Alijeff1214
commited on
Commit
•
912bef7
1
Parent(s):
3be4547
Upload folder using huggingface_hub
Browse files- All Cluster_tokenizer_plot.png +3 -0
- Final_tokenizer_plot.png +3 -0
- FineTune_GeneralPruning1015899.out +672 -0
- FineTune_withPlots1082275.out +1071 -0
- General_tokenizer_plot.png +3 -0
All Cluster_tokenizer_plot.png
ADDED
Git LFS Details
|
Final_tokenizer_plot.png
ADDED
Git LFS Details
|
FineTune_GeneralPruning1015899.out
ADDED
@@ -0,0 +1,672 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Loading pytorch-gpu/py3/2.1.1
|
2 |
+
Loading requirement: cuda/11.8.0 nccl/2.18.5-1-cuda cudnn/8.7.0.84-cuda
|
3 |
+
gcc/8.5.0 openmpi/4.1.5-cuda intel-mkl/2020.4 magma/2.7.1-cuda sox/14.4.2
|
4 |
+
sparsehash/2.0.3 libjpeg-turbo/2.1.3 ffmpeg/4.4.4
|
5 |
+
+ HF_DATASETS_OFFLINE=1
|
6 |
+
+ TRANSFORMERS_OFFLINE=1
|
7 |
+
+ python3 OnlyGeneralTokenizer.py
|
8 |
+
|
9 |
+
Checking label assignment:
|
10 |
+
|
11 |
+
Domain: Mathematics
|
12 |
+
Categories: hep-th math-ph math.MP nlin.SI
|
13 |
+
Abstract: three new models with vshaped field potentials u are considered a complex scalar field x in dimensio...
|
14 |
+
|
15 |
+
Domain: Computer Science
|
16 |
+
Categories: cs.AR
|
17 |
+
Abstract: this special session adresses the problems that designers face when implementing analog and digital ...
|
18 |
+
|
19 |
+
Domain: Physics
|
20 |
+
Categories: physics.plasm-ph
|
21 |
+
Abstract: starting from the governing equations for a quantum magnetoplasma including the quantum bohm potenti...
|
22 |
+
|
23 |
+
Domain: Chemistry
|
24 |
+
Categories: nlin.CD
|
25 |
+
Abstract: we present recent results on noiseinduced transitions in a nonlinear oscillator with randomly modula...
|
26 |
+
|
27 |
+
Domain: Statistics
|
28 |
+
Categories: stat.AP
|
29 |
+
Abstract: in microarray technology a number of critical steps are required to convert the raw measurements int...
|
30 |
+
|
31 |
+
Domain: Biology
|
32 |
+
Categories: q-bio.MN
|
33 |
+
Abstract: the architecture of biological networks has been reported to exhibit high level of modularity and to...
|
34 |
+
/linkhome/rech/genrug01/uft12cr/.local/lib/python3.11/site-packages/transformers/tokenization_utils_base.py:2057: FutureWarning: Calling BertTokenizer.from_pretrained() with the path to a single file or url is deprecated and won't be possible anymore in v5. Use a model identifier or the path to a directory instead.
|
35 |
+
warnings.warn(
|
36 |
+
|
37 |
+
Training with All Cluster tokenizer:
|
38 |
+
Vocabulary size: 16005
|
39 |
+
Could not load pretrained weights from /linkhome/rech/genrug01/uft12cr/bert_Model. Starting with random weights. Error: It looks like the config file at '/linkhome/rech/genrug01/uft12cr/bert_Model/config.json' is not a valid JSON file.
|
40 |
+
Initialized model with vocabulary size: 16005
|
41 |
+
/gpfsdswork/projects/rech/fmr/uft12cr/finetuneAli/OnlyGeneralTokenizer.py:172: FutureWarning: `torch.cuda.amp.GradScaler(args...)` is deprecated. Please use `torch.amp.GradScaler('cuda', args...)` instead.
|
42 |
+
scaler = amp.GradScaler()
|
43 |
+
Batch 0:
|
44 |
+
input_ids shape: torch.Size([16, 256])
|
45 |
+
attention_mask shape: torch.Size([16, 256])
|
46 |
+
labels shape: torch.Size([16])
|
47 |
+
input_ids max value: 16003
|
48 |
+
Vocab size: 16005
|
49 |
+
/gpfsdswork/projects/rech/fmr/uft12cr/finetuneAli/OnlyGeneralTokenizer.py:192: FutureWarning: `torch.cuda.amp.autocast(args...)` is deprecated. Please use `torch.amp.autocast('cuda', args...)` instead.
|
50 |
+
with amp.autocast():
|
51 |
+
Batch 100:
|
52 |
+
input_ids shape: torch.Size([16, 256])
|
53 |
+
attention_mask shape: torch.Size([16, 256])
|
54 |
+
labels shape: torch.Size([16])
|
55 |
+
input_ids max value: 16003
|
56 |
+
Vocab size: 16005
|
57 |
+
Batch 200:
|
58 |
+
input_ids shape: torch.Size([16, 256])
|
59 |
+
attention_mask shape: torch.Size([16, 256])
|
60 |
+
labels shape: torch.Size([16])
|
61 |
+
input_ids max value: 16003
|
62 |
+
Vocab size: 16005
|
63 |
+
Batch 300:
|
64 |
+
input_ids shape: torch.Size([16, 256])
|
65 |
+
attention_mask shape: torch.Size([16, 256])
|
66 |
+
labels shape: torch.Size([16])
|
67 |
+
input_ids max value: 16003
|
68 |
+
Vocab size: 16005
|
69 |
+
Batch 400:
|
70 |
+
input_ids shape: torch.Size([16, 256])
|
71 |
+
attention_mask shape: torch.Size([16, 256])
|
72 |
+
labels shape: torch.Size([16])
|
73 |
+
input_ids max value: 16003
|
74 |
+
Vocab size: 16005
|
75 |
+
Batch 500:
|
76 |
+
input_ids shape: torch.Size([16, 256])
|
77 |
+
attention_mask shape: torch.Size([16, 256])
|
78 |
+
labels shape: torch.Size([16])
|
79 |
+
input_ids max value: 16003
|
80 |
+
Vocab size: 16005
|
81 |
+
Batch 600:
|
82 |
+
input_ids shape: torch.Size([16, 256])
|
83 |
+
attention_mask shape: torch.Size([16, 256])
|
84 |
+
labels shape: torch.Size([16])
|
85 |
+
input_ids max value: 16003
|
86 |
+
Vocab size: 16005
|
87 |
+
Batch 700:
|
88 |
+
input_ids shape: torch.Size([16, 256])
|
89 |
+
attention_mask shape: torch.Size([16, 256])
|
90 |
+
labels shape: torch.Size([16])
|
91 |
+
input_ids max value: 16003
|
92 |
+
Vocab size: 16005
|
93 |
+
Batch 800:
|
94 |
+
input_ids shape: torch.Size([16, 256])
|
95 |
+
attention_mask shape: torch.Size([16, 256])
|
96 |
+
labels shape: torch.Size([16])
|
97 |
+
input_ids max value: 16003
|
98 |
+
Vocab size: 16005
|
99 |
+
Batch 900:
|
100 |
+
input_ids shape: torch.Size([16, 256])
|
101 |
+
attention_mask shape: torch.Size([16, 256])
|
102 |
+
labels shape: torch.Size([16])
|
103 |
+
input_ids max value: 16003
|
104 |
+
Vocab size: 16005
|
105 |
+
Epoch 1/3:
|
106 |
+
Val Accuracy: 0.7549, Val F1: 0.7014
|
107 |
+
Batch 0:
|
108 |
+
input_ids shape: torch.Size([16, 256])
|
109 |
+
attention_mask shape: torch.Size([16, 256])
|
110 |
+
labels shape: torch.Size([16])
|
111 |
+
input_ids max value: 16003
|
112 |
+
Vocab size: 16005
|
113 |
+
/gpfsdswork/projects/rech/fmr/uft12cr/finetuneAli/OnlyGeneralTokenizer.py:192: FutureWarning: `torch.cuda.amp.autocast(args...)` is deprecated. Please use `torch.amp.autocast('cuda', args...)` instead.
|
114 |
+
with amp.autocast():
|
115 |
+
Batch 100:
|
116 |
+
input_ids shape: torch.Size([16, 256])
|
117 |
+
attention_mask shape: torch.Size([16, 256])
|
118 |
+
labels shape: torch.Size([16])
|
119 |
+
input_ids max value: 16003
|
120 |
+
Vocab size: 16005
|
121 |
+
Batch 200:
|
122 |
+
input_ids shape: torch.Size([16, 256])
|
123 |
+
attention_mask shape: torch.Size([16, 256])
|
124 |
+
labels shape: torch.Size([16])
|
125 |
+
input_ids max value: 16003
|
126 |
+
Vocab size: 16005
|
127 |
+
Batch 300:
|
128 |
+
input_ids shape: torch.Size([16, 256])
|
129 |
+
attention_mask shape: torch.Size([16, 256])
|
130 |
+
labels shape: torch.Size([16])
|
131 |
+
input_ids max value: 16003
|
132 |
+
Vocab size: 16005
|
133 |
+
Batch 400:
|
134 |
+
input_ids shape: torch.Size([16, 256])
|
135 |
+
attention_mask shape: torch.Size([16, 256])
|
136 |
+
labels shape: torch.Size([16])
|
137 |
+
input_ids max value: 16003
|
138 |
+
Vocab size: 16005
|
139 |
+
Batch 500:
|
140 |
+
input_ids shape: torch.Size([16, 256])
|
141 |
+
attention_mask shape: torch.Size([16, 256])
|
142 |
+
labels shape: torch.Size([16])
|
143 |
+
input_ids max value: 16003
|
144 |
+
Vocab size: 16005
|
145 |
+
Batch 600:
|
146 |
+
input_ids shape: torch.Size([16, 256])
|
147 |
+
attention_mask shape: torch.Size([16, 256])
|
148 |
+
labels shape: torch.Size([16])
|
149 |
+
input_ids max value: 16003
|
150 |
+
Vocab size: 16005
|
151 |
+
Batch 700:
|
152 |
+
input_ids shape: torch.Size([16, 256])
|
153 |
+
attention_mask shape: torch.Size([16, 256])
|
154 |
+
labels shape: torch.Size([16])
|
155 |
+
input_ids max value: 16003
|
156 |
+
Vocab size: 16005
|
157 |
+
Batch 800:
|
158 |
+
input_ids shape: torch.Size([16, 256])
|
159 |
+
attention_mask shape: torch.Size([16, 256])
|
160 |
+
labels shape: torch.Size([16])
|
161 |
+
input_ids max value: 16003
|
162 |
+
Vocab size: 16005
|
163 |
+
Batch 900:
|
164 |
+
input_ids shape: torch.Size([16, 256])
|
165 |
+
attention_mask shape: torch.Size([16, 256])
|
166 |
+
labels shape: torch.Size([16])
|
167 |
+
input_ids max value: 16003
|
168 |
+
Vocab size: 16005
|
169 |
+
Epoch 2/3:
|
170 |
+
Val Accuracy: 0.7937, Val F1: 0.7657
|
171 |
+
Batch 0:
|
172 |
+
input_ids shape: torch.Size([16, 256])
|
173 |
+
attention_mask shape: torch.Size([16, 256])
|
174 |
+
labels shape: torch.Size([16])
|
175 |
+
input_ids max value: 16003
|
176 |
+
Vocab size: 16005
|
177 |
+
/gpfsdswork/projects/rech/fmr/uft12cr/finetuneAli/OnlyGeneralTokenizer.py:192: FutureWarning: `torch.cuda.amp.autocast(args...)` is deprecated. Please use `torch.amp.autocast('cuda', args...)` instead.
|
178 |
+
with amp.autocast():
|
179 |
+
Batch 100:
|
180 |
+
input_ids shape: torch.Size([16, 256])
|
181 |
+
attention_mask shape: torch.Size([16, 256])
|
182 |
+
labels shape: torch.Size([16])
|
183 |
+
input_ids max value: 16003
|
184 |
+
Vocab size: 16005
|
185 |
+
Batch 200:
|
186 |
+
input_ids shape: torch.Size([16, 256])
|
187 |
+
attention_mask shape: torch.Size([16, 256])
|
188 |
+
labels shape: torch.Size([16])
|
189 |
+
input_ids max value: 16003
|
190 |
+
Vocab size: 16005
|
191 |
+
Batch 300:
|
192 |
+
input_ids shape: torch.Size([16, 256])
|
193 |
+
attention_mask shape: torch.Size([16, 256])
|
194 |
+
labels shape: torch.Size([16])
|
195 |
+
input_ids max value: 16003
|
196 |
+
Vocab size: 16005
|
197 |
+
Batch 400:
|
198 |
+
input_ids shape: torch.Size([16, 256])
|
199 |
+
attention_mask shape: torch.Size([16, 256])
|
200 |
+
labels shape: torch.Size([16])
|
201 |
+
input_ids max value: 16003
|
202 |
+
Vocab size: 16005
|
203 |
+
Batch 500:
|
204 |
+
input_ids shape: torch.Size([16, 256])
|
205 |
+
attention_mask shape: torch.Size([16, 256])
|
206 |
+
labels shape: torch.Size([16])
|
207 |
+
input_ids max value: 16003
|
208 |
+
Vocab size: 16005
|
209 |
+
Batch 600:
|
210 |
+
input_ids shape: torch.Size([16, 256])
|
211 |
+
attention_mask shape: torch.Size([16, 256])
|
212 |
+
labels shape: torch.Size([16])
|
213 |
+
input_ids max value: 16003
|
214 |
+
Vocab size: 16005
|
215 |
+
Batch 700:
|
216 |
+
input_ids shape: torch.Size([16, 256])
|
217 |
+
attention_mask shape: torch.Size([16, 256])
|
218 |
+
labels shape: torch.Size([16])
|
219 |
+
input_ids max value: 16003
|
220 |
+
Vocab size: 16005
|
221 |
+
Batch 800:
|
222 |
+
input_ids shape: torch.Size([16, 256])
|
223 |
+
attention_mask shape: torch.Size([16, 256])
|
224 |
+
labels shape: torch.Size([16])
|
225 |
+
input_ids max value: 16003
|
226 |
+
Vocab size: 16005
|
227 |
+
Batch 900:
|
228 |
+
input_ids shape: torch.Size([16, 256])
|
229 |
+
attention_mask shape: torch.Size([16, 256])
|
230 |
+
labels shape: torch.Size([16])
|
231 |
+
input_ids max value: 16003
|
232 |
+
Vocab size: 16005
|
233 |
+
Epoch 3/3:
|
234 |
+
Val Accuracy: 0.8065, Val F1: 0.7645
|
235 |
+
|
236 |
+
Test Results for All Cluster tokenizer:
|
237 |
+
Accuracy: 0.8065
|
238 |
+
F1 Score: 0.7645
|
239 |
+
AUC-ROC: 0.8683
|
240 |
+
|
241 |
+
Training with Final tokenizer:
|
242 |
+
Vocabulary size: 18524
|
243 |
+
Could not load pretrained weights from /linkhome/rech/genrug01/uft12cr/bert_Model. Starting with random weights. Error: It looks like the config file at '/linkhome/rech/genrug01/uft12cr/bert_Model/config.json' is not a valid JSON file.
|
244 |
+
Initialized model with vocabulary size: 18524
|
245 |
+
/gpfsdswork/projects/rech/fmr/uft12cr/finetuneAli/OnlyGeneralTokenizer.py:172: FutureWarning: `torch.cuda.amp.GradScaler(args...)` is deprecated. Please use `torch.amp.GradScaler('cuda', args...)` instead.
|
246 |
+
scaler = amp.GradScaler()
|
247 |
+
Batch 0:
|
248 |
+
input_ids shape: torch.Size([16, 256])
|
249 |
+
attention_mask shape: torch.Size([16, 256])
|
250 |
+
labels shape: torch.Size([16])
|
251 |
+
input_ids max value: 18523
|
252 |
+
Vocab size: 18524
|
253 |
+
/gpfsdswork/projects/rech/fmr/uft12cr/finetuneAli/OnlyGeneralTokenizer.py:192: FutureWarning: `torch.cuda.amp.autocast(args...)` is deprecated. Please use `torch.amp.autocast('cuda', args...)` instead.
|
254 |
+
with amp.autocast():
|
255 |
+
Batch 100:
|
256 |
+
input_ids shape: torch.Size([16, 256])
|
257 |
+
attention_mask shape: torch.Size([16, 256])
|
258 |
+
labels shape: torch.Size([16])
|
259 |
+
input_ids max value: 18523
|
260 |
+
Vocab size: 18524
|
261 |
+
Batch 200:
|
262 |
+
input_ids shape: torch.Size([16, 256])
|
263 |
+
attention_mask shape: torch.Size([16, 256])
|
264 |
+
labels shape: torch.Size([16])
|
265 |
+
input_ids max value: 18523
|
266 |
+
Vocab size: 18524
|
267 |
+
Batch 300:
|
268 |
+
input_ids shape: torch.Size([16, 256])
|
269 |
+
attention_mask shape: torch.Size([16, 256])
|
270 |
+
labels shape: torch.Size([16])
|
271 |
+
input_ids max value: 18523
|
272 |
+
Vocab size: 18524
|
273 |
+
Batch 400:
|
274 |
+
input_ids shape: torch.Size([16, 256])
|
275 |
+
attention_mask shape: torch.Size([16, 256])
|
276 |
+
labels shape: torch.Size([16])
|
277 |
+
input_ids max value: 18523
|
278 |
+
Vocab size: 18524
|
279 |
+
Batch 500:
|
280 |
+
input_ids shape: torch.Size([16, 256])
|
281 |
+
attention_mask shape: torch.Size([16, 256])
|
282 |
+
labels shape: torch.Size([16])
|
283 |
+
input_ids max value: 18523
|
284 |
+
Vocab size: 18524
|
285 |
+
Batch 600:
|
286 |
+
input_ids shape: torch.Size([16, 256])
|
287 |
+
attention_mask shape: torch.Size([16, 256])
|
288 |
+
labels shape: torch.Size([16])
|
289 |
+
input_ids max value: 18523
|
290 |
+
Vocab size: 18524
|
291 |
+
Batch 700:
|
292 |
+
input_ids shape: torch.Size([16, 256])
|
293 |
+
attention_mask shape: torch.Size([16, 256])
|
294 |
+
labels shape: torch.Size([16])
|
295 |
+
input_ids max value: 18523
|
296 |
+
Vocab size: 18524
|
297 |
+
Batch 800:
|
298 |
+
input_ids shape: torch.Size([16, 256])
|
299 |
+
attention_mask shape: torch.Size([16, 256])
|
300 |
+
labels shape: torch.Size([16])
|
301 |
+
input_ids max value: 18523
|
302 |
+
Vocab size: 18524
|
303 |
+
Batch 900:
|
304 |
+
input_ids shape: torch.Size([16, 256])
|
305 |
+
attention_mask shape: torch.Size([16, 256])
|
306 |
+
labels shape: torch.Size([16])
|
307 |
+
input_ids max value: 18523
|
308 |
+
Vocab size: 18524
|
309 |
+
Epoch 1/3:
|
310 |
+
Val Accuracy: 0.6744, Val F1: 0.6438
|
311 |
+
Batch 0:
|
312 |
+
input_ids shape: torch.Size([16, 256])
|
313 |
+
attention_mask shape: torch.Size([16, 256])
|
314 |
+
labels shape: torch.Size([16])
|
315 |
+
input_ids max value: 18523
|
316 |
+
Vocab size: 18524
|
317 |
+
/gpfsdswork/projects/rech/fmr/uft12cr/finetuneAli/OnlyGeneralTokenizer.py:192: FutureWarning: `torch.cuda.amp.autocast(args...)` is deprecated. Please use `torch.amp.autocast('cuda', args...)` instead.
|
318 |
+
with amp.autocast():
|
319 |
+
Batch 100:
|
320 |
+
input_ids shape: torch.Size([16, 256])
|
321 |
+
attention_mask shape: torch.Size([16, 256])
|
322 |
+
labels shape: torch.Size([16])
|
323 |
+
input_ids max value: 18523
|
324 |
+
Vocab size: 18524
|
325 |
+
Batch 200:
|
326 |
+
input_ids shape: torch.Size([16, 256])
|
327 |
+
attention_mask shape: torch.Size([16, 256])
|
328 |
+
labels shape: torch.Size([16])
|
329 |
+
input_ids max value: 18523
|
330 |
+
Vocab size: 18524
|
331 |
+
Batch 300:
|
332 |
+
input_ids shape: torch.Size([16, 256])
|
333 |
+
attention_mask shape: torch.Size([16, 256])
|
334 |
+
labels shape: torch.Size([16])
|
335 |
+
input_ids max value: 18523
|
336 |
+
Vocab size: 18524
|
337 |
+
Batch 400:
|
338 |
+
input_ids shape: torch.Size([16, 256])
|
339 |
+
attention_mask shape: torch.Size([16, 256])
|
340 |
+
labels shape: torch.Size([16])
|
341 |
+
input_ids max value: 18523
|
342 |
+
Vocab size: 18524
|
343 |
+
Batch 500:
|
344 |
+
input_ids shape: torch.Size([16, 256])
|
345 |
+
attention_mask shape: torch.Size([16, 256])
|
346 |
+
labels shape: torch.Size([16])
|
347 |
+
input_ids max value: 18523
|
348 |
+
Vocab size: 18524
|
349 |
+
Batch 600:
|
350 |
+
input_ids shape: torch.Size([16, 256])
|
351 |
+
attention_mask shape: torch.Size([16, 256])
|
352 |
+
labels shape: torch.Size([16])
|
353 |
+
input_ids max value: 18523
|
354 |
+
Vocab size: 18524
|
355 |
+
Batch 700:
|
356 |
+
input_ids shape: torch.Size([16, 256])
|
357 |
+
attention_mask shape: torch.Size([16, 256])
|
358 |
+
labels shape: torch.Size([16])
|
359 |
+
input_ids max value: 18523
|
360 |
+
Vocab size: 18524
|
361 |
+
Batch 800:
|
362 |
+
input_ids shape: torch.Size([16, 256])
|
363 |
+
attention_mask shape: torch.Size([16, 256])
|
364 |
+
labels shape: torch.Size([16])
|
365 |
+
input_ids max value: 18523
|
366 |
+
Vocab size: 18524
|
367 |
+
Batch 900:
|
368 |
+
input_ids shape: torch.Size([16, 256])
|
369 |
+
attention_mask shape: torch.Size([16, 256])
|
370 |
+
labels shape: torch.Size([16])
|
371 |
+
input_ids max value: 18523
|
372 |
+
Vocab size: 18524
|
373 |
+
Epoch 2/3:
|
374 |
+
Val Accuracy: 0.7737, Val F1: 0.7343
|
375 |
+
Batch 0:
|
376 |
+
input_ids shape: torch.Size([16, 256])
|
377 |
+
attention_mask shape: torch.Size([16, 256])
|
378 |
+
labels shape: torch.Size([16])
|
379 |
+
input_ids max value: 18523
|
380 |
+
Vocab size: 18524
|
381 |
+
/gpfsdswork/projects/rech/fmr/uft12cr/finetuneAli/OnlyGeneralTokenizer.py:192: FutureWarning: `torch.cuda.amp.autocast(args...)` is deprecated. Please use `torch.amp.autocast('cuda', args...)` instead.
|
382 |
+
with amp.autocast():
|
383 |
+
Batch 100:
|
384 |
+
input_ids shape: torch.Size([16, 256])
|
385 |
+
attention_mask shape: torch.Size([16, 256])
|
386 |
+
labels shape: torch.Size([16])
|
387 |
+
input_ids max value: 18523
|
388 |
+
Vocab size: 18524
|
389 |
+
Batch 200:
|
390 |
+
input_ids shape: torch.Size([16, 256])
|
391 |
+
attention_mask shape: torch.Size([16, 256])
|
392 |
+
labels shape: torch.Size([16])
|
393 |
+
input_ids max value: 18523
|
394 |
+
Vocab size: 18524
|
395 |
+
Batch 300:
|
396 |
+
input_ids shape: torch.Size([16, 256])
|
397 |
+
attention_mask shape: torch.Size([16, 256])
|
398 |
+
labels shape: torch.Size([16])
|
399 |
+
input_ids max value: 18523
|
400 |
+
Vocab size: 18524
|
401 |
+
Batch 400:
|
402 |
+
input_ids shape: torch.Size([16, 256])
|
403 |
+
attention_mask shape: torch.Size([16, 256])
|
404 |
+
labels shape: torch.Size([16])
|
405 |
+
input_ids max value: 18523
|
406 |
+
Vocab size: 18524
|
407 |
+
Batch 500:
|
408 |
+
input_ids shape: torch.Size([16, 256])
|
409 |
+
attention_mask shape: torch.Size([16, 256])
|
410 |
+
labels shape: torch.Size([16])
|
411 |
+
input_ids max value: 18523
|
412 |
+
Vocab size: 18524
|
413 |
+
Batch 600:
|
414 |
+
input_ids shape: torch.Size([16, 256])
|
415 |
+
attention_mask shape: torch.Size([16, 256])
|
416 |
+
labels shape: torch.Size([16])
|
417 |
+
input_ids max value: 18523
|
418 |
+
Vocab size: 18524
|
419 |
+
Batch 700:
|
420 |
+
input_ids shape: torch.Size([16, 256])
|
421 |
+
attention_mask shape: torch.Size([16, 256])
|
422 |
+
labels shape: torch.Size([16])
|
423 |
+
input_ids max value: 18523
|
424 |
+
Vocab size: 18524
|
425 |
+
Batch 800:
|
426 |
+
input_ids shape: torch.Size([16, 256])
|
427 |
+
attention_mask shape: torch.Size([16, 256])
|
428 |
+
labels shape: torch.Size([16])
|
429 |
+
input_ids max value: 18523
|
430 |
+
Vocab size: 18524
|
431 |
+
Batch 900:
|
432 |
+
input_ids shape: torch.Size([16, 256])
|
433 |
+
attention_mask shape: torch.Size([16, 256])
|
434 |
+
labels shape: torch.Size([16])
|
435 |
+
input_ids max value: 18523
|
436 |
+
Vocab size: 18524
|
437 |
+
Epoch 3/3:
|
438 |
+
Val Accuracy: 0.7975, Val F1: 0.7612
|
439 |
+
|
440 |
+
Test Results for Final tokenizer:
|
441 |
+
Accuracy: 0.7978
|
442 |
+
F1 Score: 0.7615
|
443 |
+
AUC-ROC: 0.8035
|
444 |
+
|
445 |
+
Training with General tokenizer:
|
446 |
+
Vocabulary size: 30522
|
447 |
+
Could not load pretrained weights from /linkhome/rech/genrug01/uft12cr/bert_Model. Starting with random weights. Error: It looks like the config file at '/linkhome/rech/genrug01/uft12cr/bert_Model/config.json' is not a valid JSON file.
|
448 |
+
Initialized model with vocabulary size: 30522
|
449 |
+
/gpfsdswork/projects/rech/fmr/uft12cr/finetuneAli/OnlyGeneralTokenizer.py:172: FutureWarning: `torch.cuda.amp.GradScaler(args...)` is deprecated. Please use `torch.amp.GradScaler('cuda', args...)` instead.
|
450 |
+
scaler = amp.GradScaler()
|
451 |
+
Batch 0:
|
452 |
+
input_ids shape: torch.Size([16, 256])
|
453 |
+
attention_mask shape: torch.Size([16, 256])
|
454 |
+
labels shape: torch.Size([16])
|
455 |
+
input_ids max value: 29454
|
456 |
+
Vocab size: 30522
|
457 |
+
/gpfsdswork/projects/rech/fmr/uft12cr/finetuneAli/OnlyGeneralTokenizer.py:192: FutureWarning: `torch.cuda.amp.autocast(args...)` is deprecated. Please use `torch.amp.autocast('cuda', args...)` instead.
|
458 |
+
with amp.autocast():
|
459 |
+
Batch 100:
|
460 |
+
input_ids shape: torch.Size([16, 256])
|
461 |
+
attention_mask shape: torch.Size([16, 256])
|
462 |
+
labels shape: torch.Size([16])
|
463 |
+
input_ids max value: 29474
|
464 |
+
Vocab size: 30522
|
465 |
+
Batch 200:
|
466 |
+
input_ids shape: torch.Size([16, 256])
|
467 |
+
attention_mask shape: torch.Size([16, 256])
|
468 |
+
labels shape: torch.Size([16])
|
469 |
+
input_ids max value: 29413
|
470 |
+
Vocab size: 30522
|
471 |
+
Batch 300:
|
472 |
+
input_ids shape: torch.Size([16, 256])
|
473 |
+
attention_mask shape: torch.Size([16, 256])
|
474 |
+
labels shape: torch.Size([16])
|
475 |
+
input_ids max value: 29561
|
476 |
+
Vocab size: 30522
|
477 |
+
Batch 400:
|
478 |
+
input_ids shape: torch.Size([16, 256])
|
479 |
+
attention_mask shape: torch.Size([16, 256])
|
480 |
+
labels shape: torch.Size([16])
|
481 |
+
input_ids max value: 29513
|
482 |
+
Vocab size: 30522
|
483 |
+
Batch 500:
|
484 |
+
input_ids shape: torch.Size([16, 256])
|
485 |
+
attention_mask shape: torch.Size([16, 256])
|
486 |
+
labels shape: torch.Size([16])
|
487 |
+
input_ids max value: 29413
|
488 |
+
Vocab size: 30522
|
489 |
+
Batch 600:
|
490 |
+
input_ids shape: torch.Size([16, 256])
|
491 |
+
attention_mask shape: torch.Size([16, 256])
|
492 |
+
labels shape: torch.Size([16])
|
493 |
+
input_ids max value: 29513
|
494 |
+
Vocab size: 30522
|
495 |
+
Batch 700:
|
496 |
+
input_ids shape: torch.Size([16, 256])
|
497 |
+
attention_mask shape: torch.Size([16, 256])
|
498 |
+
labels shape: torch.Size([16])
|
499 |
+
input_ids max value: 29536
|
500 |
+
Vocab size: 30522
|
501 |
+
Batch 800:
|
502 |
+
input_ids shape: torch.Size([16, 256])
|
503 |
+
attention_mask shape: torch.Size([16, 256])
|
504 |
+
labels shape: torch.Size([16])
|
505 |
+
input_ids max value: 29513
|
506 |
+
Vocab size: 30522
|
507 |
+
Batch 900:
|
508 |
+
input_ids shape: torch.Size([16, 256])
|
509 |
+
attention_mask shape: torch.Size([16, 256])
|
510 |
+
labels shape: torch.Size([16])
|
511 |
+
input_ids max value: 29486
|
512 |
+
Vocab size: 30522
|
513 |
+
Epoch 1/3:
|
514 |
+
Val Accuracy: 0.6932, Val F1: 0.6626
|
515 |
+
Batch 0:
|
516 |
+
input_ids shape: torch.Size([16, 256])
|
517 |
+
attention_mask shape: torch.Size([16, 256])
|
518 |
+
labels shape: torch.Size([16])
|
519 |
+
input_ids max value: 29513
|
520 |
+
Vocab size: 30522
|
521 |
+
/gpfsdswork/projects/rech/fmr/uft12cr/finetuneAli/OnlyGeneralTokenizer.py:192: FutureWarning: `torch.cuda.amp.autocast(args...)` is deprecated. Please use `torch.amp.autocast('cuda', args...)` instead.
|
522 |
+
with amp.autocast():
|
523 |
+
Batch 100:
|
524 |
+
input_ids shape: torch.Size([16, 256])
|
525 |
+
attention_mask shape: torch.Size([16, 256])
|
526 |
+
labels shape: torch.Size([16])
|
527 |
+
input_ids max value: 29545
|
528 |
+
Vocab size: 30522
|
529 |
+
Batch 200:
|
530 |
+
input_ids shape: torch.Size([16, 256])
|
531 |
+
attention_mask shape: torch.Size([16, 256])
|
532 |
+
labels shape: torch.Size([16])
|
533 |
+
input_ids max value: 29464
|
534 |
+
Vocab size: 30522
|
535 |
+
Batch 300:
|
536 |
+
input_ids shape: torch.Size([16, 256])
|
537 |
+
attention_mask shape: torch.Size([16, 256])
|
538 |
+
labels shape: torch.Size([16])
|
539 |
+
input_ids max value: 29178
|
540 |
+
Vocab size: 30522
|
541 |
+
Batch 400:
|
542 |
+
input_ids shape: torch.Size([16, 256])
|
543 |
+
attention_mask shape: torch.Size([16, 256])
|
544 |
+
labels shape: torch.Size([16])
|
545 |
+
input_ids max value: 29446
|
546 |
+
Vocab size: 30522
|
547 |
+
Batch 500:
|
548 |
+
input_ids shape: torch.Size([16, 256])
|
549 |
+
attention_mask shape: torch.Size([16, 256])
|
550 |
+
labels shape: torch.Size([16])
|
551 |
+
input_ids max value: 29513
|
552 |
+
Vocab size: 30522
|
553 |
+
Batch 600:
|
554 |
+
input_ids shape: torch.Size([16, 256])
|
555 |
+
attention_mask shape: torch.Size([16, 256])
|
556 |
+
labels shape: torch.Size([16])
|
557 |
+
input_ids max value: 29536
|
558 |
+
Vocab size: 30522
|
559 |
+
Batch 700:
|
560 |
+
input_ids shape: torch.Size([16, 256])
|
561 |
+
attention_mask shape: torch.Size([16, 256])
|
562 |
+
labels shape: torch.Size([16])
|
563 |
+
input_ids max value: 29454
|
564 |
+
Vocab size: 30522
|
565 |
+
Batch 800:
|
566 |
+
input_ids shape: torch.Size([16, 256])
|
567 |
+
attention_mask shape: torch.Size([16, 256])
|
568 |
+
labels shape: torch.Size([16])
|
569 |
+
input_ids max value: 29347
|
570 |
+
Vocab size: 30522
|
571 |
+
Batch 900:
|
572 |
+
input_ids shape: torch.Size([16, 256])
|
573 |
+
attention_mask shape: torch.Size([16, 256])
|
574 |
+
labels shape: torch.Size([16])
|
575 |
+
input_ids max value: 29535
|
576 |
+
Vocab size: 30522
|
577 |
+
Epoch 2/3:
|
578 |
+
Val Accuracy: 0.7860, Val F1: 0.7438
|
579 |
+
Batch 0:
|
580 |
+
input_ids shape: torch.Size([16, 256])
|
581 |
+
attention_mask shape: torch.Size([16, 256])
|
582 |
+
labels shape: torch.Size([16])
|
583 |
+
input_ids max value: 29536
|
584 |
+
Vocab size: 30522
|
585 |
+
/gpfsdswork/projects/rech/fmr/uft12cr/finetuneAli/OnlyGeneralTokenizer.py:192: FutureWarning: `torch.cuda.amp.autocast(args...)` is deprecated. Please use `torch.amp.autocast('cuda', args...)` instead.
|
586 |
+
with amp.autocast():
|
587 |
+
Batch 100:
|
588 |
+
input_ids shape: torch.Size([16, 256])
|
589 |
+
attention_mask shape: torch.Size([16, 256])
|
590 |
+
labels shape: torch.Size([16])
|
591 |
+
input_ids max value: 29598
|
592 |
+
Vocab size: 30522
|
593 |
+
Batch 200:
|
594 |
+
input_ids shape: torch.Size([16, 256])
|
595 |
+
attention_mask shape: torch.Size([16, 256])
|
596 |
+
labels shape: torch.Size([16])
|
597 |
+
input_ids max value: 29237
|
598 |
+
Vocab size: 30522
|
599 |
+
Batch 300:
|
600 |
+
input_ids shape: torch.Size([16, 256])
|
601 |
+
attention_mask shape: torch.Size([16, 256])
|
602 |
+
labels shape: torch.Size([16])
|
603 |
+
input_ids max value: 29605
|
604 |
+
Vocab size: 30522
|
605 |
+
Batch 400:
|
606 |
+
input_ids shape: torch.Size([16, 256])
|
607 |
+
attention_mask shape: torch.Size([16, 256])
|
608 |
+
labels shape: torch.Size([16])
|
609 |
+
input_ids max value: 29577
|
610 |
+
Vocab size: 30522
|
611 |
+
Batch 500:
|
612 |
+
input_ids shape: torch.Size([16, 256])
|
613 |
+
attention_mask shape: torch.Size([16, 256])
|
614 |
+
labels shape: torch.Size([16])
|
615 |
+
input_ids max value: 29454
|
616 |
+
Vocab size: 30522
|
617 |
+
Batch 600:
|
618 |
+
input_ids shape: torch.Size([16, 256])
|
619 |
+
attention_mask shape: torch.Size([16, 256])
|
620 |
+
labels shape: torch.Size([16])
|
621 |
+
input_ids max value: 29586
|
622 |
+
Vocab size: 30522
|
623 |
+
Batch 700:
|
624 |
+
input_ids shape: torch.Size([16, 256])
|
625 |
+
attention_mask shape: torch.Size([16, 256])
|
626 |
+
labels shape: torch.Size([16])
|
627 |
+
input_ids max value: 29536
|
628 |
+
Vocab size: 30522
|
629 |
+
Batch 800:
|
630 |
+
input_ids shape: torch.Size([16, 256])
|
631 |
+
attention_mask shape: torch.Size([16, 256])
|
632 |
+
labels shape: torch.Size([16])
|
633 |
+
input_ids max value: 29532
|
634 |
+
Vocab size: 30522
|
635 |
+
Batch 900:
|
636 |
+
input_ids shape: torch.Size([16, 256])
|
637 |
+
attention_mask shape: torch.Size([16, 256])
|
638 |
+
labels shape: torch.Size([16])
|
639 |
+
input_ids max value: 29486
|
640 |
+
Vocab size: 30522
|
641 |
+
Epoch 3/3:
|
642 |
+
Val Accuracy: 0.8062, Val F1: 0.7665
|
643 |
+
|
644 |
+
Test Results for General tokenizer:
|
645 |
+
Accuracy: 0.8062
|
646 |
+
F1 Score: 0.7665
|
647 |
+
AUC-ROC: 0.8879
|
648 |
+
|
649 |
+
Summary of Results:
|
650 |
+
|
651 |
+
All Cluster Tokenizer:
|
652 |
+
Accuracy: 0.8065
|
653 |
+
F1 Score: 0.7645
|
654 |
+
AUC-ROC: 0.8683
|
655 |
+
|
656 |
+
Final Tokenizer:
|
657 |
+
Accuracy: 0.7978
|
658 |
+
F1 Score: 0.7615
|
659 |
+
AUC-ROC: 0.8035
|
660 |
+
|
661 |
+
General Tokenizer:
|
662 |
+
Accuracy: 0.8062
|
663 |
+
F1 Score: 0.7665
|
664 |
+
AUC-ROC: 0.8879
|
665 |
+
|
666 |
+
Class distribution in training set:
|
667 |
+
Class Biology: 439 samples
|
668 |
+
Class Chemistry: 454 samples
|
669 |
+
Class Computer Science: 1358 samples
|
670 |
+
Class Mathematics: 9480 samples
|
671 |
+
Class Physics: 2733 samples
|
672 |
+
Class Statistics: 200 samples
|
FineTune_withPlots1082275.out
ADDED
@@ -0,0 +1,1071 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Loading pytorch-gpu/py3/2.1.1
|
2 |
+
Loading requirement: cuda/11.8.0 nccl/2.18.5-1-cuda cudnn/8.7.0.84-cuda
|
3 |
+
gcc/8.5.0 openmpi/4.1.5-cuda intel-mkl/2020.4 magma/2.7.1-cuda sox/14.4.2
|
4 |
+
sparsehash/2.0.3 libjpeg-turbo/2.1.3 ffmpeg/4.4.4
|
5 |
+
+ HF_DATASETS_OFFLINE=1
|
6 |
+
+ TRANSFORMERS_OFFLINE=1
|
7 |
+
+ python3 FIneTune_withPlots.py
|
8 |
+
|
9 |
+
Checking label assignment:
|
10 |
+
|
11 |
+
Domain: Mathematics
|
12 |
+
Categories: math.KT math.RT
|
13 |
+
Abstract: we compute the hochschild cohomology and homology of a class of quantum exterior algebras with coeff...
|
14 |
+
|
15 |
+
Domain: Computer Science
|
16 |
+
Categories: cs.AI cs.LO
|
17 |
+
Abstract: this paper presents experiments on common knowledge logic conducted with the help of the proof assis...
|
18 |
+
|
19 |
+
Domain: Physics
|
20 |
+
Categories: physics.ins-det physics.gen-ph
|
21 |
+
Abstract: soil bulk density affects water storage water and nutrient movement and plant root activity in the s...
|
22 |
+
|
23 |
+
Domain: Chemistry
|
24 |
+
Categories: nlin.CD
|
25 |
+
Abstract: two chaotic systems which interact by mutually exchanging a signal built from their delayed internal...
|
26 |
+
|
27 |
+
Domain: Statistics
|
28 |
+
Categories: stat.ME stat.AP
|
29 |
+
Abstract: it is difficult to accurately estimate the rates of rape and domestic violence due to the sensitive ...
|
30 |
+
|
31 |
+
Domain: Biology
|
32 |
+
Categories: q-bio.PE
|
33 |
+
Abstract: the distribution of genetic polymorphisms in a population contains information about the mutation ra...
|
34 |
+
/linkhome/rech/genrug01/uft12cr/.local/lib/python3.11/site-packages/transformers/tokenization_utils_base.py:2057: FutureWarning: Calling BertTokenizer.from_pretrained() with the path to a single file or url is deprecated and won't be possible anymore in v5. Use a model identifier or the path to a directory instead.
|
35 |
+
warnings.warn(
|
36 |
+
|
37 |
+
Training with All Cluster tokenizer:
|
38 |
+
Vocabulary size: 16005
|
39 |
+
Could not load pretrained weights from /gpfswork/rech/fmr/uft12cr/finetuneAli/Bert_Model. Starting with random weights. Error: Error while deserializing header: HeaderTooLarge
|
40 |
+
Initialized model with vocabulary size: 16005
|
41 |
+
/gpfsdswork/projects/rech/fmr/uft12cr/finetuneAli/FIneTune_withPlots.py:173: FutureWarning: `torch.cuda.amp.GradScaler(args...)` is deprecated. Please use `torch.amp.GradScaler('cuda', args...)` instead.
|
42 |
+
scaler = amp.GradScaler()
|
43 |
+
Batch 0:
|
44 |
+
input_ids shape: torch.Size([16, 256])
|
45 |
+
attention_mask shape: torch.Size([16, 256])
|
46 |
+
labels shape: torch.Size([16])
|
47 |
+
input_ids max value: 16003
|
48 |
+
Vocab size: 16005
|
49 |
+
/gpfsdswork/projects/rech/fmr/uft12cr/finetuneAli/FIneTune_withPlots.py:202: FutureWarning: `torch.cuda.amp.autocast(args...)` is deprecated. Please use `torch.amp.autocast('cuda', args...)` instead.
|
50 |
+
with amp.autocast():
|
51 |
+
Batch 100:
|
52 |
+
input_ids shape: torch.Size([16, 256])
|
53 |
+
attention_mask shape: torch.Size([16, 256])
|
54 |
+
labels shape: torch.Size([16])
|
55 |
+
input_ids max value: 16003
|
56 |
+
Vocab size: 16005
|
57 |
+
Batch 200:
|
58 |
+
input_ids shape: torch.Size([16, 256])
|
59 |
+
attention_mask shape: torch.Size([16, 256])
|
60 |
+
labels shape: torch.Size([16])
|
61 |
+
input_ids max value: 16003
|
62 |
+
Vocab size: 16005
|
63 |
+
Batch 300:
|
64 |
+
input_ids shape: torch.Size([16, 256])
|
65 |
+
attention_mask shape: torch.Size([16, 256])
|
66 |
+
labels shape: torch.Size([16])
|
67 |
+
input_ids max value: 16003
|
68 |
+
Vocab size: 16005
|
69 |
+
Batch 400:
|
70 |
+
input_ids shape: torch.Size([16, 256])
|
71 |
+
attention_mask shape: torch.Size([16, 256])
|
72 |
+
labels shape: torch.Size([16])
|
73 |
+
input_ids max value: 16003
|
74 |
+
Vocab size: 16005
|
75 |
+
Batch 500:
|
76 |
+
input_ids shape: torch.Size([16, 256])
|
77 |
+
attention_mask shape: torch.Size([16, 256])
|
78 |
+
labels shape: torch.Size([16])
|
79 |
+
input_ids max value: 16003
|
80 |
+
Vocab size: 16005
|
81 |
+
Batch 600:
|
82 |
+
input_ids shape: torch.Size([16, 256])
|
83 |
+
attention_mask shape: torch.Size([16, 256])
|
84 |
+
labels shape: torch.Size([16])
|
85 |
+
input_ids max value: 16003
|
86 |
+
Vocab size: 16005
|
87 |
+
Batch 700:
|
88 |
+
input_ids shape: torch.Size([16, 256])
|
89 |
+
attention_mask shape: torch.Size([16, 256])
|
90 |
+
labels shape: torch.Size([16])
|
91 |
+
input_ids max value: 16003
|
92 |
+
Vocab size: 16005
|
93 |
+
Batch 800:
|
94 |
+
input_ids shape: torch.Size([16, 256])
|
95 |
+
attention_mask shape: torch.Size([16, 256])
|
96 |
+
labels shape: torch.Size([16])
|
97 |
+
input_ids max value: 16003
|
98 |
+
Vocab size: 16005
|
99 |
+
Batch 900:
|
100 |
+
input_ids shape: torch.Size([16, 256])
|
101 |
+
attention_mask shape: torch.Size([16, 256])
|
102 |
+
labels shape: torch.Size([16])
|
103 |
+
input_ids max value: 16003
|
104 |
+
Vocab size: 16005
|
105 |
+
Epoch 1/5:
|
106 |
+
Train Loss: 0.8860, Train Accuracy: 0.7123
|
107 |
+
Val Loss: 0.6624, Val Accuracy: 0.7811, Val F1: 0.7137
|
108 |
+
Batch 0:
|
109 |
+
input_ids shape: torch.Size([16, 256])
|
110 |
+
attention_mask shape: torch.Size([16, 256])
|
111 |
+
labels shape: torch.Size([16])
|
112 |
+
input_ids max value: 16003
|
113 |
+
Vocab size: 16005
|
114 |
+
/gpfsdswork/projects/rech/fmr/uft12cr/finetuneAli/FIneTune_withPlots.py:202: FutureWarning: `torch.cuda.amp.autocast(args...)` is deprecated. Please use `torch.amp.autocast('cuda', args...)` instead.
|
115 |
+
with amp.autocast():
|
116 |
+
Batch 100:
|
117 |
+
input_ids shape: torch.Size([16, 256])
|
118 |
+
attention_mask shape: torch.Size([16, 256])
|
119 |
+
labels shape: torch.Size([16])
|
120 |
+
input_ids max value: 16003
|
121 |
+
Vocab size: 16005
|
122 |
+
Batch 200:
|
123 |
+
input_ids shape: torch.Size([16, 256])
|
124 |
+
attention_mask shape: torch.Size([16, 256])
|
125 |
+
labels shape: torch.Size([16])
|
126 |
+
input_ids max value: 16003
|
127 |
+
Vocab size: 16005
|
128 |
+
Batch 300:
|
129 |
+
input_ids shape: torch.Size([16, 256])
|
130 |
+
attention_mask shape: torch.Size([16, 256])
|
131 |
+
labels shape: torch.Size([16])
|
132 |
+
input_ids max value: 16003
|
133 |
+
Vocab size: 16005
|
134 |
+
Batch 400:
|
135 |
+
input_ids shape: torch.Size([16, 256])
|
136 |
+
attention_mask shape: torch.Size([16, 256])
|
137 |
+
labels shape: torch.Size([16])
|
138 |
+
input_ids max value: 16003
|
139 |
+
Vocab size: 16005
|
140 |
+
Batch 500:
|
141 |
+
input_ids shape: torch.Size([16, 256])
|
142 |
+
attention_mask shape: torch.Size([16, 256])
|
143 |
+
labels shape: torch.Size([16])
|
144 |
+
input_ids max value: 16003
|
145 |
+
Vocab size: 16005
|
146 |
+
Batch 600:
|
147 |
+
input_ids shape: torch.Size([16, 256])
|
148 |
+
attention_mask shape: torch.Size([16, 256])
|
149 |
+
labels shape: torch.Size([16])
|
150 |
+
input_ids max value: 16003
|
151 |
+
Vocab size: 16005
|
152 |
+
Batch 700:
|
153 |
+
input_ids shape: torch.Size([16, 256])
|
154 |
+
attention_mask shape: torch.Size([16, 256])
|
155 |
+
labels shape: torch.Size([16])
|
156 |
+
input_ids max value: 16003
|
157 |
+
Vocab size: 16005
|
158 |
+
Batch 800:
|
159 |
+
input_ids shape: torch.Size([16, 256])
|
160 |
+
attention_mask shape: torch.Size([16, 256])
|
161 |
+
labels shape: torch.Size([16])
|
162 |
+
input_ids max value: 16003
|
163 |
+
Vocab size: 16005
|
164 |
+
Batch 900:
|
165 |
+
input_ids shape: torch.Size([16, 256])
|
166 |
+
attention_mask shape: torch.Size([16, 256])
|
167 |
+
labels shape: torch.Size([16])
|
168 |
+
input_ids max value: 16003
|
169 |
+
Vocab size: 16005
|
170 |
+
Epoch 2/5:
|
171 |
+
Train Loss: 0.6292, Train Accuracy: 0.7928
|
172 |
+
Val Loss: 0.6377, Val Accuracy: 0.7942, Val F1: 0.7572
|
173 |
+
Batch 0:
|
174 |
+
input_ids shape: torch.Size([16, 256])
|
175 |
+
attention_mask shape: torch.Size([16, 256])
|
176 |
+
labels shape: torch.Size([16])
|
177 |
+
input_ids max value: 16003
|
178 |
+
Vocab size: 16005
|
179 |
+
/gpfsdswork/projects/rech/fmr/uft12cr/finetuneAli/FIneTune_withPlots.py:202: FutureWarning: `torch.cuda.amp.autocast(args...)` is deprecated. Please use `torch.amp.autocast('cuda', args...)` instead.
|
180 |
+
with amp.autocast():
|
181 |
+
Batch 100:
|
182 |
+
input_ids shape: torch.Size([16, 256])
|
183 |
+
attention_mask shape: torch.Size([16, 256])
|
184 |
+
labels shape: torch.Size([16])
|
185 |
+
input_ids max value: 16003
|
186 |
+
Vocab size: 16005
|
187 |
+
Batch 200:
|
188 |
+
input_ids shape: torch.Size([16, 256])
|
189 |
+
attention_mask shape: torch.Size([16, 256])
|
190 |
+
labels shape: torch.Size([16])
|
191 |
+
input_ids max value: 16003
|
192 |
+
Vocab size: 16005
|
193 |
+
Batch 300:
|
194 |
+
input_ids shape: torch.Size([16, 256])
|
195 |
+
attention_mask shape: torch.Size([16, 256])
|
196 |
+
labels shape: torch.Size([16])
|
197 |
+
input_ids max value: 16003
|
198 |
+
Vocab size: 16005
|
199 |
+
Batch 400:
|
200 |
+
input_ids shape: torch.Size([16, 256])
|
201 |
+
attention_mask shape: torch.Size([16, 256])
|
202 |
+
labels shape: torch.Size([16])
|
203 |
+
input_ids max value: 16003
|
204 |
+
Vocab size: 16005
|
205 |
+
Batch 500:
|
206 |
+
input_ids shape: torch.Size([16, 256])
|
207 |
+
attention_mask shape: torch.Size([16, 256])
|
208 |
+
labels shape: torch.Size([16])
|
209 |
+
input_ids max value: 16003
|
210 |
+
Vocab size: 16005
|
211 |
+
Batch 600:
|
212 |
+
input_ids shape: torch.Size([16, 256])
|
213 |
+
attention_mask shape: torch.Size([16, 256])
|
214 |
+
labels shape: torch.Size([16])
|
215 |
+
input_ids max value: 16003
|
216 |
+
Vocab size: 16005
|
217 |
+
Batch 700:
|
218 |
+
input_ids shape: torch.Size([16, 256])
|
219 |
+
attention_mask shape: torch.Size([16, 256])
|
220 |
+
labels shape: torch.Size([16])
|
221 |
+
input_ids max value: 16003
|
222 |
+
Vocab size: 16005
|
223 |
+
Batch 800:
|
224 |
+
input_ids shape: torch.Size([16, 256])
|
225 |
+
attention_mask shape: torch.Size([16, 256])
|
226 |
+
labels shape: torch.Size([16])
|
227 |
+
input_ids max value: 16003
|
228 |
+
Vocab size: 16005
|
229 |
+
Batch 900:
|
230 |
+
input_ids shape: torch.Size([16, 256])
|
231 |
+
attention_mask shape: torch.Size([16, 256])
|
232 |
+
labels shape: torch.Size([16])
|
233 |
+
input_ids max value: 16003
|
234 |
+
Vocab size: 16005
|
235 |
+
Epoch 3/5:
|
236 |
+
Train Loss: 0.5420, Train Accuracy: 0.8283
|
237 |
+
Val Loss: 0.6224, Val Accuracy: 0.7983, Val F1: 0.7744
|
238 |
+
Batch 0:
|
239 |
+
input_ids shape: torch.Size([16, 256])
|
240 |
+
attention_mask shape: torch.Size([16, 256])
|
241 |
+
labels shape: torch.Size([16])
|
242 |
+
input_ids max value: 16003
|
243 |
+
Vocab size: 16005
|
244 |
+
/gpfsdswork/projects/rech/fmr/uft12cr/finetuneAli/FIneTune_withPlots.py:202: FutureWarning: `torch.cuda.amp.autocast(args...)` is deprecated. Please use `torch.amp.autocast('cuda', args...)` instead.
|
245 |
+
with amp.autocast():
|
246 |
+
Batch 100:
|
247 |
+
input_ids shape: torch.Size([16, 256])
|
248 |
+
attention_mask shape: torch.Size([16, 256])
|
249 |
+
labels shape: torch.Size([16])
|
250 |
+
input_ids max value: 16003
|
251 |
+
Vocab size: 16005
|
252 |
+
Batch 200:
|
253 |
+
input_ids shape: torch.Size([16, 256])
|
254 |
+
attention_mask shape: torch.Size([16, 256])
|
255 |
+
labels shape: torch.Size([16])
|
256 |
+
input_ids max value: 16003
|
257 |
+
Vocab size: 16005
|
258 |
+
Batch 300:
|
259 |
+
input_ids shape: torch.Size([16, 256])
|
260 |
+
attention_mask shape: torch.Size([16, 256])
|
261 |
+
labels shape: torch.Size([16])
|
262 |
+
input_ids max value: 16003
|
263 |
+
Vocab size: 16005
|
264 |
+
Batch 400:
|
265 |
+
input_ids shape: torch.Size([16, 256])
|
266 |
+
attention_mask shape: torch.Size([16, 256])
|
267 |
+
labels shape: torch.Size([16])
|
268 |
+
input_ids max value: 16003
|
269 |
+
Vocab size: 16005
|
270 |
+
Batch 500:
|
271 |
+
input_ids shape: torch.Size([16, 256])
|
272 |
+
attention_mask shape: torch.Size([16, 256])
|
273 |
+
labels shape: torch.Size([16])
|
274 |
+
input_ids max value: 16003
|
275 |
+
Vocab size: 16005
|
276 |
+
Batch 600:
|
277 |
+
input_ids shape: torch.Size([16, 256])
|
278 |
+
attention_mask shape: torch.Size([16, 256])
|
279 |
+
labels shape: torch.Size([16])
|
280 |
+
input_ids max value: 16003
|
281 |
+
Vocab size: 16005
|
282 |
+
Batch 700:
|
283 |
+
input_ids shape: torch.Size([16, 256])
|
284 |
+
attention_mask shape: torch.Size([16, 256])
|
285 |
+
labels shape: torch.Size([16])
|
286 |
+
input_ids max value: 16003
|
287 |
+
Vocab size: 16005
|
288 |
+
Batch 800:
|
289 |
+
input_ids shape: torch.Size([16, 256])
|
290 |
+
attention_mask shape: torch.Size([16, 256])
|
291 |
+
labels shape: torch.Size([16])
|
292 |
+
input_ids max value: 16003
|
293 |
+
Vocab size: 16005
|
294 |
+
Batch 900:
|
295 |
+
input_ids shape: torch.Size([16, 256])
|
296 |
+
attention_mask shape: torch.Size([16, 256])
|
297 |
+
labels shape: torch.Size([16])
|
298 |
+
input_ids max value: 16003
|
299 |
+
Vocab size: 16005
|
300 |
+
Epoch 4/5:
|
301 |
+
Train Loss: 0.4496, Train Accuracy: 0.8583
|
302 |
+
Val Loss: 0.6285, Val Accuracy: 0.8109, Val F1: 0.7863
|
303 |
+
Batch 0:
|
304 |
+
input_ids shape: torch.Size([16, 256])
|
305 |
+
attention_mask shape: torch.Size([16, 256])
|
306 |
+
labels shape: torch.Size([16])
|
307 |
+
input_ids max value: 16003
|
308 |
+
Vocab size: 16005
|
309 |
+
/gpfsdswork/projects/rech/fmr/uft12cr/finetuneAli/FIneTune_withPlots.py:202: FutureWarning: `torch.cuda.amp.autocast(args...)` is deprecated. Please use `torch.amp.autocast('cuda', args...)` instead.
|
310 |
+
with amp.autocast():
|
311 |
+
Batch 100:
|
312 |
+
input_ids shape: torch.Size([16, 256])
|
313 |
+
attention_mask shape: torch.Size([16, 256])
|
314 |
+
labels shape: torch.Size([16])
|
315 |
+
input_ids max value: 16003
|
316 |
+
Vocab size: 16005
|
317 |
+
Batch 200:
|
318 |
+
input_ids shape: torch.Size([16, 256])
|
319 |
+
attention_mask shape: torch.Size([16, 256])
|
320 |
+
labels shape: torch.Size([16])
|
321 |
+
input_ids max value: 16003
|
322 |
+
Vocab size: 16005
|
323 |
+
Batch 300:
|
324 |
+
input_ids shape: torch.Size([16, 256])
|
325 |
+
attention_mask shape: torch.Size([16, 256])
|
326 |
+
labels shape: torch.Size([16])
|
327 |
+
input_ids max value: 16003
|
328 |
+
Vocab size: 16005
|
329 |
+
Batch 400:
|
330 |
+
input_ids shape: torch.Size([16, 256])
|
331 |
+
attention_mask shape: torch.Size([16, 256])
|
332 |
+
labels shape: torch.Size([16])
|
333 |
+
input_ids max value: 16003
|
334 |
+
Vocab size: 16005
|
335 |
+
Batch 500:
|
336 |
+
input_ids shape: torch.Size([16, 256])
|
337 |
+
attention_mask shape: torch.Size([16, 256])
|
338 |
+
labels shape: torch.Size([16])
|
339 |
+
input_ids max value: 16003
|
340 |
+
Vocab size: 16005
|
341 |
+
Batch 600:
|
342 |
+
input_ids shape: torch.Size([16, 256])
|
343 |
+
attention_mask shape: torch.Size([16, 256])
|
344 |
+
labels shape: torch.Size([16])
|
345 |
+
input_ids max value: 16003
|
346 |
+
Vocab size: 16005
|
347 |
+
Batch 700:
|
348 |
+
input_ids shape: torch.Size([16, 256])
|
349 |
+
attention_mask shape: torch.Size([16, 256])
|
350 |
+
labels shape: torch.Size([16])
|
351 |
+
input_ids max value: 16003
|
352 |
+
Vocab size: 16005
|
353 |
+
Batch 800:
|
354 |
+
input_ids shape: torch.Size([16, 256])
|
355 |
+
attention_mask shape: torch.Size([16, 256])
|
356 |
+
labels shape: torch.Size([16])
|
357 |
+
input_ids max value: 16003
|
358 |
+
Vocab size: 16005
|
359 |
+
Batch 900:
|
360 |
+
input_ids shape: torch.Size([16, 256])
|
361 |
+
attention_mask shape: torch.Size([16, 256])
|
362 |
+
labels shape: torch.Size([16])
|
363 |
+
input_ids max value: 16003
|
364 |
+
Vocab size: 16005
|
365 |
+
Epoch 5/5:
|
366 |
+
Train Loss: 0.3687, Train Accuracy: 0.8816
|
367 |
+
Val Loss: 0.6460, Val Accuracy: 0.8111, Val F1: 0.7860
|
368 |
+
|
369 |
+
Test Results for All Cluster tokenizer:
|
370 |
+
Accuracy: 0.8111
|
371 |
+
F1 Score: 0.7860
|
372 |
+
AUC-ROC: 0.8681
|
373 |
+
|
374 |
+
Training with Final tokenizer:
|
375 |
+
Vocabulary size: 18524
|
376 |
+
Could not load pretrained weights from /gpfswork/rech/fmr/uft12cr/finetuneAli/Bert_Model. Starting with random weights. Error: Error while deserializing header: HeaderTooLarge
|
377 |
+
Initialized model with vocabulary size: 18524
|
378 |
+
/gpfsdswork/projects/rech/fmr/uft12cr/finetuneAli/FIneTune_withPlots.py:173: FutureWarning: `torch.cuda.amp.GradScaler(args...)` is deprecated. Please use `torch.amp.GradScaler('cuda', args...)` instead.
|
379 |
+
scaler = amp.GradScaler()
|
380 |
+
Batch 0:
|
381 |
+
input_ids shape: torch.Size([16, 256])
|
382 |
+
attention_mask shape: torch.Size([16, 256])
|
383 |
+
labels shape: torch.Size([16])
|
384 |
+
input_ids max value: 18523
|
385 |
+
Vocab size: 18524
|
386 |
+
/gpfsdswork/projects/rech/fmr/uft12cr/finetuneAli/FIneTune_withPlots.py:202: FutureWarning: `torch.cuda.amp.autocast(args...)` is deprecated. Please use `torch.amp.autocast('cuda', args...)` instead.
|
387 |
+
with amp.autocast():
|
388 |
+
Batch 100:
|
389 |
+
input_ids shape: torch.Size([16, 256])
|
390 |
+
attention_mask shape: torch.Size([16, 256])
|
391 |
+
labels shape: torch.Size([16])
|
392 |
+
input_ids max value: 18523
|
393 |
+
Vocab size: 18524
|
394 |
+
Batch 200:
|
395 |
+
input_ids shape: torch.Size([16, 256])
|
396 |
+
attention_mask shape: torch.Size([16, 256])
|
397 |
+
labels shape: torch.Size([16])
|
398 |
+
input_ids max value: 18523
|
399 |
+
Vocab size: 18524
|
400 |
+
Batch 300:
|
401 |
+
input_ids shape: torch.Size([16, 256])
|
402 |
+
attention_mask shape: torch.Size([16, 256])
|
403 |
+
labels shape: torch.Size([16])
|
404 |
+
input_ids max value: 18523
|
405 |
+
Vocab size: 18524
|
406 |
+
Batch 400:
|
407 |
+
input_ids shape: torch.Size([16, 256])
|
408 |
+
attention_mask shape: torch.Size([16, 256])
|
409 |
+
labels shape: torch.Size([16])
|
410 |
+
input_ids max value: 18523
|
411 |
+
Vocab size: 18524
|
412 |
+
Batch 500:
|
413 |
+
input_ids shape: torch.Size([16, 256])
|
414 |
+
attention_mask shape: torch.Size([16, 256])
|
415 |
+
labels shape: torch.Size([16])
|
416 |
+
input_ids max value: 18523
|
417 |
+
Vocab size: 18524
|
418 |
+
Batch 600:
|
419 |
+
input_ids shape: torch.Size([16, 256])
|
420 |
+
attention_mask shape: torch.Size([16, 256])
|
421 |
+
labels shape: torch.Size([16])
|
422 |
+
input_ids max value: 18523
|
423 |
+
Vocab size: 18524
|
424 |
+
Batch 700:
|
425 |
+
input_ids shape: torch.Size([16, 256])
|
426 |
+
attention_mask shape: torch.Size([16, 256])
|
427 |
+
labels shape: torch.Size([16])
|
428 |
+
input_ids max value: 18523
|
429 |
+
Vocab size: 18524
|
430 |
+
Batch 800:
|
431 |
+
input_ids shape: torch.Size([16, 256])
|
432 |
+
attention_mask shape: torch.Size([16, 256])
|
433 |
+
labels shape: torch.Size([16])
|
434 |
+
input_ids max value: 18523
|
435 |
+
Vocab size: 18524
|
436 |
+
Batch 900:
|
437 |
+
input_ids shape: torch.Size([16, 256])
|
438 |
+
attention_mask shape: torch.Size([16, 256])
|
439 |
+
labels shape: torch.Size([16])
|
440 |
+
input_ids max value: 18523
|
441 |
+
Vocab size: 18524
|
442 |
+
Epoch 1/5:
|
443 |
+
Train Loss: 0.9291, Train Accuracy: 0.6943
|
444 |
+
Val Loss: 0.7526, Val Accuracy: 0.7593, Val F1: 0.6923
|
445 |
+
Batch 0:
|
446 |
+
input_ids shape: torch.Size([16, 256])
|
447 |
+
attention_mask shape: torch.Size([16, 256])
|
448 |
+
labels shape: torch.Size([16])
|
449 |
+
input_ids max value: 18523
|
450 |
+
Vocab size: 18524
|
451 |
+
/gpfsdswork/projects/rech/fmr/uft12cr/finetuneAli/FIneTune_withPlots.py:202: FutureWarning: `torch.cuda.amp.autocast(args...)` is deprecated. Please use `torch.amp.autocast('cuda', args...)` instead.
|
452 |
+
with amp.autocast():
|
453 |
+
Batch 100:
|
454 |
+
input_ids shape: torch.Size([16, 256])
|
455 |
+
attention_mask shape: torch.Size([16, 256])
|
456 |
+
labels shape: torch.Size([16])
|
457 |
+
input_ids max value: 18523
|
458 |
+
Vocab size: 18524
|
459 |
+
Batch 200:
|
460 |
+
input_ids shape: torch.Size([16, 256])
|
461 |
+
attention_mask shape: torch.Size([16, 256])
|
462 |
+
labels shape: torch.Size([16])
|
463 |
+
input_ids max value: 18523
|
464 |
+
Vocab size: 18524
|
465 |
+
Batch 300:
|
466 |
+
input_ids shape: torch.Size([16, 256])
|
467 |
+
attention_mask shape: torch.Size([16, 256])
|
468 |
+
labels shape: torch.Size([16])
|
469 |
+
input_ids max value: 18523
|
470 |
+
Vocab size: 18524
|
471 |
+
Batch 400:
|
472 |
+
input_ids shape: torch.Size([16, 256])
|
473 |
+
attention_mask shape: torch.Size([16, 256])
|
474 |
+
labels shape: torch.Size([16])
|
475 |
+
input_ids max value: 18523
|
476 |
+
Vocab size: 18524
|
477 |
+
Batch 500:
|
478 |
+
input_ids shape: torch.Size([16, 256])
|
479 |
+
attention_mask shape: torch.Size([16, 256])
|
480 |
+
labels shape: torch.Size([16])
|
481 |
+
input_ids max value: 18523
|
482 |
+
Vocab size: 18524
|
483 |
+
Batch 600:
|
484 |
+
input_ids shape: torch.Size([16, 256])
|
485 |
+
attention_mask shape: torch.Size([16, 256])
|
486 |
+
labels shape: torch.Size([16])
|
487 |
+
input_ids max value: 18523
|
488 |
+
Vocab size: 18524
|
489 |
+
Batch 700:
|
490 |
+
input_ids shape: torch.Size([16, 256])
|
491 |
+
attention_mask shape: torch.Size([16, 256])
|
492 |
+
labels shape: torch.Size([16])
|
493 |
+
input_ids max value: 18523
|
494 |
+
Vocab size: 18524
|
495 |
+
Batch 800:
|
496 |
+
input_ids shape: torch.Size([16, 256])
|
497 |
+
attention_mask shape: torch.Size([16, 256])
|
498 |
+
labels shape: torch.Size([16])
|
499 |
+
input_ids max value: 18523
|
500 |
+
Vocab size: 18524
|
501 |
+
Batch 900:
|
502 |
+
input_ids shape: torch.Size([16, 256])
|
503 |
+
attention_mask shape: torch.Size([16, 256])
|
504 |
+
labels shape: torch.Size([16])
|
505 |
+
input_ids max value: 18523
|
506 |
+
Vocab size: 18524
|
507 |
+
Epoch 2/5:
|
508 |
+
Train Loss: 0.6952, Train Accuracy: 0.7752
|
509 |
+
Val Loss: 0.6884, Val Accuracy: 0.7705, Val F1: 0.7291
|
510 |
+
Batch 0:
|
511 |
+
input_ids shape: torch.Size([16, 256])
|
512 |
+
attention_mask shape: torch.Size([16, 256])
|
513 |
+
labels shape: torch.Size([16])
|
514 |
+
input_ids max value: 18523
|
515 |
+
Vocab size: 18524
|
516 |
+
/gpfsdswork/projects/rech/fmr/uft12cr/finetuneAli/FIneTune_withPlots.py:202: FutureWarning: `torch.cuda.amp.autocast(args...)` is deprecated. Please use `torch.amp.autocast('cuda', args...)` instead.
|
517 |
+
with amp.autocast():
|
518 |
+
Batch 100:
|
519 |
+
input_ids shape: torch.Size([16, 256])
|
520 |
+
attention_mask shape: torch.Size([16, 256])
|
521 |
+
labels shape: torch.Size([16])
|
522 |
+
input_ids max value: 18523
|
523 |
+
Vocab size: 18524
|
524 |
+
Batch 200:
|
525 |
+
input_ids shape: torch.Size([16, 256])
|
526 |
+
attention_mask shape: torch.Size([16, 256])
|
527 |
+
labels shape: torch.Size([16])
|
528 |
+
input_ids max value: 18523
|
529 |
+
Vocab size: 18524
|
530 |
+
Batch 300:
|
531 |
+
input_ids shape: torch.Size([16, 256])
|
532 |
+
attention_mask shape: torch.Size([16, 256])
|
533 |
+
labels shape: torch.Size([16])
|
534 |
+
input_ids max value: 18523
|
535 |
+
Vocab size: 18524
|
536 |
+
Batch 400:
|
537 |
+
input_ids shape: torch.Size([16, 256])
|
538 |
+
attention_mask shape: torch.Size([16, 256])
|
539 |
+
labels shape: torch.Size([16])
|
540 |
+
input_ids max value: 18523
|
541 |
+
Vocab size: 18524
|
542 |
+
Batch 500:
|
543 |
+
input_ids shape: torch.Size([16, 256])
|
544 |
+
attention_mask shape: torch.Size([16, 256])
|
545 |
+
labels shape: torch.Size([16])
|
546 |
+
input_ids max value: 18523
|
547 |
+
Vocab size: 18524
|
548 |
+
Batch 600:
|
549 |
+
input_ids shape: torch.Size([16, 256])
|
550 |
+
attention_mask shape: torch.Size([16, 256])
|
551 |
+
labels shape: torch.Size([16])
|
552 |
+
input_ids max value: 18523
|
553 |
+
Vocab size: 18524
|
554 |
+
Batch 700:
|
555 |
+
input_ids shape: torch.Size([16, 256])
|
556 |
+
attention_mask shape: torch.Size([16, 256])
|
557 |
+
labels shape: torch.Size([16])
|
558 |
+
input_ids max value: 18523
|
559 |
+
Vocab size: 18524
|
560 |
+
Batch 800:
|
561 |
+
input_ids shape: torch.Size([16, 256])
|
562 |
+
attention_mask shape: torch.Size([16, 256])
|
563 |
+
labels shape: torch.Size([16])
|
564 |
+
input_ids max value: 18523
|
565 |
+
Vocab size: 18524
|
566 |
+
Batch 900:
|
567 |
+
input_ids shape: torch.Size([16, 256])
|
568 |
+
attention_mask shape: torch.Size([16, 256])
|
569 |
+
labels shape: torch.Size([16])
|
570 |
+
input_ids max value: 18523
|
571 |
+
Vocab size: 18524
|
572 |
+
Epoch 3/5:
|
573 |
+
Train Loss: 0.6147, Train Accuracy: 0.7993
|
574 |
+
Val Loss: 0.6780, Val Accuracy: 0.7874, Val F1: 0.7596
|
575 |
+
Batch 0:
|
576 |
+
input_ids shape: torch.Size([16, 256])
|
577 |
+
attention_mask shape: torch.Size([16, 256])
|
578 |
+
labels shape: torch.Size([16])
|
579 |
+
input_ids max value: 18523
|
580 |
+
Vocab size: 18524
|
581 |
+
/gpfsdswork/projects/rech/fmr/uft12cr/finetuneAli/FIneTune_withPlots.py:202: FutureWarning: `torch.cuda.amp.autocast(args...)` is deprecated. Please use `torch.amp.autocast('cuda', args...)` instead.
|
582 |
+
with amp.autocast():
|
583 |
+
Batch 100:
|
584 |
+
input_ids shape: torch.Size([16, 256])
|
585 |
+
attention_mask shape: torch.Size([16, 256])
|
586 |
+
labels shape: torch.Size([16])
|
587 |
+
input_ids max value: 18523
|
588 |
+
Vocab size: 18524
|
589 |
+
Batch 200:
|
590 |
+
input_ids shape: torch.Size([16, 256])
|
591 |
+
attention_mask shape: torch.Size([16, 256])
|
592 |
+
labels shape: torch.Size([16])
|
593 |
+
input_ids max value: 18523
|
594 |
+
Vocab size: 18524
|
595 |
+
Batch 300:
|
596 |
+
input_ids shape: torch.Size([16, 256])
|
597 |
+
attention_mask shape: torch.Size([16, 256])
|
598 |
+
labels shape: torch.Size([16])
|
599 |
+
input_ids max value: 18523
|
600 |
+
Vocab size: 18524
|
601 |
+
Batch 400:
|
602 |
+
input_ids shape: torch.Size([16, 256])
|
603 |
+
attention_mask shape: torch.Size([16, 256])
|
604 |
+
labels shape: torch.Size([16])
|
605 |
+
input_ids max value: 18523
|
606 |
+
Vocab size: 18524
|
607 |
+
Batch 500:
|
608 |
+
input_ids shape: torch.Size([16, 256])
|
609 |
+
attention_mask shape: torch.Size([16, 256])
|
610 |
+
labels shape: torch.Size([16])
|
611 |
+
input_ids max value: 18523
|
612 |
+
Vocab size: 18524
|
613 |
+
Batch 600:
|
614 |
+
input_ids shape: torch.Size([16, 256])
|
615 |
+
attention_mask shape: torch.Size([16, 256])
|
616 |
+
labels shape: torch.Size([16])
|
617 |
+
input_ids max value: 18523
|
618 |
+
Vocab size: 18524
|
619 |
+
Batch 700:
|
620 |
+
input_ids shape: torch.Size([16, 256])
|
621 |
+
attention_mask shape: torch.Size([16, 256])
|
622 |
+
labels shape: torch.Size([16])
|
623 |
+
input_ids max value: 18523
|
624 |
+
Vocab size: 18524
|
625 |
+
Batch 800:
|
626 |
+
input_ids shape: torch.Size([16, 256])
|
627 |
+
attention_mask shape: torch.Size([16, 256])
|
628 |
+
labels shape: torch.Size([16])
|
629 |
+
input_ids max value: 18523
|
630 |
+
Vocab size: 18524
|
631 |
+
Batch 900:
|
632 |
+
input_ids shape: torch.Size([16, 256])
|
633 |
+
attention_mask shape: torch.Size([16, 256])
|
634 |
+
labels shape: torch.Size([16])
|
635 |
+
input_ids max value: 18523
|
636 |
+
Vocab size: 18524
|
637 |
+
Epoch 4/5:
|
638 |
+
Train Loss: 0.5494, Train Accuracy: 0.8242
|
639 |
+
Val Loss: 0.6878, Val Accuracy: 0.7920, Val F1: 0.7655
|
640 |
+
Batch 0:
|
641 |
+
input_ids shape: torch.Size([16, 256])
|
642 |
+
attention_mask shape: torch.Size([16, 256])
|
643 |
+
labels shape: torch.Size([16])
|
644 |
+
input_ids max value: 18523
|
645 |
+
Vocab size: 18524
|
646 |
+
/gpfsdswork/projects/rech/fmr/uft12cr/finetuneAli/FIneTune_withPlots.py:202: FutureWarning: `torch.cuda.amp.autocast(args...)` is deprecated. Please use `torch.amp.autocast('cuda', args...)` instead.
|
647 |
+
with amp.autocast():
|
648 |
+
Batch 100:
|
649 |
+
input_ids shape: torch.Size([16, 256])
|
650 |
+
attention_mask shape: torch.Size([16, 256])
|
651 |
+
labels shape: torch.Size([16])
|
652 |
+
input_ids max value: 18523
|
653 |
+
Vocab size: 18524
|
654 |
+
Batch 200:
|
655 |
+
input_ids shape: torch.Size([16, 256])
|
656 |
+
attention_mask shape: torch.Size([16, 256])
|
657 |
+
labels shape: torch.Size([16])
|
658 |
+
input_ids max value: 18523
|
659 |
+
Vocab size: 18524
|
660 |
+
Batch 300:
|
661 |
+
input_ids shape: torch.Size([16, 256])
|
662 |
+
attention_mask shape: torch.Size([16, 256])
|
663 |
+
labels shape: torch.Size([16])
|
664 |
+
input_ids max value: 18523
|
665 |
+
Vocab size: 18524
|
666 |
+
Batch 400:
|
667 |
+
input_ids shape: torch.Size([16, 256])
|
668 |
+
attention_mask shape: torch.Size([16, 256])
|
669 |
+
labels shape: torch.Size([16])
|
670 |
+
input_ids max value: 18523
|
671 |
+
Vocab size: 18524
|
672 |
+
Batch 500:
|
673 |
+
input_ids shape: torch.Size([16, 256])
|
674 |
+
attention_mask shape: torch.Size([16, 256])
|
675 |
+
labels shape: torch.Size([16])
|
676 |
+
input_ids max value: 18523
|
677 |
+
Vocab size: 18524
|
678 |
+
Batch 600:
|
679 |
+
input_ids shape: torch.Size([16, 256])
|
680 |
+
attention_mask shape: torch.Size([16, 256])
|
681 |
+
labels shape: torch.Size([16])
|
682 |
+
input_ids max value: 18523
|
683 |
+
Vocab size: 18524
|
684 |
+
Batch 700:
|
685 |
+
input_ids shape: torch.Size([16, 256])
|
686 |
+
attention_mask shape: torch.Size([16, 256])
|
687 |
+
labels shape: torch.Size([16])
|
688 |
+
input_ids max value: 18523
|
689 |
+
Vocab size: 18524
|
690 |
+
Batch 800:
|
691 |
+
input_ids shape: torch.Size([16, 256])
|
692 |
+
attention_mask shape: torch.Size([16, 256])
|
693 |
+
labels shape: torch.Size([16])
|
694 |
+
input_ids max value: 18523
|
695 |
+
Vocab size: 18524
|
696 |
+
Batch 900:
|
697 |
+
input_ids shape: torch.Size([16, 256])
|
698 |
+
attention_mask shape: torch.Size([16, 256])
|
699 |
+
labels shape: torch.Size([16])
|
700 |
+
input_ids max value: 18523
|
701 |
+
Vocab size: 18524
|
702 |
+
Epoch 5/5:
|
703 |
+
Train Loss: 0.4703, Train Accuracy: 0.8558
|
704 |
+
Val Loss: 0.7217, Val Accuracy: 0.8046, Val F1: 0.7712
|
705 |
+
|
706 |
+
Test Results for Final tokenizer:
|
707 |
+
Accuracy: 0.8043
|
708 |
+
F1 Score: 0.7709
|
709 |
+
AUC-ROC: 0.8254
|
710 |
+
|
711 |
+
Training with General tokenizer:
|
712 |
+
Vocabulary size: 30522
|
713 |
+
Could not load pretrained weights from /gpfswork/rech/fmr/uft12cr/finetuneAli/Bert_Model. Starting with random weights. Error: Error while deserializing header: HeaderTooLarge
|
714 |
+
Initialized model with vocabulary size: 30522
|
715 |
+
/gpfsdswork/projects/rech/fmr/uft12cr/finetuneAli/FIneTune_withPlots.py:173: FutureWarning: `torch.cuda.amp.GradScaler(args...)` is deprecated. Please use `torch.amp.GradScaler('cuda', args...)` instead.
|
716 |
+
scaler = amp.GradScaler()
|
717 |
+
Batch 0:
|
718 |
+
input_ids shape: torch.Size([16, 256])
|
719 |
+
attention_mask shape: torch.Size([16, 256])
|
720 |
+
labels shape: torch.Size([16])
|
721 |
+
input_ids max value: 29464
|
722 |
+
Vocab size: 30522
|
723 |
+
/gpfsdswork/projects/rech/fmr/uft12cr/finetuneAli/FIneTune_withPlots.py:202: FutureWarning: `torch.cuda.amp.autocast(args...)` is deprecated. Please use `torch.amp.autocast('cuda', args...)` instead.
|
724 |
+
with amp.autocast():
|
725 |
+
Batch 100:
|
726 |
+
input_ids shape: torch.Size([16, 256])
|
727 |
+
attention_mask shape: torch.Size([16, 256])
|
728 |
+
labels shape: torch.Size([16])
|
729 |
+
input_ids max value: 29521
|
730 |
+
Vocab size: 30522
|
731 |
+
Batch 200:
|
732 |
+
input_ids shape: torch.Size([16, 256])
|
733 |
+
attention_mask shape: torch.Size([16, 256])
|
734 |
+
labels shape: torch.Size([16])
|
735 |
+
input_ids max value: 29446
|
736 |
+
Vocab size: 30522
|
737 |
+
Batch 300:
|
738 |
+
input_ids shape: torch.Size([16, 256])
|
739 |
+
attention_mask shape: torch.Size([16, 256])
|
740 |
+
labels shape: torch.Size([16])
|
741 |
+
input_ids max value: 29320
|
742 |
+
Vocab size: 30522
|
743 |
+
Batch 400:
|
744 |
+
input_ids shape: torch.Size([16, 256])
|
745 |
+
attention_mask shape: torch.Size([16, 256])
|
746 |
+
labels shape: torch.Size([16])
|
747 |
+
input_ids max value: 29336
|
748 |
+
Vocab size: 30522
|
749 |
+
Batch 500:
|
750 |
+
input_ids shape: torch.Size([16, 256])
|
751 |
+
attention_mask shape: torch.Size([16, 256])
|
752 |
+
labels shape: torch.Size([16])
|
753 |
+
input_ids max value: 29280
|
754 |
+
Vocab size: 30522
|
755 |
+
Batch 600:
|
756 |
+
input_ids shape: torch.Size([16, 256])
|
757 |
+
attention_mask shape: torch.Size([16, 256])
|
758 |
+
labels shape: torch.Size([16])
|
759 |
+
input_ids max value: 29130
|
760 |
+
Vocab size: 30522
|
761 |
+
Batch 700:
|
762 |
+
input_ids shape: torch.Size([16, 256])
|
763 |
+
attention_mask shape: torch.Size([16, 256])
|
764 |
+
labels shape: torch.Size([16])
|
765 |
+
input_ids max value: 29536
|
766 |
+
Vocab size: 30522
|
767 |
+
Batch 800:
|
768 |
+
input_ids shape: torch.Size([16, 256])
|
769 |
+
attention_mask shape: torch.Size([16, 256])
|
770 |
+
labels shape: torch.Size([16])
|
771 |
+
input_ids max value: 29445
|
772 |
+
Vocab size: 30522
|
773 |
+
Batch 900:
|
774 |
+
input_ids shape: torch.Size([16, 256])
|
775 |
+
attention_mask shape: torch.Size([16, 256])
|
776 |
+
labels shape: torch.Size([16])
|
777 |
+
input_ids max value: 29469
|
778 |
+
Vocab size: 30522
|
779 |
+
Epoch 1/5:
|
780 |
+
Train Loss: 0.9230, Train Accuracy: 0.6966
|
781 |
+
Val Loss: 0.7881, Val Accuracy: 0.7465, Val F1: 0.6718
|
782 |
+
Batch 0:
|
783 |
+
input_ids shape: torch.Size([16, 256])
|
784 |
+
attention_mask shape: torch.Size([16, 256])
|
785 |
+
labels shape: torch.Size([16])
|
786 |
+
input_ids max value: 29462
|
787 |
+
Vocab size: 30522
|
788 |
+
/gpfsdswork/projects/rech/fmr/uft12cr/finetuneAli/FIneTune_withPlots.py:202: FutureWarning: `torch.cuda.amp.autocast(args...)` is deprecated. Please use `torch.amp.autocast('cuda', args...)` instead.
|
789 |
+
with amp.autocast():
|
790 |
+
Batch 100:
|
791 |
+
input_ids shape: torch.Size([16, 256])
|
792 |
+
attention_mask shape: torch.Size([16, 256])
|
793 |
+
labels shape: torch.Size([16])
|
794 |
+
input_ids max value: 29464
|
795 |
+
Vocab size: 30522
|
796 |
+
Batch 200:
|
797 |
+
input_ids shape: torch.Size([16, 256])
|
798 |
+
attention_mask shape: torch.Size([16, 256])
|
799 |
+
labels shape: torch.Size([16])
|
800 |
+
input_ids max value: 29477
|
801 |
+
Vocab size: 30522
|
802 |
+
Batch 300:
|
803 |
+
input_ids shape: torch.Size([16, 256])
|
804 |
+
attention_mask shape: torch.Size([16, 256])
|
805 |
+
labels shape: torch.Size([16])
|
806 |
+
input_ids max value: 29464
|
807 |
+
Vocab size: 30522
|
808 |
+
Batch 400:
|
809 |
+
input_ids shape: torch.Size([16, 256])
|
810 |
+
attention_mask shape: torch.Size([16, 256])
|
811 |
+
labels shape: torch.Size([16])
|
812 |
+
input_ids max value: 29402
|
813 |
+
Vocab size: 30522
|
814 |
+
Batch 500:
|
815 |
+
input_ids shape: torch.Size([16, 256])
|
816 |
+
attention_mask shape: torch.Size([16, 256])
|
817 |
+
labels shape: torch.Size([16])
|
818 |
+
input_ids max value: 28993
|
819 |
+
Vocab size: 30522
|
820 |
+
Batch 600:
|
821 |
+
input_ids shape: torch.Size([16, 256])
|
822 |
+
attention_mask shape: torch.Size([16, 256])
|
823 |
+
labels shape: torch.Size([16])
|
824 |
+
input_ids max value: 29238
|
825 |
+
Vocab size: 30522
|
826 |
+
Batch 700:
|
827 |
+
input_ids shape: torch.Size([16, 256])
|
828 |
+
attention_mask shape: torch.Size([16, 256])
|
829 |
+
labels shape: torch.Size([16])
|
830 |
+
input_ids max value: 29558
|
831 |
+
Vocab size: 30522
|
832 |
+
Batch 800:
|
833 |
+
input_ids shape: torch.Size([16, 256])
|
834 |
+
attention_mask shape: torch.Size([16, 256])
|
835 |
+
labels shape: torch.Size([16])
|
836 |
+
input_ids max value: 29433
|
837 |
+
Vocab size: 30522
|
838 |
+
Batch 900:
|
839 |
+
input_ids shape: torch.Size([16, 256])
|
840 |
+
attention_mask shape: torch.Size([16, 256])
|
841 |
+
labels shape: torch.Size([16])
|
842 |
+
input_ids max value: 29339
|
843 |
+
Vocab size: 30522
|
844 |
+
Epoch 2/5:
|
845 |
+
Train Loss: 0.6269, Train Accuracy: 0.7939
|
846 |
+
Val Loss: 0.6425, Val Accuracy: 0.7959, Val F1: 0.7705
|
847 |
+
Batch 0:
|
848 |
+
input_ids shape: torch.Size([16, 256])
|
849 |
+
attention_mask shape: torch.Size([16, 256])
|
850 |
+
labels shape: torch.Size([16])
|
851 |
+
input_ids max value: 29160
|
852 |
+
Vocab size: 30522
|
853 |
+
/gpfsdswork/projects/rech/fmr/uft12cr/finetuneAli/FIneTune_withPlots.py:202: FutureWarning: `torch.cuda.amp.autocast(args...)` is deprecated. Please use `torch.amp.autocast('cuda', args...)` instead.
|
854 |
+
with amp.autocast():
|
855 |
+
Batch 100:
|
856 |
+
input_ids shape: torch.Size([16, 256])
|
857 |
+
attention_mask shape: torch.Size([16, 256])
|
858 |
+
labels shape: torch.Size([16])
|
859 |
+
input_ids max value: 29464
|
860 |
+
Vocab size: 30522
|
861 |
+
Batch 200:
|
862 |
+
input_ids shape: torch.Size([16, 256])
|
863 |
+
attention_mask shape: torch.Size([16, 256])
|
864 |
+
labels shape: torch.Size([16])
|
865 |
+
input_ids max value: 29535
|
866 |
+
Vocab size: 30522
|
867 |
+
Batch 300:
|
868 |
+
input_ids shape: torch.Size([16, 256])
|
869 |
+
attention_mask shape: torch.Size([16, 256])
|
870 |
+
labels shape: torch.Size([16])
|
871 |
+
input_ids max value: 29160
|
872 |
+
Vocab size: 30522
|
873 |
+
Batch 400:
|
874 |
+
input_ids shape: torch.Size([16, 256])
|
875 |
+
attention_mask shape: torch.Size([16, 256])
|
876 |
+
labels shape: torch.Size([16])
|
877 |
+
input_ids max value: 29536
|
878 |
+
Vocab size: 30522
|
879 |
+
Batch 500:
|
880 |
+
input_ids shape: torch.Size([16, 256])
|
881 |
+
attention_mask shape: torch.Size([16, 256])
|
882 |
+
labels shape: torch.Size([16])
|
883 |
+
input_ids max value: 29458
|
884 |
+
Vocab size: 30522
|
885 |
+
Batch 600:
|
886 |
+
input_ids shape: torch.Size([16, 256])
|
887 |
+
attention_mask shape: torch.Size([16, 256])
|
888 |
+
labels shape: torch.Size([16])
|
889 |
+
input_ids max value: 29560
|
890 |
+
Vocab size: 30522
|
891 |
+
Batch 700:
|
892 |
+
input_ids shape: torch.Size([16, 256])
|
893 |
+
attention_mask shape: torch.Size([16, 256])
|
894 |
+
labels shape: torch.Size([16])
|
895 |
+
input_ids max value: 29605
|
896 |
+
Vocab size: 30522
|
897 |
+
Batch 800:
|
898 |
+
input_ids shape: torch.Size([16, 256])
|
899 |
+
attention_mask shape: torch.Size([16, 256])
|
900 |
+
labels shape: torch.Size([16])
|
901 |
+
input_ids max value: 29513
|
902 |
+
Vocab size: 30522
|
903 |
+
Batch 900:
|
904 |
+
input_ids shape: torch.Size([16, 256])
|
905 |
+
attention_mask shape: torch.Size([16, 256])
|
906 |
+
labels shape: torch.Size([16])
|
907 |
+
input_ids max value: 29532
|
908 |
+
Vocab size: 30522
|
909 |
+
Epoch 3/5:
|
910 |
+
Train Loss: 0.5377, Train Accuracy: 0.8242
|
911 |
+
Val Loss: 0.6742, Val Accuracy: 0.7797, Val F1: 0.7674
|
912 |
+
Batch 0:
|
913 |
+
input_ids shape: torch.Size([16, 256])
|
914 |
+
attention_mask shape: torch.Size([16, 256])
|
915 |
+
labels shape: torch.Size([16])
|
916 |
+
input_ids max value: 29494
|
917 |
+
Vocab size: 30522
|
918 |
+
/gpfsdswork/projects/rech/fmr/uft12cr/finetuneAli/FIneTune_withPlots.py:202: FutureWarning: `torch.cuda.amp.autocast(args...)` is deprecated. Please use `torch.amp.autocast('cuda', args...)` instead.
|
919 |
+
with amp.autocast():
|
920 |
+
Batch 100:
|
921 |
+
input_ids shape: torch.Size([16, 256])
|
922 |
+
attention_mask shape: torch.Size([16, 256])
|
923 |
+
labels shape: torch.Size([16])
|
924 |
+
input_ids max value: 29461
|
925 |
+
Vocab size: 30522
|
926 |
+
Batch 200:
|
927 |
+
input_ids shape: torch.Size([16, 256])
|
928 |
+
attention_mask shape: torch.Size([16, 256])
|
929 |
+
labels shape: torch.Size([16])
|
930 |
+
input_ids max value: 29454
|
931 |
+
Vocab size: 30522
|
932 |
+
Batch 300:
|
933 |
+
input_ids shape: torch.Size([16, 256])
|
934 |
+
attention_mask shape: torch.Size([16, 256])
|
935 |
+
labels shape: torch.Size([16])
|
936 |
+
input_ids max value: 29536
|
937 |
+
Vocab size: 30522
|
938 |
+
Batch 400:
|
939 |
+
input_ids shape: torch.Size([16, 256])
|
940 |
+
attention_mask shape: torch.Size([16, 256])
|
941 |
+
labels shape: torch.Size([16])
|
942 |
+
input_ids max value: 29602
|
943 |
+
Vocab size: 30522
|
944 |
+
Batch 500:
|
945 |
+
input_ids shape: torch.Size([16, 256])
|
946 |
+
attention_mask shape: torch.Size([16, 256])
|
947 |
+
labels shape: torch.Size([16])
|
948 |
+
input_ids max value: 29238
|
949 |
+
Vocab size: 30522
|
950 |
+
Batch 600:
|
951 |
+
input_ids shape: torch.Size([16, 256])
|
952 |
+
attention_mask shape: torch.Size([16, 256])
|
953 |
+
labels shape: torch.Size([16])
|
954 |
+
input_ids max value: 29536
|
955 |
+
Vocab size: 30522
|
956 |
+
Batch 700:
|
957 |
+
input_ids shape: torch.Size([16, 256])
|
958 |
+
attention_mask shape: torch.Size([16, 256])
|
959 |
+
labels shape: torch.Size([16])
|
960 |
+
input_ids max value: 29292
|
961 |
+
Vocab size: 30522
|
962 |
+
Batch 800:
|
963 |
+
input_ids shape: torch.Size([16, 256])
|
964 |
+
attention_mask shape: torch.Size([16, 256])
|
965 |
+
labels shape: torch.Size([16])
|
966 |
+
input_ids max value: 29390
|
967 |
+
Vocab size: 30522
|
968 |
+
Batch 900:
|
969 |
+
input_ids shape: torch.Size([16, 256])
|
970 |
+
attention_mask shape: torch.Size([16, 256])
|
971 |
+
labels shape: torch.Size([16])
|
972 |
+
input_ids max value: 29464
|
973 |
+
Vocab size: 30522
|
974 |
+
Epoch 4/5:
|
975 |
+
Train Loss: 0.4776, Train Accuracy: 0.8478
|
976 |
+
Val Loss: 0.5951, Val Accuracy: 0.8095, Val F1: 0.7732
|
977 |
+
Batch 0:
|
978 |
+
input_ids shape: torch.Size([16, 256])
|
979 |
+
attention_mask shape: torch.Size([16, 256])
|
980 |
+
labels shape: torch.Size([16])
|
981 |
+
input_ids max value: 28987
|
982 |
+
Vocab size: 30522
|
983 |
+
/gpfsdswork/projects/rech/fmr/uft12cr/finetuneAli/FIneTune_withPlots.py:202: FutureWarning: `torch.cuda.amp.autocast(args...)` is deprecated. Please use `torch.amp.autocast('cuda', args...)` instead.
|
984 |
+
with amp.autocast():
|
985 |
+
Batch 100:
|
986 |
+
input_ids shape: torch.Size([16, 256])
|
987 |
+
attention_mask shape: torch.Size([16, 256])
|
988 |
+
labels shape: torch.Size([16])
|
989 |
+
input_ids max value: 29605
|
990 |
+
Vocab size: 30522
|
991 |
+
Batch 200:
|
992 |
+
input_ids shape: torch.Size([16, 256])
|
993 |
+
attention_mask shape: torch.Size([16, 256])
|
994 |
+
labels shape: torch.Size([16])
|
995 |
+
input_ids max value: 29083
|
996 |
+
Vocab size: 30522
|
997 |
+
Batch 300:
|
998 |
+
input_ids shape: torch.Size([16, 256])
|
999 |
+
attention_mask shape: torch.Size([16, 256])
|
1000 |
+
labels shape: torch.Size([16])
|
1001 |
+
input_ids max value: 29532
|
1002 |
+
Vocab size: 30522
|
1003 |
+
Batch 400:
|
1004 |
+
input_ids shape: torch.Size([16, 256])
|
1005 |
+
attention_mask shape: torch.Size([16, 256])
|
1006 |
+
labels shape: torch.Size([16])
|
1007 |
+
input_ids max value: 29605
|
1008 |
+
Vocab size: 30522
|
1009 |
+
Batch 500:
|
1010 |
+
input_ids shape: torch.Size([16, 256])
|
1011 |
+
attention_mask shape: torch.Size([16, 256])
|
1012 |
+
labels shape: torch.Size([16])
|
1013 |
+
input_ids max value: 29417
|
1014 |
+
Vocab size: 30522
|
1015 |
+
Batch 600:
|
1016 |
+
input_ids shape: torch.Size([16, 256])
|
1017 |
+
attention_mask shape: torch.Size([16, 256])
|
1018 |
+
labels shape: torch.Size([16])
|
1019 |
+
input_ids max value: 29280
|
1020 |
+
Vocab size: 30522
|
1021 |
+
Batch 700:
|
1022 |
+
input_ids shape: torch.Size([16, 256])
|
1023 |
+
attention_mask shape: torch.Size([16, 256])
|
1024 |
+
labels shape: torch.Size([16])
|
1025 |
+
input_ids max value: 29464
|
1026 |
+
Vocab size: 30522
|
1027 |
+
Batch 800:
|
1028 |
+
input_ids shape: torch.Size([16, 256])
|
1029 |
+
attention_mask shape: torch.Size([16, 256])
|
1030 |
+
labels shape: torch.Size([16])
|
1031 |
+
input_ids max value: 29390
|
1032 |
+
Vocab size: 30522
|
1033 |
+
Batch 900:
|
1034 |
+
input_ids shape: torch.Size([16, 256])
|
1035 |
+
attention_mask shape: torch.Size([16, 256])
|
1036 |
+
labels shape: torch.Size([16])
|
1037 |
+
input_ids max value: 29441
|
1038 |
+
Vocab size: 30522
|
1039 |
+
Epoch 5/5:
|
1040 |
+
Train Loss: 0.3833, Train Accuracy: 0.8814
|
1041 |
+
Val Loss: 0.6523, Val Accuracy: 0.7882, Val F1: 0.7792
|
1042 |
+
|
1043 |
+
Test Results for General tokenizer:
|
1044 |
+
Accuracy: 0.7885
|
1045 |
+
F1 Score: 0.7796
|
1046 |
+
AUC-ROC: 0.8664
|
1047 |
+
|
1048 |
+
Summary of Results:
|
1049 |
+
|
1050 |
+
All Cluster Tokenizer:
|
1051 |
+
Accuracy: 0.8111
|
1052 |
+
F1 Score: 0.7860
|
1053 |
+
AUC-ROC: 0.8681
|
1054 |
+
|
1055 |
+
Final Tokenizer:
|
1056 |
+
Accuracy: 0.8043
|
1057 |
+
F1 Score: 0.7709
|
1058 |
+
AUC-ROC: 0.8254
|
1059 |
+
|
1060 |
+
General Tokenizer:
|
1061 |
+
Accuracy: 0.7885
|
1062 |
+
F1 Score: 0.7796
|
1063 |
+
AUC-ROC: 0.8664
|
1064 |
+
|
1065 |
+
Class distribution in training set:
|
1066 |
+
Class Biology: 439 samples
|
1067 |
+
Class Chemistry: 454 samples
|
1068 |
+
Class Computer Science: 1358 samples
|
1069 |
+
Class Mathematics: 9480 samples
|
1070 |
+
Class Physics: 2733 samples
|
1071 |
+
Class Statistics: 200 samples
|
General_tokenizer_plot.png
ADDED
Git LFS Details
|