.06 seconds^2
Answer: | [
" A",
" B",
" C"
] | 0 | 2 |
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures .
Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule).
---
An opisometer with a precision of +/- 0.4 meters measures a distance of 0.8 meters and a balance with a precision of +/- 400 grams measures a mass as 3900 grams. Your calculator produces the output when multiplying the values. How would this result look if we wrote it with the appropriate number of significant figures?
A. 3000 gram-meters
B. 3120.0 gram-meters
C. 3100 gram-meters
Answer: | [
" A",
" B",
" C"
] | 0 | 2 |
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures .
Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule).
---
A chronometer with a precision of +/- 0.0003 seconds takes a measurement of 0.2408 seconds, and a meter stick with a precision of +/- 0.0002 meters measures a distance as 0.0386 meters. Using a computer, you divide the former number by the latter and get the output. How would this result look if we expressed it with the suitable level of precision?
A. 6.2383 seconds/meter
B. 6.238 seconds/meter
C. 6.24 seconds/meter
Answer: | [
" A",
" B",
" C"
] | 2 | 2 |
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures .
Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule).
---
An opisometer with a precision of +/- 1 meters takes a measurement of 316 meters, and an analytical balance with a precision of +/- 0.004 grams reads 0.021 grams when measuring a mass. You divide the former number by the latter with a calculator and get the solution. When this solution is reported to the proper number of significant figures, what do we get?
A. 15047 meters/gram
B. 15000 meters/gram
C. 15047.62 meters/gram
Answer: | [
" A",
" B",
" C"
] | 1 | 2 |
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures .
Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule).
---
A measuring flask with a precision of +/- 0.004 liters measures a volume of 0.009 liters and a hydraulic scale with a precision of +/- 400 grams measures a mass as 179200 grams. Using a computer, you multiply the two values and get the solution. If we express this solution correctly with respect to the level of precision, what is the result?
A. 1612.8 gram-liters
B. 1600 gram-liters
C. 2000 gram-liters
Answer: | [
" A",
" B",
" C"
] | 2 | 2 |
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures .
Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule).
---
A cathetometer with a precision of +/- 0.00002 meters measures a distance of 0.00069 meters and a cathetometer with a precision of +/- 0.00003 meters measures a distance between two different points as 0.00056 meters. Your calculator gives the solution when dividing the values. Report this solution using the appropriate level of precision.
A. 1.23214
B. 1.2
C. 1.23
Answer: | [
" A",
" B",
" C"
] | 1 | 2 |
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures .
Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule).
---
An odometer with a precision of +/- 4000 meters takes a measurement of 1433000 meters, and a ruler with a precision of +/- 0.004 meters reads 0.982 meters when measuring a distance between two different points. You multiply the former number by the latter with a computer and get the solution. When this solution is written to the appropriate number of significant figures, what do we get?
A. 1410000 meters^2
B. 1407000 meters^2
C. 1407206.000 meters^2
Answer: | [
" A",
" B",
" C"
] | 0 | 2 |
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures .
Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule).
---
A storage container with a precision of +/- 0.1 liters takes a measurement of 9.8 liters, and a measuring flask with a precision of +/- 0.004 liters measures a volume of a different quantity of liquid as 4.947 liters. Using a calculator app, you multiply the two values and get the solution. If we write this solution appropriately with respect to the level of precision, what is the result?
A. 48.48 liters^2
B. 48.5 liters^2
C. 48 liters^2
Answer: | [
" A",
" B",
" C"
] | 2 | 2 |
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures .
Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule).
---
A caliper with a precision of +/- 0.01 meters measures a distance of 48.54 meters and a chronometer with a precision of +/- 0.00004 seconds reads 0.00168 seconds when measuring a duration. After dividing the former value by the latter your calculator gets the output. Using the appropriate level of precision, what is the result?
A. 28892.857 meters/second
B. 28892.86 meters/second
C. 28900 meters/second
Answer: | [
" A",
" B",
" C"
] | 2 | 2 |
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures .
Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule).
---
A measuring stick with a precision of +/- 0.04 meters measures a distance of 2.77 meters and a radar-based method with a precision of +/- 1 meters measures a distance between two different points as 3634 meters. Your computer yields the output when multiplying the former value by the latter. When this output is expressed to the proper level of precision, what do we get?
A. 10066 meters^2
B. 10100 meters^2
C. 10066.180 meters^2
Answer: | [
" A",
" B",
" C"
] | 1 | 2 |
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures .
Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule).
---
A spring scale with a precision of +/- 10 grams measures a mass of 270 grams and a graduated cylinder with a precision of +/- 0.004 liters measures a volume as 0.005 liters. Using a calculator, you divide the two numbers and get the solution. How can we write this solution to the correct number of significant figures?
A. 50000 grams/liter
B. 54000 grams/liter
C. 54000.0 grams/liter
Answer: | [
" A",
" B",
" C"
] | 0 | 2 |
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures .
Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule).
---
A clickwheel with a precision of +/- 0.01 meters takes a measurement of 2.45 meters, and a cathetometer with a precision of +/- 0.0004 meters measures a distance between two different points as 0.0514 meters. Your calculator app gives the solution when dividing the first value by the second value. Using the right number of significant figures, what is the answer?
A. 47.67
B. 47.665
C. 47.7
Answer: | [
" A",
" B",
" C"
] | 2 | 2 |
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures .
Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule).
---
A measuring tape with a precision of +/- 0.3 meters measures a distance of 9.2 meters and a spring scale with a precision of +/- 0.003 grams reads 0.051 grams when measuring a mass. You divide the values with a calculator and get the solution. Write this solution using the suitable number of significant figures.
A. 180 meters/gram
B. 180.4 meters/gram
C. 180.39 meters/gram
Answer: | [
" A",
" B",
" C"
] | 0 | 2 |
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures .
Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule).
---
An analytical balance with a precision of +/- 1 grams takes a measurement of 10 grams, and a measuring flask with a precision of +/- 0.001 liters measures a volume as 0.272 liters. You divide the two values with a computer and get the output. When this output is expressed to the appropriate number of significant figures, what do we get?
A. 37 grams/liter
B. 36.76 grams/liter
C. 36 grams/liter
Answer: | [
" A",
" B",
" C"
] | 0 | 2 |
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures .
Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule).
---
A radar-based method with a precision of +/- 200 meters takes a measurement of 293900 meters, and a clickwheel with a precision of +/- 0.04 meters measures a distance between two different points as 0.03 meters. You divide the former number by the latter with a calculator app and get the output. How can we write this output to the appropriate level of precision?
A. 10000000
B. 9796666.7
C. 9796600
Answer: | [
" A",
" B",
" C"
] | 0 | 2 |
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures .
Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule).
---
A stadimeter with a precision of +/- 200 meters takes a measurement of 926800 meters, and a meter stick with a precision of +/- 0.0001 meters measures a distance between two different points as 0.0003 meters. Your computer gets the solution when multiplying the values. How can we write this solution to the correct level of precision?
A. 200 meters^2
B. 300 meters^2
C. 278.0 meters^2
Answer: | [
" A",
" B",
" C"
] | 1 | 2 |
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures .
Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule).
---
A timer with a precision of +/- 0.2 seconds takes a measurement of 1.5 seconds, and a spring scale with a precision of +/- 0.03 grams measures a mass as 65.57 grams. Using a calculator app, you multiply the two numbers and get the output. Using the appropriate level of precision, what is the answer?
A. 98.36 gram-seconds
B. 98.4 gram-seconds
C. 98 gram-seconds
Answer: | [
" A",
" B",
" C"
] | 2 | 2 |
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures .
Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule).
---
A chronograph with a precision of +/- 0.1 seconds measures a duration of 785.9 seconds and a Biltmore stick with a precision of +/- 0.2 meters measures a distance as 992.3 meters. Using a calculator app, you multiply the first value by the second value and get the output. Using the correct level of precision, what is the answer?
A. 779848.5700 meter-seconds
B. 779800 meter-seconds
C. 779848.6 meter-seconds
Answer: | [
" A",
" B",
" C"
] | 1 | 2 |
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures .
Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule).
---
A stadimeter with a precision of +/- 4 meters takes a measurement of 7463 meters, and a measuring stick with a precision of +/- 0.003 meters measures a distance between two different points as 0.738 meters. You multiply the values with a calculator and get the solution. Using the suitable level of precision, what is the answer?
A. 5507.694 meters^2
B. 5507 meters^2
C. 5510 meters^2
Answer: | [
" A",
" B",
" C"
] | 2 | 2 |
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures .
Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule).
---
A balance with a precision of +/- 30 grams measures a mass of 4100 grams and a caliper with a precision of +/- 0.02 meters measures a distance as 94.57 meters. You multiply the two numbers with a calculator and get the output. Write this output using the correct number of significant figures.
A. 387730 gram-meters
B. 388000 gram-meters
C. 387737.000 gram-meters
Answer: | [
" A",
" B",
" C"
] | 1 | 2 |
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures .
Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule).
---
A measuring flask with a precision of +/- 0.002 liters measures a volume of 0.545 liters and a cathetometer with a precision of +/- 0.0002 meters reads 0.0004 meters when measuring a distance. After dividing the values your computer produces the solution. How can we report this solution to the right level of precision?
A. 1362.5 liters/meter
B. 1362.500 liters/meter
C. 1000 liters/meter
Answer: | [
" A",
" B",
" C"
] | 2 | 2 |
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures .
Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule).
---
A graduated cylinder with a precision of +/- 0.001 liters measures a volume of 0.022 liters and a radar-based method with a precision of +/- 10 meters reads 11670 meters when measuring a distance. After multiplying the former value by the latter your computer produces the solution. Using the appropriate level of precision, what is the answer?
A. 256.74 liter-meters
B. 260 liter-meters
C. 250 liter-meters
Answer: | [
" A",
" B",
" C"
] | 1 | 2 |
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures .
Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule).
---
A rangefinder with a precision of +/- 40 meters measures a distance of 80 meters and an analytical balance with a precision of +/- 0.0004 grams reads 0.5131 grams when measuring a mass. After dividing the first number by the second number your calculator produces the output. Using the appropriate level of precision, what is the result?
A. 150 meters/gram
B. 155.9 meters/gram
C. 200 meters/gram
Answer: | [
" A",
" B",
" C"
] | 2 | 2 |