text
stringlengths
2
1.42k
label
int64
0
1
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. toric varieties; fan; Kähler cone; hypersurfaces; Newton polyhedra; reflexive polytopes; mirror symmetry; Calabi Yau varieties; symmetry of Hodge numbers Cox D. A., ''Recent developments in toric geometry,'' in: Algebraic Geometry, Proceedings of the Summer Research Institute, Santa Cruz, CA, USA, July 92--29, 1995 (Proc. Symp. Pure Math. 62 (Pt. 2), Amer. Math. Soc., Providence, 1997, pp. 389--436.
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. Hecke zeta-function; non-abelian L-functions; scalar product of; L- functions; ideals with equal norms; integral points on norm form; varieties; meromorphic continuation; norm form equations; equidistribution of prime ideals; formal Euler product; absolute Weil group; algebraic number field; representations; virtual characters; Frobenius class; Größencharakteren B. Z. Moroz, \textit{Analytic Arithmetic in Algebraic Number Fields} (Springer, Berlin, 1986), Lect. Notes Math. 1205.
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. variation of Hodge structure; arithmetic groups; \(L_ 2\)-cohomology; Hodge theory of non-compact varieties; locally symmetric varieties
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. sparse polynomial systems; Schubert calculus; toric varieties; order polytope of a poset E. Soprunova and F. Sottile, \textit{Lower bounds for real solutions to sparse polynomial systems}, Adv. Math., 204 (2005), pp. 116--151.
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. non-rational varieties; birational automorphisms; biregular automorphisms; Fano varieties of dimension 4 А. В. Пухликов, ``Бирациональные автоморфизмы двойного пространства и двойной квадрики'', Изв. АН СССР. Сер. матем., 52:1 (1988), 229 -- 239
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. geometric invariant theory; good quotients; toric varieties; variation of GIT
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. relative de Rham complex; hyperresolution; twisted cohomology; vanishing theorems; canonical singularity; non-smooth morphism; varieties of general type
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. codimension-two subvarieties; number of components of the Hilbert scheme of non-general-type surfaces; classification of smooth 3-folds DOI: 10.1007/BF02567709
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. noncommutative algebraic geometry; moduli spaces of sheaves; instantons; noncommutative ADHM construction; partition finctions; toric varieties Cirio, L.; Landi, G.; Szabo, R.J., Algebraic deformations of toric varieties II: noncommutative instantons, Adv. Theor. Math. Phys., 15, 1817-1907, (2011)
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. classification of threefolds; hyperplane sections; Enriques surfaces; Fano varieties DOI: 10.1515/crll.1994.449.9
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. \(\mathbb{F}_1\)-schemes; field of one element; toric varieties Deitmar, A., \(\mathbb {F}_{1}\)-schemes and toric varieties, Beitr. Algebra Geom., 49, 517-525, (2008)
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. pseudonorms; pluricanonical systems; varieties of general type; torelli-type theorems; classification Chi C Y, Yau S T. A geometric approach to problems in birational geometry. Proc Natl Acad Sci USA, 2008, 105:18696--18701
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. algorithm; rational intersection cohomology of projective toric varieties K.-H. Fieseler, Rational intersection cohomology of projective toric varieties, \textit{J. Reine Angew.} \textit{Math.}, 413 (1991), 88--98.Zbl 0716.14006 MR 1089798
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. logarithmic structure; non-Archimedean geometry; toric varieties; tropical geometry; polyhedral complexes; algebraic stacks; moduli spaces Abramovich, D.; Chen, Q.; Marcus, S.; Ulirsch, M.; Wise, J.; Baker, M.; Payne, S., \textit{skeletons and fans of logarithmic structures}, Nonarchimedean and tropical geometry, (2016), Springer, Cham
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. computing syzygies of affine toric varieties; convex solid cone; minimal free resolution; polynomial algebra A. Campillo, and, P. Giménez, Syzygies of affine toric varieties, J. Algebra, in press.
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. virtual resolution; products of projective spaces; toric varieties; free resolutions
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. algebras of differential operators; toric varieties; Fourier transform; Weyl algebras Giovanni Felder and Carlo A. Rossi, Differential operators on toric varieties and Fourier transform (2007), available at http://arxiv.org/abs/math/0705.1709v3.
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. topological \(K\)-theory; classification of D-brane charge; non-simply-connected Calabi-Yau 3-folds; Kähler moduli space; Gepner theory; nonabelian orbifold Brunner I., Distler J. (2002). Torsion D-branes in Nongeometrical Phases. Adv. Theor. Math. Phys. 5:265--309
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. embeddings in toric varieties; toric prevariety; birational morphisms; embedding system of functions Włodarczyk, J.: Embeddings in toric varieties and prevarieties. J. Algebraic Geom. 2 (4), 705--726 (1993)
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. toric varieties; generic hypersurfaces; subvarieties; multiplication of linear systems Ikeda, A., Subvarieties of generic hypersurfaces in a nonsingular projective toric variety, Math. Z., 263, 923-937, (2009)
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. toric varieties; toric ideals of graphs; robust ideals; generalized robust ideals; Graver basis; universal Gröbner basis; quadratic ideals; Koszul rings; affine semigroups; free semigroups; Betti element; complete intersection; Betti divisible
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. quadratic forms; numerical invariants of fields; level of a field; non-formally real fields; anisotropic quadratic form; formally real fields; \(u\)-invariants; Pythagoras number; existence of \(K\)-rational points for systems of forms; homogeneous Nullstellensatz for \(p\)-fields; Borsuk-Ulam Theorem; spheres; Tsen-Lang theory of \(C_ i\)-fields; computation of the levels of projective spaces; Witt rings A. Pfister, \textit{Quadratic forms with applications to algebraic geometry and topology}. London Mathematical Society Lecture Note Series, \textbf{217}. Cambridge University Press, Cambridge, 1995. zbl 0847.11014; MR1366652
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. cluster algebras; log Calabi-Yau varieties; blowups of toric varieties Arnold, V.I., Goryunov, V.V., Lyashko, O.V., Vasil'ev, V.A.: Singularity theory. I. Springer, Berlin (1998). Translated from the 1988 Russian original by A. Iacob, Reprint of the original English edition from the series Encyclopaedia of Mathematical Sciences [ıt Dynamical systems. VI, Encyclopaedia Math. Sci., 6, Springer, Berlin, 1993; MR1230637 (94b:58018)]
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. rational points; families of varieties; Brauer groups; toric varieties
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. real algebraic curve; Hilbert's 16th problem; smoothing of singularities; isotopy classification; real loci of non-singular algebraic curves of degeee 8
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. toric Fano varieties; Calabi-Yau hypersurfaces; generalized hypergeometric functions; stringy Hodge numbers; counting rational curves; periods of differential forms Batyrev V. V., J. Algebraic Geometry 7 pp 15-- (1998)
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. algebraic K3 surfaces moduli space; family of divisors on a toric 3-fold; classification of complete Gorenstein toric 3-folds
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. locked polynomial ideals; fan of cones; toric varieties; truncation chambers; ring of Laurent polynomials B. Ya. Kazarnovskiĭ, Truncations of systems of equations, ideals and varieties, Izv. Ross. Akad. Nauk Ser. Mat. 63 (1999), no. 3, 119 -- 132 (Russian, with Russian summary); English transl., Izv. Math. 63 (1999), no. 3, 535 -- 547.
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. algebraic cycles; Chow group; motive; finite-dimensional motive; Bloch's conjecture; generalized Hodge conjecture; Bloch-Beilinson filtration; Beauville's ``splitting property'' conjecture; hyperkähler varieties; Fano varieties of lines on cubic fourfolds; Lehn-Lehn-Sorger-van Straten eightfolds; non-symplectic automorphism
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. rigid family of \(g\)-dimensional polarized abelian varieties; polarized variation of Hodge structure; non-rigid deformation of period maps; Arakelov theorem; non-trivial deformations of families of curves over punctured curves; \(K3\)-surfaces; Enriques surfaces Peters, C.: Rigidity for variations of Hodge structure and Arakelov-type finiteness theorems, Comp. Math.75, 113-126 (1990)
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. algebraic cycles; Beauville's ``splitting property'' conjecture; Bloch-Beilinson filtration; Bloch's conjecture; Chow group; Fano varieties of lines on cubic fourfolds; finite-dimensional motive; hyperkähler varieties; motive; non-symplectic automorphism
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. space of holomorphic maps from \(S^ 2\) to a complex algebraic variety; space of parametrized rational curves; space of continuous maps; toric varieties
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. classification of surfaces; irregularity; abelian varieties; de Franchis papers; correspondence; characteristic classes
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. strongly pseudoconvex surfaces; algebraic compactification of a strongly pseudoconvex non-Stein surface; classification of algebraic surfaces; actions of holomorphic automorphisms Vo Van Tan: a) On the compactification of strongly pseudoconvex surfaces II. Proc. AMS 90, (1984) 189--194 b) On certain non Kahlerian strongly pseudoconvex manifols (To appear)
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. ascending chain condition; length of extremal rays; Fano varieties; toric varieties; minimal model program
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. regular ring; global dimension; regularity for non-commutative rings; ring of differential operators; normal toric algebra; conic module; complete conic module; projective resolution; non-commutative resolution; non-commutative crepant resolution; simplicial algebra; chambers of constancy; hyperplane arrangement; acyclicity Lemma; Frobenius map; Kunz's Theorem; F-regularity; minimal model program; rational singularities
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. Abelian varieties; affine algebraic groups; affine algebraic monoids; classification of normal algebraic monoids; faithful representations; regular algebraic monoids Séminaire de Géométrie Algébrique du Bois-Marie 1962/64 (SGA3). Schémas en Groupes II. Lecture Notes Math., vol. 152. Springer, New York (1970)
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. topological spaces with involution; level; colevel; sublevel; affine varieties; Hopf problem; equivariant maps; Stiefel manifolds; Borsuk-Ulam theorem; topology of spheres; arithmetic of sums of squares in rings; quadratic forms; Pythagoras number; invariants; Radon-Hurwitz number; isotropic form; ring of continuous functions; anisotropic form Dai Z.D., Lam T.Y.: Levels in algebra and topology. Comment. Math. Helv. 59, 376--424 (1984)
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. birational maps between toric varieties; Oda's conjecture; factorization of toroidal birational maps Dan Abramovich, Kenji Matsuki, and Suliman Rashid, A note on the factorization theorem of toric birational maps after Morelli and its toroidal extension, Tohoku Math. J. (2) 51 (1999), no. 4, 489 -- 537. , https://doi.org/10.2748/tmj/1178224717 Kenji Matsuki, Correction: ''A note on the factorization theorem of toric birational maps after Morelli and its toroidal extension'' [Tohoku Math. J. (2) 51 (1999), no. 4, 489 -- 537; MR1725624 (2000i:14073)] by D. Abramovich, Matsuki and S. Rashid, Tohoku Math. J. (2) 52 (2000), no. 4, 629 -- 631.
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. lattice polytopes; toric singularities; arrangements of subspaces; configuration spaces of spheres; circle packings; conformal mappings
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. spaces of Kähler metrics; toric varieties; harmonic maps; space of Bergman metrics; Monge-Ampére equation; Eells-Sampson flow; geometric flows Rubinstein, Y. and S. Zelditch, ``Bergman approximations of harmonic maps into the space of Kähler metrics on toric varieties'', arXiv:0803.1249
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. Diophantine approximation of rational points; toric varieties; universal torsors
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. linear algebraic group; birational geometry; Galois module; Galois cohomology; Picard group; Brauer group; Tamagawa numbers; toric varieties; invariants; action of the absolute Galois group DOI: 10.1007/BF02359883
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. symmetric domains; deformation; non-rigid families of abelian varieties
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. classification of compact complex varieties; logarithmic tangential bundle; divisor
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. smooth projective varieties; flag varieties; Miyaoka's semipositivity theorem; cotangent bundle; rational surfaces; divisorial contractions; fibrations; crystalline differential operators; étale fundamental group; semistability; reflexives sheaves; semipositive sheaves; uniruled varieties; Riemann-Hilbert correspondence; stable Higgs bundle; Chern classes; flat connections; Artin's criterion of contractibility; Kodaira dimension; Hirzebruch surface; canonical divisor; surfaces of general type; Barlow's surfaces; del Pezzo surfaces; Fano three-folds
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. varieties of general type; algebraic fiber space
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. Lagrangian submanifolds; tropical hypersurfaces; symplectic manifolds; toric varieties
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. degenerations of abelian varieties; moduli schemes for principally polarized abelian varieties; algebraic stack; toroidal compactification; logarithmic structures
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. automorphisms of varieties of general type; Fourier-Mukai transforms
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. modular curves; classification of Hilbert modular surfaces Bassendowski, D.: Klassifikation Hilbertscher Modulflächen zur symmetrischen Hurwitz-Maass-Erweiterung. Dissertation, Bonn, 1984
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. stacks; moduli spaces; families of algebraic varieties; fibrations; degenerations; Shafarevich conjecture; deformation theory; Kodaira-Spencer maps S. J. Kovács, ''Subvarieties of moduli stacks of canonically polarized varieties: generalizations of Shafarevich's conjecture,'' in Algebraic Geometry-Seattle 2005. Part 2, Providence, RI: Amer. Math. Soc., 2009, vol. 80, pp. 685-709.
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. \(K3\) surfaces; Hilbert modular orbifolds; period maps; period differential equations; toric varieties A. Nagano, Period differential equations for the families of \(K3\) surfaces with two parameters derived from the reflexive polytopes , Kyushu J. Math. 66 (2012), 193-244.
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. Fano varieties; non-constant morphisms; Mukai-Umemura threefold Iliev, A., Schuhmann, C.: Tangent scrolls in prime Fano threefolds. Kodai Math. J. 23, 411--431 (2000)
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. toric variety; Chow variety; geometric invariant theory; actions of algebraic groups; Chow quotient M. M. Kapranov, B. Sturmfels, and A. V. Zelevinsky, ''Quotients of toric varieties,'' Math. Ann., vol. 290, iss. 4, pp. 643-655, 1991.
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. addition theorem for theta functions of Jacobian varieties; trilinear functional equations Бухштабер, В. М.; Кричевер, И. М., Интегрируемые уравнения, теоремы сложения и проблема римана--шоттки, УМН, 61, 1-367, 25-84, (2006)
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. abelian varieties over arithmetic ground fields; moduli of abelian varities; Dieudonné modules
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. moment angle complexes; toric space; higher derived functors; complement of coordinate subspace arrangement Allen, D.; La Luz, J.: The determination of certain higher derived functors of moment angle complexes. Topol. proc. 49 (2016)
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. toric varieties; double cover; Gaussian map Duflot, J., Peters, P.: Gaussian maps for double covers of toric surfaces. Rocky Mt. J. Math. 42(5), 1471--1520 (2012)
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. moduli of abelian varieties; universal abelian variety; slope; nodal conic bundle G. Farkas, A. Verra, The universal abelian variety over A 5. Ann. Sci. Ecole Norm. Sup. 49, 521--542 (2016)
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. non-isolated hyperplane singularities; topology of the Milnor fibre; homotopy type of the Milnor fibre
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. classification of Fano-Enriques threefolds Conte, A.: On the nature and the classification of Fano-Enriques threefolds. In: Proceedings of the Hirzebruch 65 Conference on Algebraic Geometry (Ramat Gan, 1993), Israel Math. Conf. Proc. 9, Bar-Ilan Univ., Ramat Gan, 1996, 159-163.
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. equivariant compactification; symmetric varieties; character sheaves; finite groups of Lie type
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. stable curves of non compact type; limits of Weierstrass points on reducible curves Coppens, Limit Weierstrass schemes on stable curves with 2 irreducible components, Atti Accad. Naz. Lincei 9 pp 205-- (2001)
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. hyperbolic fibre space; higher dimensional analogue of Mordell's conjecture for curves; hyperbolic manifolds; algebraic families of hyperbolic varieties; Mordell's conjecture over function fields Noguchi, J.Hyperbolic fiber spaces and Mordell's conjecture over function fields, Publ. Research Institute Math. Sciences Kyoto University21, No. 1 (1985), 27--46.
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. (symmetric) Kronecker coefficients; non saturation; geometric complexity theory; orbit closure of the determinant
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. \(K\)-group; semi-abelian varieties; product of curves over a finite field B. Kahn, Nullité de certains groupes attachés aux variétés semi-abéliennes sur un corps fini; application, C. R. Acad. Sci. Paris Sér. I Math. 314 (1992), no. 13, 1039--1042.
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. bitangent; dual of projective varieties; characteristic 2; ordinary varieties; rank of a projective variety Ballico E.: On the dual of projective varieties. Canad. Math. Bull. 34, 433--439 (1991)
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. flag manifold; cohomology theory of Schubert varieties
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. stability conditions; quasimap descendant invariants; Gromov-Witten invariants; wall-crossing; toric varieties; semi-positive GIT quotients; mirror symmetry
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. non commutative algebraic geometry; surface; blow up; graded algebras of Gelfand-Kirillov dimension three; Abelian categories; Rees algebra; pseudo-compact rings; completion functors; derived categories; Del Pezzo surfaces; quantum version of projective three space M. Van~den Bergh, \emph{Blowing up of non-commutative smooth surfaces}, Mem. Amer. Math. Soc. \textbf{154} (2001), no.~734, x+140. \MR{1846352 (2002k:16057)}
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. algebraic transformation groups; classification of normal imbeddings of spherical homogeneous spaces Pauer, Franz: Normale einbettungen von sphärischen homogenen räumen, DMV-semin. 13, 145-155 (1989)
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. toric geometry; Fano varieties; weak Fano varieties; building sets; nested sets; graph associahedra; reflexive polytopes; graph cubeahedra; root systems
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. real algebraic geometry; real algebraic varieties; complexification; Smith's theory; Galois-Maximal varieties; algebraic cycles; real algebraic models; algebraic curves; algebraic surfaces; topology of algebraic varieties; regular maps; rational maps; singularities; algebraic approximation; Comessatti theorem; Rokhlin theorem; Nash conjecture; Hilbert's XVI problem; Cremona group; real fake planes
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. level structures on non-constant abelian varieties; degenerate fibers; Chern class; currents Noguchi, J.: Moduli space of abelian varieties with level structure over function fields. Internat. J. Math. 2 (1991), 183--194.
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. irregular surfaces; classification of hyperelliptic surfaces C. Ciliberto, M. de Franchis and the theory of hyperelliptic surfaces, Studies in the history of modern mathematics, III, Rend. Circ. Mat. Palermo (2)(Suppl. 55) (1998) 45-73.
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. non-archimedean valuation; Mumford curve; branched cover of the projective line van der Put, M.; Voskuil, H. H., Discontinuous subgroups of \(\operatorname{PGL}_2(K)\), J. Algebra, 271, 234-280, (2004)
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. Jordan property; automorphisms of projective varieties
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. real polynomial solving; intrinsic complexity; singularities; polar and bipolar varieties; degree of varieties B. Bank, M. Giusti, J. Heintz, L. Lehmann, and L. M. Pardo, \textit{Algorithms of intrinsic complexity for point searching in compact real singular hypersurfaces}, Found. Comput. Math. \textbf{12} (2012), no. 1, 75-122.
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. unitary cobordism; toric varieties; blow-ups; convex polytopes
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. algebraic cycles; variation of Hodge structure; Noether-Lefschetz locus; Lefschetz degenerations; Chow group; Griffiths group; non-rigid Calabi- Yau threefolds C. Voisin, Transcendental methods in the study of algebraic cycles, in: Algebraic cycles and Hodge theory, Lecture Notes in Math. 1594, Springer-Verlag (1994).
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. \(k\)-equivalence of algebraic varieties; Chow motives; Grothendieck ring of varieties; piecewise isomorphism of varieties; Calabi-Yau manifold Ivorra, F; Sebag, J, Géométrie algébrique par morceaux, \(K\)-équivalence et motifs, Enseign. Math. (2), 58, 375-403, (2012)
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. semi-algebraic sets; real algebraic varieties; rational points; generalized Teichmüller space; moduli of compact Riemann surfaces; Fricke moduli Kyoji Saito: Algebraic Representation of the Teichmuller Spaces, The Grothendieck Theor of Dessins dnfants, Edited by L. Schneps, London Math. Soc. Lee. Note Ser. 200, Cambridge Univ. Press, 1994.
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. quaternion algebra; set of isogeny classes of \({\mathfrak O}\)-Abelian varieties
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. Borel conjecture; \(L^ 2\)-cohomology of locally symmetric varieties; modular curves; automorphic forms; intersection cohomology; Zucker conjecture
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. non-associative algebras; problem of Albert; invariant bilinear forms; nil-algebras; solvable algebras; polynomial endomorphisms; Jacobian conjecture
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. singularities of quotient; simplicial toric variety; canonical singularities Pouyanne, Nicolas: Une résolution en singularités toriques simpliciales des singularités-quotient de dimension trois. Ann. fac. Sci. Toulouse (6) 1, 363-398 (1992)
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. essential dimension; stack; gerbe; moduli of curves; moduli of abelian varieties Patrick Brosnan, Zinovy Reichstein, and Angelo Vistoli, \emph{Essential dimension of moduli of curves and other algebraic stacks}, J. Eur. Math. Soc. (JEMS) 13 (2011), no.~4, 1079--1112, With an appendix by Najmuddin Fakhruddin. DOI 10.4171/JEMS/276; zbl 1234.14003; MR2800485; arxiv math/0701903
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. toric varieties; projectively normal
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. AG codes; Toric varieties; Reed-Muller codes; Gilbert-Varshamov bound Joyner D.: Toric codes over finite fields. Appl. Algebra Eng. Comm. Comput. 15, 63--79 (2004)
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. curves over finite fields; zeta-functions of curves; Abelian varieties over finite fields Katz, N.: Spacefilling curves over finite fields. Mrl 6, 613-624 (1999)
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. infinitesimal deformations of negative weights; ample Cartier divisor; singular Kummer varieties
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. algebraic cohomology; realizable by an algebraic subvariety; blow-up; blow-down; modification; real toric varieties
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. number of non-rational subfields; number of separable subfields; number of morphisms of algebraic curves; Chow coordinates; theorem of the base; Jacobian; genus; function field; Angle theorem; de Franchis' theorem E. Kani, Bounds on the number of non-rational subfields of a function field, Invent. Math. 85 (1986), 185-198. Zbl0615.12017 MR842053
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. Deligne-Lusztig varieties; finite groups of Lie type; Weyl groups; conjugacy classes; minimal length elements He, X., On the affineness of Deligne-Lusztig varieties, J. Algebra, 320, 3, 1207-1219, (2008)
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. phylogenetic varieties; G-models; group-based models; toric varieties Michałek, M., Geometry of phylogenetic group-based models, J Algebra, 339, 339-356, (2011)
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. Calabi-Yau varieties; toric varieties; \(K3\) surfaces; derived equivalences; Picard groups; mirror symmetry
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. extension class of a vector bundle; torsion freeness; infinitesimal Torelli problem; canonical map; holomorphic forms; Albanese variety; families of varieties; generic Torelli problem
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. algebraic group schemes; non-reduced group schemes; minimal splitting fields; Galois groups; coordinate rings; groups of rational characters; maximal tori; connected unipotent groups; products of reductions
0
non-starshaped spheres; classification of toric varieties G. Ewald and C. Schulz: Nonstarshaped spheres , Arch. Math. (Basel) 59 (1992), 412-416. jet spaces; prolongations of diffeomorphisms; foliated G-actions; Hessian matrices; affine and special affine transformations; recurrence relations; commutators of invariant differentials; classification of developable surfaces; homogeneous models
0