text
stringlengths 0
601k
|
---|
let distance ((x1, y1): (int * int)) ((x2, y2): (int * int)) : float = let dx = float_of_int x2 -. float_of_int x1 in let dy = float_of_int y2 -. float_of_int y1 in (sqrt ((dx *. dx) +. (dy *. dy))) ;; |
let is_prime (n: int) : bool = if n <= 1 then domain () else let i = n - 1 in let rec helper n i = if i=1 then true else if (n mod i) = 0 then false else helper n (i-1) in helper n i ;; |
let rec fib_aux (n: int) (a: int) (b: int) : int = if n=0 then a else if n=1 then b else fib_aux (n-1) b (a+b) ;; let fib_tl (n: int) : int = if n < 0 then domain () else fib_aux (n+1) 0 1 ;; |
let rec fact (n: int): float = if n < 0 then domain () else match n with | 0 -> 1. | n -> float_of_int n *. fact (n-1);; |
let binomial (n: int) (k: int) = if n < 0 || k <0 then domain () else (if n >= k then fact n /. (fact k *. fact (n - k)) else domain());; |
let distance ((x1, y1): (int * int)) ((x2, y2): (int * int)) : float = let dx = x1 - x2 in let dy = y1 - y2 in sqrt ((float_of_int(dx) *. float_of_int(dx))+.(float_of_int(dy) *. float_of_int(dy))) ;; |
let is_prime n = if n<=1 then domain() else (if n=2 then true else let rec checkDivs (x:int) : bool = x*x > n || (n mod x != 0 && checkDivs(x+1)) in checkDivs 2);; |
let rec fib_aux n a b = if n=0 then a else (if n=1 then b else fib_aux (n-1) b (a+b)) let fib_tl n = fib_aux n 1 1;; |
let rec fact (n: int): float = match n with | 0 -> 1. | _ -> (float_of_int n) *. fact (n-1);; |
let binomial (n: int) (k: int) = if n < 0 then domain () else (if n < k || k < 0 then domain () else fact(n) /. (fact (k) *. fact (n - k)));; |
let distance ((x1, y1): (int * int)) ((x2, y2): (int * int)) : float = let dx = x2 - x1 in let dy = y2 - y1 in sqrt(float_of_int((dx * dx) + (dy * dy)));; |
let is_prime (n: int) : bool = if n <= 1 then domain () else let rec helper n x = if (x * x) > n then true else if n mod x <> 0 then helper n (x+1) else false in helper n 2;; |
let rec fib_aux n a b = if n == 0 then b else fib_aux (n-1) b (a+b) let fib_tl n = if n < 0 then domain () else fib_aux n 0 1;; |
let rec fact (n: int): float = match n with | 0 -> 1. | _ -> (float_of_int n) *. fact (n-1);; |
let binomial (n: int) (k: int) = if n < 0 then domain () else (if n < k || k < 0 then domain () else fact(n) /. (fact (k) *. fact (n - k)));; |
let distance ((x1, y1): (int * int)) ((x2, y2): (int * int)) : float = let dx = x2 - x1 in let dy = y2 - y1 in sqrt(float_of_int((dx * dx) + (dy * dy)));; |
let is_prime (n: int) : bool = if n <= 1 then domain () else let rec helper n x = if (x * x) > n then true else if n mod x <> 0 then helper n (x+1) else false in helper n 2;; |
let rec fib_aux n a b = if n == 0 then b else fib_aux (n-1) b (a+b) let fib_tl n = if n < 0 then domain () else fib_aux n 0 1;; |
let rec fact (n: int): float = match n with | 0 -> 1. | _ ->float_of_int(n) *. fact (n-1);; |
let binomial (n: int) (k: int) : float = if n < 0 then domain () else if k > n then domain () else fact n /. (fact k *. fact (n - k));; |
let distance ((x1, y1): (int * int)) ((x2, y2): (int * int)) : float = let dx = x2 - x1 in let dy = y2 - y1 in sqrt (float_of_int(dx * dx + dy * dy));; |
let is_prime (n:int):bool = if n <= 1 then domain () else let rec checkDenom (x:int):bool = x*x > n || (n mod x != 0 && checkDenom(x+1)) in n >= 2 && checkDenom(2);; |
let rec fib_aux n a b = if n = 0 then a else fib_aux (n - 1) (b) (a+b) let fib_tl n = fib_aux (n+1) 0 1;; |
let fact (n:int): float = let rec helper (n:float) = match n with | 0. -> 1. | _ -> n *. helper(n -. 1.) in helper(float_of_int n) ;; |
let binomial (n: int) (k: int) = if n < 0 then 0. else (if k = n then 1. else fact n /. (fact k *. fact (n - k)));; |
let distance ((x1, y1): (int * int)) ((x2, y2): (int * int)) : float = let dx = float_of_int (x1 - x2) in let dy = float_of_int (y1 - y2) in sqrt (dx *. dx +. dy *. dy) ;; |
let is_prime n = if n <= 1 then domain() else let rec helper x target = if x*x > target then true else if target mod x = 0 then false else helper (x+1) target in helper 2 n;; |
let rec fib_aux n a b = if n <= 1 then b else fib_aux (n-1) b (a+b) let fib_tl n = fib_aux n 1 1;; |
let rec fact (n: int): float = match n with | 0 -> 1. | _ -> float_of_int n *. fact (n - 1);; |
let binomial (n: int) (k: int) = if n < 0 then domain () else (if k = n then domain () else fact n /. (fact k *. fact (n - k)) );; |
let distance ((x1, y1): (int * int)) ((x2, y2): (int * int)) : float = let dx = x1 - x2 in let dy = y1 - y2 in sqrt (float_of_int dx *. float_of_int dx +. float_of_int dy *. float_of_int dy) ;; |
let is_prime (n: int): bool = if n <= 1 then domain() else ( let a = 2 in let rec prime a n = if a * a > n then true else ( match n mod a with 0 -> false | _ -> prime (a + 1) n ) in prime a n ) ;; |
let rec fib_aux idx a b = if idx = n then a else (fib_aux (idx + 1) b (a + b)) in fib_aux 0 1 1;; |
let rec fact (n: int): float = match n with | 0 -> 1. | _ -> float_of_int n *. fact (n - 1);; |
let binomial (n: int) (k: int) = if n < 0 then domain () else (if k = n then domain () else fact n /. (fact k *. fact (n - k)) );; |
let distance ((x1, y1): (int * int)) ((x2, y2): (int * int)) : float = let dx = x1 - x2 in let dy = y1 - y2 in sqrt (float_of_int dx *. float_of_int dx +. float_of_int dy *. float_of_int dy) ;; |
let is_prime n = if n <= 1 then domain() else ( let a = 2 in let rec prime a n = if a * a > n then true else ( match n mod a with 0 -> false | _ -> prime (a + 1) n ) in prime a n ) ;; |
let rec fib_aux n a b = match n with 0 -> a | _ -> fib_aux (n - 1) (a + b) a let fib_tl n = match n with 0 -> 1 | 1 -> 1 | _ -> fib_aux n 1 0;; |
let rec fact (n: int): float = match n with | 0 -> 1. | _ -> float_of_int n *. fact (n - 1);; |
let binomial (n: int) (k: int) = if n < 0 then domain () else (if k = n then 1. else fact n /. (fact k *. fact (n - k)));; |
let distance ((x1, y1): (int * int)) ((x2, y2): (int * int)) : float = let dx = x1 - x2 in let dy = y1 - y2 in sqrt (float_of_int (dx * dx + dy * dy)) ;; |
let is_prime n = if n <= 1 then domain() else if n = 2 then true else let rec factor n r = if r*r <= n then match n mod r with | 0 -> false | _ -> factor n (r+1) else true in factor n 2 ;; |
let rec fib_aux n a b = if n = 0 then b else fib_aux (n-1) (b) (a+b) ;; let fib_tl n = if n < 0 then domain() else match n with | 0 -> 1 | 1 -> 1 |_ -> fib_aux n 0 1 ;; |
let rec fact (n: int): float = match n with | 0 -> 1. | _ -> float_of_int n *. fact (n - 1) ;; |
let binomial (n: int) (k: int): float = if n < 0 then domain () else ( if k > n then domain () else fact n /. (fact k *. fact (n - k))) ;; |
let distance ((x1, y1): (int * int)) ((x2, y2): (int * int)) : float = let dx = x1 - x2 in let dy = y1 - y2 in sqrt ( (float_of_int (dx * dx)) +. (float_of_int (dy * dy)) ) ;; |
let is_prime n = if n <= 1 then domain () else (let rec prime_helper (n : int) (x: int): bool = if x * x > n then true else (if (n mod x) = 0 then false else prime_helper n (x + 1)) in prime_helper n 2) ;; |
let rec fib_aux n a b = if n < 0 then domain () else( if n <= 1 then b else fib_aux (n - 1) b (a + b) ) ;; let fib_tl n = fib_aux n 1 1 ;; |
let rec fact (n: int): float = match n with | 0 -> 1. | _ -> (float_of_int n) *. fact (n - 1);; |
let binomial (n: int) (k: int) = if n < 0 then domain () else (if k > n then domain () else fact n /. (fact k *. fact (n - k)));; |
let distance ((x1, y1): (int * int)) ((x2, y2): (int * int)) : float = let dx = (x2 - x1) in let dy = (y2 - y1) in sqrt (float_of_int(dx * dx + dy * dy)) ;; |
let is_prime n = if n <= 1 then domain() else if n<=3 then true else if n mod 2 ==0 || n mod 3 ==0 then false else let rec value n a= match a with | 1 -> true |_ -> (n mod a != 0) && value n (a-1) in value n (n-1);; |
let rec fib_aux n a b = if n=0 then a else if n=1 then b else fib_aux (n-1) (b) (a+b) let fib_tl n = fib_aux n 1 1;; |
let fact n : float= let rec f n acc = if n=0 then acc else f (n-1) (float_of_int(n)*.acc) in f n 1.;; |
let binomial (n: int) (k: int) : float = fact(n)/.(fact(k)*.fact(n-k));; |
let distance ((x1, y1): (int * int)) ((x2, y2): (int * int)) : float = (float_of_int(x1-x2)**2. +. float_of_int(y1-y2)**2.)**0.5 ;; |
let is_prime n = let rec checkZero n x = match x with | 1 -> true | _ -> (n mod x != 0) && checkZero n (x-1) in match n with | 0 -> false | 1 -> false | _ -> checkZero n (n-1) ;; |
let rec fib_aux n a b = match n with | 0 -> a | 1 -> b | _ -> fib_aux (n-1) b (a+b) ;; let fib_tl n = fib_aux n 1 1;; |
let fact n : float= let rec f n acc = if n=0 then acc else f (n-1) (float_of_int(n)*.acc) in f n 1.;; |
let binomial (n: int) (k: int) : float = fact(n)/.(fact(k)*.fact(n-k));; |
let distance ((x1, y1): (int * int)) ((x2, y2): (int * int)) : float = (float_of_int(x1-x2)**2. +. float_of_int(y1-y2)**2.)**0.5 ;; |
let is_prime n = if n<=1 then domain() else let rec f n x = if (x*x) <= n then match (n mod x) with | 0 -> false | _ -> f n (x+1) else true in f n 2 ;; |
let rec fib_aux n a b = match n with | 0 -> a | 1 -> b | _ -> fib_aux (n-1) b (a+b) ;; let fib_tl n = fib_aux n 1 1;; |
let fact n : float= let rec f n acc = if n=0 then acc else f (n-1) (float_of_int(n)*.acc) in f n 1.;; |
let binomial (n: int) (k: int) : float = fact(n)/.(fact(k)*.fact(n-k));; |
let distance ((x1, y1): (int * int)) ((x2, y2): (int * int)) : float = (float_of_int(x1-x2)**2. +. float_of_int(y1-y2)**2.)**0.5 ;; |
let is_prime n = if n<=1 then domain() else let rec f n x = if (x*x) <= n then match (n mod x) with | 0 -> false | _ -> f n (x+1) else true in f n 2 ;; |
let rec fib_aux n a b = match n with | 0 -> a | 1 -> b | _ -> fib_aux (n-1) b (a+b) ;; let fib_tl n = fib_aux n 1 1;; |
let rec fact (n: int): float = match n with | 0 -> 1. | _ -> float_of_int(n) *. fact (n-1) let rec binomial (n: int) (k: int) = if n < 0 then domain () else (if k > n then domain () else fact n /. (fact k *. fact (n - k)));; |
let distance ((x1, y1): (int * int)) ((x2, y2): (int * int)) : float = let dx = float_of_int(x1) -. float_of_int(x2) in let dy = float_of_int(y1) -. float_of_int(y2) in sqrt (dx *. dx +. dy *. dy) ;; |
let is_prime (n:int):bool = if n <= 1 then domain () else let rec helper (y:int)(nu:int) = match (nu mod y) with | 0 -> false || (y = 1) | _ -> helper (y-1) nu in helper (int_of_float(sqrt(float_of_int(n)))) n;; |
let rec fib_aux n a b = match n with | 0 -> a | 1 -> b | _ -> fib_aux (n-1) b (a+b) let fib_tl n = fib_aux n 1 1;; |
let rec fact (n: int): float = match n with | 0 -> 1. | _ -> float_of_int(n) *. fact (n-1) let rec binomial (n: int) (k: int) = if n < 0 then domain () else (if k > n then domain () else fact n /. (fact k *. fact (n - k)));; |
let distance ((x1, y1): (int * int)) ((x2, y2): (int * int)) : float = let dx = float_of_int(x1) -. float_of_int(x2) in let dy = float_of_int(y1) -. float_of_int(y2) in sqrt (dx *. dx +. dy *. dy) ;; |
let is_prime (n:int):bool = if n <= 1 then domain () else let rec helper (y:int)(nu:int) = match (nu mod y) with | 0 -> false || (y = 1) | _ -> helper (y-1) nu in helper (int_of_float(sqrt(float_of_int(n)))) n;; |
let rec fib_aux n a b = match n with | 0 -> a | 1 -> b | _ -> fib_aux (n-1) b (a+b) let fib_tl n = fib_aux n 1 1;; |
let convert_int (i:int) : float = float_of_int i;; let convert_float(f:float) : int = int_of_float f;; let fact (n:int):float = let rec f n acc = match n with | 0 -> acc | _ -> f(n-1) (n*acc) in convert_int(f n 1);; |
let binomial (n: int) (k: int): float = if n < 0 || (n!=0 && n=k) then domain () else (if n=0 && k=0 then 1. else (if k > n then domain () else fact n /. (fact k *. fact (n - k))));; |
let distance ((x1, y1): (int * int)) ((x2, y2): (int * int)) : float = let dx = x2 - x1 in let dy = y2 - y1 in sqrt (convert_int(dx * dx + dy * dy)) ;; |
let is_prime (n:int):bool = if n <= 1 then domain() else let rec factors(i:int):bool= i * i > n || (n mod i != 0 && factors(i+1)) in n > 1 && factors 2;; |
let rec fib_aux n a b = if n = 0 then a else fib_aux(n+1)(b)(a+b) let fib_tl (n:int) :int = let rec fib_aux(i:int) (a:int) (b:int) :int = if i = n then a else fib_aux(i+1) (b) (a+b) in fib_aux 0 1 1;; |
let rec fact (n: int):float = if n=0 then 1. else float_of_int(n) *. fact (n - 1);; |
let binomial (n: int) (k: int) = if n < 0 || k < 0 then domain () else (if k > n then domain () else (fact n) /. ((fact k) *. fact (n - k)));; |
let distance ((x1, y1): (int * int)) ((x2, y2): (int * int)) : float = let dx = x1 - x2 in let dy = y1 - y2 in sqrt (float_of_int(dx * dx) +. float_of_int(dy * dy)) ;; |
let is_prime (n: int): bool = if n<=1 then domain () else let rec helper (n: int)(x:int): bool= if x*x > n then true else if ((n mod x) = 0) then false else helper n (x+1) in helper n 2;; |
let rec fib_aux n a b = if n=1 then b else if n=0 then a else fib_aux (n-1) b (a+b) let fib_tl n = if n<0 then domain () else fib_aux n 1 1;; |
let rec fact (n: int): float = match n with | 0 -> 1. | _ -> (float_of_int n) *. fact (n - 1);; |
let binomial (n: int) (k: int) : float = if k < 0 || n < 0 then domain () else (if n < k then domain () else (fact n) /. (fact k *. fact (n-k)));; |
let distance ((x1, y1): (int * int)) ((x2, y2): (int * int)) : float = sqrt (((float_of_int (x1 - x2)) ** 2.) +. ((float_of_int (y1 - y2)) ** 2.));; |
let is_prime n = if n <= 1 then domain () else let rec factorCheck (x: int) (factor: int) : bool = if factor = 1 then true else( if (x mod factor != 0) then factorCheck x (factor - 1) else false) in factorCheck n (int_of_float (sqrt (float_of_int n)));; |
let rec fib_aux n a b = if n <= 0 then b else fib_aux (n-1) b (a+b) let fib_tl n = fib_aux n 0 1;; |
let rec fact (n: int): float = match n with | 0 -> 1. | _ -> float(n) *. (fact (n - 1));; |
let binomial (n: int) (k: int) = if n < 0 then domain () else (if k > n then domain () else fact n /. (fact k *. fact (n - k)));; |
let distance ((x1, y1): (int * int)) ((x2, y2): (int * int)) : float = let dx = float(x2 - x1) ** 2.0 in let dy = float(y2 - y1) ** 2.0 in sqrt (dx +. dy) ;; |
let is_prime n = if n <= 1 then domain() else let rec helper n x = if x * x > n then true else if n mod x == 0 then false else helper n (x + 1) in helper n 2;; |
let rec fib_aux n a b = if n == 0 then 1 else if n == 1 then b else fib_aux (n - 1) b (a + b) let fib_tl n = fib_aux n 1 1 ;; |
let rec fact (n: int): float = match n with | 0 -> 1. | 1 -> 1. | n -> float_of_int(n) *. fact(n - 1);; |
let binomial (n: int) (k: int) = if n < 0 then domain () else (if k > n then domain () else fact n /. (fact k *. fact (n - k)));; |
let distance ((x1, y1): (int * int)) ((x2, y2): (int * int)) : float = let dx = float_of_int(x2) -. float_of_int(x1) in let dy = float_of_int(y2) -. float_of_int(y1) in sqrt (dx *. dx +. dy *. dy) ;; |
let is_prime n = if n <= 1 then domain () else if n <= 3 then true else let rec helper n x = if x >= 2 then if n mod x = 0 then false else helper (n) (x-1) else true in helper n (n/2) ;; |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.