prompt
stringlengths
54
1.42k
classes
sequencelengths
2
4
answer_index
int32
0
3
round
int32
2
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A radar-based method with a precision of +/- 400 meters measures a distance of 50700 meters and a hydraulic scale with a precision of +/- 3 grams reads 57 grams when measuring a mass. Using a calculator, you divide the first number by the second number and get the solution 889.473684210526. How can we report this solution to the appropriate level of precision? A. 889.47 meters/gram B. 890 meters/gram C. 800 meters/gram Answer:
[ " A", " B", " C" ]
1
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A measuring flask with a precision of +/- 0.003 liters measures a volume of 0.093 liters and a measuring rod with a precision of +/- 0.0004 meters reads 0.0008 meters when measuring a distance. Using a calculator, you divide the former value by the latter and get the solution 116.250000000000. How would this result look if we wrote it with the correct level of precision? A. 100 liters/meter B. 116.250 liters/meter C. 116.2 liters/meter Answer:
[ " A", " B", " C" ]
0
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A balance with a precision of +/- 200 grams takes a measurement of 28400 grams, and a clickwheel with a precision of +/- 0.4 meters reads 0.1 meters when measuring a distance. You divide the values with a calculator and get the output 284000.000000000000. How can we write this output to the correct level of precision? A. 300000 grams/meter B. 284000 grams/meter C. 284000.0 grams/meter Answer:
[ " A", " B", " C" ]
0
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A chronometer with a precision of +/- 0.00002 seconds measures a duration of 0.00015 seconds and a meter stick with a precision of +/- 0.0003 meters reads 0.0034 meters when measuring a distance. You divide the two values with a calculator and get the output 0.044117647059. If we report this output to the right level of precision, what is the answer? A. 0.0441 seconds/meter B. 0.04 seconds/meter C. 0.044 seconds/meter Answer:
[ " A", " B", " C" ]
2
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A chronograph with a precision of +/- 0.4 seconds takes a measurement of 75.5 seconds, and a ruler with a precision of +/- 0.0002 meters reads 0.0490 meters when measuring a distance. Using a calculator app, you divide the numbers and get the output 1540.816326530612. If we write this output to the appropriate level of precision, what is the result? A. 1540 seconds/meter B. 1540.816 seconds/meter C. 1540.8 seconds/meter Answer:
[ " A", " B", " C" ]
0
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A storage container with a precision of +/- 20 liters takes a measurement of 820 liters, and a meter stick with a precision of +/- 0.0002 meters measures a distance as 0.0083 meters. You divide the values with a computer and get the solution 98795.180722891566. How can we round this solution to the appropriate number of significant figures? A. 98795.18 liters/meter B. 99000 liters/meter C. 98790 liters/meter Answer:
[ " A", " B", " C" ]
1
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A clickwheel with a precision of +/- 0.2 meters takes a measurement of 75.8 meters, and a stadimeter with a precision of +/- 2 meters measures a distance between two different points as 60 meters. Using a computer, you divide the former value by the latter and get the output 1.263333333333. When this output is written to the right level of precision, what do we get? A. 1.26 B. 1.3 C. 1 Answer:
[ " A", " B", " C" ]
1
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A measuring rod with a precision of +/- 0.0004 meters takes a measurement of 0.0593 meters, and a measuring flask with a precision of +/- 0.04 liters measures a volume as 0.05 liters. Your calculator gives the solution 1.186000000000 when dividing the two numbers. Round this solution using the appropriate level of precision. A. 1.2 meters/liter B. 1 meters/liter C. 1.19 meters/liter Answer:
[ " A", " B", " C" ]
1
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- An analytical balance with a precision of +/- 20 grams measures a mass of 340 grams and a tape measure with a precision of +/- 0.0004 meters reads 0.0009 meters when measuring a distance. Your computer yields the solution 377777.777777777778 when dividing the former value by the latter. How can we round this solution to the correct number of significant figures? A. 377770 grams/meter B. 400000 grams/meter C. 377777.8 grams/meter Answer:
[ " A", " B", " C" ]
1
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A radar-based method with a precision of +/- 30 meters measures a distance of 22820 meters and a radar-based method with a precision of +/- 1 meters measures a distance between two different points as 1526 meters. You divide the two values with a calculator app and get the output 14.954128440367. How can we report this output to the proper number of significant figures? A. 14.9541 B. 10 C. 14.95 Answer:
[ " A", " B", " C" ]
2
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A hydraulic scale with a precision of +/- 200 grams measures a mass of 4100 grams and a clickwheel with a precision of +/- 0.1 meters measures a distance as 0.3 meters. You divide the two numbers with a computer and get the output 13666.666666666667. Express this output using the proper number of significant figures. A. 10000 grams/meter B. 13600 grams/meter C. 13666.7 grams/meter Answer:
[ " A", " B", " C" ]
0
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- An opisometer with a precision of +/- 4 meters takes a measurement of 23 meters, and a measuring stick with a precision of +/- 0.1 meters measures a distance between two different points as 0.8 meters. You divide the former number by the latter with a calculator app and get the output 28.750000000000. When this output is expressed to the right number of significant figures, what do we get? A. 28.8 B. 30 C. 28 Answer:
[ " A", " B", " C" ]
1
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A measuring rod with a precision of +/- 0.0004 meters measures a distance of 0.0092 meters and a balance with a precision of +/- 0.0003 grams reads 0.9083 grams when measuring a mass. After dividing the values your calculator gets the output 0.010128812066. How would this answer look if we wrote it with the correct level of precision? A. 0.0101 meters/gram B. 0.01 meters/gram C. 0.010 meters/gram Answer:
[ " A", " B", " C" ]
2
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A measuring flask with a precision of +/- 0.004 liters takes a measurement of 0.008 liters, and a chronometer with a precision of +/- 0.00004 seconds measures a duration as 0.00757 seconds. You divide the numbers with a calculator app and get the solution 1.056803170410. When this solution is rounded to the suitable level of precision, what do we get? A. 1.057 liters/second B. 1 liters/second C. 1.1 liters/second Answer:
[ " A", " B", " C" ]
1
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A balance with a precision of +/- 0.2 grams measures a mass of 90.3 grams and a stopwatch with a precision of +/- 0.003 seconds reads 0.042 seconds when measuring a duration. Your calculator produces the solution 2150.000000000000 when dividing the first number by the second number. If we write this solution appropriately with respect to the number of significant figures, what is the result? A. 2150.0 grams/second B. 2200 grams/second C. 2150.00 grams/second Answer:
[ " A", " B", " C" ]
1
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A tape measure with a precision of +/- 0.0003 meters takes a measurement of 0.0088 meters, and a cathetometer with a precision of +/- 0.00003 meters measures a distance between two different points as 0.00108 meters. After dividing the first value by the second value your calculator produces the solution 8.148148148148. How can we round this solution to the correct level of precision? A. 8.1481 B. 8.1 C. 8.15 Answer:
[ " A", " B", " C" ]
1
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- An opisometer with a precision of +/- 0.4 meters takes a measurement of 843.9 meters, and a clickwheel with a precision of +/- 0.3 meters measures a distance between two different points as 267.4 meters. You divide the first value by the second value with a computer and get the output 3.155946148093. If we write this output correctly with respect to the level of precision, what is the answer? A. 3.156 B. 3.2 C. 3.1559 Answer:
[ " A", " B", " C" ]
0
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A clickwheel with a precision of +/- 0.1 meters measures a distance of 40.4 meters and a chronometer with a precision of +/- 0.0002 seconds reads 0.0040 seconds when measuring a duration. Your computer produces the output 10100.000000000000 when dividing the values. Using the correct level of precision, what is the answer? A. 10100.0 meters/second B. 10100.00 meters/second C. 10000 meters/second Answer:
[ " A", " B", " C" ]
2
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A graduated cylinder with a precision of +/- 0.003 liters measures a volume of 0.184 liters and an analytical balance with a precision of +/- 0.01 grams measures a mass as 9.47 grams. After dividing the numbers your calculator app gives the solution 0.019429778247. How would this result look if we reported it with the correct level of precision? A. 0.02 liters/gram B. 0.0194 liters/gram C. 0.019 liters/gram Answer:
[ " A", " B", " C" ]
1
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A coincidence telemeter with a precision of +/- 400 meters measures a distance of 500 meters and a tape measure with a precision of +/- 0.001 meters reads 0.038 meters when measuring a distance between two different points. Using a calculator, you divide the first value by the second value and get the solution 13157.894736842105. Using the appropriate level of precision, what is the result? A. 13100 B. 10000 C. 13157.9 Answer:
[ " A", " B", " C" ]
1
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A balance with a precision of +/- 2 grams measures a mass of 84 grams and a tape measure with a precision of +/- 0.001 meters measures a distance as 0.005 meters. You divide the numbers with a calculator app and get the output 16800.000000000000. If we report this output to the appropriate number of significant figures, what is the result? A. 16800.0 grams/meter B. 16800 grams/meter C. 20000 grams/meter Answer:
[ " A", " B", " C" ]
2
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A rangefinder with a precision of +/- 20 meters measures a distance of 100 meters and an analytical balance with a precision of +/- 0.003 grams reads 0.082 grams when measuring a mass. You divide the values with a calculator app and get the output 1219.512195121951. Express this output using the right level of precision. A. 1219.51 meters/gram B. 1200 meters/gram C. 1210 meters/gram Answer:
[ " A", " B", " C" ]
1
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A storage container with a precision of +/- 0.1 liters takes a measurement of 828.6 liters, and a stopwatch with a precision of +/- 0.01 seconds measures a duration as 1.82 seconds. You divide the two numbers with a calculator and get the output 455.274725274725. If we round this output correctly with respect to the number of significant figures, what is the result? A. 455.275 liters/second B. 455 liters/second C. 455.3 liters/second Answer:
[ " A", " B", " C" ]
1
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A ruler with a precision of +/- 0.2 meters measures a distance of 38.8 meters and a balance with a precision of +/- 0.0001 grams reads 0.0836 grams when measuring a mass. You divide the numbers with a calculator app and get the solution 464.114832535885. If we write this solution to the correct level of precision, what is the answer? A. 464 meters/gram B. 464.1 meters/gram C. 464.115 meters/gram Answer:
[ " A", " B", " C" ]
0
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A balance with a precision of +/- 300 grams measures a mass of 520500 grams and a chronometer with a precision of +/- 0.00004 seconds reads 0.00001 seconds when measuring a duration. Using a calculator app, you divide the values and get the solution 52050000000.000000000000. How can we write this solution to the appropriate number of significant figures? A. 52050000000.0 grams/second B. 50000000000 grams/second C. 52050000000 grams/second Answer:
[ " A", " B", " C" ]
1
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- An analytical balance with a precision of +/- 3 grams takes a measurement of 388 grams, and a measuring tape with a precision of +/- 0.02 meters measures a distance as 0.22 meters. Your calculator produces the solution 1763.636363636364 when dividing the two numbers. When this solution is reported to the appropriate level of precision, what do we get? A. 1800 grams/meter B. 1763 grams/meter C. 1763.64 grams/meter Answer:
[ " A", " B", " C" ]
0
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A coincidence telemeter with a precision of +/- 400 meters measures a distance of 97600 meters and a cathetometer with a precision of +/- 0.00004 meters measures a distance between two different points as 0.00008 meters. You divide the two values with a calculator and get the output 1220000000.000000000000. Report this output using the correct number of significant figures. A. 1220000000.0 B. 1000000000 C. 1220000000 Answer:
[ " A", " B", " C" ]
1
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A graduated cylinder with a precision of +/- 0.001 liters measures a volume of 0.461 liters and a measuring flask with a precision of +/- 0.04 liters reads 33.73 liters when measuring a volume of a different quantity of liquid. Using a calculator app, you divide the numbers and get the solution 0.013667358435. Using the proper number of significant figures, what is the result? A. 0.0137 B. 0.014 C. 0.01 Answer:
[ " A", " B", " C" ]
0
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A measuring flask with a precision of +/- 0.001 liters measures a volume of 0.034 liters and a meter stick with a precision of +/- 0.0004 meters reads 0.0318 meters when measuring a distance. You divide the former value by the latter with a computer and get the solution 1.069182389937. Using the appropriate number of significant figures, what is the answer? A. 1.069 liters/meter B. 1.07 liters/meter C. 1.1 liters/meter Answer:
[ " A", " B", " C" ]
2
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- An odometer with a precision of +/- 4000 meters takes a measurement of 2000 meters, and a spring scale with a precision of +/- 0.003 grams reads 0.018 grams when measuring a mass. You divide the first value by the second value with a calculator app and get the output 111111.111111111111. If we express this output to the proper level of precision, what is the result? A. 100000 meters/gram B. 111111.1 meters/gram C. 111000 meters/gram Answer:
[ " A", " B", " C" ]
0
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- An analytical balance with a precision of +/- 200 grams takes a measurement of 6300 grams, and a measuring rod with a precision of +/- 0.004 meters reads 0.078 meters when measuring a distance. You divide the former number by the latter with a calculator and get the output 80769.230769230769. If we write this output suitably with respect to the number of significant figures, what is the result? A. 80700 grams/meter B. 81000 grams/meter C. 80769.23 grams/meter Answer:
[ " A", " B", " C" ]
1
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A spring scale with a precision of +/- 10 grams measures a mass of 90 grams and a stopwatch with a precision of +/- 0.001 seconds measures a duration as 0.008 seconds. Your calculator gives the output 11250.000000000000 when dividing the values. How would this result look if we rounded it with the right level of precision? A. 11250.0 grams/second B. 10000 grams/second C. 11250 grams/second Answer:
[ " A", " B", " C" ]
1
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A coincidence telemeter with a precision of +/- 200 meters takes a measurement of 8500 meters, and a meter stick with a precision of +/- 0.0001 meters reads 0.8888 meters when measuring a distance between two different points. Your calculator produces the solution 9563.456345634563 when dividing the former number by the latter. Report this solution using the appropriate number of significant figures. A. 9500 B. 9563.46 C. 9600 Answer:
[ " A", " B", " C" ]
2
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A clickwheel with a precision of +/- 0.001 meters measures a distance of 0.047 meters and a caliper with a precision of +/- 0.03 meters reads 0.03 meters when measuring a distance between two different points. Using a computer, you divide the first number by the second number and get the solution 1.566666666667. When this solution is expressed to the appropriate level of precision, what do we get? A. 1.6 B. 2 C. 1.57 Answer:
[ " A", " B", " C" ]
1
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A stopwatch with a precision of +/- 0.3 seconds measures a duration of 4.9 seconds and a clickwheel with a precision of +/- 0.1 meters measures a distance as 55.5 meters. Using a calculator, you divide the first number by the second number and get the solution 0.088288288288. If we express this solution appropriately with respect to the number of significant figures, what is the answer? A. 0.088 seconds/meter B. 0.09 seconds/meter C. 0.1 seconds/meter Answer:
[ " A", " B", " C" ]
0
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A measuring tape with a precision of +/- 0.01 meters measures a distance of 5.52 meters and a Biltmore stick with a precision of +/- 0.04 meters reads 0.05 meters when measuring a distance between two different points. You divide the former number by the latter with a calculator and get the solution 110.400000000000. How can we express this solution to the suitable level of precision? A. 110.4 B. 100 C. 110.40 Answer:
[ " A", " B", " C" ]
1
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- An odometer with a precision of +/- 200 meters measures a distance of 7600 meters and a stadimeter with a precision of +/- 0.3 meters reads 3.5 meters when measuring a distance between two different points. Using a calculator, you divide the two values and get the solution 2171.428571428571. If we report this solution appropriately with respect to the level of precision, what is the result? A. 2200 B. 2171.43 C. 2100 Answer:
[ " A", " B", " C" ]
0
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A stopwatch with a precision of +/- 0.04 seconds measures a duration of 42.28 seconds and a coincidence telemeter with a precision of +/- 3 meters reads 30 meters when measuring a distance. You divide the first value by the second value with a computer and get the solution 1.409333333333. When this solution is written to the proper level of precision, what do we get? A. 1 seconds/meter B. 1.4 seconds/meter C. 1.41 seconds/meter Answer:
[ " A", " B", " C" ]
1
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A hydraulic scale with a precision of +/- 1000 grams measures a mass of 8250000 grams and a meter stick with a precision of +/- 0.0003 meters measures a distance as 0.0823 meters. Your calculator gives the solution 100243013.365735115431 when dividing the values. If we write this solution to the suitable level of precision, what is the result? A. 100000000 grams/meter B. 100243000 grams/meter C. 100243013.366 grams/meter Answer:
[ " A", " B", " C" ]
0
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A timer with a precision of +/- 0.3 seconds takes a measurement of 45.2 seconds, and a measuring flask with a precision of +/- 0.004 liters measures a volume as 0.077 liters. Using a calculator, you divide the two numbers and get the solution 587.012987012987. How can we report this solution to the right level of precision? A. 587.01 seconds/liter B. 590 seconds/liter C. 587.0 seconds/liter Answer:
[ " A", " B", " C" ]
1
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A storage container with a precision of +/- 1 liters takes a measurement of 822 liters, and a storage container with a precision of +/- 2 liters reads 165 liters when measuring a volume of a different quantity of liquid. After dividing the values your calculator app yields the output 4.981818181818. When this output is reported to the appropriate number of significant figures, what do we get? A. 4.98 B. 4 C. 4.982 Answer:
[ " A", " B", " C" ]
0
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A meter stick with a precision of +/- 0.0004 meters measures a distance of 0.3194 meters and a ruler with a precision of +/- 0.0003 meters reads 0.0027 meters when measuring a distance between two different points. You divide the first number by the second number with a calculator app and get the solution 118.296296296296. How would this result look if we expressed it with the right level of precision? A. 120 B. 118.30 C. 118.2963 Answer:
[ " A", " B", " C" ]
0
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A meter stick with a precision of +/- 0.0001 meters takes a measurement of 0.0667 meters, and a tape measure with a precision of +/- 0.001 meters reads 0.008 meters when measuring a distance between two different points. Using a computer, you divide the first value by the second value and get the output 8.337500000000. How would this result look if we expressed it with the right number of significant figures? A. 8.338 B. 8.3 C. 8 Answer:
[ " A", " B", " C" ]
2
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- An odometer with a precision of +/- 400 meters measures a distance of 13600 meters and a measuring tape with a precision of +/- 0.01 meters measures a distance between two different points as 6.56 meters. Your calculator yields the output 2073.170731707317 when dividing the values. If we report this output correctly with respect to the number of significant figures, what is the answer? A. 2073.171 B. 2070 C. 2000 Answer:
[ " A", " B", " C" ]
1
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A timer with a precision of +/- 0.1 seconds takes a measurement of 257.2 seconds, and a clickwheel with a precision of +/- 0.003 meters measures a distance as 0.244 meters. Your calculator yields the output 1054.098360655738 when dividing the first number by the second number. If we round this output properly with respect to the number of significant figures, what is the result? A. 1050 seconds/meter B. 1054.098 seconds/meter C. 1054.1 seconds/meter Answer:
[ " A", " B", " C" ]
0
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A radar-based method with a precision of +/- 200 meters takes a measurement of 9800 meters, and a measuring tape with a precision of +/- 0.04 meters measures a distance between two different points as 0.87 meters. You divide the numbers with a computer and get the output 11264.367816091954. How can we express this output to the right level of precision? A. 11200 B. 11264.37 C. 11000 Answer:
[ " A", " B", " C" ]
2
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- An odometer with a precision of +/- 4000 meters measures a distance of 438000 meters and a caliper with a precision of +/- 0.002 meters measures a distance between two different points as 2.238 meters. You divide the two numbers with a calculator and get the solution 195710.455764075067. How can we write this solution to the right level of precision? A. 195000 B. 195710.456 C. 196000 Answer:
[ " A", " B", " C" ]
2
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A spring scale with a precision of +/- 0.0003 grams measures a mass of 0.1292 grams and a meter stick with a precision of +/- 0.0001 meters reads 0.0008 meters when measuring a distance. Your calculator app produces the output 161.500000000000 when dividing the first value by the second value. If we express this output correctly with respect to the number of significant figures, what is the result? A. 200 grams/meter B. 161.5 grams/meter C. 161.5000 grams/meter Answer:
[ " A", " B", " C" ]
0
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A stopwatch with a precision of +/- 0.03 seconds measures a duration of 75.23 seconds and a balance with a precision of +/- 0.0003 grams reads 0.0008 grams when measuring a mass. After dividing the two numbers your computer produces the output 94037.500000000000. Using the appropriate number of significant figures, what is the result? A. 94037.5 seconds/gram B. 94037.50 seconds/gram C. 90000 seconds/gram Answer:
[ " A", " B", " C" ]
2
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A cathetometer with a precision of +/- 0.0004 meters measures a distance of 0.4190 meters and a measuring rod with a precision of +/- 0.0001 meters measures a distance between two different points as 0.0085 meters. Your calculator app produces the solution 49.294117647059 when dividing the former value by the latter. When this solution is rounded to the appropriate level of precision, what do we get? A. 49 B. 49.2941 C. 49.29 Answer:
[ " A", " B", " C" ]
0
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A storage container with a precision of +/- 3 liters measures a volume of 4821 liters and a graduated cylinder with a precision of +/- 0.002 liters measures a volume of a different quantity of liquid as 0.924 liters. Your computer yields the solution 5217.532467532468 when dividing the former number by the latter. How would this answer look if we rounded it with the right level of precision? A. 5217.532 B. 5220 C. 5217 Answer:
[ " A", " B", " C" ]
1
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A spring scale with a precision of +/- 20 grams takes a measurement of 3170 grams, and a caliper with a precision of +/- 0.01 meters reads 8.70 meters when measuring a distance. You divide the numbers with a computer and get the solution 364.367816091954. Report this solution using the right number of significant figures. A. 364 grams/meter B. 364.368 grams/meter C. 360 grams/meter Answer:
[ " A", " B", " C" ]
0
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A hydraulic scale with a precision of +/- 0.0001 grams takes a measurement of 0.7028 grams, and a chronometer with a precision of +/- 0.00002 seconds measures a duration as 0.00995 seconds. After dividing the first number by the second number your calculator app gets the solution 70.633165829146. If we write this solution to the correct number of significant figures, what is the result? A. 70.6 grams/second B. 70.6332 grams/second C. 70.633 grams/second Answer:
[ " A", " B", " C" ]
0
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A balance with a precision of +/- 0.2 grams measures a mass of 12.6 grams and a timer with a precision of +/- 0.02 seconds reads 0.51 seconds when measuring a duration. Your computer gets the output 24.705882352941 when dividing the former number by the latter. When this output is rounded to the proper level of precision, what do we get? A. 24.7 grams/second B. 24.71 grams/second C. 25 grams/second Answer:
[ " A", " B", " C" ]
2
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A balance with a precision of +/- 30 grams takes a measurement of 1980 grams, and a timer with a precision of +/- 0.01 seconds reads 22.53 seconds when measuring a duration. Using a calculator, you divide the two values and get the solution 87.882822902796. When this solution is rounded to the correct number of significant figures, what do we get? A. 87.883 grams/second B. 80 grams/second C. 87.9 grams/second Answer:
[ " A", " B", " C" ]
2
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A measuring flask with a precision of +/- 0.003 liters measures a volume of 0.068 liters and a tape measure with a precision of +/- 0.003 meters reads 8.165 meters when measuring a distance. Your computer yields the solution 0.008328230251 when dividing the numbers. If we express this solution properly with respect to the level of precision, what is the result? A. 0.008 liters/meter B. 0.0083 liters/meter C. 0.01 liters/meter Answer:
[ " A", " B", " C" ]
1
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A rangefinder with a precision of +/- 0.02 meters takes a measurement of 5.50 meters, and a cathetometer with a precision of +/- 0.00001 meters reads 0.00793 meters when measuring a distance between two different points. After dividing the two numbers your computer produces the solution 693.568726355612. Write this solution using the suitable level of precision. A. 693.569 B. 694 C. 693.57 Answer:
[ " A", " B", " C" ]
1
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- An odometer with a precision of +/- 3000 meters takes a measurement of 8018000 meters, and a storage container with a precision of +/- 3 liters reads 928 liters when measuring a volume. You divide the former number by the latter with a computer and get the output 8640.086206896552. Using the proper level of precision, what is the result? A. 8640.086 meters/liter B. 8000 meters/liter C. 8640 meters/liter Answer:
[ " A", " B", " C" ]
2
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A cathetometer with a precision of +/- 0.0003 meters takes a measurement of 0.3665 meters, and a tape measure with a precision of +/- 0.004 meters measures a distance between two different points as 0.008 meters. Your calculator gets the output 45.812500000000 when dividing the former value by the latter. Write this output using the correct number of significant figures. A. 50 B. 45.8 C. 45.812 Answer:
[ " A", " B", " C" ]
0
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- An opisometer with a precision of +/- 0.02 meters takes a measurement of 33.89 meters, and a measuring tape with a precision of +/- 0.02 meters reads 0.03 meters when measuring a distance between two different points. Your computer produces the output 1129.666666666667 when dividing the two values. If we write this output properly with respect to the number of significant figures, what is the result? A. 1129.67 B. 1000 C. 1129.7 Answer:
[ " A", " B", " C" ]
1
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A biltmore stick with a precision of +/- 0.4 meters takes a measurement of 129.1 meters, and a stopwatch with a precision of +/- 0.004 seconds reads 0.862 seconds when measuring a duration. Your calculator app yields the solution 149.767981438515 when dividing the values. If we round this solution to the right level of precision, what is the result? A. 149.8 meters/second B. 149.768 meters/second C. 150 meters/second Answer:
[ " A", " B", " C" ]
2
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- An opisometer with a precision of +/- 0.0001 meters measures a distance of 0.0165 meters and a chronometer with a precision of +/- 0.00001 seconds measures a duration as 0.00006 seconds. After dividing the first number by the second number your calculator yields the output 275.000000000000. How would this result look if we reported it with the suitable level of precision? A. 300 meters/second B. 275.0000 meters/second C. 275.0 meters/second Answer:
[ " A", " B", " C" ]
0
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A measuring tape with a precision of +/- 0.4 meters measures a distance of 1.7 meters and a cathetometer with a precision of +/- 0.0004 meters reads 0.0725 meters when measuring a distance between two different points. You divide the two values with a calculator and get the output 23.448275862069. Express this output using the proper number of significant figures. A. 23.45 B. 23.4 C. 23 Answer:
[ " A", " B", " C" ]
2
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- An opisometer with a precision of +/- 0.03 meters takes a measurement of 0.10 meters, and a caliper with a precision of +/- 0.003 meters reads 0.005 meters when measuring a distance between two different points. Using a computer, you divide the first value by the second value and get the output 20.000000000000. If we express this output correctly with respect to the level of precision, what is the result? A. 20.00 B. 20.0 C. 20 Answer:
[ " A", " B", " C" ]
2
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A biltmore stick with a precision of +/- 0.02 meters takes a measurement of 2.62 meters, and a ruler with a precision of +/- 0.0003 meters measures a distance between two different points as 0.0367 meters. Your computer yields the solution 71.389645776567 when dividing the two numbers. Express this solution using the correct number of significant figures. A. 71.4 B. 71.390 C. 71.39 Answer:
[ " A", " B", " C" ]
0
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- An odometer with a precision of +/- 1000 meters takes a measurement of 2805000 meters, and a clickwheel with a precision of +/- 0.1 meters reads 67.4 meters when measuring a distance between two different points. Using a calculator app, you divide the former number by the latter and get the output 41617.210682492582. When this output is reported to the correct number of significant figures, what do we get? A. 41000 B. 41600 C. 41617.211 Answer:
[ " A", " B", " C" ]
1
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A radar-based method with a precision of +/- 4 meters takes a measurement of 1798 meters, and a measuring rod with a precision of +/- 0.0004 meters measures a distance between two different points as 0.0605 meters. Your computer gets the solution 29719.008264462810 when dividing the two values. If we report this solution suitably with respect to the level of precision, what is the result? A. 29700 B. 29719.008 C. 29719 Answer:
[ " A", " B", " C" ]
0
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A measuring flask with a precision of +/- 0.001 liters takes a measurement of 0.030 liters, and a measuring flask with a precision of +/- 0.004 liters measures a volume of a different quantity of liquid as 5.640 liters. You divide the former number by the latter with a computer and get the output 0.005319148936. If we round this output properly with respect to the number of significant figures, what is the result? A. 0.01 B. 0.0053 C. 0.005 Answer:
[ " A", " B", " C" ]
1
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A meter stick with a precision of +/- 0.0003 meters takes a measurement of 0.7157 meters, and a clickwheel with a precision of +/- 0.004 meters reads 0.001 meters when measuring a distance between two different points. You divide the two numbers with a computer and get the solution 715.700000000000. Express this solution using the right level of precision. A. 700 B. 715.7 C. 715.700 Answer:
[ " A", " B", " C" ]
0
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A clickwheel with a precision of +/- 0.03 meters measures a distance of 91.45 meters and a measuring stick with a precision of +/- 0.003 meters measures a distance between two different points as 0.589 meters. After dividing the first value by the second value your calculator app produces the solution 155.263157894737. If we round this solution correctly with respect to the level of precision, what is the answer? A. 155.26 B. 155.263 C. 155 Answer:
[ " A", " B", " C" ]
2
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A storage container with a precision of +/- 4 liters takes a measurement of 3 liters, and a timer with a precision of +/- 0.002 seconds reads 0.022 seconds when measuring a duration. Your computer gives the output 136.363636363636 when dividing the two numbers. If we write this output to the suitable number of significant figures, what is the answer? A. 100 liters/second B. 136.4 liters/second C. 136 liters/second Answer:
[ " A", " B", " C" ]
0
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A storage container with a precision of +/- 0.1 liters takes a measurement of 4.6 liters, and a measuring stick with a precision of +/- 0.03 meters measures a distance as 47.58 meters. Your calculator app produces the solution 0.096679277007 when dividing the two values. How can we write this solution to the right number of significant figures? A. 0.10 liters/meter B. 0.097 liters/meter C. 0.1 liters/meter Answer:
[ " A", " B", " C" ]
1
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A caliper with a precision of +/- 0.002 meters measures a distance of 7.739 meters and a hydraulic scale with a precision of +/- 0.0003 grams measures a mass as 0.0061 grams. Your computer gives the solution 1268.688524590164 when dividing the former number by the latter. If we write this solution correctly with respect to the number of significant figures, what is the result? A. 1268.689 meters/gram B. 1300 meters/gram C. 1268.69 meters/gram Answer:
[ " A", " B", " C" ]
1
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A rangefinder with a precision of +/- 30 meters measures a distance of 220 meters and a chronograph with a precision of +/- 0.004 seconds reads 0.452 seconds when measuring a duration. Using a calculator, you divide the first value by the second value and get the solution 486.725663716814. How would this answer look if we reported it with the suitable level of precision? A. 480 meters/second B. 490 meters/second C. 486.73 meters/second Answer:
[ " A", " B", " C" ]
1
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A stopwatch with a precision of +/- 0.04 seconds measures a duration of 58.01 seconds and a rangefinder with a precision of +/- 0.0004 meters measures a distance as 0.0006 meters. After dividing the two numbers your calculator yields the solution 96683.333333333333. Express this solution using the suitable level of precision. A. 96683.3 seconds/meter B. 100000 seconds/meter C. 96683.33 seconds/meter Answer:
[ " A", " B", " C" ]
1
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- An analytical balance with a precision of +/- 2 grams measures a mass of 3 grams and a chronometer with a precision of +/- 0.0003 seconds measures a duration as 0.0714 seconds. Using a calculator, you divide the values and get the solution 42.016806722689. How can we round this solution to the proper number of significant figures? A. 40 grams/second B. 42 grams/second C. 42.0 grams/second Answer:
[ " A", " B", " C" ]
0
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A spring scale with a precision of +/- 300 grams takes a measurement of 4400 grams, and a clickwheel with a precision of +/- 0.01 meters reads 0.09 meters when measuring a distance. You divide the first number by the second number with a calculator app and get the solution 48888.888888888889. Report this solution using the appropriate level of precision. A. 48800 grams/meter B. 48888.9 grams/meter C. 50000 grams/meter Answer:
[ " A", " B", " C" ]
2
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A chronograph with a precision of +/- 0.04 seconds takes a measurement of 90.45 seconds, and a timer with a precision of +/- 0.002 seconds reads 0.668 seconds when measuring a duration of a different event. Your calculator gives the output 135.404191616766 when dividing the two values. How would this result look if we wrote it with the right level of precision? A. 135.40 B. 135 C. 135.404 Answer:
[ " A", " B", " C" ]
1
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A spring scale with a precision of +/- 1 grams takes a measurement of 8737 grams, and a balance with a precision of +/- 0.03 grams reads 8.74 grams when measuring a mass of a different object. After dividing the numbers your calculator yields the output 999.656750572082. When this output is reported to the proper level of precision, what do we get? A. 1000 B. 999.657 C. 999 Answer:
[ " A", " B", " C" ]
0
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A tape measure with a precision of +/- 0.0002 meters measures a distance of 0.0866 meters and a chronograph with a precision of +/- 0.002 seconds reads 0.016 seconds when measuring a duration. Your calculator app gives the output 5.412500000000 when dividing the values. Express this output using the appropriate number of significant figures. A. 5.412 meters/second B. 5.41 meters/second C. 5.4 meters/second Answer:
[ " A", " B", " C" ]
2
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A stopwatch with a precision of +/- 0.004 seconds measures a duration of 0.441 seconds and a tape measure with a precision of +/- 0.0004 meters measures a distance as 0.0013 meters. After dividing the former number by the latter your computer yields the solution 339.230769230769. When this solution is reported to the appropriate number of significant figures, what do we get? A. 340 seconds/meter B. 339.23 seconds/meter C. 339.231 seconds/meter Answer:
[ " A", " B", " C" ]
0
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- An odometer with a precision of +/- 4000 meters measures a distance of 2631000 meters and a measuring stick with a precision of +/- 0.001 meters measures a distance between two different points as 5.318 meters. You divide the two numbers with a calculator and get the output 494734.862730349756. When this output is rounded to the appropriate number of significant figures, what do we get? A. 494000 B. 494700 C. 494734.8627 Answer:
[ " A", " B", " C" ]
1
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A chronograph with a precision of +/- 0.02 seconds measures a duration of 0.07 seconds and a caliper with a precision of +/- 0.001 meters reads 0.054 meters when measuring a distance. Using a calculator app, you divide the two numbers and get the output 1.296296296296. Report this output using the appropriate level of precision. A. 1.3 seconds/meter B. 1.30 seconds/meter C. 1 seconds/meter Answer:
[ " A", " B", " C" ]
2
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- An odometer with a precision of +/- 4000 meters takes a measurement of 59000 meters, and a measuring rod with a precision of +/- 0.0003 meters reads 0.0001 meters when measuring a distance between two different points. After dividing the two values your calculator app produces the solution 590000000.000000000000. How can we write this solution to the correct level of precision? A. 600000000 B. 590000000 C. 590000000.0 Answer:
[ " A", " B", " C" ]
0
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A spring scale with a precision of +/- 400 grams takes a measurement of 200 grams, and a chronometer with a precision of +/- 0.00003 seconds measures a duration as 0.00074 seconds. Your calculator gives the output 270270.270270270270 when dividing the first value by the second value. When this output is reported to the proper number of significant figures, what do we get? A. 300000 grams/second B. 270270.3 grams/second C. 270200 grams/second Answer:
[ " A", " B", " C" ]
0
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- An analytical balance with a precision of +/- 300 grams measures a mass of 1000 grams and a graduated cylinder with a precision of +/- 0.002 liters reads 0.008 liters when measuring a volume. Your calculator app gets the output 125000.000000000000 when dividing the two values. If we report this output correctly with respect to the level of precision, what is the result? A. 100000 grams/liter B. 125000.0 grams/liter C. 125000 grams/liter Answer:
[ " A", " B", " C" ]
0
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A rangefinder with a precision of +/- 0.1 meters measures a distance of 345.3 meters and a measuring tape with a precision of +/- 0.01 meters reads 0.37 meters when measuring a distance between two different points. After dividing the former number by the latter your computer produces the output 933.243243243243. If we express this output to the proper number of significant figures, what is the result? A. 933.24 B. 933.2 C. 930 Answer:
[ " A", " B", " C" ]
2
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A stadimeter with a precision of +/- 40 meters measures a distance of 6140 meters and a measuring tape with a precision of +/- 0.03 meters measures a distance between two different points as 9.08 meters. After dividing the two numbers your calculator app produces the solution 676.211453744493. How can we report this solution to the appropriate number of significant figures? A. 670 B. 676.211 C. 676 Answer:
[ " A", " B", " C" ]
2
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A timer with a precision of +/- 0.004 seconds measures a duration of 0.952 seconds and a balance with a precision of +/- 0.003 grams reads 0.005 grams when measuring a mass. You divide the former value by the latter with a calculator app and get the output 190.400000000000. How would this result look if we rounded it with the correct number of significant figures? A. 190.4 seconds/gram B. 190.400 seconds/gram C. 200 seconds/gram Answer:
[ " A", " B", " C" ]
2
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A biltmore stick with a precision of +/- 0.4 meters takes a measurement of 55.9 meters, and a hydraulic scale with a precision of +/- 0.004 grams reads 0.364 grams when measuring a mass. Your calculator app yields the solution 153.571428571429 when dividing the two values. Using the proper level of precision, what is the result? A. 154 meters/gram B. 153.571 meters/gram C. 153.6 meters/gram Answer:
[ " A", " B", " C" ]
0
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A measuring stick with a precision of +/- 0.002 meters measures a distance of 7.291 meters and a chronometer with a precision of +/- 0.0004 seconds measures a duration as 0.0027 seconds. After dividing the values your computer produces the output 2700.370370370370. If we report this output correctly with respect to the number of significant figures, what is the result? A. 2700.37 meters/second B. 2700.370 meters/second C. 2700 meters/second Answer:
[ " A", " B", " C" ]
2
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A storage container with a precision of +/- 0.4 liters measures a volume of 9.5 liters and an opisometer with a precision of +/- 0.0004 meters reads 0.0072 meters when measuring a distance. You divide the first value by the second value with a calculator and get the output 1319.444444444444. When this output is written to the right number of significant figures, what do we get? A. 1319.4 liters/meter B. 1300 liters/meter C. 1319.44 liters/meter Answer:
[ " A", " B", " C" ]
1
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A rangefinder with a precision of +/- 30 meters measures a distance of 8800 meters and a measuring rod with a precision of +/- 0.0004 meters measures a distance between two different points as 0.0042 meters. Your calculator app produces the output 2095238.095238095238 when dividing the former value by the latter. Report this output using the correct level of precision. A. 2100000 B. 2095230 C. 2095238.10 Answer:
[ " A", " B", " C" ]
0
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A coincidence telemeter with a precision of +/- 0.4 meters measures a distance of 46.6 meters and a measuring flask with a precision of +/- 0.03 liters reads 26.63 liters when measuring a volume. Your computer gives the output 1.749906120916 when dividing the first value by the second value. Report this output using the correct level of precision. A. 1.750 meters/liter B. 1.7 meters/liter C. 1.75 meters/liter Answer:
[ " A", " B", " C" ]
2
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A radar-based method with a precision of +/- 400 meters takes a measurement of 621500 meters, and a chronometer with a precision of +/- 0.0004 seconds measures a duration as 0.0961 seconds. After dividing the former value by the latter your calculator app yields the output 6467221.644120707596. If we write this output suitably with respect to the number of significant figures, what is the result? A. 6470000 meters/second B. 6467221.644 meters/second C. 6467200 meters/second Answer:
[ " A", " B", " C" ]
0
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A balance with a precision of +/- 200 grams takes a measurement of 67700 grams, and a graduated cylinder with a precision of +/- 0.004 liters measures a volume as 0.725 liters. Using a computer, you divide the numbers and get the output 93379.310344827586. How can we express this output to the right level of precision? A. 93379.310 grams/liter B. 93300 grams/liter C. 93400 grams/liter Answer:
[ " A", " B", " C" ]
2
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A measuring flask with a precision of +/- 0.02 liters takes a measurement of 2.65 liters, and a timer with a precision of +/- 0.004 seconds reads 0.003 seconds when measuring a duration. Your computer yields the solution 883.333333333333 when dividing the former value by the latter. How would this result look if we wrote it with the correct number of significant figures? A. 883.33 liters/second B. 883.3 liters/second C. 900 liters/second Answer:
[ " A", " B", " C" ]
2
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A ruler with a precision of +/- 0.003 meters takes a measurement of 9.745 meters, and a cathetometer with a precision of +/- 0.0004 meters measures a distance between two different points as 0.0009 meters. After dividing the first value by the second value your calculator app gives the solution 10827.777777777778. How can we write this solution to the proper level of precision? A. 10000 B. 10827.8 C. 10827.778 Answer:
[ " A", " B", " C" ]
0
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A clickwheel with a precision of +/- 0.4 meters takes a measurement of 12.5 meters, and an analytical balance with a precision of +/- 0.0001 grams reads 0.0045 grams when measuring a mass. Your calculator app gets the output 2777.777777777778 when dividing the former value by the latter. Write this output using the appropriate level of precision. A. 2777.78 meters/gram B. 2800 meters/gram C. 2777.8 meters/gram Answer:
[ " A", " B", " C" ]
1
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A biltmore stick with a precision of +/- 0.4 meters measures a distance of 439.7 meters and a cathetometer with a precision of +/- 0.0001 meters reads 0.0871 meters when measuring a distance between two different points. Your calculator yields the solution 5048.220436280138 when dividing the former number by the latter. Using the proper level of precision, what is the answer? A. 5050 B. 5048.220 C. 5048.2 Answer:
[ " A", " B", " C" ]
0
2