prompt
stringlengths 54
1.42k
| classes
sequencelengths 2
4
| answer_index
int32 0
3
| round
int32 2
2
|
---|---|---|---|
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures .
Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule).
---
A stopwatch with a precision of +/- 0.1 seconds measures a duration of 1.5 seconds and a cathetometer with a precision of +/- 0.00002 meters measures a distance as 0.07505 meters. After dividing the two values your calculator app gives the output. How would this answer look if we wrote it with the appropriate level of precision?
A. 19.99 seconds/meter
B. 20 seconds/meter
C. 20.0 seconds/meter
Answer: | [
" A",
" B",
" C"
] | 1 | 2 |
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures .
Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule).
---
A rangefinder with a precision of +/- 40 meters takes a measurement of 9830 meters, and a radar-based method with a precision of +/- 3 meters measures a distance between two different points as 362 meters. Using a calculator app, you multiply the first value by the second value and get the solution. When this solution is reported to the correct level of precision, what do we get?
A. 3560000 meters^2
B. 3558460 meters^2
C. 3558460.000 meters^2
Answer: | [
" A",
" B",
" C"
] | 0 | 2 |
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures .
Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule).
---
A graduated cylinder with a precision of +/- 0.002 liters measures a volume of 0.209 liters and a measuring flask with a precision of +/- 0.04 liters reads 0.05 liters when measuring a volume of a different quantity of liquid. Using a computer, you divide the two numbers and get the solution. If we write this solution suitably with respect to the level of precision, what is the answer?
A. 4
B. 4.2
C. 4.18
Answer: | [
" A",
" B",
" C"
] | 0 | 2 |
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures .
Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule).
---
A stadimeter with a precision of +/- 0.1 meters measures a distance of 820.3 meters and a ruler with a precision of +/- 0.04 meters measures a distance between two different points as 4.78 meters. Using a calculator, you multiply the first number by the second number and get the solution. If we round this solution correctly with respect to the level of precision, what is the answer?
A. 3920 meters^2
B. 3921.034 meters^2
C. 3921.0 meters^2
Answer: | [
" A",
" B",
" C"
] | 0 | 2 |
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures .
Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule).
---
A rangefinder with a precision of +/- 30 meters measures a distance of 10 meters and a meter stick with a precision of +/- 0.0003 meters measures a distance between two different points as 0.3576 meters. After dividing the former number by the latter your calculator app yields the output. When this output is written to the suitable level of precision, what do we get?
A. 28.0
B. 20
C. 30
Answer: | [
" A",
" B",
" C"
] | 2 | 2 |
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures .
Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule).
---
A measuring flask with a precision of +/- 0.004 liters takes a measurement of 4.807 liters, and a Biltmore stick with a precision of +/- 0.1 meters measures a distance as 56.2 meters. Your calculator gives the solution when multiplying the values. If we round this solution suitably with respect to the number of significant figures, what is the answer?
A. 270.2 liter-meters
B. 270.153 liter-meters
C. 270 liter-meters
Answer: | [
" A",
" B",
" C"
] | 2 | 2 |
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures .
Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule).
---
An analytical balance with a precision of +/- 10 grams measures a mass of 83110 grams and a measuring flask with a precision of +/- 0.002 liters measures a volume as 0.034 liters. After multiplying the first value by the second value your computer gives the output. Round this output using the suitable level of precision.
A. 2825.74 gram-liters
B. 2800 gram-liters
C. 2820 gram-liters
Answer: | [
" A",
" B",
" C"
] | 1 | 2 |
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures .
Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule).
---
A stopwatch with a precision of +/- 0.004 seconds takes a measurement of 0.698 seconds, and a ruler with a precision of +/- 0.04 meters reads 88.53 meters when measuring a distance. Your calculator gives the output when dividing the first number by the second number. If we round this output correctly with respect to the number of significant figures, what is the answer?
A. 0.008 seconds/meter
B. 0.01 seconds/meter
C. 0.00788 seconds/meter
Answer: | [
" A",
" B",
" C"
] | 2 | 2 |
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures .
Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule).
---
A cathetometer with a precision of +/- 0.00003 meters takes a measurement of 0.00743 meters, and a meter stick with a precision of +/- 0.0003 meters measures a distance between two different points as 0.0010 meters. Using a calculator app, you divide the first number by the second number and get the output. Using the proper number of significant figures, what is the result?
A. 7.4300
B. 7.4
C. 7.43
Answer: | [
" A",
" B",
" C"
] | 1 | 2 |
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures .
Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule).
---
A radar-based method with a precision of +/- 400 meters takes a measurement of 48200 meters, and a coincidence telemeter with a precision of +/- 10 meters measures a distance between two different points as 20 meters. Using a calculator app, you divide the first value by the second value and get the solution. Using the suitable level of precision, what is the answer?
A. 2000
B. 2400
C. 2410.0
Answer: | [
" A",
" B",
" C"
] | 0 | 2 |
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures .
Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule).
---
A spring scale with a precision of +/- 10 grams takes a measurement of 570 grams, and a stadimeter with a precision of +/- 200 meters reads 900 meters when measuring a distance. Using a computer, you multiply the two numbers and get the output. How would this result look if we expressed it with the suitable level of precision?
A. 513000.0 gram-meters
B. 513000 gram-meters
C. 500000 gram-meters
Answer: | [
" A",
" B",
" C"
] | 2 | 2 |
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures .
Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule).
---
A balance with a precision of +/- 10 grams takes a measurement of 510 grams, and a measuring rod with a precision of +/- 0.04 meters reads 88.35 meters when measuring a distance. You multiply the two numbers with a calculator and get the solution. Round this solution using the proper level of precision.
A. 45050 gram-meters
B. 45058.50 gram-meters
C. 45000 gram-meters
Answer: | [
" A",
" B",
" C"
] | 2 | 2 |
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures .
Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule).
---
A stopwatch with a precision of +/- 0.04 seconds measures a duration of 0.04 seconds and a measuring rod with a precision of +/- 0.004 meters measures a distance as 0.003 meters. Using a calculator app, you divide the former value by the latter and get the solution. If we express this solution appropriately with respect to the level of precision, what is the answer?
A. 13.3 seconds/meter
B. 10 seconds/meter
C. 13.33 seconds/meter
Answer: | [
" A",
" B",
" C"
] | 1 | 2 |
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures .
Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule).
---
An opisometer with a precision of +/- 0.02 meters measures a distance of 0.10 meters and a tape measure with a precision of +/- 0.001 meters reads 0.007 meters when measuring a distance between two different points. Your calculator gets the solution when dividing the former number by the latter. If we express this solution correctly with respect to the level of precision, what is the answer?
A. 14.29
B. 14.3
C. 10
Answer: | [
" A",
" B",
" C"
] | 2 | 2 |
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures .
Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule).
---
A timer with a precision of +/- 0.03 seconds measures a duration of 8.66 seconds and an odometer with a precision of +/- 2000 meters reads 4000 meters when measuring a distance. After multiplying the first number by the second number your calculator app produces the solution. How would this answer look if we reported it with the right level of precision?
A. 30000 meter-seconds
B. 34000 meter-seconds
C. 34640.0 meter-seconds
Answer: | [
" A",
" B",
" C"
] | 0 | 2 |
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures .
Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule).
---
An analytical balance with a precision of +/- 100 grams measures a mass of 200 grams and a measuring flask with a precision of +/- 0.01 liters measures a volume as 0.87 liters. You multiply the former number by the latter with a computer and get the output. If we express this output to the appropriate number of significant figures, what is the result?
A. 100 gram-liters
B. 200 gram-liters
C. 174.0 gram-liters
Answer: | [
" A",
" B",
" C"
] | 1 | 2 |
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures .
Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule).
---
A ruler with a precision of +/- 0.03 meters measures a distance of 5.69 meters and a tape measure with a precision of +/- 0.004 meters measures a distance between two different points as 0.007 meters. Using a calculator, you divide the two numbers and get the output. Report this output using the suitable level of precision.
A. 800
B. 812.9
C. 812.86
Answer: | [
" A",
" B",
" C"
] | 0 | 2 |
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures .
Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule).
---
An odometer with a precision of +/- 200 meters measures a distance of 92400 meters and a measuring rod with a precision of +/- 0.0004 meters measures a distance between two different points as 0.0665 meters. Using a computer, you divide the former number by the latter and get the output. How can we write this output to the correct level of precision?
A. 1389400
B. 1390000
C. 1389473.684
Answer: | [
" A",
" B",
" C"
] | 1 | 2 |
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures .
Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule).
---
An odometer with a precision of +/- 3000 meters measures a distance of 970000 meters and a Biltmore stick with a precision of +/- 0.03 meters reads 0.81 meters when measuring a distance between two different points. After dividing the former value by the latter your calculator gets the output. Using the proper level of precision, what is the result?
A. 1197530.86
B. 1200000
C. 1197000
Answer: | [
" A",
" B",
" C"
] | 1 | 2 |
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures .
Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule).
---
A coincidence telemeter with a precision of +/- 3 meters measures a distance of 4821 meters and a meter stick with a precision of +/- 0.0003 meters measures a distance between two different points as 0.0705 meters. Your calculator gives the output when multiplying the first value by the second value. How can we write this output to the right level of precision?
A. 340 meters^2
B. 339.880 meters^2
C. 339 meters^2
Answer: | [
" A",
" B",
" C"
] | 0 | 2 |
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures .
Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule).
---
A storage container with a precision of +/- 2 liters takes a measurement of 745 liters, and a chronograph with a precision of +/- 0.01 seconds measures a duration as 1.01 seconds. You divide the former value by the latter with a calculator app and get the solution. When this solution is reported to the correct number of significant figures, what do we get?
A. 738 liters/second
B. 737 liters/second
C. 737.624 liters/second
Answer: | [
" A",
" B",
" C"
] | 0 | 2 |
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures .
Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule).
---
A coincidence telemeter with a precision of +/- 0.2 meters takes a measurement of 714.5 meters, and a tape measure with a precision of +/- 0.004 meters measures a distance between two different points as 0.017 meters. Your computer gets the solution when multiplying the values. How would this answer look if we wrote it with the correct number of significant figures?
A. 12.1 meters^2
B. 12.15 meters^2
C. 12 meters^2
Answer: | [
" A",
" B",
" C"
] | 2 | 2 |
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures .
Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule).
---
A stadimeter with a precision of +/- 200 meters takes a measurement of 97100 meters, and a radar-based method with a precision of +/- 3 meters measures a distance between two different points as 447 meters. You multiply the first number by the second number with a computer and get the solution. Using the appropriate level of precision, what is the answer?
A. 43400000 meters^2
B. 43403700 meters^2
C. 43403700.000 meters^2
Answer: | [
" A",
" B",
" C"
] | 0 | 2 |
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures .
Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule).
---
A storage container with a precision of +/- 40 liters takes a measurement of 460 liters, and a spring scale with a precision of +/- 400 grams measures a mass as 500 grams. Using a calculator, you multiply the former value by the latter and get the solution. If we express this solution to the appropriate level of precision, what is the result?
A. 230000 gram-liters
B. 200000 gram-liters
C. 230000.0 gram-liters
Answer: | [
" A",
" B",
" C"
] | 1 | 2 |
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures .
Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule).
---
A measuring rod with a precision of +/- 0.003 meters measures a distance of 0.759 meters and a storage container with a precision of +/- 10 liters reads 4940 liters when measuring a volume. After multiplying the two numbers your calculator app produces the solution. How would this answer look if we reported it with the proper level of precision?
A. 3740 liter-meters
B. 3749.460 liter-meters
C. 3750 liter-meters
Answer: | [
" A",
" B",
" C"
] | 2 | 2 |
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures .
Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule).
---
A measuring tape with a precision of +/- 0.01 meters measures a distance of 0.08 meters and a measuring tape with a precision of +/- 0.01 meters measures a distance between two different points as 64.49 meters. You multiply the two numbers with a calculator and get the output. How would this answer look if we expressed it with the right number of significant figures?
A. 5.16 meters^2
B. 5.2 meters^2
C. 5 meters^2
Answer: | [
" A",
" B",
" C"
] | 2 | 2 |
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures .
Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule).
---
A measuring tape with a precision of +/- 0.4 meters takes a measurement of 0.9 meters, and an analytical balance with a precision of +/- 200 grams measures a mass as 400 grams. You multiply the numbers with a calculator and get the solution. If we report this solution to the proper number of significant figures, what is the answer?
A. 300 gram-meters
B. 360.0 gram-meters
C. 400 gram-meters
Answer: | [
" A",
" B",
" C"
] | 2 | 2 |
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures .
Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule).
---
A coincidence telemeter with a precision of +/- 0.2 meters measures a distance of 20.4 meters and an opisometer with a precision of +/- 0.002 meters reads 5.886 meters when measuring a distance between two different points. Using a calculator, you multiply the two numbers and get the solution. When this solution is expressed to the right number of significant figures, what do we get?
A. 120 meters^2
B. 120.1 meters^2
C. 120.074 meters^2
Answer: | [
" A",
" B",
" C"
] | 0 | 2 |
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures .
Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule).
---
A chronograph with a precision of +/- 0.3 seconds takes a measurement of 58.0 seconds, and an opisometer with a precision of +/- 0.0004 meters reads 0.0022 meters when measuring a distance. After dividing the former number by the latter your calculator yields the output. Round this output using the right level of precision.
A. 26000 seconds/meter
B. 26363.6 seconds/meter
C. 26363.64 seconds/meter
Answer: | [
" A",
" B",
" C"
] | 0 | 2 |
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures .
Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule).
---
A radar-based method with a precision of +/- 200 meters takes a measurement of 239900 meters, and a measuring tape with a precision of +/- 0.4 meters measures a distance between two different points as 786.7 meters. You multiply the former value by the latter with a computer and get the output. How would this result look if we wrote it with the right number of significant figures?
A. 188729300 meters^2
B. 188700000 meters^2
C. 188729330.0000 meters^2
Answer: | [
" A",
" B",
" C"
] | 1 | 2 |
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures .
Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule).
---
A stadimeter with a precision of +/- 40 meters takes a measurement of 4490 meters, and a Biltmore stick with a precision of +/- 0.01 meters measures a distance between two different points as 0.71 meters. You multiply the two numbers with a computer and get the solution. When this solution is expressed to the suitable number of significant figures, what do we get?
A. 3200 meters^2
B. 3187.90 meters^2
C. 3180 meters^2
Answer: | [
" A",
" B",
" C"
] | 0 | 2 |
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures .
Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule).
---
A coincidence telemeter with a precision of +/- 1 meters measures a distance of 86 meters and a rangefinder with a precision of +/- 0.01 meters reads 0.08 meters when measuring a distance between two different points. Using a calculator, you multiply the first value by the second value and get the output. Report this output using the correct level of precision.
A. 6 meters^2
B. 7 meters^2
C. 6.9 meters^2
Answer: | [
" A",
" B",
" C"
] | 1 | 2 |
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures .
Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule).
---
A graduated cylinder with a precision of +/- 0.004 liters takes a measurement of 8.225 liters, and a ruler with a precision of +/- 0.01 meters reads 3.72 meters when measuring a distance. Using a calculator, you multiply the numbers and get the solution. How can we write this solution to the proper number of significant figures?
A. 30.60 liter-meters
B. 30.6 liter-meters
C. 30.597 liter-meters
Answer: | [
" A",
" B",
" C"
] | 1 | 2 |
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures .
Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule).
---
An analytical balance with a precision of +/- 0.003 grams takes a measurement of 0.072 grams, and a measuring flask with a precision of +/- 0.01 liters reads 0.02 liters when measuring a volume. After dividing the two values your computer gives the output. If we report this output to the correct level of precision, what is the answer?
A. 3.60 grams/liter
B. 4 grams/liter
C. 3.6 grams/liter
Answer: | [
" A",
" B",
" C"
] | 1 | 2 |
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures .
Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule).
---
A coincidence telemeter with a precision of +/- 0.1 meters measures a distance of 6.1 meters and a clickwheel with a precision of +/- 0.01 meters measures a distance between two different points as 0.53 meters. You divide the two numbers with a computer and get the output. If we round this output suitably with respect to the level of precision, what is the result?
A. 12
B. 11.5
C. 11.51
Answer: | [
" A",
" B",
" C"
] | 0 | 2 |
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures .
Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule).
---
A graduated cylinder with a precision of +/- 0.001 liters takes a measurement of 0.786 liters, and a rangefinder with a precision of +/- 0.004 meters reads 0.003 meters when measuring a distance. Your calculator app yields the output when dividing the numbers. Write this output using the suitable level of precision.
A. 262.000 liters/meter
B. 300 liters/meter
C. 262.0 liters/meter
Answer: | [
" A",
" B",
" C"
] | 1 | 2 |
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures .
Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule).
---
A storage container with a precision of +/- 4 liters measures a volume of 6741 liters and a clickwheel with a precision of +/- 0.1 meters measures a distance as 444.6 meters. Your calculator yields the solution when dividing the two values. How can we round this solution to the right level of precision?
A. 15 liters/meter
B. 15.16 liters/meter
C. 15.1619 liters/meter
Answer: | [
" A",
" B",
" C"
] | 1 | 2 |
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures .
Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule).
---
A stopwatch with a precision of +/- 0.002 seconds measures a duration of 5.030 seconds and a cathetometer with a precision of +/- 0.0001 meters measures a distance as 0.0099 meters. Using a computer, you divide the first number by the second number and get the output. If we express this output to the proper level of precision, what is the answer?
A. 508.081 seconds/meter
B. 510 seconds/meter
C. 508.08 seconds/meter
Answer: | [
" A",
" B",
" C"
] | 1 | 2 |
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures .
Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule).
---
A clickwheel with a precision of +/- 0.03 meters takes a measurement of 0.06 meters, and a caliper with a precision of +/- 0.001 meters measures a distance between two different points as 0.007 meters. You divide the two values with a calculator app and get the output. Using the suitable level of precision, what is the answer?
A. 8.57
B. 8.6
C. 9
Answer: | [
" A",
" B",
" C"
] | 2 | 2 |
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures .
Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule).
---
A radar-based method with a precision of +/- 20 meters measures a distance of 7180 meters and a stadimeter with a precision of +/- 10 meters measures a distance between two different points as 60 meters. After dividing the former number by the latter your calculator produces the output. Using the correct level of precision, what is the answer?
A. 110
B. 100
C. 119.7
Answer: | [
" A",
" B",
" C"
] | 1 | 2 |
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures .
Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule).
---
A stadimeter with a precision of +/- 2 meters takes a measurement of 242 meters, and a stadimeter with a precision of +/- 30 meters reads 50 meters when measuring a distance between two different points. Your computer produces the output when multiplying the numbers. How can we express this output to the proper number of significant figures?
A. 12100 meters^2
B. 12100.0 meters^2
C. 10000 meters^2
Answer: | [
" A",
" B",
" C"
] | 2 | 2 |
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures .
Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule).
---
A measuring rod with a precision of +/- 0.003 meters measures a distance of 6.753 meters and a balance with a precision of +/- 0.01 grams measures a mass as 1.60 grams. After multiplying the two values your calculator app gets the solution. If we write this solution properly with respect to the number of significant figures, what is the result?
A. 10.805 gram-meters
B. 10.8 gram-meters
C. 10.80 gram-meters
Answer: | [
" A",
" B",
" C"
] | 1 | 2 |
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures .
Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule).
---
A clickwheel with a precision of +/- 0.2 meters takes a measurement of 0.8 meters, and a storage container with a precision of +/- 20 liters measures a volume as 83000 liters. Your computer yields the output when multiplying the values. Express this output using the right level of precision.
A. 66400.0 liter-meters
B. 70000 liter-meters
C. 66400 liter-meters
Answer: | [
" A",
" B",
" C"
] | 1 | 2 |
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures .
Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule).
---
A measuring flask with a precision of +/- 0.03 liters takes a measurement of 42.26 liters, and a hydraulic scale with a precision of +/- 0.01 grams reads 69.40 grams when measuring a mass. After multiplying the two numbers your calculator gives the solution. How would this answer look if we rounded it with the right level of precision?
A. 2932.84 gram-liters
B. 2932.8440 gram-liters
C. 2933 gram-liters
Answer: | [
" A",
" B",
" C"
] | 2 | 2 |
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures .
Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule).
---
A timer with a precision of +/- 0.3 seconds takes a measurement of 65.5 seconds, and a stadimeter with a precision of +/- 2 meters measures a distance as 58 meters. Using a calculator app, you multiply the first value by the second value and get the output. If we express this output to the appropriate level of precision, what is the answer?
A. 3800 meter-seconds
B. 3799 meter-seconds
C. 3799.00 meter-seconds
Answer: | [
" A",
" B",
" C"
] | 0 | 2 |
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures .
Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule).
---
A radar-based method with a precision of +/- 4 meters measures a distance of 8648 meters and a balance with a precision of +/- 0.003 grams measures a mass as 0.081 grams. You divide the two values with a calculator app and get the output. How can we report this output to the right level of precision?
A. 110000 meters/gram
B. 106765.43 meters/gram
C. 106765 meters/gram
Answer: | [
" A",
" B",
" C"
] | 0 | 2 |
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures .
Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule).
---
A radar-based method with a precision of +/- 200 meters measures a distance of 925100 meters and a measuring flask with a precision of +/- 0.03 liters reads 20.98 liters when measuring a volume. Your calculator app yields the solution when multiplying the former number by the latter. Using the suitable level of precision, what is the answer?
A. 19408598.0000 liter-meters
B. 19408500 liter-meters
C. 19410000 liter-meters
Answer: | [
" A",
" B",
" C"
] | 2 | 2 |
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures .
Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule).
---
A hydraulic scale with a precision of +/- 0.1 grams measures a mass of 8.8 grams and a chronometer with a precision of +/- 0.0004 seconds measures a duration as 0.0066 seconds. After multiplying the former value by the latter your calculator app gives the output. If we report this output correctly with respect to the level of precision, what is the answer?
A. 0.06 gram-seconds
B. 0.058 gram-seconds
C. 0.1 gram-seconds
Answer: | [
" A",
" B",
" C"
] | 1 | 2 |
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures .
Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule).
---
A stopwatch with a precision of +/- 0.002 seconds takes a measurement of 5.198 seconds, and a ruler with a precision of +/- 0.001 meters reads 0.004 meters when measuring a distance. You divide the two values with a computer and get the solution. How would this answer look if we rounded it with the proper level of precision?
A. 1299.5 seconds/meter
B. 1299.500 seconds/meter
C. 1000 seconds/meter
Answer: | [
" A",
" B",
" C"
] | 2 | 2 |
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures .
Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule).
---
An odometer with a precision of +/- 100 meters takes a measurement of 570600 meters, and a storage container with a precision of +/- 40 liters measures a volume as 20 liters. After dividing the two values your computer yields the output. If we write this output suitably with respect to the number of significant figures, what is the answer?
A. 28530.0 meters/liter
B. 28500 meters/liter
C. 30000 meters/liter
Answer: | [
" A",
" B",
" C"
] | 2 | 2 |
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures .
Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule).
---
A caliper with a precision of +/- 0.001 meters takes a measurement of 0.674 meters, and a ruler with a precision of +/- 0.04 meters reads 69.10 meters when measuring a distance between two different points. You multiply the numbers with a calculator app and get the output. Using the correct number of significant figures, what is the answer?
A. 46.6 meters^2
B. 46.57 meters^2
C. 46.573 meters^2
Answer: | [
" A",
" B",
" C"
] | 0 | 2 |
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures .
Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule).
---
A measuring stick with a precision of +/- 0.04 meters takes a measurement of 14.60 meters, and a measuring rod with a precision of +/- 0.02 meters measures a distance between two different points as 0.04 meters. You divide the two numbers with a calculator app and get the solution. How can we write this solution to the right number of significant figures?
A. 365.0
B. 365.00
C. 400
Answer: | [
" A",
" B",
" C"
] | 2 | 2 |
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures .
Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule).
---
An analytical balance with a precision of +/- 0.0003 grams measures a mass of 0.0008 grams and a rangefinder with a precision of +/- 3 meters reads 9603 meters when measuring a distance. You multiply the two numbers with a calculator app and get the output. Using the proper level of precision, what is the answer?
A. 8 gram-meters
B. 7.7 gram-meters
C. 7 gram-meters
Answer: | [
" A",
" B",
" C"
] | 0 | 2 |
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures .
Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule).
---
A timer with a precision of +/- 0.004 seconds takes a measurement of 0.056 seconds, and an odometer with a precision of +/- 3000 meters measures a distance as 9847000 meters. After multiplying the numbers your calculator app produces the solution. How would this result look if we reported it with the correct level of precision?
A. 550000 meter-seconds
B. 551432.00 meter-seconds
C. 551000 meter-seconds
Answer: | [
" A",
" B",
" C"
] | 0 | 2 |
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures .
Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule).
---
A measuring stick with a precision of +/- 0.2 meters measures a distance of 98.4 meters and an odometer with a precision of +/- 400 meters reads 197900 meters when measuring a distance between two different points. You multiply the values with a calculator and get the output. Write this output using the correct level of precision.
A. 19473300 meters^2
B. 19473360.000 meters^2
C. 19500000 meters^2
Answer: | [
" A",
" B",
" C"
] | 2 | 2 |
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures .
Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule).
---
A meter stick with a precision of +/- 0.0002 meters takes a measurement of 0.1783 meters, and a hydraulic scale with a precision of +/- 2000 grams reads 71000 grams when measuring a mass. After multiplying the numbers your calculator app produces the solution. How can we report this solution to the appropriate level of precision?
A. 12000 gram-meters
B. 12659.30 gram-meters
C. 13000 gram-meters
Answer: | [
" A",
" B",
" C"
] | 2 | 2 |
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures .
Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule).
---
A measuring tape with a precision of +/- 0.03 meters takes a measurement of 76.01 meters, and a graduated cylinder with a precision of +/- 0.002 liters measures a volume as 0.427 liters. Using a computer, you multiply the first number by the second number and get the solution. How can we express this solution to the suitable number of significant figures?
A. 32.46 liter-meters
B. 32.5 liter-meters
C. 32.456 liter-meters
Answer: | [
" A",
" B",
" C"
] | 1 | 2 |
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures .
Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule).
---
A stopwatch with a precision of +/- 0.003 seconds takes a measurement of 0.997 seconds, and a timer with a precision of +/- 0.003 seconds reads 0.092 seconds when measuring a duration of a different event. You divide the first value by the second value with a computer and get the output. Report this output using the proper number of significant figures.
A. 10.837
B. 10.84
C. 11
Answer: | [
" A",
" B",
" C"
] | 2 | 2 |
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures .
Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule).
---
A spring scale with a precision of +/- 400 grams takes a measurement of 5000 grams, and a graduated cylinder with a precision of +/- 0.004 liters reads 0.050 liters when measuring a volume. After multiplying the values your computer produces the solution. How would this result look if we reported it with the proper number of significant figures?
A. 200 gram-liters
B. 250 gram-liters
C. 250.00 gram-liters
Answer: | [
" A",
" B",
" C"
] | 1 | 2 |
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures .
Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule).
---
An odometer with a precision of +/- 300 meters measures a distance of 7900 meters and a clickwheel with a precision of +/- 0.03 meters reads 0.01 meters when measuring a distance between two different points. Your computer yields the solution when dividing the first value by the second value. How would this result look if we rounded it with the suitable level of precision?
A. 790000
B. 800000
C. 790000.0
Answer: | [
" A",
" B",
" C"
] | 1 | 2 |
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures .
Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule).
---
A balance with a precision of +/- 0.004 grams measures a mass of 0.044 grams and an odometer with a precision of +/- 3000 meters reads 135000 meters when measuring a distance. You multiply the former value by the latter with a computer and get the solution. If we write this solution to the correct number of significant figures, what is the result?
A. 5000 gram-meters
B. 5900 gram-meters
C. 5940.00 gram-meters
Answer: | [
" A",
" B",
" C"
] | 1 | 2 |
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures .
Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule).
---
A measuring tape with a precision of +/- 0.02 meters takes a measurement of 0.07 meters, and an analytical balance with a precision of +/- 3 grams measures a mass as 5262 grams. Your calculator app produces the solution when multiplying the two values. Round this solution using the appropriate level of precision.
A. 400 gram-meters
B. 368.3 gram-meters
C. 368 gram-meters
Answer: | [
" A",
" B",
" C"
] | 0 | 2 |
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures .
Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule).
---
A spring scale with a precision of +/- 1000 grams measures a mass of 2893000 grams and a stopwatch with a precision of +/- 0.4 seconds measures a duration as 54.7 seconds. After dividing the two numbers your calculator app yields the output. Report this output using the appropriate number of significant figures.
A. 52000 grams/second
B. 52900 grams/second
C. 52888.483 grams/second
Answer: | [
" A",
" B",
" C"
] | 1 | 2 |
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures .
Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule).
---
A biltmore stick with a precision of +/- 0.02 meters measures a distance of 92.87 meters and a stopwatch with a precision of +/- 0.004 seconds measures a duration as 0.223 seconds. After multiplying the first number by the second number your calculator gives the solution. Using the right level of precision, what is the result?
A. 20.71 meter-seconds
B. 20.710 meter-seconds
C. 20.7 meter-seconds
Answer: | [
" A",
" B",
" C"
] | 2 | 2 |
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures .
Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule).
---
A clickwheel with a precision of +/- 0.004 meters takes a measurement of 7.068 meters, and a graduated cylinder with a precision of +/- 0.004 liters reads 7.286 liters when measuring a volume. After multiplying the two numbers your computer gets the solution. Express this solution using the right level of precision.
A. 51.50 liter-meters
B. 51.4974 liter-meters
C. 51.497 liter-meters
Answer: | [
" A",
" B",
" C"
] | 0 | 2 |
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures .
Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule).
---
A clickwheel with a precision of +/- 0.004 meters measures a distance of 5.416 meters and a clickwheel with a precision of +/- 0.003 meters measures a distance between two different points as 0.008 meters. You divide the former number by the latter with a calculator app and get the solution. Round this solution using the suitable number of significant figures.
A. 677.0
B. 700
C. 677.000
Answer: | [
" A",
" B",
" C"
] | 1 | 2 |
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures .
Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule).
---
A stopwatch with a precision of +/- 0.2 seconds takes a measurement of 486.1 seconds, and a measuring flask with a precision of +/- 0.002 liters measures a volume as 0.395 liters. After dividing the former value by the latter your calculator produces the output. Round this output using the appropriate number of significant figures.
A. 1230.6 seconds/liter
B. 1230 seconds/liter
C. 1230.633 seconds/liter
Answer: | [
" A",
" B",
" C"
] | 1 | 2 |
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures .
Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule).
---
A spring scale with a precision of +/- 400 grams measures a mass of 24200 grams and a measuring flask with a precision of +/- 0.04 liters reads 0.02 liters when measuring a volume. After dividing the values your calculator app yields the solution. How would this answer look if we wrote it with the right number of significant figures?
A. 1000000 grams/liter
B. 1210000 grams/liter
C. 1210000.0 grams/liter
Answer: | [
" A",
" B",
" C"
] | 0 | 2 |
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures .
Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule).
---
A biltmore stick with a precision of +/- 0.2 meters takes a measurement of 312.5 meters, and a measuring stick with a precision of +/- 0.004 meters measures a distance between two different points as 5.343 meters. Your calculator app gives the solution when dividing the first value by the second value. Using the correct level of precision, what is the result?
A. 58.49
B. 58.5
C. 58.4877
Answer: | [
" A",
" B",
" C"
] | 0 | 2 |
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures .
Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule).
---
A rangefinder with a precision of +/- 20 meters takes a measurement of 740 meters, and a radar-based method with a precision of +/- 30 meters measures a distance between two different points as 3920 meters. After multiplying the two numbers your computer gives the solution. If we report this solution to the proper number of significant figures, what is the result?
A. 2900000 meters^2
B. 2900800.00 meters^2
C. 2900800 meters^2
Answer: | [
" A",
" B",
" C"
] | 0 | 2 |
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures .
Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule).
---
A measuring rod with a precision of +/- 0.01 meters takes a measurement of 9.25 meters, and a measuring flask with a precision of +/- 0.02 liters reads 79.30 liters when measuring a volume. You multiply the former number by the latter with a computer and get the solution. If we report this solution to the right number of significant figures, what is the result?
A. 733.52 liter-meters
B. 734 liter-meters
C. 733.525 liter-meters
Answer: | [
" A",
" B",
" C"
] | 1 | 2 |
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures .
Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule).
---
A stadimeter with a precision of +/- 1 meters takes a measurement of 890 meters, and a measuring stick with a precision of +/- 0.03 meters reads 0.04 meters when measuring a distance between two different points. After multiplying the values your calculator app produces the solution. When this solution is expressed to the right level of precision, what do we get?
A. 40 meters^2
B. 35.6 meters^2
C. 35 meters^2
Answer: | [
" A",
" B",
" C"
] | 0 | 2 |
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures .
Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule).
---
A hydraulic scale with a precision of +/- 4000 grams measures a mass of 723000 grams and a storage container with a precision of +/- 0.4 liters measures a volume as 0.8 liters. After dividing the former value by the latter your calculator app yields the solution. Report this solution using the correct number of significant figures.
A. 900000 grams/liter
B. 903750.0 grams/liter
C. 903000 grams/liter
Answer: | [
" A",
" B",
" C"
] | 0 | 2 |
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures .
Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule).
---
A spring scale with a precision of +/- 0.4 grams takes a measurement of 20.3 grams, and a meter stick with a precision of +/- 0.0003 meters measures a distance as 0.0054 meters. Using a calculator app, you divide the values and get the solution. How would this result look if we expressed it with the correct number of significant figures?
A. 3800 grams/meter
B. 3759.26 grams/meter
C. 3759.3 grams/meter
Answer: | [
" A",
" B",
" C"
] | 0 | 2 |
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures .
Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule).
---
An analytical balance with a precision of +/- 2 grams takes a measurement of 50 grams, and a stopwatch with a precision of +/- 0.002 seconds reads 2.016 seconds when measuring a duration. Your computer produces the solution when dividing the first value by the second value. Write this solution using the proper level of precision.
A. 24.80 grams/second
B. 24 grams/second
C. 25 grams/second
Answer: | [
" A",
" B",
" C"
] | 2 | 2 |
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures .
Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule).
---
A ruler with a precision of +/- 0.004 meters takes a measurement of 0.406 meters, and a ruler with a precision of +/- 0.0001 meters measures a distance between two different points as 0.0005 meters. You divide the two numbers with a calculator and get the output. If we express this output correctly with respect to the level of precision, what is the result?
A. 812.0
B. 800
C. 812.000
Answer: | [
" A",
" B",
" C"
] | 1 | 2 |
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures .
Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule).
---
A balance with a precision of +/- 40 grams measures a mass of 5500 grams and a spring scale with a precision of +/- 0.0002 grams measures a mass of a different object as 0.0005 grams. Your calculator gives the output when dividing the two values. If we express this output properly with respect to the number of significant figures, what is the result?
A. 10000000
B. 11000000.0
C. 11000000
Answer: | [
" A",
" B",
" C"
] | 0 | 2 |
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures .
Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule).
---
A spring scale with a precision of +/- 2000 grams measures a mass of 69000 grams and an opisometer with a precision of +/- 0.0001 meters measures a distance as 0.8247 meters. After dividing the values your computer gets the output. How would this result look if we expressed it with the correct number of significant figures?
A. 84000 grams/meter
B. 83000 grams/meter
C. 83666.79 grams/meter
Answer: | [
" A",
" B",
" C"
] | 0 | 2 |
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures .
Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule).
---
A chronograph with a precision of +/- 0.3 seconds measures a duration of 10.0 seconds and a balance with a precision of +/- 0.2 grams measures a mass as 17.3 grams. Your computer gives the solution when multiplying the numbers. If we express this solution to the right number of significant figures, what is the answer?
A. 173.0 gram-seconds
B. 173 gram-seconds
C. 173.000 gram-seconds
Answer: | [
" A",
" B",
" C"
] | 1 | 2 |
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures .
Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule).
---
A chronometer with a precision of +/- 0.0001 seconds measures a duration of 0.0952 seconds and a chronograph with a precision of +/- 0.04 seconds reads 0.07 seconds when measuring a duration of a different event. After dividing the two numbers your computer gets the solution. If we write this solution appropriately with respect to the level of precision, what is the result?
A. 1.36
B. 1
C. 1.4
Answer: | [
" A",
" B",
" C"
] | 1 | 2 |
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures .
Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule).
---
A spring scale with a precision of +/- 1000 grams measures a mass of 91000 grams and a spring scale with a precision of +/- 1000 grams measures a mass of a different object as 267000 grams. Your calculator app gives the output when multiplying the two values. Express this output using the suitable level of precision.
A. 24000000000 grams^2
B. 24297000000.00 grams^2
C. 24297000000 grams^2
Answer: | [
" A",
" B",
" C"
] | 0 | 2 |
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures .
Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule).
---
A measuring flask with a precision of +/- 0.03 liters takes a measurement of 5.71 liters, and a rangefinder with a precision of +/- 30 meters measures a distance as 9100 meters. Your calculator app gets the solution when multiplying the former number by the latter. Using the correct level of precision, what is the result?
A. 51960 liter-meters
B. 51961.000 liter-meters
C. 52000 liter-meters
Answer: | [
" A",
" B",
" C"
] | 2 | 2 |
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures .
Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule).
---
A rangefinder with a precision of +/- 0.02 meters measures a distance of 0.27 meters and a coincidence telemeter with a precision of +/- 400 meters reads 246600 meters when measuring a distance between two different points. Your calculator yields the output when multiplying the former value by the latter. If we express this output properly with respect to the level of precision, what is the answer?
A. 67000 meters^2
B. 66582.00 meters^2
C. 66500 meters^2
Answer: | [
" A",
" B",
" C"
] | 0 | 2 |
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures .
Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule).
---
A storage container with a precision of +/- 1 liters takes a measurement of 6 liters, and a spring scale with a precision of +/- 0.2 grams measures a mass as 535.6 grams. Using a calculator app, you multiply the former number by the latter and get the solution. If we round this solution to the proper number of significant figures, what is the answer?
A. 3213.6 gram-liters
B. 3213 gram-liters
C. 3000 gram-liters
Answer: | [
" A",
" B",
" C"
] | 2 | 2 |
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures .
Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule).
---
A storage container with a precision of +/- 40 liters takes a measurement of 2660 liters, and a caliper with a precision of +/- 0.04 meters reads 0.93 meters when measuring a distance. Using a calculator app, you multiply the former value by the latter and get the output. How would this answer look if we rounded it with the suitable level of precision?
A. 2500 liter-meters
B. 2473.80 liter-meters
C. 2470 liter-meters
Answer: | [
" A",
" B",
" C"
] | 0 | 2 |
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures .
Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule).
---
A balance with a precision of +/- 0.3 grams takes a measurement of 2.9 grams, and a stadimeter with a precision of +/- 30 meters measures a distance as 960 meters. Using a calculator app, you multiply the numbers and get the output. When this output is rounded to the correct level of precision, what do we get?
A. 2784.00 gram-meters
B. 2800 gram-meters
C. 2780 gram-meters
Answer: | [
" A",
" B",
" C"
] | 1 | 2 |
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures .
Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule).
---
An analytical balance with a precision of +/- 0.0004 grams takes a measurement of 0.0328 grams, and an opisometer with a precision of +/- 0.0004 meters measures a distance as 0.2281 meters. You multiply the former number by the latter with a computer and get the solution. Using the right level of precision, what is the answer?
A. 0.00748 gram-meters
B. 0.0075 gram-meters
C. 0.007 gram-meters
Answer: | [
" A",
" B",
" C"
] | 0 | 2 |
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures .
Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule).
---
A storage container with a precision of +/- 3 liters measures a volume of 222 liters and a Biltmore stick with a precision of +/- 0.01 meters reads 0.08 meters when measuring a distance. After multiplying the first number by the second number your calculator app yields the output. Using the suitable number of significant figures, what is the answer?
A. 17.8 liter-meters
B. 17 liter-meters
C. 20 liter-meters
Answer: | [
" A",
" B",
" C"
] | 2 | 2 |
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures .
Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule).
---
A clickwheel with a precision of +/- 0.2 meters measures a distance of 504.9 meters and an odometer with a precision of +/- 4000 meters measures a distance between two different points as 25000 meters. Using a calculator, you multiply the first value by the second value and get the output. If we round this output suitably with respect to the level of precision, what is the result?
A. 12622500.00 meters^2
B. 13000000 meters^2
C. 12622000 meters^2
Answer: | [
" A",
" B",
" C"
] | 1 | 2 |
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures .
Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule).
---
A clickwheel with a precision of +/- 0.03 meters takes a measurement of 0.93 meters, and a balance with a precision of +/- 30 grams measures a mass as 890 grams. Using a calculator, you multiply the values and get the output. If we report this output to the right number of significant figures, what is the result?
A. 830 gram-meters
B. 827.70 gram-meters
C. 820 gram-meters
Answer: | [
" A",
" B",
" C"
] | 0 | 2 |
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures .
Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule).
---
A measuring tape with a precision of +/- 0.4 meters takes a measurement of 260.6 meters, and a coincidence telemeter with a precision of +/- 300 meters measures a distance between two different points as 843800 meters. Using a computer, you multiply the numbers and get the solution. How would this result look if we reported it with the right level of precision?
A. 219894280.0000 meters^2
B. 219894200 meters^2
C. 219900000 meters^2
Answer: | [
" A",
" B",
" C"
] | 2 | 2 |
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures .
Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule).
---
A clickwheel with a precision of +/- 0.02 meters takes a measurement of 0.01 meters, and an opisometer with a precision of +/- 3 meters measures a distance between two different points as 688 meters. After multiplying the first number by the second number your calculator gets the output. Using the suitable number of significant figures, what is the result?
A. 7 meters^2
B. 6 meters^2
C. 6.9 meters^2
Answer: | [
" A",
" B",
" C"
] | 0 | 2 |
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures .
Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule).
---
A spring scale with a precision of +/- 0.01 grams takes a measurement of 63.95 grams, and a stopwatch with a precision of +/- 0.004 seconds reads 0.009 seconds when measuring a duration. You divide the numbers with a calculator app and get the solution. If we report this solution to the suitable number of significant figures, what is the answer?
A. 7105.56 grams/second
B. 7000 grams/second
C. 7105.6 grams/second
Answer: | [
" A",
" B",
" C"
] | 1 | 2 |
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures .
Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule).
---
A tape measure with a precision of +/- 0.004 meters measures a distance of 0.738 meters and a storage container with a precision of +/- 3 liters reads 4686 liters when measuring a volume. Your computer gets the output when multiplying the values. If we express this output to the proper level of precision, what is the answer?
A. 3458 liter-meters
B. 3458.268 liter-meters
C. 3460 liter-meters
Answer: | [
" A",
" B",
" C"
] | 2 | 2 |
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures .
Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule).
---
A hydraulic scale with a precision of +/- 4000 grams measures a mass of 615000 grams and a stadimeter with a precision of +/- 1 meters measures a distance as 570 meters. Using a computer, you divide the values and get the output. When this output is rounded to the suitable level of precision, what do we get?
A. 1000 grams/meter
B. 1080 grams/meter
C. 1078.947 grams/meter
Answer: | [
" A",
" B",
" C"
] | 1 | 2 |
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures .
Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule).
---
A clickwheel with a precision of +/- 0.003 meters measures a distance of 0.716 meters and a tape measure with a precision of +/- 0.0002 meters reads 0.0002 meters when measuring a distance between two different points. After dividing the two numbers your computer gets the output. If we express this output correctly with respect to the number of significant figures, what is the answer?
A. 3580.0
B. 4000
C. 3580.000
Answer: | [
" A",
" B",
" C"
] | 1 | 2 |
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures .
Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule).
---
A cathetometer with a precision of +/- 0.0002 meters takes a measurement of 0.0033 meters, and a coincidence telemeter with a precision of +/- 100 meters reads 749100 meters when measuring a distance between two different points. After multiplying the values your calculator app gets the output. Using the right number of significant figures, what is the result?
A. 2400 meters^2
B. 2500 meters^2
C. 2472.03 meters^2
Answer: | [
" A",
" B",
" C"
] | 1 | 2 |
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures .
Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule).
---
A balance with a precision of +/- 10 grams takes a measurement of 5590 grams, and a measuring rod with a precision of +/- 0.0002 meters measures a distance as 0.0738 meters. You divide the first value by the second value with a calculator and get the solution. When this solution is written to the appropriate level of precision, what do we get?
A. 75745.257 grams/meter
B. 75700 grams/meter
C. 75740 grams/meter
Answer: | [
" A",
" B",
" C"
] | 1 | 2 |
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures .
Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule).
---
A stadimeter with a precision of +/- 10 meters measures a distance of 210 meters and a measuring stick with a precision of +/- 0.03 meters reads 0.08 meters when measuring a distance between two different points. You multiply the first value by the second value with a computer and get the solution. How would this answer look if we expressed it with the right level of precision?
A. 10 meters^2
B. 16.8 meters^2
C. 20 meters^2
Answer: | [
" A",
" B",
" C"
] | 2 | 2 |
NOTE: To propagate uncertainty when multiplying or dividing two measurements, count the number of significant figures in each. Your result should be reported to the number of significant figures in the measurement having the lesser number of significant figures. Note that 'significant figures' are different than 'decimal places'; see rules at https://en.wikipedia.org/w/index.php?title=Significant_figures&oldid=1114415444#Identifying_significant_figures .
Rounding a number to N significant figures is similar to rounding to N digits after the decimal point, except that we start counting from the beginning of the number. For example, 71.25150 rounded to three significant figures is 71.3, to four is 71.25, and to one is 70. (If the N + 1 digit is 5 followed by nothing or by zeros only, use the 'round half to even' tiebreaking rule).
---
A balance with a precision of +/- 200 grams measures a mass of 25300 grams and a coincidence telemeter with a precision of +/- 0.1 meters measures a distance as 9.9 meters. Using a calculator, you divide the first value by the second value and get the output. How can we express this output to the correct level of precision?
A. 2555.56 grams/meter
B. 2500 grams/meter
C. 2600 grams/meter
Answer: | [
" A",
" B",
" C"
] | 2 | 2 |