text
stringlengths
0
601k
let set_z ( v : t ) ( z : float ) : unit = Ctypes . setf !@ v Orx_types . Vector . z z
let make_one_vec_op op = let f ' ( ~ target : t ) ( v : t ) : unit = let ( _ : t ) = op target v in ( ) in let f ( v : t ) : t = let target : t = allocate_raw ( ) in f ' ~ target v ; target in ( f ' , f )
let ( copy ' , copy ) = make_one_vec_op copy
let ( normalize ' , normalize ) = make_one_vec_op normalize
let ( reciprocal ' , reciprocal ) = make_one_vec_op reciprocal
let ( round ' , round ) = make_one_vec_op round
let ( floor ' , floor ) = make_one_vec_op floor
let ( neg ' , neg ) = make_one_vec_op neg
let make_two_vec_op op = let f ' ( ~ target : t ) ( v1 : t ) ( v2 : t ) : unit = let ( _ : t ) = op target v1 v2 in ( ) in let f ( v1 : t ) ( v2 : t ) : t = let target : t = allocate_raw ( ) in f ' ~ target v1 v2 ; target in ( f ' , f )
let ( add ' , add ) = make_two_vec_op add
let ( sub ' , sub ) = make_two_vec_op sub
let ( mul ' , mul ) = make_two_vec_op mul
let ( div ' , div ) = make_two_vec_op div
let ( cross ' , cross ) = make_two_vec_op cross
let make_one_vec_one_float_op op = let f ' ( ~ target : t ) ( v : t ) ( x : float ) : unit = let ( _ : t ) = op target v x in ( ) in let f ( v : t ) ( x : float ) : t = let target : t = allocate_raw ( ) in f ' ~ target v x ; target in ( f ' , f )
let ( mulf ' , mulf ) = make_one_vec_one_float_op mulf
let ( divf ' , divf ) = make_one_vec_one_float_op divf
let ( rotate_2d ' , rotate_2d ) = make_one_vec_one_float_op rotate_2d
let make_two_vec_one_float_op op = let f ' ( ~ target : t ) ( v1 : t ) ( v2 : t ) ( x : float ) : unit = let ( _ : t ) = op target v1 v2 x in ( ) in let f ( v1 : t ) ( v2 : t ) ( x : float ) : t = let target : t = allocate_raw ( ) in f ' ~ target v1 v2 x ; target in ( f ' , f )
let ( lerp ' , lerp ) = make_two_vec_one_float_op lerp
let make_one_vec_two_vec_op op = let f ' ( ~ target : t ) ( v : t ) ( ~ min : t ) ( ~ max : t ) : unit = let ( _ : t ) = op target v min max in ( ) in let f ( v : t ) ( ~ min : t ) ( ~ max : t ) : t = let target : t = allocate_raw ( ) in f ' ~ target v ~ min ~ max ; target in ( f ' , f )
let ( clamp ' , clamp ) = make_one_vec_two_vec_op clamp
let clamp_size ' ~ target v ~ min ~ max = let size = get_size v in copy ' ~ target v ; if size < min then ( normalize ' ~ target target ; mulf ' ~ target target min ) else if size > max then ( normalize ' ~ target target ; mulf ' ~ target target max )
let clamp_size v ~ min ~ max = let target : t = allocate_raw ( ) in clamp_size ' ~ target v ~ min ~ max ; target
let move_x ( v : t ) ( delta : float ) : unit = set_x v ( get_x v . + delta )
let move_y ( v : t ) ( delta : float ) : unit = set_y v ( get_y v . + delta )
let move_z ( v : t ) ( delta : float ) : unit = set_z v ( get_z v . + delta )
let of_rotation ( rotation : float ) : t = let x = cos rotation in let y = sin rotation in make ~ x ~ y ~ z : 0 . 0
let to_rotation ( v : t ) : float = Float . atan2 ( get_y v ) ( get_x v )
let get_optional_vector get o = let v = allocate_raw ( ) in match get o v with | None -> None | Some _v -> Some v
let get_vector_exn get o = match get_optional_vector get o with | None -> fail " Failed to set vector " | Some v -> v
let get_vector get o = let v = allocate_raw ( ) in let ( _ : t ) = get o v in v
let msgs = [ " c9bd5b35d48f71b48656c39e395e4d138a45df54b7c03fad7330f5fa3f42a44d " ; " c2a49dc5141afdf02480dc2e9d7ec3f602ccc6cf322a0a9b481c80d37170713c " ; " 72e8b038fd5cbe8a3f2bb8e9ffc8f48f39143279210e8bfa0131445da9d76b93 " ; " 6aeee423a44030de1632b7d4e42afc04473f9de218a11358016cd04a3dcc8593 " ; " ba52a5eb037ceecd38bad63d2f004a46bd3ab7f6632d5aa72fe7ee1275e8a704 " ; " bf49613ff391a12081cfca9ef682784aeeeb4c7774d8259627544e71b14ed15b " ; " 582f18a35c36b2403ea78d8b78515dbb8aef4e666ae1ef68795f0969a84e3f28 " ; " 201b2e9fd3eac2e8c2ec737789551c052db59c9d8c90817c8af044a4de10c694 " ; " 20ec8437edc2d7b208b281997199da0362c3b619c77853f4330d00a366cbceff " ; " b404a9e26011d26f85e1ab3f327b90e582be990f664fc4af3924c9226b908828 " ; ]
let keys = [ ( " D63FF7D5D8FB7334287CB397F824B3567178BB635CD2FAA8A34D0B1BC65FDAF2 " , " 02CA5364C4302C38E93F8A4850E61A8FE6C27E386D4541B898F4E74BE5E6DD0256 " ) ; ( " 9D585160C3AD171D7F4925F359C2B4C8992730DBAEE4D4D10B1E0E489CCA3404 " , " 03D6008C2A656DD414C6869558A1E262F38BD5A142039FE84E750335C543B376B9 " ) ; ( " 62FAA069EE7286D027747656EC736F29D20E5BF827F1D531B1A9DE215AF876F3 " , " 03812447C00050CA921B05A6097C3F29F4ADFF23C4DD6062CBB114DD5B917D1995 " ) ; ( " 2FE21C081FFA7CBD631E6F20B05B870D64A252A3B7E1A125C3D07E7B6BBFF41B " , " 03BBF4A1B5DF7E66E1FFC67AD2778F5E3A78717027FEBFB940C0C3CFC73F052583 " ) ; ( " BC8CB5B05C306B5561CCBAAFE3777C267A8CDEFA6D00B5CE2E65578DEA030F3C " , " 0276285EE239631F904401C2C2A22CEFDF7590546ED3AA4E2B2759F16DD7709D6B " ) ; ( " 610B1C48263CFEA3AEF9C3EF7DE9D39899155BAD1EC66F50165453429032ED9C " , " 03BD396999184DBCA1CBA0596A9BA2E973BFA1AF610F8458A1280DDCB9EAE9EA0E " ) ; ( " 36149C23680AD42DE8C516DE685A52411086EB9556244A83393FC10CEE12F7C5 " , " 023F35281E1AC1EA0589BA9D7FE7C21BA331D2A7A12B3EF2EFE20BEC6639283769 " ) ; ( " 0866AD7FBCE585B740799D508824A547E877CC5F7D64E121FF13016AAF74B734 " , " 0345FFE8A13964727E2D27FD5471D8899CB3C3EE6EDDE81F2C8E19E2EA1FE98160 " ) ; ( " 8D05026AF08E9FFDDB2C485E1A0F1D093C34C5D77962BF31F1437CF0D44CE9D5 " , " 03DF08C9BE891DA811A86914C58B0BE798769FC756A2BD80878B33D9E7373D99A3 " ) ; ( " B495924045946A563F436F5408A68FA21B9782DFC56F44ED90B12130CF9D926A " , " 02823ACE5698ABE2F45C6C9BCB6920AA5183D0ECE663B6B93C213A02F4766CE6A5 " ) ; ]
let sigs = [ [ ( " 2993E89EF2190B133449447C014A358E44618224E52C27AC83B3468D615FC390 " , " 7A398C8E09359F54E1E5301F0A70DA61BCA0EFC15F037A0A745B78D25F6ABD8F " ) ; ( " 6F89D730F8F95BA32776E7FA1363177615B5955405017AEF0DD7C2474850764E " , " 681DF8E9541892B165E350689246918B9713D9E4FF038C3689BC46375CFCB7B7 " ) ; ( " 2FBE99E3C49C82B539885D522A8D3FA452C91D71D5221873C1402CBF659B5810 " , " 48E56A7360224DC094BD396C4C25D626A21C932320A0DB0427FDBE14FAE20D72 " ) ; ( " 0365BF5DDDE6D76843E2BA6AB9000A9E67F1B1FD844ACE78619FD19B22C06D8F " , " 640F70EA7D40E096D1EF5E5ECC93AE3E8494A671FA61BBAADE7CDE410DF73B23 " ) ; ( " F8CA27D6C8661F452E0A942646F9457EBBB611304E11449B4EB55CDEE5E13E5E " , " E19853B34B666E4470C94BAE4C460CACA29DF19D3ADE3B4CB5E3E6B87353F348 " ) ; ( " 97835322DE8AE0696FC3B589F022053260098BB3802316A10499DF256B4BF6B9 " , " 329149ACE513F7DD5EFDE1109FC35F190EC164BFE128E1F4A21A13C731251AA2 " ) ; ( " 93150473204DF1C253E9F9CF89B955B5C9A2772FD090283EA31E01CCB298C1F2 " , " 4784653C85F5E9FA903F39074965C9EAD54924DCEA74399FDB47CA4E15D73789 " ) ; ( " 4F4FD87427A8C38126F17AA48A24B4E0E6EE42B15F97C43186B67263082BC445 " , " 771797C887D528E82459C8FF1AC44776D1ECC4405F06A01B823F8C51323A2F03 " ) ; ( " 44DBE56BE142276D1511E358D0EE11758DA23A23AA1C22B5E24FED5EB4F4B020 " , " 5347E75C9A51E0587E41B3753622FE477269989F2D148453DE600C8CD4B61481 " ) ; ( " D7090A223AAB6D9C78766BF7EE6DAABB1339E39081C8AA9DE01FA88A3E1D0C95 " , " 82E0670D9EBFC897FFC64085F750D4AA0EA9CE0060B6CC7BD814BB3D3DBD45F3 " ) ; ] ; [ ( " 3E820E2D38508721A2C306453FCB4876C871EFF458B4D67A331B62E3D35F319C " , " 7F4DD16617A34FBD129E8559B54E6EB1B98966E3E7F1E16D4E98AD19D0C65101 " ) ; ( " A03A20058473B0A4FC2442EB9269FCA1B7925CCE81877D793AC103EF6CE16B9D " , " 8E4CD4B5BC3238579BDAD6C0A13922DE457157E1EA226F4A07EE214272FCD44E " ) ; ( " 3E0BB9EFD944C658EB65B5A00D729972982E1F8E49D0007B4F7B3481A137EF54 " , " 27C564A6B4337DB8A39F188073CC3E5B5AE00E487228B4340C0FC5739F7C09A6 " ) ; ( " BCB837DB845BACE2C282D547D0338EB417603DD07E0CBB35E370183451057B74 " , " 6236A33D34AD6A06BAD7D0CAF910A7B992225C63F1977ECABDC20F49F10CCD97 " ) ; ( " AB62075658B7D19A9752D7639FA5063E6D7BA08DE72E00A0C691DC352C9AD962 " , " 53CBF8A896208D7A9D7A56CE57B08F2B00FEE748DF29A9F69B8AB61049DD3A8D " ) ; ( " 0B703E9133978DC668B2C9A6B30E5C12F3446557C6E68769C6B383D754A64D8E " , " 9DD1FCFA3566A53F76CDDFDFA525667E8057C84741B20E18261F36FA5FF4D3CA " ) ; ( " A03EC5801603A87178421E778A835A9D1D7BFB985B06E308CE182B49930DC362 " , " C3FA50430B83CD0EF61B284F4526F29DEC8C239F00657DB6F5FC0660FC7D5314 " ) ; ( " 41A7C97D65B52DB132B126689D0626776EC8B5C74BF9D95391CE0659FD04FDEF " , " 5A9EDA4E725A230B866DEFF2A97D8E29DE293CFC2083770DF66E80062268681D " ) ; ( " 4D86C9C9DAB4F772245602ED8A61CF29122F62012D2910818A057FA0C35D74E8 " , " 5DD4E4349D55D5BC5A23D6B27150E2B31C4A0C5D4A62ED9FA3A48128CDBA6935 " ) ; ( " 3D28C32230F49BC145C28D26DE67E52C5F77AC3D99E01374AC0CD5C19E0F650A " , " BD6919C7223F762CA8EDF6A7B34D63BC443E55964ADF4D379A13AD2339D57BAD " ) ; ] ; [ ( " 507397351356C48A03F5089F29F0DA00B18A5EBD8932BEB3840A79CAB9CAA6BE " , " 25AEBDE6E3376096A799B93C14A27A679DDE80EA6D465329D9DD3015EC2ADAA5 " ) ; ( " D0FF19A923126F55455749F7D2E9EAAB1EE9D0706FC3B08D91B41CF46C84A79E " , " 557AF9B6F31E429220E8530570FE0F53DF520EC126BCF707F058A74059878E26 " ) ; ( " BD5A17D5D54C538D0BFAF7D215BB1F3A18E6CA6802C13CF7CFB93401BE6F96A4 " , " D9435EB188209C731405B849CA6A1DC967106E3515DF3601D9EA183909737033 " ) ; ( " F9089078FF8984C3303E4ACEA87B634EDF3155AA3937B32B93C44CFB3DB37F49 " , " F7F2C39F9AA2D5AEC858C5DCB32CC7DE9C48561BA12BABAEAF567D279AAE93A3 " ) ; ( " 9CF5D1F80AEC5BFB1A7F6323D2DC0CB752532B42B4BBA7711C50020018EC7A91 " , " 5368DE5375DA38461C56FCBD39361A24F5AA5236B7026637B615B243FBBF8CED " ) ; ( " 5C978424C73A16A626F6D39C93DB9C4FFE0593CAF7FCC1BDB6C665D5884716E1 " , " 549F39C22FB2C7C11FD4E5E5C935B5B3E00F9250AC2FD7C902682FDC9BEB2AF6 " ) ; ( " 4A2D401DCFE0045E1482E55DFF978ECF8F092B9E2B17923ECB53DFFB9E4D6845 " , " D7B90591A06C0E15BB6B1F94BB46668FEA9AC408164CFB19DBFE63A93F0DF925 " ) ; ( " 078ECDE5B62D62EE0A2197D416B992B3FD72551C1F297BE8BC490761F98A6753 " , " 304756BA0880F4BF4AD0EBCED85F1B1A3056CB76FD2A725A00ADA58B9DAD3B81 " ) ; ( " 819D67D2F813D0D0C7199DF4FDAF3907A0EFA2AEA1433F37F76914DB3D10D8D4 " , " 52ECE5C1A4036AE515B9D7673EB5D7E2519039CBAB89AE65459E1634FC94E7F7 " ) ; ( " C513BA09A835EA0372460475BB230E3CE9FBA741E59457E6D6E7B860D5146429 " , " CAD294FFD63C5435E937C4646E92DA4A3B7415B9DF939FC41657A79544C6F563 " ) ; ] ; [ ( " 07EE2738ACD0E5DBF81CD1995A2C25E244A5E4B13BCEEB262319D45A1A7D25F0 " , " 5B9535A7E2F6C7E715693902487594814E913DA664932907AC72141B2F13C0C1 " ) ; ( " 7CF0D1E8706D799A504B709671E05B63FA2EEB97B4B28FB35DA285750EEC1F42 " , " DF3D1DF8BDF59857AB24793EA32439918C115CE06A830ABFE7B6320526543FAC " ) ; ( " D0750F538A7BA5AFDE00C6B0635A669B5A665BAB5BD8EE268C22AEC860225F65 " , " 6A3B718FB63972A47FA1BBE26842AA794C3E3CFDA29D0024B77897E844F66081 " ) ; ( " C543BEC86E4A0C941BED9EFE8B5C135A607D85A36B1354C715CEFEF46BB9A213 " , " 9F94BC36487CC5A4FB2F3CAD6C4D20C36AEB467BC200E7F48064A240ADA8506F " ) ; ( " F0D17C82EB1988899D50E36E08F26570C1E3DC097F823D6BC59C9D036CC8F494 " , " 7031F03277228B4F18CECF5E41C8775DDD1B9D101257F5C06DF31EAF6A085B75 " ) ; ( " BF562B53CE096A96A76722E5276221754B3DE59C45B54E355F45E2F7B5D67A64 " , " 85EE44C510A3D82F26036430289382463528FE67233E99F4AD3B52CF73D3E899 " ) ; ( " 7136A26AD8BD50ADCDBE0D37E539ECB86E0BA04994AA394ACB466A8EB6A5EA99 " , " CC7B1F5A6139CA3A066538A4DFEC3A23FC4A5DB945928AAE3066D62F23594646 " ) ; ( " BF4BD3907E148D1CC5186C724DF00C089C2673FCC656B49D8FB04E41FF2A22FE " , " D113D4133C649981EEBE54141244ABB5F144ABFF9CABC65AEF7EC181647B6761 " ) ; ( " 94BF66B58F9635313967F1E2E8804061115C4055AED47E14017791C89F9EF451 " , " A0AA94298113085492DE2BEE64D240FF37E37FF31109AEF6DE5DE68694CC2C20 " ) ; ( " E6F108A5B5BB293EC37A83E9853C7DEB568748B462C3F90C1794340B374884B5 " , " 975E5CE59081B057A2CAE2E551BDF5D940E3956C5D488C87DE30B0EDDFC9FFE7 " ) ; ] ; [ ( " 87AE66069ECE659874289C9F69EC172312C772EF692F50E8F10F9D1B80D706CE " , " 78B78757B9F23226E80B05D19EA4C3310DC55D22660457A84745BD654B5A5F6C " ) ; ( " 24ECEF6DDF05940AFB3D70CF88AD36458E6B6471315BD24C8679D8556CD8F618 " , " A83F0CBC0C6F0A902128780826028700765C38B8D912019E0BBA6588D47E6EAE " ) ; ( " D0120B7384D80823C9BB7B201BC68A57493FB2DEE79205BFBCCF710ADADAE0BF " , " B265B4D0F5B8D7A79789D97DE44C36CC79EE6E4A50F378784CFD0F8B9E13D4CD " ) ; ( " CA8D7FF035A76E529002E61F0C40F9B288C930AE9A26C7E54082E4EFBA30702D " , " 8355D27C2B6DD9EE8E87CEF2CD409C057E9E5C963C9F489A6A7D1174D5687B89 " ) ; ( " 7200EC9AC9866B3D0F91AE84F9F3CFD0240245B69B646FB797048B4189EE3B99 " , " DA34A221D2FD0DFA3C59525BFB08452DDED99DC3D917365681F0FE9BB659CC5B " ) ; ( " EA5F8CA89E36D5AA0388733879F200518E37D14F2079D679A7F27870B82D6ED2 " , " 8C3BEE0E463FCE7E5FB00550F31833E375B99AD7B93B4A6163B83A2C6BE635DF " ) ; ( " CE3F5E660300555F80EF2BB599892170E0A647BDF8A908558817B9516394816C " , " DA04E455428BABCC8A3F4EDD0E8BF2ECB8F93BEEBED571CF9327BF90609E1F97 " ) ; ( " B001141256BF0EBAC21E850C6FD0E987C0820D46C4149FB73FF3FD6AA38ACBE7 " , " 030C7F191EB70A456681ECA6774462F791CF1056F8E3636FC73C8FBA79CA9357 " ) ; ( " DB6026D84FB431FEB8A298A3D9D3288026685849C557187E9031C8D48781DB3D " , " BEDA43577F7EEF2C246A744532E4D4CACBBA9C8CF39E8FB2D408CAC8D5CAF022 " ) ; ( " 8EC3FCBFDFA4754A46710761798A1CCB7DC7CF05A888D24BE39F10C7A3BA95D9 " , " 6C6FBF49299663E4F4FA7CDB5BB2FFCA8C0A8B7F1FF432295E685670500D7A68 " ) ; ] ; [ ( " C9B0DC51E678802F5DB12323D905E50B2AFB675E1D369C4827F906FBDF0D8949 " , " FD0EA9C356841E20F6404CB519AE7418F06413DC40346A64DDEC030CD6819648 " ) ; ( " BE73D8437105C6794B4EA52F245FB43B94E3AA7D866DE70225F95B0F31B045F7 " , " DBA6025C481A050F1028B7F16394B74ABDA295EA2DAFC12853992763E912BCA0 " ) ; ( " 9E94DD39A0DABCD4D663E35DB91614E6CE80F4538E13950C64C01450F73DF17E " , " A6CE7E4483D190AC7EAE12847AD6960A3C3C4A46D094F3B65DB6C91EC81B46AC " ) ; ( " 0C6CBE5D4093A307CC80948530E7993C2862A4FCAEB12291BEBB5050C6FD5C4E " , " 2A360057D9DEA3925672AE80C2DE3142856A45816F0D3459795B13DBB916FD82 " ) ; ( " 7CF8A3B24334C98B261FD24754DB6150C7B6CC2CAB813253794DB34AAF6EB904 " , " C83FE889C70BD1D6F40B731C6794DBD1B88EBB0BD38C8C2D5EE0159E59E456C8 " ) ; ( " F5AC1083FA8DDA8F49F55EF11D103F4D5FA505A8E4DDDC9749A4DD270F320EDF " , " 7F6D18478A22AFFEE623020918E6E015F559296382BA333A2F3CB75FAFEC3D5E " ) ; ( " 23606BC51E67726A31E9711251F263163D61CAF44A6A8E3EC512A02CCA2A6B54 " , " 2D04CC1E0FA9C036404536B04BFDF2A4B479F33B271BD3566D1A8DFC10A3811D " ) ; ( " E97CC9407250EC79A8FD6DC9891D6862FEB6A5FEBDC98707D886784BE466B99D " , " 9BF45C29A9A737620C49FD3FE8DD563C66B1C89BD62DB1A514B68D9F08181475 " ) ; ( " 8E4360EDE2A78AD86C5935C642EE129760F6C624259254AFDAD768AF58DBF1B2 " , " B8AB363775C7FC1CA935E82B6EB36128AB80A382889CC4393E62DBE6DF85B634 " ) ; ( " 4DD37756E5F88605C4076D5C248514D9596B188F648B1095CBE4F471799E9ADB " , " 305886FB73BD2EFEC718C0922A53CFC0A7FE72D8A7341B72917278F705B2D146 " ) ; ] ; [ ( " 31548B4A01E9D18718DF760ECB31BAC5D74B26AA7A1584683BD9E14F3C150536 " , " 57A4EFA6D545729770CF5EC6F8B9E5E8C00EB7A0A1E8989C3D3360FDD3F3A4E6 " ) ; ( " 80E0BCC128735B3A34BB856F451A4DBA0E12DE7548CC228C255A1E45C29BCB50 " , " 276DC10527F4DB8012ED993B051F36595AC306EB0D03756E26FA5A32DE8BADE6 " ) ; ( " 91923E8F82A7F35520F2329877C779999B5E863EE1272FD7C0B07F9E9E357662 " , " A14421CD51A3FF5D226AA926FFC8610905C647283369F23EFCA0F74A9BAAEEB3 " ) ; ( " 97B98135A092CD240420CBEFFA6CFACD1F27A7A0E780A16B819E7A2C8FD50D42 " , " A3675BFB5AF37B1F425B3AB9E49EC81330FCB2E762E76D575C956F83FDE98C35 " ) ; ( " 9329AA31B749C2AD2A115D8C0413A5AD73277D33C8E1D74ECE5C619EAF4CE790 " , " 881974CCA20FD68962EB906887B8112C99A2A516CF00A69668AC3C33F538937A " ) ; ( " F1348E6C8D926A8B8EE8B270DE7BB176AE2E2C6AF9E35C9F6376398CFEBA0197 " , " 0FF1E07819D76525518CDA34E8FA5887EE9C482C754660C649AA15ED9B282C9C " ) ; ( " 89F7E0826E6915E62E2CA5430827336103528DA7BE5D0C35517487FDF9FF2C07 " , " C810C80E82377008002446E8B8A2ADC6E1E2B091CB7FA4A762360F52EA0C4A01 " ) ; ( " 53EFDB5EBF7605CA27AD917AA349E99FEA897583320780332D2D98ED746AAB7D " , " 2066D45C10C439B5D14855D633254B1D65A42745049345E7B3AC1D703EC556A4 " ) ; ( " 90CF973EB2B15D45C19CB8BB29ED012CBDAD29CF35E8327F9948AF2293D58BF4 " , " 58C9DDC28DA7CDD301E2AF3880B375A0F3671E77E569963292B21F3F4F8B1E16 " ) ; ( " A9AC7DAFA5DE5714B927986DC000B0C1CCDFEB40D222E3634ED06DB6AEC7F08F " , " 1848C7185F95E887A791C19ED5264071BEBCF4804328AA14435A06BE9EB55787 " ) ; ] ; [ ( " 878067F0A2458A197B6847E206109066EDE8FEC99697C9E4A784AB6657423721 " , " 5C573EA8C9074F1BDC69893B0CA279FAFE22A56BBCA509CBB723265B80966923 " ) ; ( " 2A09D9485CACC0BC7AB9A3A9060157DD94B76B3621D6EFF3EFD05971B83FEEA7 " , " 88B9F0A77224E52D8F96258E6D177D834809B25BED401E1AB59A134307D286B1 " ) ; ( " 3ECDA0DF6FF61A2AE3BDE7A3F8248CDCDA2A5DA6C9FF96D5C6EF2092AF082D34 " , " 25A0E4935A2393FF2BE43A56E29D85C4B5583FE25F0BB9DCFE334C07AB0B8833 " ) ; ( " F780F7D3173D2F1796B0D1E20D89538B9BDB5046B7D94BDDB59F8F62BA11E804 " , " 1F18785D7ED86C99F4DFC4DD0CC40EA1751881A659FBBEC5CB8CD298FE2CE5A7 " ) ; ( " F8FE0D9EFC1BC6781CA589979D28E0954C59FBA552DB641B6BA64EF501E5B71C " , " 09E34950D82BC4119E5D981E178EF1D63FAFBB80F0FE3E4B65F3F4F8DB6D46A5 " ) ; ( " 46E2E2C12600E037EFD5CB884D7FF42B9C9F532DF5AC543B2E094B9423FE3EEE " , " D2160CB8A9BE9348C5A47096553CD204F0F92A2F4E6FB64FABC5A7534C398414 " ) ; ( " 90354579D0AC6E2EEA75D0A8BB09023142486BAC05E6C807E250139971A913C1 " , " 54FF19E0D425B217E3EF490347B89A63D5B035455BC5A85C50B2795C7EA2471F " ) ; ( " B52F2CC6B52CC6DF95C5277988FE221590C518B5445F57D0B9F3CFC83ACDD9CB " , " 2E1908340B89545A98C91CB78C0E743B07545D2ED1CCC952324FA630C67D9C6A " ) ; ( " 067BC3BE6660BA58A8512F0F3443E9F25C6FFA94698F827B9A95F8C098376EC2 " , " F0791A6254EFB6B2CD795F35699E42FA509A9204CC75F6F85047514110919A81 " ) ; ( " E3C2D7C2FFEA9B41E55982BDFBF48CE6FE77A415592E5F29B13B2F64A965C60A " , " B270F9BBEA95956481D43FA076B4B4C1617C8251AEF4044C5EACA662CE5F1334 " ) ; ] ; [ ( " 1B014A18DFA49E768727825E757411D1E82EF2C53E3D8F264D0DED8929F097B8 " , " 1A6953E71828514B2166F97FE5734BE9C45134A29DEEBF6435D9C977D4F3C065 " ) ; ( " 0BC3BC37FC3146E76C0F7E27DA82286F86FF242DA9A361FFCCCF324144F5A61F " , " 8675179AA1E9C73AA296154C32CA51FC233414F83BD6A3332F7A1B100324FEDA " ) ; ( " DA338DD14FA1316D4DFAEA85A7DD1C88E82240549F13E8437EDB9F1CC50642C2 " , " 494E0B77E4E457BD1210D4D5A335589A8184473A453CDF60A800AC646EAA8E01 " ) ; ( " 6463B9FAD5442512D48D54287413868F88C4976DAF770ECC32AB8246D3E4640D " , " CDEA7D4E5F41FC4573E4E4CA1F8E8A69228D1CE70FBF0E058342E4B9CDDF4633 " ) ; ( " 104A62A41AAA0F0BD8A9D1C16755C7CF13301CEDCEB9AABBE798B025FEDADCB4 " , " A68C528A453826F91DEDDBA195D0827C2DFF29CEF29A14AF6382827BFCBA883A " ) ; ( " E583D91345F7E83E16E41B504DD7FD98558115A2F4021270B79317F07D1638E0 " , " 1DA80828D384A17DB98EA2B976C514E86252076600C53D4E4978EF81874C95F3 " ) ; ( " AC8401515A9B5A5279EB71FAF379AE75230B0FDFA62CF57F01344372C004141C " , " 9DFFDF966DE197CB477FF818C2B39EE7ACEB017E528B7A7F6F6D98110DE71D5C " ) ; ( " 5CB89E053B3E0AC2EC4748D79D4A58550979E7641599611E3797E72654DFC491 " , " A6C3F6ED9CFC58CD6B76BA0D7E98FB5F905AB046ECFC70C50394A47B90859093 " ) ; ( " 2DBD7FAAA92098766A06E1F24BD2D5AB8159AF24E22475C8FAE186D663E7E9E6 " , " BEDE654EC3844FCBB6CD15656118F172DD84ECE7D49F5D1263AC82E323D98C3D " ) ; ( " A1F2FF766E8B53DE806E7A91A7AF490BD686269407E6F0D0FFDF93A9106D492C " , " 32F3780CC6D036222FC6CC2D5FA4709EBA196ACCDD7F1BF3160948576AE6D243 " ) ; ] ; [ ( " F9C8200774C89174BC27F0E57973BBB883209858E8691FA953A0ED72298529F6 " , " E9642C624DAE2D39706B5771FBA3BE086F3D122DA05D7A418DA5FD08B47424DC " ) ; ( " BDF9D6491CE56BE82FBA49BDE718969AA76A4625487BB3320C3414E88FBFEBC0 " , " 8ECA982E184B8F480E6F6829BF009438BC50213E98E8CEC6F417FF111373A415 " ) ; ( " B8DC0289B3BB3053371BD01A378DF38B988DB7D2222619C54017E442CEEDC565 " , " DAA13E54F28EFE8DAEE7FFD39C6C156CAE4BCE542C17554A374B5C33126E6986 " ) ; ( " DCB0EAFE2B3AF6D2AAC927287FA6C2C3A634987EBEE92D05939C4D4CFDE5A0BD " , " BBC289E1E59001237ED6116D9FB461816BDF17630BB5721BED7D881C6DA6E120 " ) ; ( " 2DFE4059218CFD3BAD9A6DE6971519A83CE3856947E311A2DEC7EE310BAE4422 " , " 5D8ABE63135C857B82FD49FC8B50E2BCFC9814500254E0CC2449ABAC5862A91A " ) ; ( " 4B3C3880B54B8201B0DC0E9F5608108A6EC3F28361DAFDA0819E9C075DF7F4C9 " , " E11224AD07E2DD2F724BDFEC63F3CA556B82C3C12ADD3DBBC58D7EA5BE0FCC4B " ) ; ( " 6B6795E354C247D01E8D9C5FD8223BFBC995D1C74C3A7A62532BEC1E328FF5AF " , " 771495A2204745D6129EBAB34EF707D61F28293E522A5CE1119A7EE279FBCFD4 " ) ; ( " EB524D039CC8EAFD7622952B83CB898CDEE43D71A0F79F02DC1F2600E5A5D207 " , " 4275CEAF79D008173D906D8D58086A6E7B25F5744F72D8B7A593947736215144 " ) ; ( " 92C1E9B91918D5BE76E81B05CFF9D444A192B9FA8ED09858F426BF6A0DF6297F " , " E3CA3CF73B15C938A6A306BA790B1B39FE26FD9575A44303B2EA8CFE81A73B3A " ) ; ( " 1D510BC16CD4C978CD6498E716BAE437F11B519E5240F974C1C0B04F8176C728 " , " AD7FB5F7E80177416AA5CF1E80E082B326A574A4D523D90AEA45FED80134BA80 " ) ; ] ; ]
module Arr = struct type ' a t = ' a array let set = Array . set let get = Array . get let len = Array . length let make = Array . make let copy = Array . copy let iter = Array . iter let foldl = Array . fold_left let foldr ' f a x = Array . fold_right f x a let blit = Array . blit let foldr : type a x . ( x -> ( unit -> a ) -> a ) -> ( unit -> a ) -> x t -> a = fun f a x -> let rec loop ( a : unit -> a ) idx = if idx = len x then a ( ) else f ( get x idx ) ( fun ( ) -> loop a ( idx + 1 ) ) in loop a 0 end
module AP = struct type ' a t = ' a array * ' a array let len ( l , r ) = Arr . len l + Arr . len r let get ( l , r ) i = if i < Arr . len l then Arr . get l i else Arr . get r ( i - Arr . len l ) let set ( l , r ) i x = if i < Arr . len l then Arr . set l i x else Arr . set r ( i - Arr . len l ) x let fold f a ( l , r ) = Arr . foldl f ( Arr . foldl f a l ) r end
let ceil_div a b = 1 + ( a - 1 ) / b
let _BRANCHING = 1 lsl _BITS
let _SKIP_SIZE = _BRANCHING - ceil_div _EXTRA_STEPS 2
let check_depth = let max_depth = if Sys . int_size = 31 then 6 else 12 in fun d -> if d > max_depth then failwith " clarity - vector - too - large "
type ' a t = | Leaf of ' a array | R_node of int array * ' a t array | B_node of ' a t array
let depth x = let rec loop : type a . int -> a t -> int = fun a -> function | Leaf _ -> a | R_node ( _ , n ) | B_node n -> assert ( Arr . len n > 0 ) ; loop ( a + 1 ) ( Arr . get n 0 ) in loop 0 x
let rec length = function | Leaf x -> Arr . len x | R_node ( i , v ) -> assert ( Arr . len i = Arr . len v ) ; Arr . get i ( Arr . len i - 1 ) | B_node v as node -> assert ( Arr . len v > 0 ) ; let d = depth node in check_depth d ; let item_sz = 1 lsl ( d * _BITS ) in item_sz * ( Arr . len v - 1 ) + length ( Arr . get v ( Arr . len v - 1 ) )
let update_lengths = function | Leaf _ | B_node _ -> ( ) | R_node ( is , vs ) -> assert ( Arr . len is = Arr . len vs ) ; let sum = ref 0 in for i = 0 to Arr . len vs - 1 do sum := ! sum + length ( Arr . get vs i ) ; Arr . set is i ! sum done
let mk_rnode arr = let res = R_node ( Arr . make ( Arr . len arr ) 0 , arr ) in update_lengths res ; res
let rr_search : int array -> int -> int -> int * int = fun sizes depth idx -> assert ( Arr . len sizes > 0 ) ; assert ( idx <= Arr . get sizes ( Arr . len sizes - 1 ) ) ; check_depth depth ; let start = idx lsr ( _BITS * depth ) in assert ( start < Arr . len sizes ) ; let rec loop n = assert ( n < Arr . len sizes ) ; let sz = Arr . get sizes n in if sz > idx then n else loop ( n + 1 ) in let slot = loop start in let new_idx = if slot = 0 then idx else idx - Arr . get sizes ( slot - 1 ) in slot , new_idx
let radix_search : int -> int -> int * int = fun depth idx -> check_depth depth ; let shift = _BITS * depth in let slot = idx lsr shift in slot , idx - slot lsl shift
let max_nodes_allowed subnodes = _EXTRA_STEPS + ( subnodes - 1 ) / _BRANCHING + 1
let empty = Leaf [ ] ||
let get_leaf = function | Leaf x -> x | _ -> assert false
let get_rnode = function | R_node ( i , v ) -> i , v | B_node v -> let sizes = Arr . make ( Arr . len v ) 0 in update_lengths ( R_node ( sizes , v ) ) ; sizes , v | _ -> assert false
let get_bnode = function | B_node x -> x | _ -> assert false
let node_len : type a . a t -> int = function | Leaf x -> Arr . len x | R_node ( _ , x ) | B_node x -> Arr . len x
module Concatenation = struct let assign_subnode_lengths : type a . a t AP . t -> int AP . t -> unit = fun src dst -> let dst_idx = ref 0 in let src_idx = ref 0 in let size = ref 0 in let not_done = let need = AP . len src - AP . len dst in fun ( ) -> let need = if ! size = 0 then need else need + 1 in let diff = ! src_idx - ! dst_idx in assert ( diff <= need ) ; diff <> need in let get ( ) = assert ( ! src_idx < AP . len src ) ; let res = AP . get src ! src_idx in incr src_idx ; res in let push ( i : int ) = assert ( ! dst_idx < AP . len dst ) ; match ( ) with | _ when i >= _SKIP_SIZE && ! size = 0 -> incr dst_idx | _ when ! size + i > _BRANCHING && ! size < _SKIP_SIZE -> AP . set dst ! dst_idx _BRANCHING ; incr dst_idx ; size := ! size + i - _BRANCHING | _ when ! size + i > _BRANCHING -> AP . set dst ! dst_idx ! size ; incr dst_idx ; size := i | _ -> size := ! size + i in while not_done ( ) do push ( node_len ( get ( ) ) ) done ; if ! size <> 0 then begin AP . set dst ! dst_idx ! size ; incr dst_idx end let copy_subnode_data : type a . a t AP . t -> a t AP . t -> int AP . t -> unit = fun ( lnodes , _ as src_v ) dst_v lengths -> let ( copy_to_node : a t -> int -> a t -> int -> int -> unit ) , ( new_node : int -> a t ) = assert ( Arr . len lnodes > 0 ) ; match Arr . get lnodes 0 with | Leaf x -> assert ( Arr . len x > 0 ) ; ( fun src src_off dst -> Arr . blit ( get_leaf src ) src_off ( get_leaf dst ) ) , fun n -> Leaf ( Arr . make n ( Arr . get x 0 ) ) | node -> let l , x = get_rnode node in assert ( Arr . len l = Arr . len x ) ; assert ( Arr . len x > 0 ) ; ( fun src src_off dst -> let dst_ = snd ( get_rnode dst ) in let src_ = snd ( get_rnode src ) in Arr . blit src_ src_off dst_ ) , fun n -> R_node ( Arr . make n ( Arr . get l 0 ) , Arr . make n ( Arr . get x 0 ) ) in let src_idx = ref 0 in let src_off = ref 0 in for i = 0 to AP . len lengths - 1 do let new_len = AP . get lengths i in if new_len = 0 then ( assert ( ! src_off = 0 ) ; AP . set dst_v i ( AP . get src_v ! src_idx ) ; incr src_idx ; ) else ( let nn = new_node new_len in let rec loop = function | n when n = new_len -> ( ) | nn_off -> let src_node = AP . get src_v ! src_idx in let sz = min ( new_len - nn_off ) ( node_len src_node - ! src_off ) in copy_to_node src_node ! src_off nn nn_off sz ; src_off := ! src_off + sz ; if ! src_off = node_len src_node then ( src_off := 0 ; incr src_idx ) ; loop ( nn_off + sz ) in loop 0 ; AP . set dst_v i nn ) done let compute_indices : type a . a t array -> int array -> int array -> unit = fun xv xi lengths -> assert ( Arr . len xv = Arr . len xi ) ; assert ( Arr . len xv = Arr . len lengths ) ; let sum = ref 0 in for i = 0 to Arr . len lengths - 1 do let len = Arr . get lengths i in let node = Arr . get xv i in if len <> 0 then update_lengths node ; sum := ! sum + length node ; Arr . set xi i ! sum done let merge : ' a t -> ' a t -> ' a t = fun l r -> let _ , lv = get_rnode l in let _ , rv = get_rnode r in assert ( Arr . len lv > 0 ) ; let nodes = Arr . len lv + Arr . len rv in let subnodes = let sum a x = a + node_len x in Arr . foldl sum ( Arr . foldl sum 0 lv ) rv in let max_nodes = max_nodes_allowed subnodes in if max_nodes >= nodes then mk_rnode ( if node_len r = 0 then [ | l ] | else [ | l ; r ] ) | else begin let len_l , len_r = if max_nodes <= _BRANCHING then max_nodes , 0 else _BRANCHING , max_nodes - _BRANCHING in let length_l = Arr . make len_l 0 in let length_r = Arr . make len_r 0 in let lengths = length_l , length_r in assign_subnode_lengths ( lv , rv ) lengths ; let node_l = Arr . make len_l empty in let node_r = Arr . make len_r empty in let new_nodes = node_l , node_r in copy_subnode_data ( lv , rv ) new_nodes lengths ; compute_indices node_l length_l length_l ; compute_indices node_r length_r length_r ; let lres = R_node ( fst lengths , fst new_nodes ) in let res = if len_r = 0 then [ | lres ] | else let rres = R_node ( snd lengths , snd new_nodes ) in [ | lres ; rres ] | in mk_rnode res end let leftmost = function | R_node ( _ , x ) | B_node x -> Arr . get x 0 | Leaf _ -> assert false let rightmost = function | R_node ( _ , x ) | B_node x -> Arr . get x ( Arr . len x - 1 ) | Leaf _ -> assert false let rec append_same : type a . a t -> a t -> int -> a t = fun l r n -> assert ( depth l = n ) ; assert ( depth r = n ) ; match n with | 0 -> assert ( node_len l > 0 ) ; assert ( node_len r > 0 ) ; ( match l , r with | Leaf _ , Leaf _ -> ( ) | _ -> assert false ) ; mk_rnode [ | l ; r ] | | 1 -> merge l r | n -> let _ , lv = get_rnode l in let _ , rv = get_rnode r in assert ( Arr . len lv > 0 ) ; assert ( Arr . len rv > 0 ) ; let intermediate = append_same ( rightmost l ) ( leftmost r ) ( n - 1 ) in let _ , iv = get_rnode intermediate in let overall = node_len l + node_len r - 2 + node_len intermediate in let ll , lr = if overall > _BRANCHING then _BRANCHING , overall - _BRANCHING else overall , 0 in let lnode = Arr . make ll empty in let rnode = Arr . make lr empty in let ap = lnode , rnode in let idx = ref 0 in for i = 0 to Arr . len lv - 2 do AP . set ap ! idx ( Arr . get lv i ) ; incr idx done ; for i = 0 to Arr . len iv - 1 do AP . set ap ! idx ( Arr . get iv i ) ; incr idx done ; for i = 1 to Arr . len rv - 1 do AP . set ap ! idx ( Arr . get rv i ) ; incr idx done ; let l = R_node ( Arr . make ll 0 , lnode ) in let r = R_node ( Arr . make lr 0 , rnode ) in update_lengths l ; update_lengths r ; merge l r let append : type a . a t -> a t -> a t = fun l r -> match l , r with | Leaf [ ] , || x | x , Leaf [ ] || -> x | _ -> let dl = depth l in let dr = depth r in let rec add_layers x = function | 0 -> x | n -> add_layers ( mk_rnode [ | x ] ) | ( n - 1 ) in let res = match ( ) with | _ when dl = dr -> append_same l r dl | _ when dl < dr -> append_same ( add_layers l ( dr - dl ) ) r dr | _ -> append_same l ( add_layers r ( dl - dr ) ) dl in match res with | R_node ( _ , vs ) when Arr . len vs = 1 -> Arr . get vs 0 | _ -> res end
let cons x v = append ( Leaf [ | x ] ) | v
let snoc v x = append v ( Leaf [ | x ] ) |
let check_bounds n index = let size = length n in if size - 1 < index || index < 0 then raise ( Out_of_bounds { index ; size } )
let get : type a . a t -> int -> a = fun n i -> check_bounds n i ; let rec loop n i = function | 0 -> Arr . get ( get_leaf n ) i | d -> begin match n with | Leaf _ -> assert false | R_node ( is , vs ) -> let slot , new_i = rr_search is d i in loop ( Arr . get vs slot ) new_i ( d - 1 ) | B_node vs -> let slot , new_i = radix_search d i in loop ( Arr . get vs slot ) new_i ( d - 1 ) end in loop n i ( depth n )
let update : type a . a t -> int -> a -> a t = fun n i x -> check_bounds n i ; let rec loop n i = function | 0 -> let res = Arr . copy ( get_leaf n ) in Arr . set res i x ; Leaf res | d -> begin match n with | Leaf _ -> assert false | R_node ( is , vs ) -> let slot , new_i = rr_search is d i in let upd = loop ( Arr . get vs slot ) new_i ( d - 1 ) in let res = Arr . copy vs in Arr . set res slot upd ; R_node ( is , res ) | B_node vs -> let slot , new_i = radix_search d i in let upd = loop ( Arr . get vs slot ) new_i ( d - 1 ) in let res = Arr . copy vs in Arr . set res slot upd ; B_node res end in loop n i ( depth n )
let split_at : type a . a t -> int -> a t * a t = fun n i -> let size = length n in if i < 0 then raise ( Out_of_bounds { index = i ; size } ) ; let rec loop n i = function | 0 -> begin match i with | 0 -> None , Some n | i when node_len n = i -> Some n , None | i -> let a = get_leaf n in let al = Arr . make i ( Arr . get a 0 ) in let ar = Arr . make ( Arr . len a - i ) ( Arr . get a i ) in Arr . blit a 1 al 1 ( i - 1 ) ; Arr . blit a ( i + 1 ) ar 1 ( Arr . len a - i - 1 ) ; Some ( Leaf al ) , Some ( Leaf ar ) end | d -> begin match n with | Leaf _ -> assert false | node when i = 0 -> None , Some node | node when i >= length node -> Some node , None | node -> let is , vs = get_rnode node in assert ( Arr . len is = Arr . len vs ) ; assert ( Arr . len is > 0 ) ; let slot , new_i = rr_search is d i in let l , r = loop ( Arr . get vs slot ) new_i ( d - 1 ) in let len_l = if l = None then slot else slot + 1 in let len_r = Arr . len vs - if r = None then slot + 1 else slot in let nl = Some ( let lv = Arr . make len_l ( Arr . get vs 0 ) in for j = 1 to slot - 1 do Arr . set lv j ( Arr . get vs j ) done ; begin match l with | None -> ( ) | Some x -> Arr . set lv slot x end ; mk_rnode lv ) in let nr = Some ( let rv = Arr . make len_r ( Arr . get vs 0 ) in begin match r with | None -> for j = 0 to len_r - 1 do Arr . set rv j ( Arr . get vs ( j + slot ) ) done | Some x -> Arr . set rv 0 x ; for j = 1 to len_r - 1 do Arr . set rv j ( Arr . get vs ( j + slot ) ) done end ; mk_rnode rv ) in nl , nr end in let l , r = loop n i ( depth n ) in let get = function | Some x -> x | None -> empty in get l , get r
let take : type a . a t -> int -> a t = fun n i -> let sz = length n in fst ( split_at n ( if i > sz then sz else i ) )
let drop : type a . a t -> int -> a t = fun n i -> let sz = length n in snd ( split_at n ( if i > sz then sz else i ) )
let rec iter f = function | Leaf x -> Arr . iter f x | R_node ( _ , x ) | B_node x -> Arr . iter ( iter f ) x
module Builder = struct type ' a vector = ' a t type ' a chunk = { mutable cnt : int ; vec : ' a vector } type ' a t = ' a chunk list ref let copy : ' a t -> ' a t = fun x -> match ! x with | [ ] -> ref [ ] | { cnt ; vec } :: t -> ref ( { cnt = cnt ; vec = vec } :: t ) let rec push_node n ( x : ' a t ) : unit = match ! x with | [ ] -> x := [ { cnt = 1 ; vec = B_node ( Arr . make _BRANCHING n ) } ] | { cnt ; vec = B_node arr } as h :: _ when cnt < _BRANCHING -> Arr . set arr cnt n ; h . cnt <- cnt + 1 | { cnt ; vec } :: t -> assert ( cnt = _BRANCHING ) ; let tail = ref t in push_node vec tail ; x := { cnt = 1 ; vec = B_node ( Arr . make _BRANCHING n ) } :: ! tail let put ( x : ' a t ) e : unit = match ! x with | [ ] -> x := [ { cnt = 1 ; vec = Leaf ( Arr . make _BRANCHING e ) } ] | { cnt ; vec = Leaf arr } as h :: _ when cnt < _BRANCHING -> Arr . set arr cnt e ; h . cnt <- cnt + 1 | { cnt ; vec } :: t -> assert ( cnt = _BRANCHING ) ; let tail = ref t in push_node vec tail ; x := { cnt = 1 ; vec = Leaf ( Arr . make _BRANCHING e ) } :: ! tail let rec result ( x : ' a t ) : ' a vector = let realloc_array a n = assert ( Arr . len a > n ) ; let res = Arr . make n ( Arr . get a 0 ) in for i = 1 to n - 1 do Arr . set res i ( Arr . get a i ) done ; res in let realloc = function | { cnt ; vec } when cnt = _BRANCHING -> vec | { cnt ; vec = Leaf x } -> Leaf ( realloc_array x cnt ) | { cnt ; vec = B_node x } -> B_node ( realloc_array x cnt ) | _ -> assert false in match ! x with | [ ] -> empty | [ x ] -> realloc x | h :: t -> let tail = ref t in push_node ( realloc h ) tail ; result tail let empty ( ) = ref [ ] let clear b = b := [ ] end
let init : type a . int -> ( int -> a ) -> a t = fun l f -> let b = Builder . empty ( ) in for i = 1 to l do Builder . put b ( f i ) done ; Builder . result b type nonrec ' a t = ' a t let pure x = Leaf [ | x ] | let bind f x = let b = Builder . empty ( ) in iter ( fun y -> iter ( Builder . put b ) ( f y ) ) x ; Builder . result b let ap f x = if f = empty then empty else let x = x ( ) in let b = Builder . empty ( ) in iter ( fun f -> iter ( Builder . put b % f ) x ) f ; Builder . result b let map f x = ap ( pure f ) ( const x ) end ) type nonrec ' a t = ' a t let rec foldl f a = function | Leaf x -> Arr . foldl f a x | R_node ( _ , x ) | B_node x -> Arr . foldl ( foldl f ) a x let rec foldr f a = function | Leaf x -> Arr . foldr f a x | R_node ( _ , x ) | B_node x -> Arr . foldr ( fun x a -> foldr f a x ) a x end )
let rec foldr ' f a = function | Leaf x -> Arr . foldr ' f a x | R_node ( _ , x ) | B_node x -> Arr . foldr ' ( fun x a -> foldr ' f a x ) a x
let to_list x = foldr ' Clarity_list . _Cons [ ] x
let of_list x = let b = Builder . empty ( ) in Clarity_list . iter ( Builder . put b ) x ; Builder . result b type nonrec ' a t = ' a t let align_as both left right a b = let la = length a in let lb = length b in let build = Builder . empty ( ) in for i = 0 to min la lb - 1 do Builder . put build ( both ( get a i ) ( get b i ) ) done ; if la > lb then for i = lb to la - 1 do Builder . put build @@ left ( get a i ) done else if la < lb then for i = la to lb - 1 do Builder . put build @@ right ( get b i ) done ; Builder . result build end )
module A3 ( A : Applicative . Basic3 ) = Traversable . Make3 ( struct type nonrec ' a t = ' a t type ( ' u , ' v , ' a ) f = ( ' u , ' v , ' a ) A . t module Ap = Applicative . Make3 ( A ) let traverse f x = let cf x l = let open ! Ap in ap ( map ( fun h t -> h :: t ) ( f x ) ) l in let ls = foldr cf ( defer Ap . pure [ ] ) x in Ap . map of_list ls let traverse_ f = foldr ( Ap . discard_left % f ) ( defer Ap . pure ( ) ) end )
module A2 ( A : Applicative . Basic2 ) = A3 ( struct type ( _ , ' p , ' a ) t = ( ' p , ' a ) A . t include ( A : Applicative . Basic2 with type ( ' p , ' a ) t := ( ' p , ' a ) A . t ) end )
module A ( A : Applicative . Basic ) = A2 ( struct type ( _ , ' a ) t = ' a A . t include ( A : Applicative . Basic with type ' a t := ' a A . t ) end )
module M3 ( M : Monad . Basic3 ) = struct include A3 ( M ) let foldr_m f a l = let g k x z = M . bind k ( f x z ) in foldl g M . pure l a let foldl_m f a l = let g x k z = M . bind ( fun x -> k ( ) x ) ( f z x ) in foldr g ( const M . pure ) l a end
module M2 ( M : Monad . Basic2 ) = M3 ( struct type ( _ , ' p , ' a ) t = ( ' p , ' a ) M . t include ( M : Monad . Basic2 with type ( ' p , ' a ) t := ( ' p , ' a ) M . t ) end )
module M ( M : Monad . Basic ) = M2 ( struct type ( _ , ' a ) t = ' a M . t include ( M : Monad . Basic with type ' a t := ' a M . t ) end )
module type Vector_base = sig type t type elt type index val fold_index : ( index -> elt -> ' a ) -> ( ' a -> index -> elt -> ' a ) -> t -> ' a val fold_index_2 : ( index -> elt -> elt -> ' a ) -> ( ' a -> index -> elt -> elt -> ' a ) -> t -> t -> ' a val map : ( index -> elt -> elt ) -> t -> t end
module Vect2 = struct type t = float * float type elt = float type index = Fst | Snd let fold_index init f ( fst , snd ) = f ( init Fst fst ) Snd snd let fold_index_2 init f ( fst1 , snd1 ) ( fst2 , snd2 ) = f ( init Fst fst1 fst2 ) Snd snd1 snd2 let map f ( fst , snd ) = ( f Fst fst , f Snd snd ) end
module Vect3 = struct type t = float * float * float type elt = float type index = Fst | Snd | Trd let fold_index init f ( fst , snd , trd ) = f ( f ( init Fst fst ) Snd snd ) Trd trd let fold_index_2 init f ( fst1 , snd1 , trd1 ) ( fst2 , snd2 , trd2 ) = f ( f ( init Fst fst1 fst2 ) Snd snd1 snd2 ) Trd trd1 trd2 let map f ( fst , snd , trd ) = ( f Fst fst , f Snd snd , f Trd trd ) end
module Vect2_record = struct type t = { x : float ; y : float } type elt = float type index = X | Y let fold_index init f { x ; y } = f ( init X x ) Y y let fold_index_2 init f v1 v2 = f ( init X v1 . x v2 . x ) Y v1 . y v2 . y let map f { x ; y } = { x = f X x ; y = f Y y } end
module Vect3_record = struct type t = { x : float ; y : float ; z : float } type elt = float type index = X | Y | Z let fold_index init f { x ; y ; z } = f ( f ( init X x ) Y y ) Z z let fold_index_2 init f v1 v2 = f ( f ( init X v1 . x v2 . x ) Y v1 . y v2 . y ) Z v1 . z v2 . z let map f { x ; y ; z } = { x = f X x ; y = f Y y ; z = f Z z } end
module Vect_array = struct type t = float array type elt = float type index = int let fold_index init f a = if Array . length a = 0 then invalid_arg " fold_index " ; let r = ref ( init 0 ( Array . unsafe_get a 0 ) ) in for i = 1 to Array . length a - 1 do r := f ! r i ( Array . unsafe_get a i ) done ; ! r let fold_index_2 init f v1 v2 = if Array . length v1 = 0 || Array . length v2 = 0 || Array . length v1 <> Array . length v2 then invalid_arg " fold_index " ; let r = ref ( init 0 ( Array . unsafe_get v1 0 ) ( Array . unsafe_get v2 0 ) ) in for i = 1 to Array . length v1 - 1 do r := f ! r i ( Array . unsafe_get v1 i ) ( Array . unsafe_get v2 i ) done ; ! r let map = Array . mapi end
module Vector_operations ( V : Vector_base with type elt = float ) = struct type elt = V . elt type t = V . t let norm v = let sum_sq = V . fold_index ( fun _ elt -> elt . * elt ) ( fun acc _ elt -> acc . + elt . * elt ) v in sqrt sum_sq let scale s v = V . map ( fun _ x -> x . * s ) v let dot v1 v2 = V . fold_index_2 ( fun _ f1 f2 -> f1 . * f2 ) ( fun acc _ f1 f2 -> acc . + f1 . * f2 ) v1 v2 let are_orthogonal v1 v2 = dot v1 v2 = 0 . end
type step = { obs : Tensor . t ; reward : Tensor . t ; is_done : Tensor . t }
type t = { envs : Pytypes . pyobject ; np : Pytypes . pyobject }
let create str ~ num_processes = if not ( Py . is_initialized ( ) ) then ( Py . add_python_path " examples / reinforcement - learning " ; Py . initialize ( ) ) ; let wrappers = Py . import " atari_wrappers " in let envs = Py . Module . get_function wrappers " make " [ | Py . String . of_string str ; Py . Int . of_int num_processes ] | in let np = Py . import " numpy " in { envs ; np }
let to_tensor t np_array = let np_array = Py . Module . get_function t . np " ascontiguousarray " [ | np_array ] | in Py . Object . call_method np_array " astype " [ | Py . Module . get t . np " float32 " ] | |> Numpy . to_bigarray Float32 C_layout |> Tensor . of_bigarray |> Tensor . to_type ~ type_ ( : T Float )
let reset t = let reset_fn = Py . Object . get_attr_string t . envs " reset " in Py . Callable . to_function ( Option . value_exn reset_fn ) [ ] || |> to_tensor t
let step t ~ actions = let v = Py . Object . call_method t . envs " step " [ | Py . List . of_list_map Py . Int . of_int actions ] | in let obs , reward , is_done , _ = Py . Tuple . to_tuple4 v in { obs = to_tensor t obs ; reward = to_tensor t reward ; is_done = to_tensor t is_done }
let action_space t = let action_space = Option . value_exn ( Py . Object . get_attr_string t . envs " action_space " ) in Option . value_exn ( Py . Object . get_attr_string action_space " n " ) |> Py . Int . to_int
module type ResizeType = sig type t val null : t end
module type S = sig type elt type t val length : t -> int val compact : t -> unit val singleton : elt -> t val empty : unit -> t val make : int -> t val init : int -> ( int -> elt ) -> t val is_empty : t -> bool val of_sub_array : elt array -> int -> int -> t val unsafe_internal_array : t -> elt array val reserve : t -> int -> unit val push : t -> elt -> unit val delete : t -> int -> unit val pop : t -> unit val get_last_and_pop : t -> elt val delete_range : t -> int -> int -> unit val get_and_delete_range : t -> int -> int -> t val clear : t -> unit val reset : t -> unit val to_list : t -> elt list val of_list : elt list -> t val to_array : t -> elt array val of_array : elt array -> t val copy : t -> t val reverse_in_place : t -> unit val iter : t -> ( elt -> unit ) -> unit val iteri : t -> ( int -> elt -> unit ) -> unit val iter_range : t -> from : int -> to_ : int -> ( elt -> unit ) -> unit val iteri_range : t -> from : int -> to_ : int -> ( int -> elt -> unit ) -> unit val map : ( elt -> elt ) -> t -> t val mapi : ( int -> elt -> elt ) -> t -> t val map_into_array : ( elt -> ' f ) -> t -> ' f array val map_into_list : ( elt -> ' f ) -> t -> ' f list val fold_left : ( ' f -> elt -> ' f ) -> ' f -> t -> ' f val fold_right : ( elt -> ' g -> ' g ) -> t -> ' g -> ' g val filter : ( elt -> bool ) -> t -> t val inplace_filter : ( elt -> bool ) -> t -> unit val inplace_filter_with : ( elt -> bool ) -> cb_no ( : elt -> ' a -> ' a ) -> ' a -> t -> ' a val inplace_filter_from : int -> ( elt -> bool ) -> t -> unit val equal : ( elt -> elt -> bool ) -> t -> t -> bool val get : t -> int -> elt val unsafe_get : t -> int -> elt val last : t -> elt val capacity : t -> int val exists : ( elt -> bool ) -> t -> bool val sub : t -> int -> int -> t end
let err_argv = " argv array must have at least one element "
let err_not_opt = " Option argument without name "
let err_not_pos = " Positional argument with a name "
let err_help s = " Term error , help requested for unknown command " ^ s
let err_empty_list = " Empty list "
let err_incomplete_enum = " Incomplete enumeration for the type "
let err_doc_string s = str " Variable substitution failed on documentation fragment ` % s ' " s
let rev_compare n n ' = compare n ' n
let str_of_pp pp v = pp Format . str_formatter v ; Format . flush_str_formatter ( )