text
stringlengths 2
1.42k
| label
int64 0
1
|
---|---|
Hilbert scheme; resolution; quotient surface singularity Kidoh, R., Hilbert schemes and cyclic quotient surface singularities, Hokkaido Math. J. 30 (2001), 91--103. Hilbert scheme
| 0 |
Hilbert scheme; resolution; quotient surface singularity Kidoh, R., Hilbert schemes and cyclic quotient surface singularities, Hokkaido Math. J. 30 (2001), 91--103. rational surface singularity; rational triple points; complex Plateau problem; strongly pseudoconvex; CR manifold Shokurov, V.V.: Problems about Fano varieties. In: Birational Geometry of Algebraic Varieties. Open Problems-Katata, pp. 30-32 (1988)
| 0 |
Hilbert scheme; resolution; quotient surface singularity Kidoh, R., Hilbert schemes and cyclic quotient surface singularities, Hokkaido Math. J. 30 (2001), 91--103. torsion point; abelian surface scheme; Pell equation; Jacobian variety; Chabauty's theorem Manin, Y.: Rational points on curves over function fields, Izv. Akad. Nauk SSSR \textbf{27}, 1395-1490 (1963) (English translation: Tansl. II Amer. Math. Soc. \textbf{50}, 189-234 (1966))
| 0 |
Hilbert scheme; resolution; quotient surface singularity Kidoh, R., Hilbert schemes and cyclic quotient surface singularities, Hokkaido Math. J. 30 (2001), 91--103. curves with maximal rank; Hilbert scheme; number of moduli Gunnar Fløystad, Construction of space curves with good properties, Math. Ann. 289 (1991), no. 1, 33 -- 54.
| 0 |
Hilbert scheme; resolution; quotient surface singularity Kidoh, R., Hilbert schemes and cyclic quotient surface singularities, Hokkaido Math. J. 30 (2001), 91--103. pluri-genera; normal surface singularities; good resolution; purely elliptic singularities; log-canonical singularities Okuma T. The plurigunera of surface singularities. Tohoku Math J, 1998, 50: 119--132
| 0 |
Hilbert scheme; resolution; quotient surface singularity Kidoh, R., Hilbert schemes and cyclic quotient surface singularities, Hokkaido Math. J. 30 (2001), 91--103. second Painlevé equation; thirty-fourth Painlevé equation; asymptotic bahaviour; resolution of singularities; rational surface Howes, P.; Joshi, N., Global asymptotics of the second Painlevé equation in Okamoto's space, Constr Approx, 39, 11-41, (2014)
| 0 |
Hilbert scheme; resolution; quotient surface singularity Kidoh, R., Hilbert schemes and cyclic quotient surface singularities, Hokkaido Math. J. 30 (2001), 91--103. relative Hilbert scheme; weighted projective space
| 0 |
Hilbert scheme; resolution; quotient surface singularity Kidoh, R., Hilbert schemes and cyclic quotient surface singularities, Hokkaido Math. J. 30 (2001), 91--103. complex space curves; Hilbert scheme \textsc{C. Keem and S. Kim}, Irreducibility of a subscheme of the Hilbert scheme of complex space curves, J. Algebra, \textbf{145} (1992), 240-248.
| 0 |
Hilbert scheme; resolution; quotient surface singularity Kidoh, R., Hilbert schemes and cyclic quotient surface singularities, Hokkaido Math. J. 30 (2001), 91--103. order of automorphism group; Gorenstein surface singularity
| 0 |
Hilbert scheme; resolution; quotient surface singularity Kidoh, R., Hilbert schemes and cyclic quotient surface singularities, Hokkaido Math. J. 30 (2001), 91--103. Hilbert scheme; Mori dream space; Stable base locus decomposition D. Chen, I. Coskun & S. Nollet, Hilbert scheme of a pair of codimension two linear subspaces. Comm. Algebra 39, no. 8, 3021--3043, 2011.arXiv:0909.5170
| 0 |
Hilbert scheme; resolution; quotient surface singularity Kidoh, R., Hilbert schemes and cyclic quotient surface singularities, Hokkaido Math. J. 30 (2001), 91--103. quasi-coherent quotients; Hilbert scheme Ellingsrud G and Lehn M, Irreducibility of the punctual quotient scheme of a surface, Ark. Mat. 37(2) (1999) 245--254
| 0 |
Hilbert scheme; resolution; quotient surface singularity Kidoh, R., Hilbert schemes and cyclic quotient surface singularities, Hokkaido Math. J. 30 (2001), 91--103. Hilbert scheme; Cremona map; smoothability; Tonoli Calabi-Yau; special projection
| 0 |
Hilbert scheme; resolution; quotient surface singularity Kidoh, R., Hilbert schemes and cyclic quotient surface singularities, Hokkaido Math. J. 30 (2001), 91--103. GIT; Hilbert scheme; Chow scheme; stable curves; pseudo-stable curves; compactified universal Jacobian
| 0 |
Hilbert scheme; resolution; quotient surface singularity Kidoh, R., Hilbert schemes and cyclic quotient surface singularities, Hokkaido Math. J. 30 (2001), 91--103. normal surface singularity; Riemann-Roch formula M. Morales : Calcul de quelques invariants de surface normale, dans Noeuds, tresses et singularités, Les Plans sur Bex , 1982. Monographie 31 de l'Enseignement Mathématique, Genève, 1983.
| 0 |
Hilbert scheme; resolution; quotient surface singularity Kidoh, R., Hilbert schemes and cyclic quotient surface singularities, Hokkaido Math. J. 30 (2001), 91--103. Fano 3-fold; Del Pezzo surface; ample anticanonical bundle; Dedekind scheme; Mori fiber space; terminal singularities; extremal contraction; Del Pezzo fibration; smooth Del Pezzo surface; standard model A. Corti, Del Pezzo surfaces over Dedekind schemes , Ann. of Math. (2), 144 (1996), 641-683. JSTOR:
| 0 |
Hilbert scheme; resolution; quotient surface singularity Kidoh, R., Hilbert schemes and cyclic quotient surface singularities, Hokkaido Math. J. 30 (2001), 91--103. black hole; singularity resolution; deformed algebra; generalized uncertainty principle; canonical quantum gravity
| 0 |
Hilbert scheme; resolution; quotient surface singularity Kidoh, R., Hilbert schemes and cyclic quotient surface singularities, Hokkaido Math. J. 30 (2001), 91--103. moduli space; Hilbert scheme; canonical models; \(G\)-marked family; GIT
| 0 |
Hilbert scheme; resolution; quotient surface singularity Kidoh, R., Hilbert schemes and cyclic quotient surface singularities, Hokkaido Math. J. 30 (2001), 91--103. Hilbert scheme of lines; quadratic manifolds; second fundamental form; projective extensions Russo, F.: Lines on projective varieties and applications. Rend. Circ. Mat. Palermo 61, 47--64 (2012)
| 0 |
Hilbert scheme; resolution; quotient surface singularity Kidoh, R., Hilbert schemes and cyclic quotient surface singularities, Hokkaido Math. J. 30 (2001), 91--103. Hilbert scheme of points; elementary component
| 0 |
Hilbert scheme; resolution; quotient surface singularity Kidoh, R., Hilbert schemes and cyclic quotient surface singularities, Hokkaido Math. J. 30 (2001), 91--103. degree; Fano scheme; Gelfand-Tsetlin polytope; Hilbert polynomial; non-intersecting lattice paths; Parseval frame; Stiefel manifold
| 0 |
Hilbert scheme; resolution; quotient surface singularity Kidoh, R., Hilbert schemes and cyclic quotient surface singularities, Hokkaido Math. J. 30 (2001), 91--103. arborescent singularity; \(B\)-divisor; block; brick; cut-vertex; intersection number; normal surface singularities; trees; ultrametric; semivaluations
| 0 |
Hilbert scheme; resolution; quotient surface singularity Kidoh, R., Hilbert schemes and cyclic quotient surface singularities, Hokkaido Math. J. 30 (2001), 91--103. Macaulay2; toric Hilbert scheme; semigroup algebra Stillman, M., Sturmfels, B., Thomas, R.: Algorithms for the toric Hilbert scheme. In: Computations in Algebraic Geometry using Macaulay 2, D. Eisenbud et al. (eds.), Algorithms and Computation in Mathematics Vol 8, Springer, 2002, pp. 179--213
| 0 |
Hilbert scheme; resolution; quotient surface singularity Kidoh, R., Hilbert schemes and cyclic quotient surface singularities, Hokkaido Math. J. 30 (2001), 91--103. automorphism group; weighted homogeneous normal surface singularity; central curve; integral homology Müller, G. -- Symmetries of surface singularities. In preparation.
| 0 |
Hilbert scheme; resolution; quotient surface singularity Kidoh, R., Hilbert schemes and cyclic quotient surface singularities, Hokkaido Math. J. 30 (2001), 91--103. hypersurface; singular locus; moduli space; Hilbert scheme Slavov, K.: The space of hypersurfaces singular along a specified curve. arXiv:math/0527780v1
| 0 |
Hilbert scheme; resolution; quotient surface singularity Kidoh, R., Hilbert schemes and cyclic quotient surface singularities, Hokkaido Math. J. 30 (2001), 91--103. Hilbert scheme of curves; enumerative problems; Zeuthen's problem; stick figures R. Hartshorne, Families of Curves in \(\mathbb P^3\) and Zeuthen's Problem, preprint.
| 0 |
Hilbert scheme; resolution; quotient surface singularity Kidoh, R., Hilbert schemes and cyclic quotient surface singularities, Hokkaido Math. J. 30 (2001), 91--103. normal surface singularities; plurigenera; isolated singularity T. TOMARU, H. SAITO AND T. HIGUCHI, Pluri-genera m of normal surface singularities with C*-action, Sci. Rep. Yokohama Nat. Univ. Sect. I No. 28 (1981), 35-43.
| 0 |
Hilbert scheme; resolution; quotient surface singularity Kidoh, R., Hilbert schemes and cyclic quotient surface singularities, Hokkaido Math. J. 30 (2001), 91--103. Brill-Noether locus; zero dimensional subschemes; Hilbert scheme Coppo, M. A.; Walter, C.: Composante centrale du lieu de brill -- Noether de \(Hilb2(P2)\). Lecture notes in pure and appl. Math. 200, 341-349 (1998)
| 0 |
Hilbert scheme; resolution; quotient surface singularity Kidoh, R., Hilbert schemes and cyclic quotient surface singularities, Hokkaido Math. J. 30 (2001), 91--103. parametrization; Gorenstein algebra; Artinian algebra; liaison; licci; Cohen-Macaulay; canonical module; normal module; Hilbert scheme; unobstructed Kleppe, J. O.: Maximal families of Gorenstein algebras. Trans. amer. Math. soc. 358, No. 7, 3133-3167 (2006)
| 0 |
Hilbert scheme; resolution; quotient surface singularity Kidoh, R., Hilbert schemes and cyclic quotient surface singularities, Hokkaido Math. J. 30 (2001), 91--103. Koszul algebra; minimal free resolution; Hilbert series; Poincaré-Betti series; set of points of \(\mathbb{P}^n\); Koszul filtration Conca, Aldo; Trung, Ngô Viêt; Valla, Giuseppe, Koszul property for points in projective spaces, Math. scand., 89, 201-216, (2001)
| 0 |
Hilbert scheme; resolution; quotient surface singularity Kidoh, R., Hilbert schemes and cyclic quotient surface singularities, Hokkaido Math. J. 30 (2001), 91--103. Hilbert scheme; irreducible representations; moduli spaces Becker, T.; Terpereau, R., Moduli spaces of \((G, h)\)-constellations, Transform. Groups, 20, 2, 335-366, (2015)
| 0 |
Hilbert scheme; resolution; quotient surface singularity Kidoh, R., Hilbert schemes and cyclic quotient surface singularities, Hokkaido Math. J. 30 (2001), 91--103. Hilbert scheme; Chow group; Néron-Severi group; space curves
| 0 |
Hilbert scheme; resolution; quotient surface singularity Kidoh, R., Hilbert schemes and cyclic quotient surface singularities, Hokkaido Math. J. 30 (2001), 91--103. Hilbert scheme; moduli space of curves; expected number of moduli; smoothing reducible curves; Brill-Noether number Lopez, AF, On the existence of components of the Hilbert scheme with the expected number of moduli II, Commun. Algebr., 27, 3485-3493, (1999)
| 0 |
Hilbert scheme; resolution; quotient surface singularity Kidoh, R., Hilbert schemes and cyclic quotient surface singularities, Hokkaido Math. J. 30 (2001), 91--103. moduli of vector bundles; Hilbert scheme; Hecke correspondence; gonality; moduli of stable maps Brambila-Paz, L.; Mata-Gutiérrez, O.: On the Hilbert scheme of the moduli space of vector bundles over an algebraic curve. Manuscripta math. 142, 525-544 (2013)
| 0 |
Hilbert scheme; resolution; quotient surface singularity Kidoh, R., Hilbert schemes and cyclic quotient surface singularities, Hokkaido Math. J. 30 (2001), 91--103. representation theory; Calabi-Yau algebras; Nori-Hilbert scheme
| 0 |
Hilbert scheme; resolution; quotient surface singularity Kidoh, R., Hilbert schemes and cyclic quotient surface singularities, Hokkaido Math. J. 30 (2001), 91--103. Hilbert scheme; functional method Vassallo, V., Justification de la méthode fonctionnelle pour les courbes gauches.C. R. Acad. Sci. Paris Sér. I. Math., 303 (1986), 299--302.
| 0 |
Hilbert scheme; resolution; quotient surface singularity Kidoh, R., Hilbert schemes and cyclic quotient surface singularities, Hokkaido Math. J. 30 (2001), 91--103. moduli scheme for semistable pre-\({\mathcal D}\)-modules; singularities; perverse sheaves; de Rham functor; Riemann-Hilbert correspondence Nitin Nitsure and Claude Sabbah, Moduli of pre-\(\scr D\)-modules, perverse sheaves and the Riemann-Hilbert morphism. I , Math. Ann. 306 (1996), no. 1, 47-73.
| 0 |
Hilbert scheme; resolution; quotient surface singularity Kidoh, R., Hilbert schemes and cyclic quotient surface singularities, Hokkaido Math. J. 30 (2001), 91--103. minimal free resolution of homogeneous coordinate ring; elliptic ruled surface; very ample line bundle; adjoint bundle; Koszul cohomology; cohomology vanishings Gallego, F.J.; Purnaprajna, B.P., Higher syzygies of elliptic ruled surfaces, J. Algebra, 186, 626-659, (1996)
| 0 |
Hilbert scheme; resolution; quotient surface singularity Kidoh, R., Hilbert schemes and cyclic quotient surface singularities, Hokkaido Math. J. 30 (2001), 91--103. Macdonald polynomials; partitions; Hilbert scheme; projective varieties; vector bundles
| 0 |
Hilbert scheme; resolution; quotient surface singularity Kidoh, R., Hilbert schemes and cyclic quotient surface singularities, Hokkaido Math. J. 30 (2001), 91--103. Gröbner bases; Hilbert functions; homogeneous rings; graded rings; Cayley-Bacharach property; gradings; minimal homogeneous system of generators; minimal resolution conjecture; multivariante Hilbert series; CoCoA; SAGBI bases; automatic theorem proving M. Kreuzer and L. Robbiano, \textit{Computational Commutative Algebra 2}, Springer Science & Business Media, 2005.
| 0 |
Hilbert scheme; resolution; quotient surface singularity Kidoh, R., Hilbert schemes and cyclic quotient surface singularities, Hokkaido Math. J. 30 (2001), 91--103. weak resolutions of deformations; normal Gorenstein two dimensional singularity; oriented homotopy type; simultaneous resolution H. B. LAUFER, Weak simultaneous resolution for deformations of Gorenstein surface singularities, Proc. Symp. Pure Math., 40 (1983), pp. 1-29. Zbl0568.14008 MR713236
| 0 |
Hilbert scheme; resolution; quotient surface singularity Kidoh, R., Hilbert schemes and cyclic quotient surface singularities, Hokkaido Math. J. 30 (2001), 91--103. \(p\)-adic; special linear group; group actions; affine Grassmannian; Hilbert scheme; Greenberg realization Kreidl, M, On \(p\)-adic lattices and Grassmannians, Math. Z., 276, 859-888, (2014)
| 0 |
Hilbert scheme; resolution; quotient surface singularity Kidoh, R., Hilbert schemes and cyclic quotient surface singularities, Hokkaido Math. J. 30 (2001), 91--103. k-tuples; Hilbert scheme; normal bundle LE BARZ (P.) . - Un lemme sur les fibrés normaux , C. R. Acad. Sc., t. 296, 1983 , p. 911-914. MR 84j:14015 | Zbl 0535.14002
| 0 |
Hilbert scheme; resolution; quotient surface singularity Kidoh, R., Hilbert schemes and cyclic quotient surface singularities, Hokkaido Math. J. 30 (2001), 91--103. Hilbert scheme; Chern classes of tautological bundles; differential operators on a Fock space Lehn, M.: Chern classes of tautological sheaves on Hilbert schemes of points on surfaces. Invent. Math. \textbf{136}(1), 157-207 (1999). arXiv:math/9803091
| 0 |
Hilbert scheme; resolution; quotient surface singularity Kidoh, R., Hilbert schemes and cyclic quotient surface singularities, Hokkaido Math. J. 30 (2001), 91--103. projective bundle; ruling; Hilbert scheme; Brauer group; different bundle structures over varieties
| 0 |
Hilbert scheme; resolution; quotient surface singularity Kidoh, R., Hilbert schemes and cyclic quotient surface singularities, Hokkaido Math. J. 30 (2001), 91--103. Del Pezzo surface; Cox ring; syzygy; Hilbert function
| 0 |
Hilbert scheme; resolution; quotient surface singularity Kidoh, R., Hilbert schemes and cyclic quotient surface singularities, Hokkaido Math. J. 30 (2001), 91--103. group scheme; algebraic group; albanese morphism; Hilbert's fourteenth problem Séminaire de Géométrie Algébrique du Bois Marie 1960-61: Revêtements étales et groupe fondamental (SGA 1). Séminaire dirigé par A. Grothendieck. Augmenté de deux exposés de Mme M. Raynaud. Documents Mathématiques, vol. 3. Soc. Math. France, Paris (2003)
| 0 |
Hilbert scheme; resolution; quotient surface singularity Kidoh, R., Hilbert schemes and cyclic quotient surface singularities, Hokkaido Math. J. 30 (2001), 91--103. \(k\)-secant formula; space curves; Hilbert scheme; Chow group Vassallo, V.: Justification de la méthode fonctionnelle pour LES courbes gauches. Acta math. 172, 257-297 (1994)
| 0 |
Hilbert scheme; resolution; quotient surface singularity Kidoh, R., Hilbert schemes and cyclic quotient surface singularities, Hokkaido Math. J. 30 (2001), 91--103. Hilbert scheme of projective curves; curves in multiple planes Hartshorne, R., Schlesinger, E.: Curves in the double plane. Commun. Algebra \textbf{28}(12), 5655-5676 (2000) (special issue in honor of Robin Hartshorne)
| 0 |
Hilbert scheme; resolution; quotient surface singularity Kidoh, R., Hilbert schemes and cyclic quotient surface singularities, Hokkaido Math. J. 30 (2001), 91--103. space curves; non-reduced component of the Hilbert scheme; family of curves on cubic surfaces Ellia, P., D'autres composantes non réduites de \(\text{Hilb} \mathbf{P}^3\), Math. Ann., 277, 3, 433-446, (1987)
| 0 |
Hilbert scheme; resolution; quotient surface singularity Kidoh, R., Hilbert schemes and cyclic quotient surface singularities, Hokkaido Math. J. 30 (2001), 91--103. deformation of torsion sheaves; smoothing coherent sheaves of finite length; irreducibility of the Hilbert schemes; Quot scheme C. J. REGO , Deformation of Singular Curves (to appear).
| 0 |
Hilbert scheme; resolution; quotient surface singularity Kidoh, R., Hilbert schemes and cyclic quotient surface singularities, Hokkaido Math. J. 30 (2001), 91--103. normal surface singularity; pencil; generic fiber; special fiber; critical locus
| 0 |
Hilbert scheme; resolution; quotient surface singularity Kidoh, R., Hilbert schemes and cyclic quotient surface singularities, Hokkaido Math. J. 30 (2001), 91--103. log-canonical singularity; del Pezzo surface; smoothing
| 0 |
Hilbert scheme; resolution; quotient surface singularity Kidoh, R., Hilbert schemes and cyclic quotient surface singularities, Hokkaido Math. J. 30 (2001), 91--103. Chow variety; Hilbert scheme Joseph Ross, The Hilbert-Chow morphism and the incidence divisor. Ph.D. Thesis, Columbia University, 2009.
| 0 |
Hilbert scheme; resolution; quotient surface singularity Kidoh, R., Hilbert schemes and cyclic quotient surface singularities, Hokkaido Math. J. 30 (2001), 91--103. quiver variety; stable envelope; elliptic cohomology; Hilbert scheme of points in the plane
| 0 |
Hilbert scheme; resolution; quotient surface singularity Kidoh, R., Hilbert schemes and cyclic quotient surface singularities, Hokkaido Math. J. 30 (2001), 91--103. quotient; semistability; Hilbert-Mumford criterion; equivariant morphism; variation of quotients and moduli spaces; relative moduli space
| 0 |
Hilbert scheme; resolution; quotient surface singularity Kidoh, R., Hilbert schemes and cyclic quotient surface singularities, Hokkaido Math. J. 30 (2001), 91--103. modules of finite length; Grothendieck group; rational double point of a surface; resolution of singularities; Chow groups Srinivas, V., Modules of finite length and Chow groups of surfaces with rational double points, Ill. J. math., 31, 36-61, (1987)
| 0 |
Hilbert scheme; resolution; quotient surface singularity Kidoh, R., Hilbert schemes and cyclic quotient surface singularities, Hokkaido Math. J. 30 (2001), 91--103. Hilbert scheme; automorphisms; fixed points Boissière, S., Automorphismes naturels de l'espace de Douady de points sur une surface, Canad. J. Math., 64, no. 1, 3-23, (2012)
| 0 |
Hilbert scheme; resolution; quotient surface singularity Kidoh, R., Hilbert schemes and cyclic quotient surface singularities, Hokkaido Math. J. 30 (2001), 91--103. toric variety; fan; toric ideal; blow-up; desingularization; rational singularity; resolution of singularities; divisors David A. Cox, Toric varieties and toric resolutions, Resolution of singularities (Obergurgl, 1997) Progr. Math., vol. 181, Birkhäuser, Basel, 2000, pp. 259 -- 284.
| 0 |
Hilbert scheme; resolution; quotient surface singularity Kidoh, R., Hilbert schemes and cyclic quotient surface singularities, Hokkaido Math. J. 30 (2001), 91--103. Hilbert scheme; hyperkähler variety. Iliev, A.; Ranestad, K., Addendum to ``K3 surface of genus 8 and varieties of sums of powers of cubic fourfolds'', C. R. Acad. Bulgare Sci., 60, 12, 1265-1270, (2007)
| 0 |
Hilbert scheme; resolution; quotient surface singularity Kidoh, R., Hilbert schemes and cyclic quotient surface singularities, Hokkaido Math. J. 30 (2001), 91--103. singular locus of moduli of rational Weierstrass fibration; quotient singularities; elliptic surface
| 0 |
Hilbert scheme; resolution; quotient surface singularity Kidoh, R., Hilbert schemes and cyclic quotient surface singularities, Hokkaido Math. J. 30 (2001), 91--103. Maple; Macaulay 2; Castelnuovo-Mumford regularity; generator of Hilbert scheme; monomial ideal Sturmfels, B.: Four counterexamples in combinatorial algebraic geometry. J. Algebra 230, 282--294 (2000)
| 0 |
Hilbert scheme; resolution; quotient surface singularity Kidoh, R., Hilbert schemes and cyclic quotient surface singularities, Hokkaido Math. J. 30 (2001), 91--103. \(G\)-sets; \(G\)-Hilbert scheme O. Kȩdzierski, The G-Hilbert scheme for \(\frac{1}{r}\)(1,a,r-a), Glasg. Math. J. 53 (2010), 115 -129.
| 0 |
Hilbert scheme; resolution; quotient surface singularity Kidoh, R., Hilbert schemes and cyclic quotient surface singularities, Hokkaido Math. J. 30 (2001), 91--103. toric variety; connectedness; codimension two; triangulations Maclagan D., Thomas R.R.: The toric Hilbert scheme of a rank two lattice is smooth and irreducible. J. Comb. Theory Ser. A 104, 29--48 (2003)
| 0 |
Hilbert scheme; resolution; quotient surface singularity Kidoh, R., Hilbert schemes and cyclic quotient surface singularities, Hokkaido Math. J. 30 (2001), 91--103. quotient surface singularity; reflexive sheaves; special representation; McKay correspondence; Hilbert scheme O. Riemenschneider, Special representations and the two-dimensional McKay correspondence, Hokkaido Math. J. 32 (2003), 317--333.
| 1 |
Hilbert scheme; resolution; quotient surface singularity Kidoh, R., Hilbert schemes and cyclic quotient surface singularities, Hokkaido Math. J. 30 (2001), 91--103. linear series; base-point free line bundles; effective vector bundles; multigraded linear series; summands; special McKay correspondance; pseudo-reflections; irreducible group-representations; G-Hilbert space; skew group algebra; derived equivalence; reconstruction bundle; reconstruction algebra; numerical Grothendieck group; NCCRs Craw, A., Ito, Y., Karmazyn, J.: Multigraded linear series and recollement (2017). arXiv:1701.01679 (to appear in Math. Z.)
| 0 |
Hilbert scheme; resolution; quotient surface singularity Kidoh, R., Hilbert schemes and cyclic quotient surface singularities, Hokkaido Math. J. 30 (2001), 91--103. McKay correspondence; special McKay correspondence; special representation; McKay quiver; special McKay quiver Craw, A, The special mckay correspondence as an equivalence of derived categories, Q. J. Math., 62, 573-591, (2011)
| 1 |
Hilbert scheme; resolution; quotient surface singularity Kidoh, R., Hilbert schemes and cyclic quotient surface singularities, Hokkaido Math. J. 30 (2001), 91--103. reconstruction algebras; quivers with relations; noncommutative resolutions; CM-modules; surface singularities; Cohen-Macaulay singularities; labelled Dynkin diagrams; resolutions of singularities Wemyss, M., Reconstruction algebras of type \textit{D} (I), J. Algebra, 356, 158-194, (2012)
| 1 |
Hilbert scheme; resolution; quotient surface singularity Kidoh, R., Hilbert schemes and cyclic quotient surface singularities, Hokkaido Math. J. 30 (2001), 91--103. reconstruction algebras; Cohen-Macaulay singularities; labelled Dynkin diagrams; endomorphism rings of Cohen-Macaulay modules; resolutions of singularities; moduli spaces of representations; tilting bundles; derived equivalences; global dimension Wemyss, M, Reconstruction algebras of type \(A\), Trans. Am. Math. Soc., 363, 3101-3132, (2011)
| 1 |
Hilbert scheme; resolution; quotient surface singularity Kidoh, R., Hilbert schemes and cyclic quotient surface singularities, Hokkaido Math. J. 30 (2001), 91--103. \(G\)-graphs; special representations; binary dihedral groups; McKay correspondence Alvaro Nolla de Celis, \(G\)-graphs and special representations for binary dihedral groups in \(\mathrm{GL}(2,\mathbf{C})\). (to appear in Glasgow Mathematical Journal).
| 0 |
Hilbert scheme; resolution; quotient surface singularity Kidoh, R., Hilbert schemes and cyclic quotient surface singularities, Hokkaido Math. J. 30 (2001), 91--103. Hilbert-Chow morphism; wild involutions; McKay correspondence doi:10.1007/s11512-007-0065-6
| 0 |
heights; Mahler measures; multiplicative Weil height; Siegel's lemma; Lehmer's conjecture; Dobrowolski's result Wolfgang M. Schmidt, Heights of algebraic points, Number theory and its applications (Ankara, 1996) Lecture Notes in Pure and Appl. Math., vol. 204, Dekker, New York, 1999, pp. 185 -- 225. Siegel lemma; extrapolation; rank estimate; higher-dimensional Lehmer problem; power of the multiplicative group; lower bound; heights; successive minima for the height function Amoroso, F.; David, S., Le problème de Lehmer en dimension supérieure, J. Reine Angew. Math., 513, 145-179, (1999)
| 0 |
heights; Mahler measures; multiplicative Weil height; Siegel's lemma; Lehmer's conjecture; Dobrowolski's result Wolfgang M. Schmidt, Heights of algebraic points, Number theory and its applications (Ankara, 1996) Lecture Notes in Pure and Appl. Math., vol. 204, Dekker, New York, 1999, pp. 185 -- 225. algebraic points; height; Weil absolute logarithmic height; Mahler's measure; circle method; accumulator; Fano varieties; K3 varieties; conjecture of Batyrev and Manin; Neron--Severi group; cubic threefold; Arakelov height; Schanuel's Theorem; conjecture of Franke, Manin and Tschinkel; Northcott property; small points; Lehmer conjecture; Bogomolov property
| 0 |
heights; Mahler measures; multiplicative Weil height; Siegel's lemma; Lehmer's conjecture; Dobrowolski's result Wolfgang M. Schmidt, Heights of algebraic points, Number theory and its applications (Ankara, 1996) Lecture Notes in Pure and Appl. Math., vol. 204, Dekker, New York, 1999, pp. 185 -- 225. Mahler measure; polynomial; height; Lehmer's conjecture Amoroso, F.: On the Mahler measure in several variable, Bull. lond. Math. soc. 40, 619-630 (2008)
| 0 |
heights; Mahler measures; multiplicative Weil height; Siegel's lemma; Lehmer's conjecture; Dobrowolski's result Wolfgang M. Schmidt, Heights of algebraic points, Number theory and its applications (Ankara, 1996) Lecture Notes in Pure and Appl. Math., vol. 204, Dekker, New York, 1999, pp. 185 -- 225. diophantine geometry; height functions; rational points; abelian varieties; Mordell-Weil theorem; diophantine approximation; Roth's theorem; Siegel theorem; Bombieri's proof of Mordell's conjecture Hindry, Marc; Silverman, Joseph H., Diophantine geometry\upshape, An introduction, Graduate Texts in Mathematics 201, xiv+558 pp., (2000), Springer-Verlag, New York
| 0 |
heights; Mahler measures; multiplicative Weil height; Siegel's lemma; Lehmer's conjecture; Dobrowolski's result Wolfgang M. Schmidt, Heights of algebraic points, Number theory and its applications (Ankara, 1996) Lecture Notes in Pure and Appl. Math., vol. 204, Dekker, New York, 1999, pp. 185 -- 225. transcendence theory; linear dependence; algebraic points; algebraic group; generators; logarithmic heights; dependence relations; abelian variety; Neron-Tate height; Weil's height Masser ( D.W. ) .- Linear relations on algebraic groups , in New Advances in Transcendence Theory (ed. A. Baker), Cambridge Univ. Press , chap. 15 ( 1988 ), pp. 248 - 262 . MR 972004 | Zbl 0656.10031
| 0 |
heights; Mahler measures; multiplicative Weil height; Siegel's lemma; Lehmer's conjecture; Dobrowolski's result Wolfgang M. Schmidt, Heights of algebraic points, Number theory and its applications (Ankara, 1996) Lecture Notes in Pure and Appl. Math., vol. 204, Dekker, New York, 1999, pp. 185 -- 225. rational points; integral points; height functions; Mordell-Weil theorem; Mordell's conjecture; lifting rational points; Hilbert's irreducibility theorem; class number one problem Serre, J.P.; ; Lectures on the Mordell-Weil Theorem: Braunschweig, Germany 1989; .
| 0 |
heights; Mahler measures; multiplicative Weil height; Siegel's lemma; Lehmer's conjecture; Dobrowolski's result Wolfgang M. Schmidt, Heights of algebraic points, Number theory and its applications (Ankara, 1996) Lecture Notes in Pure and Appl. Math., vol. 204, Dekker, New York, 1999, pp. 185 -- 225. height function; abelian variety; Mahler's measure function; computation of local measures; Riemann-style integrals
| 0 |
heights; Mahler measures; multiplicative Weil height; Siegel's lemma; Lehmer's conjecture; Dobrowolski's result Wolfgang M. Schmidt, Heights of algebraic points, Number theory and its applications (Ankara, 1996) Lecture Notes in Pure and Appl. Math., vol. 204, Dekker, New York, 1999, pp. 185 -- 225. heights; Siegel's Lemma; lattices Fukshansky, L, Algebraic points of small height missing union of varieties, J. Number Theory, 130, 2099-2118, (2010)
| 0 |
heights; Mahler measures; multiplicative Weil height; Siegel's lemma; Lehmer's conjecture; Dobrowolski's result Wolfgang M. Schmidt, Heights of algebraic points, Number theory and its applications (Ankara, 1996) Lecture Notes in Pure and Appl. Math., vol. 204, Dekker, New York, 1999, pp. 185 -- 225. group variety; Lehmer's problem; Lang-Silverman conjecture; lower bounds for the height of a point; canonical height; admissible line bundle; Abelian variety; torus Bertrand D., ''Minimal heights and polarizations on group varieties''
| 0 |
heights; Mahler measures; multiplicative Weil height; Siegel's lemma; Lehmer's conjecture; Dobrowolski's result Wolfgang M. Schmidt, Heights of algebraic points, Number theory and its applications (Ankara, 1996) Lecture Notes in Pure and Appl. Math., vol. 204, Dekker, New York, 1999, pp. 185 -- 225. Thue-Siegel theorem; Faltings theorem; generalisation of Roth's theorem and Mordell's conjecture; Arakelov theory; arithmetic divisors; arithmetic discriminant; height; effective divisor Vojta, P., \textit{A generalization of theorems of faltings and thue-Siegel-Roth-wirsing}, J. Amer. Math. Soc., 5, 763-804, (1992)
| 0 |
heights; Mahler measures; multiplicative Weil height; Siegel's lemma; Lehmer's conjecture; Dobrowolski's result Wolfgang M. Schmidt, Heights of algebraic points, Number theory and its applications (Ankara, 1996) Lecture Notes in Pure and Appl. Math., vol. 204, Dekker, New York, 1999, pp. 185 -- 225. Shimura-Taniyama-Weil conjecture; modular curves; Frey-Serre-Ribet result; Fermat's last theorem
| 0 |
heights; Mahler measures; multiplicative Weil height; Siegel's lemma; Lehmer's conjecture; Dobrowolski's result Wolfgang M. Schmidt, Heights of algebraic points, Number theory and its applications (Ankara, 1996) Lecture Notes in Pure and Appl. Math., vol. 204, Dekker, New York, 1999, pp. 185 -- 225. Manin's conjecture; Weil restriction; algebraic variety; number field; counter-example; height Loughran, D., Rational points of bounded height and the Weil restriction, Israel J. Math., 210, 1, 47-79, (2015)
| 0 |
heights; Mahler measures; multiplicative Weil height; Siegel's lemma; Lehmer's conjecture; Dobrowolski's result Wolfgang M. Schmidt, Heights of algebraic points, Number theory and its applications (Ankara, 1996) Lecture Notes in Pure and Appl. Math., vol. 204, Dekker, New York, 1999, pp. 185 -- 225. elliptic curve; formal group; ramification; canonical height; Lehmer's conjecture; \(j\)-invariant; complex multiplication; torsion point J. H. Silverman: A lower bound for the canonical height on elliptic curves over abelian extensions. J. Number Theory 104 (2004), 353--372.
| 0 |
heights; Mahler measures; multiplicative Weil height; Siegel's lemma; Lehmer's conjecture; Dobrowolski's result Wolfgang M. Schmidt, Heights of algebraic points, Number theory and its applications (Ankara, 1996) Lecture Notes in Pure and Appl. Math., vol. 204, Dekker, New York, 1999, pp. 185 -- 225. modular curves; Shimura-Taniyama-Weil conjecture; Frey-Serre-Ribet result; Fermat's last theorem B. Mazur, Number theory as gadfly, Amer. Math. Monthly, 98 (1991), 593--610.
| 0 |
heights; Mahler measures; multiplicative Weil height; Siegel's lemma; Lehmer's conjecture; Dobrowolski's result Wolfgang M. Schmidt, Heights of algebraic points, Number theory and its applications (Ankara, 1996) Lecture Notes in Pure and Appl. Math., vol. 204, Dekker, New York, 1999, pp. 185 -- 225. Mordell conjecture; number of rational points; Vojta's method; Faltings theorem; genus; rank of Mordell-Weil group; Jacobian; points of small height; modular height
| 0 |
heights; Mahler measures; multiplicative Weil height; Siegel's lemma; Lehmer's conjecture; Dobrowolski's result Wolfgang M. Schmidt, Heights of algebraic points, Number theory and its applications (Ankara, 1996) Lecture Notes in Pure and Appl. Math., vol. 204, Dekker, New York, 1999, pp. 185 -- 225. Chabauty method; Chabauty-Coleman method; Chabauty-Kim method; Mordell's conjecture; Faltings's theorem; rational points; \(p\)-adic height; Selmer varieties; hyperelliptic curves; bielliptic curves; conjectures of Bloch and Kato; Nekovář's \(p\)-adic height pairing; mixed extensions; Mordell-Weil sieve J. S. Balakrishnan and N. Dogra, Quadratic Chabauty and rational points, I: \(p\)-adic heights, preprint, arXiv:1601.00388v2 [math.NT].
| 0 |
heights; Mahler measures; multiplicative Weil height; Siegel's lemma; Lehmer's conjecture; Dobrowolski's result Wolfgang M. Schmidt, Heights of algebraic points, Number theory and its applications (Ankara, 1996) Lecture Notes in Pure and Appl. Math., vol. 204, Dekker, New York, 1999, pp. 185 -- 225. \(p\)-adic analogues of the Birch and Swinnerton-Dyer conjecture; Weil elliptic curves; extended Mordell-Weil group; \(p\)-adic height; \(p\)-adic multiplicative period Barry Mazur, John Tate & Jeremy Teitelbaum, ``On \(p\)-adic analogues of the conjectures of Birch and Swinnerton-Dyer'', Invent. Math.84 (1986) no. 1, p. 1-48
| 0 |
heights; Mahler measures; multiplicative Weil height; Siegel's lemma; Lehmer's conjecture; Dobrowolski's result Wolfgang M. Schmidt, Heights of algebraic points, Number theory and its applications (Ankara, 1996) Lecture Notes in Pure and Appl. Math., vol. 204, Dekker, New York, 1999, pp. 185 -- 225. \(\ell\)-adic cohomology; independence of \(\ell \); grothendieck's trace formula; Lefschetz trace formula; zeta functions over finite fields; Euler-poincaré characteristic; Betti number; bloch's conductor conjecture; intersection cohomology; grothendieck's six operations; intermediate extension; Weil conjectures; Hodge polygon; Newton polygon; crystalline cohomology; Hodge filtration; coniveau filtration; alteration; Fano variety; rationally connected; Weil group; swan conductor; wild ramification; Brauer trace; log scheme; logarithmic differential forms; Čebotarev's density theorem; semisimple group; fatou's Lemma Illusie, L.: Miscellany on traces in \(\mathcall \)-adic cohomology: a survey. Japan J. Math. \textbf{1}(1), 107-136 (2006). Erratum: Japan J. Math. \textbf{2}(2), 313-314 (2007)
| 0 |
heights; Mahler measures; multiplicative Weil height; Siegel's lemma; Lehmer's conjecture; Dobrowolski's result Wolfgang M. Schmidt, Heights of algebraic points, Number theory and its applications (Ankara, 1996) Lecture Notes in Pure and Appl. Math., vol. 204, Dekker, New York, 1999, pp. 185 -- 225. Number theory; Diophantine geometry; arithmetic algebraic geometry; intersection theory; Mordell conjecture; arithmetic Nevanlinna type theory; diophantine geometry; Taniyama- Shimura-Weil conjecture; Birch-Swinnerton-Dyer conjecture; Heegner points; Mordell's conjecture; Arakelov theory; heights; diophantine approximations; integral points; minimal isogenies between 1-motives; Hasse principle S. LANG, Number Theory III, Encyclopoedia of Mathematical Sciences, Vol. 60, Springer-Verlag, 1991. Zbl0744.14012 MR1112552
| 0 |
heights; Mahler measures; multiplicative Weil height; Siegel's lemma; Lehmer's conjecture; Dobrowolski's result Wolfgang M. Schmidt, Heights of algebraic points, Number theory and its applications (Ankara, 1996) Lecture Notes in Pure and Appl. Math., vol. 204, Dekker, New York, 1999, pp. 185 -- 225. Mahler-Manin conjecture; modular invariant; transcendence; Fourier expansion at infinity; modular polynomials; slope inequality method; Arakelov Geometry; Falting's height
| 0 |
heights; Mahler measures; multiplicative Weil height; Siegel's lemma; Lehmer's conjecture; Dobrowolski's result Wolfgang M. Schmidt, Heights of algebraic points, Number theory and its applications (Ankara, 1996) Lecture Notes in Pure and Appl. Math., vol. 204, Dekker, New York, 1999, pp. 185 -- 225. torsion subvariety; explicit lower bounds; height; algebraic subvariety; heights of points; arithmetic Hilbert function; absolute Siegel lemma David, S.; Philippon, P., Minorations des hauteurs normalisées des sous-variétés des tores, Annali della Scuola Normale Superiore di Pisa. Classe di Scienze. Serie IV, 28, 3, 489-543, (1999)
| 0 |
heights; Mahler measures; multiplicative Weil height; Siegel's lemma; Lehmer's conjecture; Dobrowolski's result Wolfgang M. Schmidt, Heights of algebraic points, Number theory and its applications (Ankara, 1996) Lecture Notes in Pure and Appl. Math., vol. 204, Dekker, New York, 1999, pp. 185 -- 225. upper bound on the number of torsion points; lower bound on the canonical height of a point of infinite order; upper bound on the number of integral points on a minimal model; Mordell-Weil theorem; Mordell's conjecture; conjecture of Birch and Swinnerton-Dyer
| 0 |
heights; Mahler measures; multiplicative Weil height; Siegel's lemma; Lehmer's conjecture; Dobrowolski's result Wolfgang M. Schmidt, Heights of algebraic points, Number theory and its applications (Ankara, 1996) Lecture Notes in Pure and Appl. Math., vol. 204, Dekker, New York, 1999, pp. 185 -- 225. Diophantine geometry; abelian varieties; Roth theorem; heights of points of varieties; Mordell-Weil theorem; Severi-Néron theorem; Thue-Siegel-Roth theorem; Siegel's theorem; Hilbert's irreducibility theorem Lang, S.: Diophantine Geometry. New York: John Wiley \& Sons. 1962.
| 0 |
heights; Mahler measures; multiplicative Weil height; Siegel's lemma; Lehmer's conjecture; Dobrowolski's result Wolfgang M. Schmidt, Heights of algebraic points, Number theory and its applications (Ankara, 1996) Lecture Notes in Pure and Appl. Math., vol. 204, Dekker, New York, 1999, pp. 185 -- 225. Elliptic curves; elliptic curve cryptography; torsion points; elliptic curves over finite fields; discrete logarithm problem; factoring using elliptic curves; primality testing; heights; Mordell-Weil theorem; height pairing; complex multiplication; Kronecker's Jugendtraum; divisors; Weil pairing; Tate--Lichtenbaum pairing; isogenies; hyperelliptic curves; zeta-functions; Fermat's Last Theorem; computer packages Washington, Lawrence C., Elliptic curves, Discrete Mathematics and its Applications (Boca Raton), xviii+513 pp., (2008), Chapman \& Hall/CRC, Boca Raton, FL
| 0 |
heights; Mahler measures; multiplicative Weil height; Siegel's lemma; Lehmer's conjecture; Dobrowolski's result Wolfgang M. Schmidt, Heights of algebraic points, Number theory and its applications (Ankara, 1996) Lecture Notes in Pure and Appl. Math., vol. 204, Dekker, New York, 1999, pp. 185 -- 225. chain of rational points; Vojta conjecture; Weil height function; marked \(K3\) surface; canonical height; growth of logarithmic heights of integral points on elliptic curves Joseph H. Silverman, Rational points on \?3 surfaces: a new canonical height, Invent. Math. 105 (1991), no. 2, 347 -- 373.
| 0 |
heights; Mahler measures; multiplicative Weil height; Siegel's lemma; Lehmer's conjecture; Dobrowolski's result Wolfgang M. Schmidt, Heights of algebraic points, Number theory and its applications (Ankara, 1996) Lecture Notes in Pure and Appl. Math., vol. 204, Dekker, New York, 1999, pp. 185 -- 225. rational points; integral points; height functions; Mordell-Weil theorem; Mordell's conjecture; lifting rational points; Hilbert's irreducibility theorem; class number 1 problem J.-P. Serre, \textit{Lectures on the Mordell-Weil Theorem}, Aspects of Mathematics, Vieweg & Sohn, Braunschweig, 1997.
| 0 |
heights; Mahler measures; multiplicative Weil height; Siegel's lemma; Lehmer's conjecture; Dobrowolski's result Wolfgang M. Schmidt, Heights of algebraic points, Number theory and its applications (Ankara, 1996) Lecture Notes in Pure and Appl. Math., vol. 204, Dekker, New York, 1999, pp. 185 -- 225. finitely many rational points on abelian varieties; Lang conjectures; Mordell's conjecture; finitely many integral points; Thue's method; Siegel's lemma; Arakelov theory Faltings, G., Diophantine approximation on abelian varieties, \textit{Ann. Math.}, 133, 3, 549-576, (1991)
| 0 |
heights; Mahler measures; multiplicative Weil height; Siegel's lemma; Lehmer's conjecture; Dobrowolski's result Wolfgang M. Schmidt, Heights of algebraic points, Number theory and its applications (Ankara, 1996) Lecture Notes in Pure and Appl. Math., vol. 204, Dekker, New York, 1999, pp. 185 -- 225. normalized height; multiplicative torus; essential minimum; obstruction degree; Lehmer's problem Patrice Philippon and Martín Sombra, Minimum essentiel et degrés d'obstruction des translatés de sous-tores, Acta Arith. 133 (2008), no. 1, 1 -- 24 (French).
| 0 |
heights; Mahler measures; multiplicative Weil height; Siegel's lemma; Lehmer's conjecture; Dobrowolski's result Wolfgang M. Schmidt, Heights of algebraic points, Number theory and its applications (Ankara, 1996) Lecture Notes in Pure and Appl. Math., vol. 204, Dekker, New York, 1999, pp. 185 -- 225. section conjecture; rational points; anabelian geometry; Shapiro's lemma Stix, J.: Trading degree for dimension in the section conjecture: the non-abelian Shapiro lemma. Math. J. Okayama Univ. 52, 29--43 (2010)Zbl 1190.14028 MR 2589844
| 0 |
heights; Mahler measures; multiplicative Weil height; Siegel's lemma; Lehmer's conjecture; Dobrowolski's result Wolfgang M. Schmidt, Heights of algebraic points, Number theory and its applications (Ankara, 1996) Lecture Notes in Pure and Appl. Math., vol. 204, Dekker, New York, 1999, pp. 185 -- 225. integral points; Lang's conjecture; canonical height; Szpiro's conjecture; discriminant; bound for the number of torsion points on elliptic curves [10]M. Hindry and J. H. Silverman, The canonical height and integral points on elliptic curves, Invent. Math. 93 (1988), 419--450.
| 0 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.