prompt
stringlengths
54
1.42k
classes
sequencelengths
2
4
answer_index
int32
0
3
round
int32
2
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A tape measure with a precision of +/- 0.0001 meters measures a distance of 0.0091 meters and a balance with a precision of +/- 4 grams reads 3815 grams when measuring a mass. After multiplying the former value by the latter your computer produces the solution 34.716500000000. How can we round this solution to the appropriate number of significant figures? A. 34 gram-meters B. 35 gram-meters C. 34.72 gram-meters Answer:
[ " A", " B", " C" ]
1
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- An odometer with a precision of +/- 2000 meters measures a distance of 650000 meters and a measuring rod with a precision of +/- 0.003 meters reads 0.007 meters when measuring a distance between two different points. Using a computer, you multiply the former number by the latter and get the output 4550.000000000000. How would this answer look if we wrote it with the appropriate number of significant figures? A. 4550.0 meters^2 B. 4000 meters^2 C. 5000 meters^2 Answer:
[ " A", " B", " C" ]
2
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A stopwatch with a precision of +/- 0.002 seconds measures a duration of 0.059 seconds and a cathetometer with a precision of +/- 0.0002 meters measures a distance as 0.0096 meters. Using a computer, you divide the first value by the second value and get the solution 6.145833333333. If we write this solution correctly with respect to the number of significant figures, what is the answer? A. 6.15 seconds/meter B. 6.1 seconds/meter C. 6.146 seconds/meter Answer:
[ " A", " B", " C" ]
1
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A clickwheel with a precision of +/- 0.003 meters measures a distance of 0.051 meters and a chronometer with a precision of +/- 0.00001 seconds reads 0.00014 seconds when measuring a duration. After dividing the former number by the latter your calculator app gets the solution 364.285714285714. If we round this solution suitably with respect to the level of precision, what is the answer? A. 364.29 meters/second B. 364.286 meters/second C. 360 meters/second Answer:
[ " A", " B", " C" ]
2
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A hydraulic scale with a precision of +/- 3000 grams takes a measurement of 1000 grams, and a chronometer with a precision of +/- 0.00001 seconds measures a duration as 0.05353 seconds. You divide the two values with a computer and get the output 18681.113394358304. If we report this output to the proper level of precision, what is the answer? A. 18681.1 grams/second B. 18000 grams/second C. 20000 grams/second Answer:
[ " A", " B", " C" ]
2
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A storage container with a precision of +/- 4 liters takes a measurement of 2928 liters, and a caliper with a precision of +/- 0.01 meters reads 57.45 meters when measuring a distance. Your computer gets the output 168213.600000000000 when multiplying the former number by the latter. How would this result look if we reported it with the right number of significant figures? A. 168200 liter-meters B. 168213.6000 liter-meters C. 168213 liter-meters Answer:
[ " A", " B", " C" ]
0
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A clickwheel with a precision of +/- 0.01 meters measures a distance of 0.07 meters and a coincidence telemeter with a precision of +/- 400 meters reads 271300 meters when measuring a distance between two different points. You multiply the values with a computer and get the output 18991.000000000000. How can we write this output to the appropriate number of significant figures? A. 20000 meters^2 B. 18991.0 meters^2 C. 18900 meters^2 Answer:
[ " A", " B", " C" ]
0
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- An opisometer with a precision of +/- 0.01 meters takes a measurement of 1.44 meters, and a measuring stick with a precision of +/- 0.1 meters reads 896.1 meters when measuring a distance between two different points. After multiplying the first number by the second number your computer produces the solution 1290.384000000000. If we round this solution correctly with respect to the level of precision, what is the result? A. 1290.384 meters^2 B. 1290 meters^2 C. 1290.4 meters^2 Answer:
[ " A", " B", " C" ]
1
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A measuring stick with a precision of +/- 0.01 meters takes a measurement of 4.68 meters, and a ruler with a precision of +/- 0.04 meters reads 11.07 meters when measuring a distance between two different points. You multiply the former number by the latter with a calculator app and get the solution 51.807600000000. When this solution is written to the proper number of significant figures, what do we get? A. 51.808 meters^2 B. 51.81 meters^2 C. 51.8 meters^2 Answer:
[ " A", " B", " C" ]
2
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- An analytical balance with a precision of +/- 30 grams takes a measurement of 30 grams, and a ruler with a precision of +/- 0.004 meters reads 0.007 meters when measuring a distance. You divide the numbers with a calculator and get the output 4285.714285714286. If we round this output suitably with respect to the level of precision, what is the result? A. 4280 grams/meter B. 4000 grams/meter C. 4285.7 grams/meter Answer:
[ " A", " B", " C" ]
1
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A radar-based method with a precision of +/- 20 meters takes a measurement of 100 meters, and a measuring flask with a precision of +/- 0.004 liters measures a volume as 8.757 liters. Using a calculator, you multiply the two numbers and get the solution 875.700000000000. If we express this solution correctly with respect to the number of significant figures, what is the answer? A. 875.70 liter-meters B. 870 liter-meters C. 880 liter-meters Answer:
[ " A", " B", " C" ]
2
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A storage container with a precision of +/- 3 liters takes a measurement of 297 liters, and a measuring flask with a precision of +/- 0.002 liters measures a volume of a different quantity of liquid as 0.037 liters. After dividing the former value by the latter your computer gets the output 8027.027027027027. Using the proper level of precision, what is the result? A. 8027 B. 8000 C. 8027.03 Answer:
[ " A", " B", " C" ]
1
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A chronograph with a precision of +/- 0.2 seconds takes a measurement of 231.8 seconds, and a storage container with a precision of +/- 0.4 liters reads 5.0 liters when measuring a volume. Your computer produces the output 46.360000000000 when dividing the two values. How can we report this output to the appropriate number of significant figures? A. 46.4 seconds/liter B. 46 seconds/liter C. 46.36 seconds/liter Answer:
[ " A", " B", " C" ]
1
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A chronograph with a precision of +/- 0.004 seconds takes a measurement of 0.565 seconds, and an opisometer with a precision of +/- 3 meters reads 3 meters when measuring a distance. After multiplying the first number by the second number your calculator app yields the solution 1.695000000000. Using the suitable number of significant figures, what is the result? A. 1.7 meter-seconds B. 1 meter-seconds C. 2 meter-seconds Answer:
[ " A", " B", " C" ]
2
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A stadimeter with a precision of +/- 30 meters takes a measurement of 8530 meters, and a cathetometer with a precision of +/- 0.00002 meters reads 0.00015 meters when measuring a distance between two different points. Your calculator app yields the solution 56866666.666666666667 when dividing the former value by the latter. Using the right number of significant figures, what is the answer? A. 56866660 B. 57000000 C. 56866666.67 Answer:
[ " A", " B", " C" ]
1
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- An opisometer with a precision of +/- 0.0001 meters measures a distance of 0.7259 meters and a ruler with a precision of +/- 0.02 meters measures a distance between two different points as 49.52 meters. Using a calculator app, you divide the two values and get the output 0.014658723748. How would this answer look if we rounded it with the correct number of significant figures? A. 0.01466 B. 0.0147 C. 0.01 Answer:
[ " A", " B", " C" ]
0
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A balance with a precision of +/- 4 grams takes a measurement of 7323 grams, and a stopwatch with a precision of +/- 0.3 seconds measures a duration as 6.0 seconds. Using a calculator app, you divide the values and get the output 1220.500000000000. How would this answer look if we expressed it with the suitable number of significant figures? A. 1220.50 grams/second B. 1220 grams/second C. 1200 grams/second Answer:
[ " A", " B", " C" ]
2
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A ruler with a precision of +/- 0.04 meters measures a distance of 6.59 meters and a measuring rod with a precision of +/- 0.0002 meters reads 0.0002 meters when measuring a distance between two different points. Using a calculator app, you divide the first number by the second number and get the output 32950.000000000000. If we round this output to the appropriate number of significant figures, what is the answer? A. 32950.0 B. 30000 C. 32950.00 Answer:
[ " A", " B", " C" ]
1
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A balance with a precision of +/- 0.1 grams takes a measurement of 39.6 grams, and a radar-based method with a precision of +/- 3 meters reads 8 meters when measuring a distance. You multiply the numbers with a calculator and get the solution 316.800000000000. If we report this solution to the proper level of precision, what is the answer? A. 316.8 gram-meters B. 316 gram-meters C. 300 gram-meters Answer:
[ " A", " B", " C" ]
2
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A meter stick with a precision of +/- 0.0002 meters measures a distance of 0.1980 meters and a spring scale with a precision of +/- 2000 grams reads 9240000 grams when measuring a mass. Your calculator app gives the output 1829520.000000000000 when multiplying the former number by the latter. Report this output using the suitable level of precision. A. 1829000 gram-meters B. 1829520.0000 gram-meters C. 1830000 gram-meters Answer:
[ " A", " B", " C" ]
2
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A meter stick with a precision of +/- 0.0001 meters takes a measurement of 0.0804 meters, and a measuring stick with a precision of +/- 0.003 meters reads 0.004 meters when measuring a distance between two different points. Using a computer, you divide the two values and get the solution 20.100000000000. How can we report this solution to the correct number of significant figures? A. 20.1 B. 20 C. 20.100 Answer:
[ " A", " B", " C" ]
1
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A meter stick with a precision of +/- 0.0001 meters measures a distance of 0.0434 meters and a stadimeter with a precision of +/- 10 meters reads 320 meters when measuring a distance between two different points. You multiply the values with a computer and get the output 13.888000000000. If we express this output to the appropriate number of significant figures, what is the answer? A. 13.89 meters^2 B. 14 meters^2 C. 10 meters^2 Answer:
[ " A", " B", " C" ]
1
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- An odometer with a precision of +/- 300 meters takes a measurement of 9100 meters, and an opisometer with a precision of +/- 2 meters measures a distance between two different points as 9 meters. Using a calculator app, you multiply the numbers and get the output 81900.000000000000. How can we round this output to the suitable level of precision? A. 81900 meters^2 B. 81900.0 meters^2 C. 80000 meters^2 Answer:
[ " A", " B", " C" ]
2
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A coincidence telemeter with a precision of +/- 4 meters takes a measurement of 10 meters, and an analytical balance with a precision of +/- 0.02 grams measures a mass as 3.66 grams. After multiplying the two numbers your computer yields the solution 36.600000000000. How would this result look if we rounded it with the suitable level of precision? A. 37 gram-meters B. 36.60 gram-meters C. 36 gram-meters Answer:
[ " A", " B", " C" ]
0
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A measuring rod with a precision of +/- 0.0004 meters measures a distance of 0.0634 meters and a balance with a precision of +/- 0.0002 grams reads 0.0006 grams when measuring a mass. Your calculator app yields the solution 105.666666666667 when dividing the two values. When this solution is expressed to the suitable level of precision, what do we get? A. 105.6667 meters/gram B. 105.7 meters/gram C. 100 meters/gram Answer:
[ " A", " B", " C" ]
2
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- An odometer with a precision of +/- 2000 meters measures a distance of 177000 meters and an odometer with a precision of +/- 4000 meters reads 57000 meters when measuring a distance between two different points. Your computer produces the solution 10089000000.000000000000 when multiplying the former number by the latter. How would this answer look if we expressed it with the correct number of significant figures? A. 10000000000 meters^2 B. 10089000000.00 meters^2 C. 10089000000 meters^2 Answer:
[ " A", " B", " C" ]
0
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A hydraulic scale with a precision of +/- 400 grams takes a measurement of 60900 grams, and a clickwheel with a precision of +/- 0.1 meters reads 76.4 meters when measuring a distance. After dividing the values your calculator gets the output 797.120418848168. How would this result look if we wrote it with the suitable number of significant figures? A. 700 grams/meter B. 797 grams/meter C. 797.120 grams/meter Answer:
[ " A", " B", " C" ]
1
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A tape measure with a precision of +/- 0.003 meters measures a distance of 0.960 meters and a measuring stick with a precision of +/- 0.002 meters measures a distance between two different points as 0.006 meters. You divide the two numbers with a computer and get the output 160.000000000000. How can we write this output to the suitable level of precision? A. 160.000 B. 160.0 C. 200 Answer:
[ " A", " B", " C" ]
2
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A hydraulic scale with a precision of +/- 0.001 grams measures a mass of 0.059 grams and an opisometer with a precision of +/- 0.4 meters measures a distance as 458.0 meters. Your computer gives the output 27.022000000000 when multiplying the former value by the latter. Using the suitable level of precision, what is the result? A. 27 gram-meters B. 27.0 gram-meters C. 27.02 gram-meters Answer:
[ " A", " B", " C" ]
0
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A radar-based method with a precision of +/- 400 meters takes a measurement of 44300 meters, and a storage container with a precision of +/- 2 liters measures a volume as 76 liters. You multiply the first number by the second number with a computer and get the output 3366800.000000000000. If we round this output suitably with respect to the level of precision, what is the result? A. 3366800.00 liter-meters B. 3400000 liter-meters C. 3366800 liter-meters Answer:
[ " A", " B", " C" ]
1
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A meter stick with a precision of +/- 0.0004 meters takes a measurement of 0.0007 meters, and a hydraulic scale with a precision of +/- 0.0003 grams measures a mass as 0.0001 grams. Using a calculator, you divide the numbers and get the output 7.000000000000. If we round this output properly with respect to the number of significant figures, what is the answer? A. 7.0 meters/gram B. 7 meters/gram C. 7.0000 meters/gram Answer:
[ " A", " B", " C" ]
1
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A biltmore stick with a precision of +/- 0.01 meters takes a measurement of 35.35 meters, and a hydraulic scale with a precision of +/- 3000 grams reads 2758000 grams when measuring a mass. You multiply the values with a calculator app and get the output 97495300.000000000000. Round this output using the correct level of precision. A. 97495000 gram-meters B. 97500000 gram-meters C. 97495300.0000 gram-meters Answer:
[ " A", " B", " C" ]
1
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A caliper with a precision of +/- 0.01 meters measures a distance of 5.64 meters and an analytical balance with a precision of +/- 0.2 grams measures a mass as 2.7 grams. Your computer produces the solution 15.228000000000 when multiplying the numbers. If we write this solution to the correct level of precision, what is the answer? A. 15.2 gram-meters B. 15.23 gram-meters C. 15 gram-meters Answer:
[ " A", " B", " C" ]
2
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A measuring rod with a precision of +/- 0.04 meters measures a distance of 5.80 meters and a measuring tape with a precision of +/- 0.02 meters measures a distance between two different points as 9.22 meters. Using a computer, you multiply the first number by the second number and get the output 53.476000000000. Report this output using the correct level of precision. A. 53.48 meters^2 B. 53.5 meters^2 C. 53.476 meters^2 Answer:
[ " A", " B", " C" ]
1
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A stopwatch with a precision of +/- 0.003 seconds measures a duration of 0.088 seconds and a stadimeter with a precision of +/- 300 meters measures a distance as 98700 meters. Your calculator produces the solution 8685.600000000000 when multiplying the values. If we report this solution to the right number of significant figures, what is the result? A. 8685.60 meter-seconds B. 8600 meter-seconds C. 8700 meter-seconds Answer:
[ " A", " B", " C" ]
2
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A radar-based method with a precision of +/- 10 meters measures a distance of 4880 meters and a caliper with a precision of +/- 0.02 meters measures a distance between two different points as 0.69 meters. After dividing the numbers your calculator app gives the output 7072.463768115942. When this output is reported to the proper number of significant figures, what do we get? A. 7070 B. 7072.46 C. 7100 Answer:
[ " A", " B", " C" ]
2
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A stadimeter with a precision of +/- 0.1 meters takes a measurement of 95.7 meters, and a graduated cylinder with a precision of +/- 0.001 liters measures a volume as 0.798 liters. Your calculator gives the solution 119.924812030075 when dividing the two numbers. Report this solution using the proper number of significant figures. A. 119.9 meters/liter B. 119.925 meters/liter C. 120 meters/liter Answer:
[ " A", " B", " C" ]
2
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A chronometer with a precision of +/- 0.00004 seconds takes a measurement of 0.00951 seconds, and a measuring tape with a precision of +/- 0.4 meters measures a distance as 6.5 meters. You multiply the two numbers with a calculator app and get the output 0.061815000000. If we write this output suitably with respect to the level of precision, what is the result? A. 0.062 meter-seconds B. 0.06 meter-seconds C. 0.1 meter-seconds Answer:
[ " A", " B", " C" ]
0
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A cathetometer with a precision of +/- 0.00003 meters takes a measurement of 0.00094 meters, and a chronometer with a precision of +/- 0.00001 seconds measures a duration as 0.00006 seconds. Your calculator app produces the output 15.666666666667 when dividing the former value by the latter. When this output is reported to the correct level of precision, what do we get? A. 15.66667 meters/second B. 20 meters/second C. 15.7 meters/second Answer:
[ " A", " B", " C" ]
1
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- An analytical balance with a precision of +/- 0.003 grams takes a measurement of 9.436 grams, and a radar-based method with a precision of +/- 30 meters reads 490 meters when measuring a distance. Your computer gives the output 4623.640000000000 when multiplying the former number by the latter. How can we write this output to the appropriate number of significant figures? A. 4623.64 gram-meters B. 4620 gram-meters C. 4600 gram-meters Answer:
[ " A", " B", " C" ]
2
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A cathetometer with a precision of +/- 0.0004 meters takes a measurement of 0.0649 meters, and a caliper with a precision of +/- 0.003 meters reads 0.001 meters when measuring a distance between two different points. You divide the former number by the latter with a calculator app and get the solution 64.900000000000. Round this solution using the suitable level of precision. A. 64.9 B. 60 C. 64.900 Answer:
[ " A", " B", " C" ]
1
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A timer with a precision of +/- 0.03 seconds measures a duration of 4.63 seconds and a caliper with a precision of +/- 0.002 meters measures a distance as 4.187 meters. You multiply the numbers with a computer and get the solution 19.385810000000. Report this solution using the right number of significant figures. A. 19.39 meter-seconds B. 19.386 meter-seconds C. 19.4 meter-seconds Answer:
[ " A", " B", " C" ]
2
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A storage container with a precision of +/- 10 liters measures a volume of 2300 liters and a hydraulic scale with a precision of +/- 0.002 grams measures a mass as 3.109 grams. You divide the former number by the latter with a computer and get the output 739.787713091026. When this output is reported to the appropriate number of significant figures, what do we get? A. 739.788 liters/gram B. 730 liters/gram C. 740 liters/gram Answer:
[ " A", " B", " C" ]
2
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A storage container with a precision of +/- 20 liters measures a volume of 97270 liters and a spring scale with a precision of +/- 10 grams measures a mass as 8840 grams. After dividing the first value by the second value your calculator app gets the solution 11.003393665158. Round this solution using the correct number of significant figures. A. 11.0 liters/gram B. 10 liters/gram C. 11.003 liters/gram Answer:
[ " A", " B", " C" ]
0
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A biltmore stick with a precision of +/- 0.3 meters takes a measurement of 214.9 meters, and a measuring stick with a precision of +/- 0.3 meters measures a distance between two different points as 2.9 meters. Your computer gets the solution 74.103448275862 when dividing the numbers. Using the correct number of significant figures, what is the result? A. 74.1 B. 74.10 C. 74 Answer:
[ " A", " B", " C" ]
2
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A stopwatch with a precision of +/- 0.3 seconds takes a measurement of 511.3 seconds, and an opisometer with a precision of +/- 1 meters measures a distance as 864 meters. You multiply the former value by the latter with a calculator and get the solution 441763.200000000000. How can we write this solution to the appropriate level of precision? A. 442000 meter-seconds B. 441763.200 meter-seconds C. 441763 meter-seconds Answer:
[ " A", " B", " C" ]
0
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A chronograph with a precision of +/- 0.1 seconds takes a measurement of 69.3 seconds, and a stopwatch with a precision of +/- 0.1 seconds measures a duration of a different event as 4.8 seconds. Your computer gets the solution 332.640000000000 when multiplying the former number by the latter. When this solution is reported to the suitable level of precision, what do we get? A. 332.6 seconds^2 B. 332.64 seconds^2 C. 330 seconds^2 Answer:
[ " A", " B", " C" ]
2
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A rangefinder with a precision of +/- 0.003 meters takes a measurement of 8.273 meters, and a clickwheel with a precision of +/- 0.2 meters reads 67.5 meters when measuring a distance between two different points. Your computer gives the output 558.427500000000 when multiplying the numbers. How would this result look if we expressed it with the proper level of precision? A. 558 meters^2 B. 558.428 meters^2 C. 558.4 meters^2 Answer:
[ " A", " B", " C" ]
0
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- An analytical balance with a precision of +/- 100 grams takes a measurement of 900 grams, and a measuring stick with a precision of +/- 0.001 meters reads 0.287 meters when measuring a distance. You divide the former value by the latter with a calculator and get the solution 3135.888501742160. How can we express this solution to the suitable number of significant figures? A. 3000 grams/meter B. 3100 grams/meter C. 3135.9 grams/meter Answer:
[ " A", " B", " C" ]
0
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A coincidence telemeter with a precision of +/- 40 meters takes a measurement of 56320 meters, and a measuring flask with a precision of +/- 0.03 liters reads 9.65 liters when measuring a volume. Using a computer, you divide the numbers and get the solution 5836.269430051813. If we round this solution correctly with respect to the number of significant figures, what is the answer? A. 5836.269 meters/liter B. 5840 meters/liter C. 5830 meters/liter Answer:
[ " A", " B", " C" ]
1
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A tape measure with a precision of +/- 0.0003 meters measures a distance of 0.3995 meters and an opisometer with a precision of +/- 1 meters measures a distance between two different points as 120 meters. Using a calculator app, you multiply the former number by the latter and get the solution 47.940000000000. Using the proper number of significant figures, what is the result? A. 47.940 meters^2 B. 47 meters^2 C. 47.9 meters^2 Answer:
[ " A", " B", " C" ]
2
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A cathetometer with a precision of +/- 0.0003 meters takes a measurement of 0.2696 meters, and a meter stick with a precision of +/- 0.0003 meters reads 0.0008 meters when measuring a distance between two different points. After dividing the two values your calculator app produces the output 337.000000000000. If we report this output appropriately with respect to the number of significant figures, what is the answer? A. 300 B. 337.0000 C. 337.0 Answer:
[ " A", " B", " C" ]
0
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A storage container with a precision of +/- 3 liters measures a volume of 9 liters and a stopwatch with a precision of +/- 0.1 seconds measures a duration as 0.5 seconds. You divide the values with a calculator app and get the output 18.000000000000. Report this output using the appropriate number of significant figures. A. 18 liters/second B. 18.0 liters/second C. 20 liters/second Answer:
[ " A", " B", " C" ]
2
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A measuring tape with a precision of +/- 0.01 meters takes a measurement of 5.81 meters, and a hydraulic scale with a precision of +/- 0.4 grams measures a mass as 55.9 grams. Your calculator yields the output 324.779000000000 when multiplying the former value by the latter. If we round this output correctly with respect to the number of significant figures, what is the result? A. 324.8 gram-meters B. 325 gram-meters C. 324.779 gram-meters Answer:
[ " A", " B", " C" ]
1
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A biltmore stick with a precision of +/- 0.04 meters measures a distance of 0.01 meters and a cathetometer with a precision of +/- 0.00001 meters measures a distance between two different points as 0.00071 meters. Using a calculator, you divide the former value by the latter and get the output 14.084507042254. How can we round this output to the suitable level of precision? A. 14.08 B. 14.1 C. 10 Answer:
[ " A", " B", " C" ]
2
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A coincidence telemeter with a precision of +/- 20 meters measures a distance of 8840 meters and an odometer with a precision of +/- 300 meters reads 46500 meters when measuring a distance between two different points. After multiplying the numbers your computer gets the solution 411060000.000000000000. If we report this solution to the right level of precision, what is the answer? A. 411060000.000 meters^2 B. 411060000 meters^2 C. 411000000 meters^2 Answer:
[ " A", " B", " C" ]
2
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A timer with a precision of +/- 0.001 seconds measures a duration of 0.401 seconds and an opisometer with a precision of +/- 4 meters reads 9 meters when measuring a distance. Using a calculator app, you multiply the first number by the second number and get the solution 3.609000000000. Using the correct number of significant figures, what is the result? A. 3 meter-seconds B. 3.6 meter-seconds C. 4 meter-seconds Answer:
[ " A", " B", " C" ]
2
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- An odometer with a precision of +/- 3000 meters takes a measurement of 686000 meters, and a measuring flask with a precision of +/- 0.02 liters reads 0.18 liters when measuring a volume. After dividing the values your calculator gives the solution 3811111.111111111111. When this solution is expressed to the correct number of significant figures, what do we get? A. 3811111.11 meters/liter B. 3800000 meters/liter C. 3811000 meters/liter Answer:
[ " A", " B", " C" ]
1
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A stadimeter with a precision of +/- 100 meters takes a measurement of 19700 meters, and a measuring flask with a precision of +/- 0.03 liters measures a volume as 0.78 liters. Using a computer, you multiply the former number by the latter and get the output 15366.000000000000. Using the suitable number of significant figures, what is the answer? A. 15366.00 liter-meters B. 15300 liter-meters C. 15000 liter-meters Answer:
[ " A", " B", " C" ]
2
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A cathetometer with a precision of +/- 0.0003 meters measures a distance of 0.8662 meters and an odometer with a precision of +/- 300 meters reads 23300 meters when measuring a distance between two different points. You multiply the former number by the latter with a calculator app and get the solution 20182.460000000000. How can we write this solution to the proper level of precision? A. 20200 meters^2 B. 20182.460 meters^2 C. 20100 meters^2 Answer:
[ " A", " B", " C" ]
0
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A graduated cylinder with a precision of +/- 0.003 liters takes a measurement of 0.039 liters, and a tape measure with a precision of +/- 0.001 meters reads 0.004 meters when measuring a distance. After dividing the former value by the latter your calculator app yields the output 9.750000000000. How would this result look if we rounded it with the appropriate level of precision? A. 9.8 liters/meter B. 9.750 liters/meter C. 10 liters/meter Answer:
[ " A", " B", " C" ]
2
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- An opisometer with a precision of +/- 0.1 meters takes a measurement of 505.6 meters, and a storage container with a precision of +/- 1 liters reads 6 liters when measuring a volume. Using a calculator app, you divide the former number by the latter and get the solution 84.266666666667. If we express this solution to the appropriate level of precision, what is the answer? A. 84.3 meters/liter B. 80 meters/liter C. 84 meters/liter Answer:
[ " A", " B", " C" ]
1
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A coincidence telemeter with a precision of +/- 300 meters takes a measurement of 3500 meters, and a measuring tape with a precision of +/- 0.1 meters reads 0.6 meters when measuring a distance between two different points. Your calculator app produces the solution 2100.000000000000 when multiplying the former number by the latter. How would this answer look if we rounded it with the proper number of significant figures? A. 2100 meters^2 B. 2000 meters^2 C. 2100.0 meters^2 Answer:
[ " A", " B", " C" ]
1
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A radar-based method with a precision of +/- 400 meters takes a measurement of 100 meters, and a clickwheel with a precision of +/- 0.1 meters measures a distance between two different points as 171.0 meters. After multiplying the two values your computer produces the solution 17100.000000000000. How can we report this solution to the correct number of significant figures? A. 17100.0 meters^2 B. 20000 meters^2 C. 17100 meters^2 Answer:
[ " A", " B", " C" ]
1
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- An odometer with a precision of +/- 300 meters measures a distance of 98500 meters and an opisometer with a precision of +/- 0.03 meters measures a distance between two different points as 0.77 meters. You divide the numbers with a calculator and get the solution 127922.077922077922. If we round this solution to the suitable number of significant figures, what is the result? A. 127922.08 B. 130000 C. 127900 Answer:
[ " A", " B", " C" ]
1
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A coincidence telemeter with a precision of +/- 1 meters measures a distance of 54 meters and a measuring tape with a precision of +/- 0.4 meters measures a distance between two different points as 48.2 meters. You multiply the former number by the latter with a computer and get the solution 2602.800000000000. Using the suitable level of precision, what is the answer? A. 2600 meters^2 B. 2602.80 meters^2 C. 2602 meters^2 Answer:
[ " A", " B", " C" ]
0
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A balance with a precision of +/- 200 grams measures a mass of 46400 grams and a measuring tape with a precision of +/- 0.02 meters measures a distance as 0.34 meters. After multiplying the former value by the latter your calculator gets the solution 15776.000000000000. If we express this solution to the suitable number of significant figures, what is the answer? A. 16000 gram-meters B. 15700 gram-meters C. 15776.00 gram-meters Answer:
[ " A", " B", " C" ]
0
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A balance with a precision of +/- 0.0001 grams measures a mass of 0.0627 grams and a meter stick with a precision of +/- 0.0001 meters measures a distance as 0.0085 meters. Using a calculator, you divide the first number by the second number and get the output 7.376470588235. If we express this output appropriately with respect to the number of significant figures, what is the result? A. 7.38 grams/meter B. 7.3765 grams/meter C. 7.4 grams/meter Answer:
[ " A", " B", " C" ]
2
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A clickwheel with a precision of +/- 0.01 meters measures a distance of 0.31 meters and a caliper with a precision of +/- 0.001 meters reads 0.007 meters when measuring a distance between two different points. After dividing the former value by the latter your computer yields the output 44.285714285714. Round this output using the appropriate number of significant figures. A. 44.29 B. 44.3 C. 40 Answer:
[ " A", " B", " C" ]
2
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A radar-based method with a precision of +/- 3 meters takes a measurement of 641 meters, and a rangefinder with a precision of +/- 20 meters measures a distance between two different points as 7170 meters. You multiply the first number by the second number with a computer and get the solution 4595970.000000000000. When this solution is written to the proper number of significant figures, what do we get? A. 4600000 meters^2 B. 4595970.000 meters^2 C. 4595970 meters^2 Answer:
[ " A", " B", " C" ]
0
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A hydraulic scale with a precision of +/- 4000 grams measures a mass of 190000 grams and a hydraulic scale with a precision of +/- 4 grams reads 43 grams when measuring a mass of a different object. Your computer produces the solution 8170000.000000000000 when multiplying the numbers. How can we report this solution to the right number of significant figures? A. 8170000 grams^2 B. 8170000.00 grams^2 C. 8200000 grams^2 Answer:
[ " A", " B", " C" ]
2
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A biltmore stick with a precision of +/- 0.4 meters takes a measurement of 0.1 meters, and a radar-based method with a precision of +/- 100 meters measures a distance between two different points as 22400 meters. You multiply the first number by the second number with a calculator app and get the solution 2240.000000000000. When this solution is written to the suitable number of significant figures, what do we get? A. 2240.0 meters^2 B. 2200 meters^2 C. 2000 meters^2 Answer:
[ " A", " B", " C" ]
2
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A balance with a precision of +/- 30 grams takes a measurement of 40 grams, and a coincidence telemeter with a precision of +/- 200 meters reads 900 meters when measuring a distance. Using a computer, you multiply the two numbers and get the solution 36000.000000000000. Express this solution using the right level of precision. A. 40000 gram-meters B. 36000.0 gram-meters C. 36000 gram-meters Answer:
[ " A", " B", " C" ]
0
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A chronograph with a precision of +/- 0.03 seconds takes a measurement of 0.02 seconds, and a clickwheel with a precision of +/- 0.04 meters measures a distance as 97.58 meters. You multiply the first value by the second value with a calculator app and get the solution 1.951600000000. How would this result look if we reported it with the right level of precision? A. 2.0 meter-seconds B. 2 meter-seconds C. 1.95 meter-seconds Answer:
[ " A", " B", " C" ]
1
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A coincidence telemeter with a precision of +/- 2 meters takes a measurement of 704 meters, and a storage container with a precision of +/- 4 liters reads 39 liters when measuring a volume. After multiplying the first number by the second number your calculator produces the output 27456.000000000000. How can we round this output to the suitable level of precision? A. 27456 liter-meters B. 27000 liter-meters C. 27456.00 liter-meters Answer:
[ " A", " B", " C" ]
1
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A radar-based method with a precision of +/- 2 meters takes a measurement of 913 meters, and a Biltmore stick with a precision of +/- 0.04 meters measures a distance between two different points as 0.05 meters. Using a calculator, you multiply the former number by the latter and get the solution 45.650000000000. When this solution is written to the right number of significant figures, what do we get? A. 50 meters^2 B. 45.6 meters^2 C. 45 meters^2 Answer:
[ " A", " B", " C" ]
0
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- An opisometer with a precision of +/- 4 meters measures a distance of 9 meters and a caliper with a precision of +/- 0.04 meters reads 0.28 meters when measuring a distance between two different points. After multiplying the two values your calculator gets the output 2.520000000000. If we report this output correctly with respect to the level of precision, what is the result? A. 2 meters^2 B. 2.5 meters^2 C. 3 meters^2 Answer:
[ " A", " B", " C" ]
2
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A measuring tape with a precision of +/- 0.2 meters takes a measurement of 6.2 meters, and a meter stick with a precision of +/- 0.0002 meters measures a distance between two different points as 0.0090 meters. After multiplying the values your calculator app gets the output 0.055800000000. If we express this output properly with respect to the level of precision, what is the result? A. 0.06 meters^2 B. 0.1 meters^2 C. 0.056 meters^2 Answer:
[ " A", " B", " C" ]
2
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- An odometer with a precision of +/- 400 meters measures a distance of 600 meters and a stopwatch with a precision of +/- 0.03 seconds measures a duration as 37.99 seconds. You multiply the former value by the latter with a calculator and get the output 22794.000000000000. When this output is reported to the suitable level of precision, what do we get? A. 22700 meter-seconds B. 20000 meter-seconds C. 22794.0 meter-seconds Answer:
[ " A", " B", " C" ]
1
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A caliper with a precision of +/- 0.001 meters measures a distance of 0.859 meters and a caliper with a precision of +/- 0.02 meters measures a distance between two different points as 41.06 meters. After dividing the former value by the latter your calculator produces the solution 0.020920603994. When this solution is written to the right level of precision, what do we get? A. 0.0209 B. 0.021 C. 0.02 Answer:
[ " A", " B", " C" ]
0
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A caliper with a precision of +/- 0.01 meters takes a measurement of 69.53 meters, and a clickwheel with a precision of +/- 0.2 meters measures a distance between two different points as 912.3 meters. Your computer produces the output 0.076213964705 when dividing the two numbers. If we express this output to the correct level of precision, what is the result? A. 0.07621 B. 0.1 C. 0.0762 Answer:
[ " A", " B", " C" ]
0
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A meter stick with a precision of +/- 0.0004 meters takes a measurement of 0.1329 meters, and a chronograph with a precision of +/- 0.002 seconds measures a duration as 6.598 seconds. Using a calculator, you divide the former number by the latter and get the solution 0.020142467414. How would this result look if we expressed it with the suitable number of significant figures? A. 0.02014 meters/second B. 0.0201 meters/second C. 0.020 meters/second Answer:
[ " A", " B", " C" ]
0
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A stadimeter with a precision of +/- 200 meters measures a distance of 5500 meters and a hydraulic scale with a precision of +/- 3 grams reads 61 grams when measuring a mass. After multiplying the two values your calculator app gets the output 335500.000000000000. Using the right level of precision, what is the answer? A. 335500.00 gram-meters B. 340000 gram-meters C. 335500 gram-meters Answer:
[ " A", " B", " C" ]
1
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A chronograph with a precision of +/- 0.4 seconds takes a measurement of 975.0 seconds, and an analytical balance with a precision of +/- 0.002 grams measures a mass as 5.240 grams. After multiplying the two values your calculator app produces the solution 5109.000000000000. How can we express this solution to the appropriate number of significant figures? A. 5109 gram-seconds B. 5109.0000 gram-seconds C. 5109.0 gram-seconds Answer:
[ " A", " B", " C" ]
0
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A tape measure with a precision of +/- 0.0003 meters takes a measurement of 0.0950 meters, and a stadimeter with a precision of +/- 30 meters measures a distance between two different points as 7090 meters. Your calculator app gets the solution 673.550000000000 when multiplying the values. When this solution is rounded to the suitable number of significant figures, what do we get? A. 674 meters^2 B. 670 meters^2 C. 673.550 meters^2 Answer:
[ " A", " B", " C" ]
0
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A ruler with a precision of +/- 0.1 meters measures a distance of 6.1 meters and a rangefinder with a precision of +/- 0.2 meters reads 89.4 meters when measuring a distance between two different points. Using a calculator, you divide the two numbers and get the solution 0.068232662192. Using the correct number of significant figures, what is the answer? A. 0.068 B. 0.1 C. 0.07 Answer:
[ " A", " B", " C" ]
0
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A measuring rod with a precision of +/- 0.0003 meters measures a distance of 0.2210 meters and a spring scale with a precision of +/- 0.0004 grams reads 0.0180 grams when measuring a mass. Using a calculator, you divide the first value by the second value and get the output 12.277777777778. How would this answer look if we expressed it with the suitable number of significant figures? A. 12.2778 meters/gram B. 12.3 meters/gram C. 12.278 meters/gram Answer:
[ " A", " B", " C" ]
1
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A chronometer with a precision of +/- 0.00004 seconds takes a measurement of 0.02344 seconds, and a balance with a precision of +/- 0.001 grams measures a mass as 0.010 grams. Your calculator app gets the output 2.344000000000 when dividing the two values. Using the appropriate level of precision, what is the result? A. 2.34 seconds/gram B. 2.3 seconds/gram C. 2.344 seconds/gram Answer:
[ " A", " B", " C" ]
1
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A storage container with a precision of +/- 40 liters measures a volume of 84960 liters and a stopwatch with a precision of +/- 0.4 seconds reads 0.8 seconds when measuring a duration. After multiplying the former number by the latter your calculator produces the solution 67968.000000000000. When this solution is reported to the suitable level of precision, what do we get? A. 70000 liter-seconds B. 67968.0 liter-seconds C. 67960 liter-seconds Answer:
[ " A", " B", " C" ]
0
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- An odometer with a precision of +/- 100 meters takes a measurement of 300 meters, and a radar-based method with a precision of +/- 10 meters reads 500 meters when measuring a distance between two different points. Using a computer, you multiply the two values and get the output 150000.000000000000. How would this result look if we rounded it with the proper number of significant figures? A. 150000 meters^2 B. 150000.0 meters^2 C. 200000 meters^2 Answer:
[ " A", " B", " C" ]
2
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A biltmore stick with a precision of +/- 0.03 meters measures a distance of 9.32 meters and a rangefinder with a precision of +/- 0.0004 meters measures a distance between two different points as 0.0468 meters. After dividing the former value by the latter your computer yields the output 199.145299145299. When this output is expressed to the appropriate number of significant figures, what do we get? A. 199.15 B. 199 C. 199.145 Answer:
[ " A", " B", " C" ]
1
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A graduated cylinder with a precision of +/- 0.001 liters measures a volume of 0.724 liters and a spring scale with a precision of +/- 0.03 grams reads 74.06 grams when measuring a mass. After multiplying the two numbers your calculator gets the solution 53.619440000000. When this solution is reported to the right number of significant figures, what do we get? A. 53.62 gram-liters B. 53.619 gram-liters C. 53.6 gram-liters Answer:
[ " A", " B", " C" ]
2
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A chronograph with a precision of +/- 0.02 seconds takes a measurement of 0.83 seconds, and a measuring stick with a precision of +/- 0.004 meters reads 0.009 meters when measuring a distance. You divide the first value by the second value with a calculator and get the solution 92.222222222222. How can we report this solution to the appropriate level of precision? A. 92.2 seconds/meter B. 90 seconds/meter C. 92.22 seconds/meter Answer:
[ " A", " B", " C" ]
1
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- An analytical balance with a precision of +/- 100 grams takes a measurement of 100 grams, and a stopwatch with a precision of +/- 0.4 seconds reads 262.2 seconds when measuring a duration. Using a calculator, you multiply the former value by the latter and get the solution 26220.000000000000. Using the right number of significant figures, what is the answer? A. 26200 gram-seconds B. 26220.0 gram-seconds C. 30000 gram-seconds Answer:
[ " A", " B", " C" ]
2
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A graduated cylinder with a precision of +/- 0.003 liters takes a measurement of 0.086 liters, and a measuring stick with a precision of +/- 0.3 meters measures a distance as 465.9 meters. Your computer yields the output 40.067400000000 when multiplying the first number by the second number. Using the appropriate number of significant figures, what is the result? A. 40 liter-meters B. 40.07 liter-meters C. 40.1 liter-meters Answer:
[ " A", " B", " C" ]
0
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A measuring rod with a precision of +/- 0.01 meters measures a distance of 0.05 meters and a hydraulic scale with a precision of +/- 3000 grams measures a mass as 9966000 grams. After multiplying the former number by the latter your calculator produces the solution 498300.000000000000. If we write this solution to the appropriate number of significant figures, what is the result? A. 500000 gram-meters B. 498000 gram-meters C. 498300.0 gram-meters Answer:
[ " A", " B", " C" ]
0
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- An opisometer with a precision of +/- 3 meters takes a measurement of 9109 meters, and a tape measure with a precision of +/- 0.004 meters reads 0.031 meters when measuring a distance between two different points. You multiply the numbers with a calculator app and get the solution 282.379000000000. If we round this solution to the appropriate level of precision, what is the answer? A. 280 meters^2 B. 282 meters^2 C. 282.38 meters^2 Answer:
[ " A", " B", " C" ]
0
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A storage container with a precision of +/- 1 liters takes a measurement of 5143 liters, and a graduated cylinder with a precision of +/- 0.002 liters reads 0.640 liters when measuring a volume of a different quantity of liquid. After multiplying the two values your computer gets the output 3291.520000000000. When this output is reported to the appropriate level of precision, what do we get? A. 3291 liters^2 B. 3290 liters^2 C. 3291.520 liters^2 Answer:
[ " A", " B", " C" ]
1
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- An odometer with a precision of +/- 2000 meters takes a measurement of 150000 meters, and a chronograph with a precision of +/- 0.001 seconds reads 6.526 seconds when measuring a duration. Using a calculator, you divide the two numbers and get the solution 22984.983144345694. If we write this solution suitably with respect to the level of precision, what is the answer? A. 22984.983 meters/second B. 23000 meters/second C. 22000 meters/second Answer:
[ " A", " B", " C" ]
1
2
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures . Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule). --- A tape measure with a precision of +/- 0.003 meters measures a distance of 0.068 meters and an odometer with a precision of +/- 1000 meters reads 77000 meters when measuring a distance between two different points. Your calculator app gives the output 5236.000000000000 when multiplying the numbers. How would this result look if we rounded it with the right level of precision? A. 5000 meters^2 B. 5236.00 meters^2 C. 5200 meters^2 Answer:
[ " A", " B", " C" ]
2
2