DILA_FRENCH_DATASET / FineTune_GeneralPruning1015899.out
Alijeff1214's picture
Upload folder using huggingface_hub
912bef7 verified
Loading pytorch-gpu/py3/2.1.1
Loading requirement: cuda/11.8.0 nccl/2.18.5-1-cuda cudnn/8.7.0.84-cuda
gcc/8.5.0 openmpi/4.1.5-cuda intel-mkl/2020.4 magma/2.7.1-cuda sox/14.4.2
sparsehash/2.0.3 libjpeg-turbo/2.1.3 ffmpeg/4.4.4
+ HF_DATASETS_OFFLINE=1
+ TRANSFORMERS_OFFLINE=1
+ python3 OnlyGeneralTokenizer.py
Checking label assignment:
Domain: Mathematics
Categories: hep-th math-ph math.MP nlin.SI
Abstract: three new models with vshaped field potentials u are considered a complex scalar field x in dimensio...
Domain: Computer Science
Categories: cs.AR
Abstract: this special session adresses the problems that designers face when implementing analog and digital ...
Domain: Physics
Categories: physics.plasm-ph
Abstract: starting from the governing equations for a quantum magnetoplasma including the quantum bohm potenti...
Domain: Chemistry
Categories: nlin.CD
Abstract: we present recent results on noiseinduced transitions in a nonlinear oscillator with randomly modula...
Domain: Statistics
Categories: stat.AP
Abstract: in microarray technology a number of critical steps are required to convert the raw measurements int...
Domain: Biology
Categories: q-bio.MN
Abstract: the architecture of biological networks has been reported to exhibit high level of modularity and to...
/linkhome/rech/genrug01/uft12cr/.local/lib/python3.11/site-packages/transformers/tokenization_utils_base.py:2057: FutureWarning: Calling BertTokenizer.from_pretrained() with the path to a single file or url is deprecated and won't be possible anymore in v5. Use a model identifier or the path to a directory instead.
warnings.warn(
Training with All Cluster tokenizer:
Vocabulary size: 16005
Could not load pretrained weights from /linkhome/rech/genrug01/uft12cr/bert_Model. Starting with random weights. Error: It looks like the config file at '/linkhome/rech/genrug01/uft12cr/bert_Model/config.json' is not a valid JSON file.
Initialized model with vocabulary size: 16005
/gpfsdswork/projects/rech/fmr/uft12cr/finetuneAli/OnlyGeneralTokenizer.py:172: FutureWarning: `torch.cuda.amp.GradScaler(args...)` is deprecated. Please use `torch.amp.GradScaler('cuda', args...)` instead.
scaler = amp.GradScaler()
Batch 0:
input_ids shape: torch.Size([16, 256])
attention_mask shape: torch.Size([16, 256])
labels shape: torch.Size([16])
input_ids max value: 16003
Vocab size: 16005
/gpfsdswork/projects/rech/fmr/uft12cr/finetuneAli/OnlyGeneralTokenizer.py:192: FutureWarning: `torch.cuda.amp.autocast(args...)` is deprecated. Please use `torch.amp.autocast('cuda', args...)` instead.
with amp.autocast():
Batch 100:
input_ids shape: torch.Size([16, 256])
attention_mask shape: torch.Size([16, 256])
labels shape: torch.Size([16])
input_ids max value: 16003
Vocab size: 16005
Batch 200:
input_ids shape: torch.Size([16, 256])
attention_mask shape: torch.Size([16, 256])
labels shape: torch.Size([16])
input_ids max value: 16003
Vocab size: 16005
Batch 300:
input_ids shape: torch.Size([16, 256])
attention_mask shape: torch.Size([16, 256])
labels shape: torch.Size([16])
input_ids max value: 16003
Vocab size: 16005
Batch 400:
input_ids shape: torch.Size([16, 256])
attention_mask shape: torch.Size([16, 256])
labels shape: torch.Size([16])
input_ids max value: 16003
Vocab size: 16005
Batch 500:
input_ids shape: torch.Size([16, 256])
attention_mask shape: torch.Size([16, 256])
labels shape: torch.Size([16])
input_ids max value: 16003
Vocab size: 16005
Batch 600:
input_ids shape: torch.Size([16, 256])
attention_mask shape: torch.Size([16, 256])
labels shape: torch.Size([16])
input_ids max value: 16003
Vocab size: 16005
Batch 700:
input_ids shape: torch.Size([16, 256])
attention_mask shape: torch.Size([16, 256])
labels shape: torch.Size([16])
input_ids max value: 16003
Vocab size: 16005
Batch 800:
input_ids shape: torch.Size([16, 256])
attention_mask shape: torch.Size([16, 256])
labels shape: torch.Size([16])
input_ids max value: 16003
Vocab size: 16005
Batch 900:
input_ids shape: torch.Size([16, 256])
attention_mask shape: torch.Size([16, 256])
labels shape: torch.Size([16])
input_ids max value: 16003
Vocab size: 16005
Epoch 1/3:
Val Accuracy: 0.7549, Val F1: 0.7014
Batch 0:
input_ids shape: torch.Size([16, 256])
attention_mask shape: torch.Size([16, 256])
labels shape: torch.Size([16])
input_ids max value: 16003
Vocab size: 16005
/gpfsdswork/projects/rech/fmr/uft12cr/finetuneAli/OnlyGeneralTokenizer.py:192: FutureWarning: `torch.cuda.amp.autocast(args...)` is deprecated. Please use `torch.amp.autocast('cuda', args...)` instead.
with amp.autocast():
Batch 100:
input_ids shape: torch.Size([16, 256])
attention_mask shape: torch.Size([16, 256])
labels shape: torch.Size([16])
input_ids max value: 16003
Vocab size: 16005
Batch 200:
input_ids shape: torch.Size([16, 256])
attention_mask shape: torch.Size([16, 256])
labels shape: torch.Size([16])
input_ids max value: 16003
Vocab size: 16005
Batch 300:
input_ids shape: torch.Size([16, 256])
attention_mask shape: torch.Size([16, 256])
labels shape: torch.Size([16])
input_ids max value: 16003
Vocab size: 16005
Batch 400:
input_ids shape: torch.Size([16, 256])
attention_mask shape: torch.Size([16, 256])
labels shape: torch.Size([16])
input_ids max value: 16003
Vocab size: 16005
Batch 500:
input_ids shape: torch.Size([16, 256])
attention_mask shape: torch.Size([16, 256])
labels shape: torch.Size([16])
input_ids max value: 16003
Vocab size: 16005
Batch 600:
input_ids shape: torch.Size([16, 256])
attention_mask shape: torch.Size([16, 256])
labels shape: torch.Size([16])
input_ids max value: 16003
Vocab size: 16005
Batch 700:
input_ids shape: torch.Size([16, 256])
attention_mask shape: torch.Size([16, 256])
labels shape: torch.Size([16])
input_ids max value: 16003
Vocab size: 16005
Batch 800:
input_ids shape: torch.Size([16, 256])
attention_mask shape: torch.Size([16, 256])
labels shape: torch.Size([16])
input_ids max value: 16003
Vocab size: 16005
Batch 900:
input_ids shape: torch.Size([16, 256])
attention_mask shape: torch.Size([16, 256])
labels shape: torch.Size([16])
input_ids max value: 16003
Vocab size: 16005
Epoch 2/3:
Val Accuracy: 0.7937, Val F1: 0.7657
Batch 0:
input_ids shape: torch.Size([16, 256])
attention_mask shape: torch.Size([16, 256])
labels shape: torch.Size([16])
input_ids max value: 16003
Vocab size: 16005
/gpfsdswork/projects/rech/fmr/uft12cr/finetuneAli/OnlyGeneralTokenizer.py:192: FutureWarning: `torch.cuda.amp.autocast(args...)` is deprecated. Please use `torch.amp.autocast('cuda', args...)` instead.
with amp.autocast():
Batch 100:
input_ids shape: torch.Size([16, 256])
attention_mask shape: torch.Size([16, 256])
labels shape: torch.Size([16])
input_ids max value: 16003
Vocab size: 16005
Batch 200:
input_ids shape: torch.Size([16, 256])
attention_mask shape: torch.Size([16, 256])
labels shape: torch.Size([16])
input_ids max value: 16003
Vocab size: 16005
Batch 300:
input_ids shape: torch.Size([16, 256])
attention_mask shape: torch.Size([16, 256])
labels shape: torch.Size([16])
input_ids max value: 16003
Vocab size: 16005
Batch 400:
input_ids shape: torch.Size([16, 256])
attention_mask shape: torch.Size([16, 256])
labels shape: torch.Size([16])
input_ids max value: 16003
Vocab size: 16005
Batch 500:
input_ids shape: torch.Size([16, 256])
attention_mask shape: torch.Size([16, 256])
labels shape: torch.Size([16])
input_ids max value: 16003
Vocab size: 16005
Batch 600:
input_ids shape: torch.Size([16, 256])
attention_mask shape: torch.Size([16, 256])
labels shape: torch.Size([16])
input_ids max value: 16003
Vocab size: 16005
Batch 700:
input_ids shape: torch.Size([16, 256])
attention_mask shape: torch.Size([16, 256])
labels shape: torch.Size([16])
input_ids max value: 16003
Vocab size: 16005
Batch 800:
input_ids shape: torch.Size([16, 256])
attention_mask shape: torch.Size([16, 256])
labels shape: torch.Size([16])
input_ids max value: 16003
Vocab size: 16005
Batch 900:
input_ids shape: torch.Size([16, 256])
attention_mask shape: torch.Size([16, 256])
labels shape: torch.Size([16])
input_ids max value: 16003
Vocab size: 16005
Epoch 3/3:
Val Accuracy: 0.8065, Val F1: 0.7645
Test Results for All Cluster tokenizer:
Accuracy: 0.8065
F1 Score: 0.7645
AUC-ROC: 0.8683
Training with Final tokenizer:
Vocabulary size: 18524
Could not load pretrained weights from /linkhome/rech/genrug01/uft12cr/bert_Model. Starting with random weights. Error: It looks like the config file at '/linkhome/rech/genrug01/uft12cr/bert_Model/config.json' is not a valid JSON file.
Initialized model with vocabulary size: 18524
/gpfsdswork/projects/rech/fmr/uft12cr/finetuneAli/OnlyGeneralTokenizer.py:172: FutureWarning: `torch.cuda.amp.GradScaler(args...)` is deprecated. Please use `torch.amp.GradScaler('cuda', args...)` instead.
scaler = amp.GradScaler()
Batch 0:
input_ids shape: torch.Size([16, 256])
attention_mask shape: torch.Size([16, 256])
labels shape: torch.Size([16])
input_ids max value: 18523
Vocab size: 18524
/gpfsdswork/projects/rech/fmr/uft12cr/finetuneAli/OnlyGeneralTokenizer.py:192: FutureWarning: `torch.cuda.amp.autocast(args...)` is deprecated. Please use `torch.amp.autocast('cuda', args...)` instead.
with amp.autocast():
Batch 100:
input_ids shape: torch.Size([16, 256])
attention_mask shape: torch.Size([16, 256])
labels shape: torch.Size([16])
input_ids max value: 18523
Vocab size: 18524
Batch 200:
input_ids shape: torch.Size([16, 256])
attention_mask shape: torch.Size([16, 256])
labels shape: torch.Size([16])
input_ids max value: 18523
Vocab size: 18524
Batch 300:
input_ids shape: torch.Size([16, 256])
attention_mask shape: torch.Size([16, 256])
labels shape: torch.Size([16])
input_ids max value: 18523
Vocab size: 18524
Batch 400:
input_ids shape: torch.Size([16, 256])
attention_mask shape: torch.Size([16, 256])
labels shape: torch.Size([16])
input_ids max value: 18523
Vocab size: 18524
Batch 500:
input_ids shape: torch.Size([16, 256])
attention_mask shape: torch.Size([16, 256])
labels shape: torch.Size([16])
input_ids max value: 18523
Vocab size: 18524
Batch 600:
input_ids shape: torch.Size([16, 256])
attention_mask shape: torch.Size([16, 256])
labels shape: torch.Size([16])
input_ids max value: 18523
Vocab size: 18524
Batch 700:
input_ids shape: torch.Size([16, 256])
attention_mask shape: torch.Size([16, 256])
labels shape: torch.Size([16])
input_ids max value: 18523
Vocab size: 18524
Batch 800:
input_ids shape: torch.Size([16, 256])
attention_mask shape: torch.Size([16, 256])
labels shape: torch.Size([16])
input_ids max value: 18523
Vocab size: 18524
Batch 900:
input_ids shape: torch.Size([16, 256])
attention_mask shape: torch.Size([16, 256])
labels shape: torch.Size([16])
input_ids max value: 18523
Vocab size: 18524
Epoch 1/3:
Val Accuracy: 0.6744, Val F1: 0.6438
Batch 0:
input_ids shape: torch.Size([16, 256])
attention_mask shape: torch.Size([16, 256])
labels shape: torch.Size([16])
input_ids max value: 18523
Vocab size: 18524
/gpfsdswork/projects/rech/fmr/uft12cr/finetuneAli/OnlyGeneralTokenizer.py:192: FutureWarning: `torch.cuda.amp.autocast(args...)` is deprecated. Please use `torch.amp.autocast('cuda', args...)` instead.
with amp.autocast():
Batch 100:
input_ids shape: torch.Size([16, 256])
attention_mask shape: torch.Size([16, 256])
labels shape: torch.Size([16])
input_ids max value: 18523
Vocab size: 18524
Batch 200:
input_ids shape: torch.Size([16, 256])
attention_mask shape: torch.Size([16, 256])
labels shape: torch.Size([16])
input_ids max value: 18523
Vocab size: 18524
Batch 300:
input_ids shape: torch.Size([16, 256])
attention_mask shape: torch.Size([16, 256])
labels shape: torch.Size([16])
input_ids max value: 18523
Vocab size: 18524
Batch 400:
input_ids shape: torch.Size([16, 256])
attention_mask shape: torch.Size([16, 256])
labels shape: torch.Size([16])
input_ids max value: 18523
Vocab size: 18524
Batch 500:
input_ids shape: torch.Size([16, 256])
attention_mask shape: torch.Size([16, 256])
labels shape: torch.Size([16])
input_ids max value: 18523
Vocab size: 18524
Batch 600:
input_ids shape: torch.Size([16, 256])
attention_mask shape: torch.Size([16, 256])
labels shape: torch.Size([16])
input_ids max value: 18523
Vocab size: 18524
Batch 700:
input_ids shape: torch.Size([16, 256])
attention_mask shape: torch.Size([16, 256])
labels shape: torch.Size([16])
input_ids max value: 18523
Vocab size: 18524
Batch 800:
input_ids shape: torch.Size([16, 256])
attention_mask shape: torch.Size([16, 256])
labels shape: torch.Size([16])
input_ids max value: 18523
Vocab size: 18524
Batch 900:
input_ids shape: torch.Size([16, 256])
attention_mask shape: torch.Size([16, 256])
labels shape: torch.Size([16])
input_ids max value: 18523
Vocab size: 18524
Epoch 2/3:
Val Accuracy: 0.7737, Val F1: 0.7343
Batch 0:
input_ids shape: torch.Size([16, 256])
attention_mask shape: torch.Size([16, 256])
labels shape: torch.Size([16])
input_ids max value: 18523
Vocab size: 18524
/gpfsdswork/projects/rech/fmr/uft12cr/finetuneAli/OnlyGeneralTokenizer.py:192: FutureWarning: `torch.cuda.amp.autocast(args...)` is deprecated. Please use `torch.amp.autocast('cuda', args...)` instead.
with amp.autocast():
Batch 100:
input_ids shape: torch.Size([16, 256])
attention_mask shape: torch.Size([16, 256])
labels shape: torch.Size([16])
input_ids max value: 18523
Vocab size: 18524
Batch 200:
input_ids shape: torch.Size([16, 256])
attention_mask shape: torch.Size([16, 256])
labels shape: torch.Size([16])
input_ids max value: 18523
Vocab size: 18524
Batch 300:
input_ids shape: torch.Size([16, 256])
attention_mask shape: torch.Size([16, 256])
labels shape: torch.Size([16])
input_ids max value: 18523
Vocab size: 18524
Batch 400:
input_ids shape: torch.Size([16, 256])
attention_mask shape: torch.Size([16, 256])
labels shape: torch.Size([16])
input_ids max value: 18523
Vocab size: 18524
Batch 500:
input_ids shape: torch.Size([16, 256])
attention_mask shape: torch.Size([16, 256])
labels shape: torch.Size([16])
input_ids max value: 18523
Vocab size: 18524
Batch 600:
input_ids shape: torch.Size([16, 256])
attention_mask shape: torch.Size([16, 256])
labels shape: torch.Size([16])
input_ids max value: 18523
Vocab size: 18524
Batch 700:
input_ids shape: torch.Size([16, 256])
attention_mask shape: torch.Size([16, 256])
labels shape: torch.Size([16])
input_ids max value: 18523
Vocab size: 18524
Batch 800:
input_ids shape: torch.Size([16, 256])
attention_mask shape: torch.Size([16, 256])
labels shape: torch.Size([16])
input_ids max value: 18523
Vocab size: 18524
Batch 900:
input_ids shape: torch.Size([16, 256])
attention_mask shape: torch.Size([16, 256])
labels shape: torch.Size([16])
input_ids max value: 18523
Vocab size: 18524
Epoch 3/3:
Val Accuracy: 0.7975, Val F1: 0.7612
Test Results for Final tokenizer:
Accuracy: 0.7978
F1 Score: 0.7615
AUC-ROC: 0.8035
Training with General tokenizer:
Vocabulary size: 30522
Could not load pretrained weights from /linkhome/rech/genrug01/uft12cr/bert_Model. Starting with random weights. Error: It looks like the config file at '/linkhome/rech/genrug01/uft12cr/bert_Model/config.json' is not a valid JSON file.
Initialized model with vocabulary size: 30522
/gpfsdswork/projects/rech/fmr/uft12cr/finetuneAli/OnlyGeneralTokenizer.py:172: FutureWarning: `torch.cuda.amp.GradScaler(args...)` is deprecated. Please use `torch.amp.GradScaler('cuda', args...)` instead.
scaler = amp.GradScaler()
Batch 0:
input_ids shape: torch.Size([16, 256])
attention_mask shape: torch.Size([16, 256])
labels shape: torch.Size([16])
input_ids max value: 29454
Vocab size: 30522
/gpfsdswork/projects/rech/fmr/uft12cr/finetuneAli/OnlyGeneralTokenizer.py:192: FutureWarning: `torch.cuda.amp.autocast(args...)` is deprecated. Please use `torch.amp.autocast('cuda', args...)` instead.
with amp.autocast():
Batch 100:
input_ids shape: torch.Size([16, 256])
attention_mask shape: torch.Size([16, 256])
labels shape: torch.Size([16])
input_ids max value: 29474
Vocab size: 30522
Batch 200:
input_ids shape: torch.Size([16, 256])
attention_mask shape: torch.Size([16, 256])
labels shape: torch.Size([16])
input_ids max value: 29413
Vocab size: 30522
Batch 300:
input_ids shape: torch.Size([16, 256])
attention_mask shape: torch.Size([16, 256])
labels shape: torch.Size([16])
input_ids max value: 29561
Vocab size: 30522
Batch 400:
input_ids shape: torch.Size([16, 256])
attention_mask shape: torch.Size([16, 256])
labels shape: torch.Size([16])
input_ids max value: 29513
Vocab size: 30522
Batch 500:
input_ids shape: torch.Size([16, 256])
attention_mask shape: torch.Size([16, 256])
labels shape: torch.Size([16])
input_ids max value: 29413
Vocab size: 30522
Batch 600:
input_ids shape: torch.Size([16, 256])
attention_mask shape: torch.Size([16, 256])
labels shape: torch.Size([16])
input_ids max value: 29513
Vocab size: 30522
Batch 700:
input_ids shape: torch.Size([16, 256])
attention_mask shape: torch.Size([16, 256])
labels shape: torch.Size([16])
input_ids max value: 29536
Vocab size: 30522
Batch 800:
input_ids shape: torch.Size([16, 256])
attention_mask shape: torch.Size([16, 256])
labels shape: torch.Size([16])
input_ids max value: 29513
Vocab size: 30522
Batch 900:
input_ids shape: torch.Size([16, 256])
attention_mask shape: torch.Size([16, 256])
labels shape: torch.Size([16])
input_ids max value: 29486
Vocab size: 30522
Epoch 1/3:
Val Accuracy: 0.6932, Val F1: 0.6626
Batch 0:
input_ids shape: torch.Size([16, 256])
attention_mask shape: torch.Size([16, 256])
labels shape: torch.Size([16])
input_ids max value: 29513
Vocab size: 30522
/gpfsdswork/projects/rech/fmr/uft12cr/finetuneAli/OnlyGeneralTokenizer.py:192: FutureWarning: `torch.cuda.amp.autocast(args...)` is deprecated. Please use `torch.amp.autocast('cuda', args...)` instead.
with amp.autocast():
Batch 100:
input_ids shape: torch.Size([16, 256])
attention_mask shape: torch.Size([16, 256])
labels shape: torch.Size([16])
input_ids max value: 29545
Vocab size: 30522
Batch 200:
input_ids shape: torch.Size([16, 256])
attention_mask shape: torch.Size([16, 256])
labels shape: torch.Size([16])
input_ids max value: 29464
Vocab size: 30522
Batch 300:
input_ids shape: torch.Size([16, 256])
attention_mask shape: torch.Size([16, 256])
labels shape: torch.Size([16])
input_ids max value: 29178
Vocab size: 30522
Batch 400:
input_ids shape: torch.Size([16, 256])
attention_mask shape: torch.Size([16, 256])
labels shape: torch.Size([16])
input_ids max value: 29446
Vocab size: 30522
Batch 500:
input_ids shape: torch.Size([16, 256])
attention_mask shape: torch.Size([16, 256])
labels shape: torch.Size([16])
input_ids max value: 29513
Vocab size: 30522
Batch 600:
input_ids shape: torch.Size([16, 256])
attention_mask shape: torch.Size([16, 256])
labels shape: torch.Size([16])
input_ids max value: 29536
Vocab size: 30522
Batch 700:
input_ids shape: torch.Size([16, 256])
attention_mask shape: torch.Size([16, 256])
labels shape: torch.Size([16])
input_ids max value: 29454
Vocab size: 30522
Batch 800:
input_ids shape: torch.Size([16, 256])
attention_mask shape: torch.Size([16, 256])
labels shape: torch.Size([16])
input_ids max value: 29347
Vocab size: 30522
Batch 900:
input_ids shape: torch.Size([16, 256])
attention_mask shape: torch.Size([16, 256])
labels shape: torch.Size([16])
input_ids max value: 29535
Vocab size: 30522
Epoch 2/3:
Val Accuracy: 0.7860, Val F1: 0.7438
Batch 0:
input_ids shape: torch.Size([16, 256])
attention_mask shape: torch.Size([16, 256])
labels shape: torch.Size([16])
input_ids max value: 29536
Vocab size: 30522
/gpfsdswork/projects/rech/fmr/uft12cr/finetuneAli/OnlyGeneralTokenizer.py:192: FutureWarning: `torch.cuda.amp.autocast(args...)` is deprecated. Please use `torch.amp.autocast('cuda', args...)` instead.
with amp.autocast():
Batch 100:
input_ids shape: torch.Size([16, 256])
attention_mask shape: torch.Size([16, 256])
labels shape: torch.Size([16])
input_ids max value: 29598
Vocab size: 30522
Batch 200:
input_ids shape: torch.Size([16, 256])
attention_mask shape: torch.Size([16, 256])
labels shape: torch.Size([16])
input_ids max value: 29237
Vocab size: 30522
Batch 300:
input_ids shape: torch.Size([16, 256])
attention_mask shape: torch.Size([16, 256])
labels shape: torch.Size([16])
input_ids max value: 29605
Vocab size: 30522
Batch 400:
input_ids shape: torch.Size([16, 256])
attention_mask shape: torch.Size([16, 256])
labels shape: torch.Size([16])
input_ids max value: 29577
Vocab size: 30522
Batch 500:
input_ids shape: torch.Size([16, 256])
attention_mask shape: torch.Size([16, 256])
labels shape: torch.Size([16])
input_ids max value: 29454
Vocab size: 30522
Batch 600:
input_ids shape: torch.Size([16, 256])
attention_mask shape: torch.Size([16, 256])
labels shape: torch.Size([16])
input_ids max value: 29586
Vocab size: 30522
Batch 700:
input_ids shape: torch.Size([16, 256])
attention_mask shape: torch.Size([16, 256])
labels shape: torch.Size([16])
input_ids max value: 29536
Vocab size: 30522
Batch 800:
input_ids shape: torch.Size([16, 256])
attention_mask shape: torch.Size([16, 256])
labels shape: torch.Size([16])
input_ids max value: 29532
Vocab size: 30522
Batch 900:
input_ids shape: torch.Size([16, 256])
attention_mask shape: torch.Size([16, 256])
labels shape: torch.Size([16])
input_ids max value: 29486
Vocab size: 30522
Epoch 3/3:
Val Accuracy: 0.8062, Val F1: 0.7665
Test Results for General tokenizer:
Accuracy: 0.8062
F1 Score: 0.7665
AUC-ROC: 0.8879
Summary of Results:
All Cluster Tokenizer:
Accuracy: 0.8065
F1 Score: 0.7645
AUC-ROC: 0.8683
Final Tokenizer:
Accuracy: 0.7978
F1 Score: 0.7615
AUC-ROC: 0.8035
General Tokenizer:
Accuracy: 0.8062
F1 Score: 0.7665
AUC-ROC: 0.8879
Class distribution in training set:
Class Biology: 439 samples
Class Chemistry: 454 samples
Class Computer Science: 1358 samples
Class Mathematics: 9480 samples
Class Physics: 2733 samples
Class Statistics: 200 samples