File size: 3,846 Bytes
8092e2c 81d1ef1 a1dfa99 8092e2c 81d1ef1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 |
---
license: mit
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
- split: validation
path: data/validation-*
dataset_info:
features:
- name: image
dtype: image
- name: label
dtype:
class_label:
names:
'0': benign
'1': malignant
splits:
- name: train
num_bytes: 9084040.0
num_examples: 400
- name: validation
num_bytes: 2032363.0
num_examples: 100
download_size: 11133883
dataset_size: 11116403.0
---
# Lymphnode Cancer Biopsy Dataset (100k)
## Overview
This dataset contains biopsy images of lymphnode cancer tissues, divided into two classes: benign and malignant. Each sample is stored in a separate image file, organized into respective class folders. The dataset is structured to be compatible with Lumina AI's Random Contrast Learning (RCL) algorithm via the PrismRCL application or API.
## Dataset Structure
The dataset is organized into the following structure:
```
{dataset_folder_name}/
train_data/
benign/
sample_0.png
sample_1.png
...
malignant/
sample_0.png
sample_1.png
...
test_data/
benign/
sample_0.png
sample_1.png
...
malignant/
sample_0.png
sample_1.png
...
```
**Note**: All image file names must be unique across all class folders.
## Features
- **Image Data**: Each file contains a biopsy image of lymphnode cancer tissue.
- **Classes**: There are two classes, each represented by a separate folder based on the type of tissue (benign or malignant).
## Usage (not pre-split)
Here is an example of how to load the dataset using PrismRCL:
```bash
C:\PrismRCL\PrismRCL.exe chisquared rclticks=10 boxdown=0 data=C:\path\to\Lymphnode_Cancer_Biopsy_100k testsize=0.1 savemodel=C:\path\to\models\mymodel.classify log=C:\path\to\log_files stopwhendone
```
Explanation of Command:
- `C:\PrismRCL\PrismRCL.exe`: Path to the PrismRCL executable for classification
- `chisquared`: Specifies Chi-squared as the training evaluation method
- `rclticks=10`: Sets the number of RCL iterations during training to 10
- `boxdown=0`: Configuration parameter for training behavior
- `data=C:\path\to\Lymphnode_Cancer_Biopsy_100k`: Path to the complete dataset for Lymphnode Cancer Biopsy classification
- `testsize=0.1`: Specifies that 10% of the data should be used for testing
- `savemodel=C:\path\to\models\mymodel.classify`: Path to save the resulting trained model
- `log=C:\path\to\log_files`: Directory path for storing log files of the training process
- `stopwhendone`: Instructs PrismRCL to end the session once training is complete
## License
This dataset is licensed under the Creative Commons Attribution 4.0 International License. See the LICENSE file for more details.
## Original Source
This dataset was originally sourced from the [GitHub Repository](https://github.com/basveeling/pcam). Please cite the original source if you use this dataset in your research or applications.
## Additional Information
The data values have been prepared to ensure compatibility with PrismRCL. No normalization is required as of version 2.4.0.
## Citations
If you use this dataset in your research, please cite the following papers:
1. Veeling, B. S., Linmans, J., Winkens, J., Cohen, T., & Welling, M. (2018). Rotation Equivariant CNNs for Digital Pathology. arXiv preprint arXiv:1806.03962.
2. Ehteshami Bejnordi, B., Veta, M., Johannes van Diest, P., van Ginneken, B., Karssemeijer, N., Litjens, G., ... & the CAMELYON16 Consortium. (2017). Diagnostic Assessment of Deep Learning Algorithms for Detection of Lymph Node Metastases in Women With Breast Cancer. JAMA, 318(22), 2199–2210. https://doi.org/10.1001/jama.2017.14585
|