mxeval / README.md
skgouda's picture
Update README to use mxeval naming
37b21dd verified
---
dataset_info:
features:
- name: task_id
dtype: string
- name: language
dtype: string
- name: prompt
dtype: string
- name: test
dtype: string
- name: entry_point
dtype: string
splits:
- name: multilingual-humaneval_python
num_bytes: 165716
num_examples: 164
download_size: 67983
dataset_size: 165716
license: apache-2.0
task_categories:
- text-generation
tags:
- mxeval
- code-generation
- mbxp
- multi-humaneval
- mathqax
pretty_name: mxeval
language:
- en
---
# MxEval
**M**ultilingual E**x**ecution **Eval**uation
## Table of Contents
- [MxEval](#MxEval)
- [Table of Contents](#table-of-contents)
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Executional Correctness](#execution)
- [Execution Example](#execution-example)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Repository:** [GitHub Repository](https://github.com/amazon-science/mxeval)
- **Paper:** [Multi-lingual Evaluation of Code Generation Models](https://openreview.net/forum?id=Bo7eeXm6An8)
### Dataset Summary
This repository contains data and code to perform execution-based multi-lingual evaluation of code generation capabilities and the corresponding data,
namely, a multi-lingual benchmark MBXP, multi-lingual MathQA and multi-lingual HumanEval.
<br>Results and findings can be found in the paper ["Multi-lingual Evaluation of Code Generation Models"](https://arxiv.org/abs/2210.14868).
### Supported Tasks and Leaderboards
* [MBXP](https://huggingface.co/datasets/mxeval/mbxp)
* [Multi-HumanEval](https://huggingface.co/datasets/mxeval/multi-humaneval)
* [MathQA-X](https://huggingface.co/datasets/mxeval/mathqa-x)
### Languages
The programming problems are written in multiple programming languages and contain English natural text in comments and docstrings.
## Dataset Structure
To lookup currently supported datasets
```python
get_dataset_config_names("AmazonScience/mxeval")
['mathqa-x', 'mbxp', 'multi-humaneval']
```
To load a specific dataset and language
```python
from datasets import load_dataset
load_dataset("AmazonScience/mxeval", "mbxp", split="python")
Dataset({
features: ['task_id', 'language', 'prompt', 'test', 'entry_point', 'description', 'canonical_solution'],
num_rows: 974
})
```
### Data Instances
An example of a dataset instance:
```python
{
"task_id": "MBSCP/6",
"language": "scala",
"prompt": "object Main extends App {\n /**\n * You are an expert Scala programmer, and here is your task.\n * * Write a Scala function to check whether the two numbers differ at one bit position only or not.\n *\n * >>> differAtOneBitPos(13, 9)\n * true\n * >>> differAtOneBitPos(15, 8)\n * false\n * >>> differAtOneBitPos(2, 4)\n * false\n */\n def differAtOneBitPos(a : Int, b : Int) : Boolean = {\n",
"test": "\n\n var arg00 : Int = 13\n var arg01 : Int = 9\n var x0 : Boolean = differAtOneBitPos(arg00, arg01)\n var v0 : Boolean = true\n assert(x0 == v0, \"Exception -- test case 0 did not pass. x0 = \" + x0)\n\n var arg10 : Int = 15\n var arg11 : Int = 8\n var x1 : Boolean = differAtOneBitPos(arg10, arg11)\n var v1 : Boolean = false\n assert(x1 == v1, \"Exception -- test case 1 did not pass. x1 = \" + x1)\n\n var arg20 : Int = 2\n var arg21 : Int = 4\n var x2 : Boolean = differAtOneBitPos(arg20, arg21)\n var v2 : Boolean = false\n assert(x2 == v2, \"Exception -- test case 2 did not pass. x2 = \" + x2)\n\n\n}\n",
"entry_point": "differAtOneBitPos",
"description": "Write a Scala function to check whether the two numbers differ at one bit position only or not."
}
```
### Data Fields
- `task_id`: identifier for the data sample
- `prompt`: input for the model containing function header and docstrings
- `canonical_solution`: solution for the problem in the `prompt`
- `description`: task description
- `test`: contains function to test generated code for correctness
- `entry_point`: entry point for test
- `language`: programming lanuage identifier to call the appropriate subprocess call for program execution
### Data Splits
- HumanXEval
- Python
- Java
- JavaScript
- Csharp
- CPP
- Go
- Kotlin
- PHP
- Perl
- Ruby
- Swift
- Scala
- MBXP
- Python
- Java
- JavaScript
- TypeScript
- Csharp
- CPP
- Go
- Kotlin
- PHP
- Perl
- Ruby
- Swift
- Scala
- MathQA
- Python
- Java
- JavaScript
## Dataset Creation
### Curation Rationale
Since code generation models are often trained on dumps of GitHub a dataset not included in the dump was necessary to properly evaluate the model. However, since this dataset was published on GitHub it is likely to be included in future dumps.
### Personal and Sensitive Information
None.
### Social Impact of Dataset
With this dataset code generating models can be better evaluated which leads to fewer issues introduced when using such models.
### Dataset Curators
AWS AI Labs
## Execution
### Execution Example
Install the repo [mxeval](https://github.com/amazon-science/mxeval) to execute generations or canonical solutions for the prompts from this dataset.
```python
>>> from datasets import load_dataset
>>> from mxeval.execution import check_correctness
>>> mbxp_python = load_dataset("AmazonScience/mxeval", "mbxp", split="python")
>>> example_problem = mbxp_python[0]
>>> check_correctness(example_problem, example_problem["canonical_solution"], timeout=20.0)
{'task_id': 'MBPP/1', 'passed': True, 'result': 'passed', 'completion_id': None, 'time_elapsed': 10.582208633422852}
```
### Considerations for Using the Data
Make sure to sandbox the execution environment since generated code samples can be harmful.
### Licensing Information
[LICENSE](https://huggingface.co/datasets/AmazonScience/mxeval/blob/main/LICENSE) <br>
[THIRD PARTY LICENSES](https://huggingface.co/datasets/AmazonScience/mxeval/blob/main/THIRD_PARTY_LICENSES)
# Citation Information
```
@article{mbxp_athiwaratkun2022,
title = {Multi-lingual Evaluation of Code Generation Models},
author = {Athiwaratkun, Ben and
Gouda, Sanjay Krishna and
Wang, Zijian and
Li, Xiaopeng and
Tian, Yuchen and
Tan, Ming
and Ahmad, Wasi Uddin and
Wang, Shiqi and
Sun, Qing and
Shang, Mingyue and
Gonugondla, Sujan Kumar and
Ding, Hantian and
Kumar, Varun and
Fulton, Nathan and
Farahani, Arash and
Jain, Siddhartha and
Giaquinto, Robert and
Qian, Haifeng and
Ramanathan, Murali Krishna and
Nallapati, Ramesh and
Ray, Baishakhi and
Bhatia, Parminder and
Sengupta, Sudipta and
Roth, Dan and
Xiang, Bing},
doi = {10.48550/ARXIV.2210.14868},
url = {https://arxiv.org/abs/2210.14868},
keywords = {Machine Learning (cs.LG), Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
```
# Contributions
[skgouda@](https://github.com/sk-g) [benathi@](https://github.com/benathi)