File size: 17,807 Bytes
f8c5348
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
import os
import random
from glob import glob
import json

import numpy as np
from astropy.io import fits
from astropy.coordinates import Angle
from astropy import units as u
from fsspec.core import url_to_fs

from huggingface_hub import hf_hub_download
import datasets
from datasets import DownloadManager

from tqdm import tqdm

def lris_read_amp(inp, ext, redchip=False, applygain=True):
    """
    Modified from pypeit.spectrographs.keck_lris.lris_read_amp -- Jon Brown, Josh Bloom
    cf. https://github.com/KerryPaterson/Imaging_pipelines
    Read one amplifier of an LRIS multi-extension FITS image

    Parameters
    ----------
    inp: tuple
      (str,int) filename, extension
      (hdu,int) FITS hdu, extension

    Returns
    -------
    data
    predata
    postdata
    x1
    y1

    ;------------------------------------------------------------------------
    function lris_read_amp, filename, ext, $
      linebias=linebias, nobias=nobias, $
      predata=predata, postdata=postdata, header=header, $
      x1=x1, x2=x2, y1=y1, y2=y2, GAINDATA=gaindata
    ;------------------------------------------------------------------------
    ; Read one amp from LRIS mHDU image
    ;------------------------------------------------------------------------
    """
    # Parse input
    if isinstance(inp, str):
        hdu = fits.open(inp)
    else:
        hdu = inp

    # Get the pre and post pix values
    # for LRIS red POSTLINE = 20, POSTPIX = 80, PRELINE = 0, PRECOL = 12
    head0 = hdu[0].header
    precol = head0["precol"]
    postpix = head0["postpix"]

    # Deal with binning
    binning = head0["BINNING"]
    xbin, ybin = [int(ibin) for ibin in binning.split(",")]
    precol = precol // xbin
    postpix = postpix // xbin

    # get entire extension...
    temp = hdu[ext].data.transpose()  # Silly Python nrow,ncol formatting
    tsize = temp.shape
    nxt = tsize[0]

    # parse the DETSEC keyword to determine the size of the array.
    header = hdu[ext].header
    detsec = header["DETSEC"]
    x1, x2, y1, y2 = np.array(load_sections(detsec, fmt_iraf=False)).flatten()

    # parse the DATASEC keyword to determine the size of the science region (unbinned)
    datasec = header["DATASEC"]
    xdata1, xdata2, ydata1, ydata2 = np.array(
        load_sections(datasec, fmt_iraf=False)
    ).flatten()

    # grab the components...
    predata = temp[0:precol, :]
    # datasec appears to have the x value for the keywords that are zero
    # based. This is only true in the image header extensions
    # not true in the main header.  They also appear inconsistent between
    # LRISr and LRISb!
    # data     = temp[xdata1-1:xdata2-1,*]
    # data = temp[xdata1:xdata2+1, :]

    # JB: LRIS-R is windowed differently, so the default pypeit checks fail
    # xshape is calculated from datasec.
    # For blue, its 1024,
    # For red, the chip dimensions are different AND the observations are windowed
    # In windowed mode each amplifier has differently sized data sections
    if not redchip:
        xshape = 1024 // xbin  # blue
    else:
        xshape = xdata2 - xdata1 + 1 // xbin  # red

    # do some sanity checks
    if (xdata1 - 1) != precol:
        # msgs.error("Something wrong in LRIS datasec or precol")
        errStr = "Something wrong in LRIS datasec or precol"
        print(errStr)

    if (xshape + precol + postpix) != temp.shape[0]:
        # msgs.error("Wrong size for in LRIS detector somewhere.  Funny binning?")
        errStr = "Wrong size for in LRIS detector somewhere.  Funny binning?"
        print(errStr)

    data = temp[precol : precol + xshape, :]
    postdata = temp[nxt - postpix : nxt, :]

    # flip in X as needed...
    if x1 > x2:
        xt = x2
        x2 = x1
        x1 = xt
        data = np.flipud(data)  # reverse(temporary(data),1)

    # flip in Y as needed...
    if y1 > y2:
        yt = y2
        y2 = y1
        y1 = yt
        data = np.fliplr(data)
        predata = np.fliplr(predata)
        postdata = np.fliplr(postdata)

    # dummy gain data since we're keeping as uint16
    gaindata = 0.0 * data + 1.0

    return data, gaindata, predata, postdata, x1, y1


def load_sections(string, fmt_iraf=True):
    """
    Modified from pypit.core.parse.load_sections -- Jon Brown,  Josh Bloom
    cf. https://github.com/KerryPaterson/Imaging_pipelines
    From the input string, return the coordinate sections

    Parameters
    ----------
    string : str
      character string of the form [x1:x2,y1:y2]
      x1 = left pixel
      x2 = right pixel
      y1 = bottom pixel
      y2 = top pixel
    fmt_iraf : bool
      Is the variable string in IRAF format (True) or
      python format (False)

    Returns
    -------
    sections : list (or None)
      the detector sections
    """
    xyrng = string.strip("[]()").split(",")
    if xyrng[0] == ":":
        xyarrx = [0, 0]
    else:
        xyarrx = xyrng[0].split(":")
        # If a lower/upper limit on the array slicing is not given (e.g. [:100] has no lower index specified),
        # set the lower/upper limit to be the first/last index.
        if len(xyarrx[0]) == 0:
            xyarrx[0] = 0
        if len(xyarrx[1]) == 0:
            xyarrx[1] = -1
    if xyrng[1] == ":":
        xyarry = [0, 0]
    else:
        xyarry = xyrng[1].split(":")
        # If a lower/upper limit on the array slicing is not given (e.g. [5:] has no upper index specified),
        # set the lower/upper limit to be the first/last index.
        if len(xyarry[0]) == 0:
            xyarry[0] = 0
        if len(xyarry[1]) == 0:
            xyarry[1] = -1
    if fmt_iraf:
        xmin = max(0, int(xyarry[0]) - 1)
        xmax = int(xyarry[1])
        ymin = max(0, int(xyarrx[0]) - 1)
        ymax = int(xyarrx[1])
    else:
        xmin = max(0, int(xyarrx[0]))
        xmax = int(xyarrx[1])
        ymin = max(0, int(xyarry[0]))
        ymax = int(xyarry[1])
    return [[xmin, xmax], [ymin, ymax]]


def sec2slice(
    subarray, one_indexed=False, include_end=False, require_dim=None, transpose=False
):
    """
    Modified from pypit.core.parse.sec2slice -- Jon Brown

    Convert a string representation of an array subsection (slice) into
    a list of slice objects.

    Args:
        subarray (str):
            The string to convert.  Should have the form of normal slice
            operation, 'start:stop:step'.  The parser ignores whether or
            not the string has the brackets '[]', but the string must
            contain the appropriate ':' and ',' characters.
        one_indexed (:obj:`bool`, optional):
            The string should be interpreted as 1-indexed.  Default
            is to assume python indexing.
        include_end (:obj:`bool`, optional):
            **If** the end is defined, adjust the slice such that
            the last element is included.  Default is to exclude the
            last element as with normal python slicing.
        require_dim (:obj:`int`, optional):
            Test if the string indicates the slice along the proper
            number of dimensions.
        transpose (:obj:`bool`, optional):
            Transpose the order of the returned slices.  The
            following are equivalent::

                tslices = parse_sec2slice('[:10,10:]')[::-1]
                tslices = parse_sec2slice('[:10,10:]', transpose=True)

    Returns:
        tuple: A tuple of slice objects, one per dimension of the
        prospective array.

    Raises:
        TypeError:
            Raised if the input `subarray` is not a string.
        ValueError:
            Raised if the string does not match the required
            dimensionality or if the string does not look like a
            slice.
    """
    # Check it's a string
    if not isinstance(subarray, (str, bytes)):
        raise TypeError("Can only parse string-based subarray sections.")
    # Remove brackets if they're included
    sections = subarray.strip("[]").split(",")
    # Check the dimensionality
    ndim = len(sections)
    if require_dim is not None and ndim != require_dim:
        raise ValueError(
            "Number of slices ({0}) in {1} does not match ".format(ndim, subarray)
            + "required dimensions ({0}).".format(require_dim)
        )
    # Convert the slice of each dimension from a string to a slice
    # object
    slices = []
    for s in sections:
        # Must be able to find the colon
        if ":" not in s:
            raise ValueError("Unrecognized slice string: {0}".format(s))
        # Initial conversion
        _s = [None if x == "" else int(x) for x in s.split(":")]
        if len(_s) > 3:
            raise ValueError(
                "String as too many sections.  Must have format 'start:stop:step'."
            )
        if len(_s) < 3:
            # Include step
            _s += [None]
        if one_indexed:
            # Decrement to convert from 1- to 0-indexing
            _s = [None if x is None else x - 1 for x in _s]
        if include_end and _s[1] is not None:
            # Increment to include last
            _s[1] += 1
        # Append the new slice
        slices += [slice(*_s)]
    return tuple(slices[::-1] if transpose else slices)

def read_lris(raw_file, det=None, TRIM=False):
    """
    Modified from pypeit.spectrographs.keck_lris.read_lris -- Jon Brown, Josh Bloom
    cf. https://github.com/KerryPaterson/Imaging_pipelines

    Read a raw LRIS data frame (one or more detectors)
    Packed in a multi-extension HDU
    Based on readmhdufits.pro

    Parameters
    ----------
    raw_file : str
      Filename
    det : int, optional
      Detector number; Default = both
    TRIM : bool, optional
      Trim the image?

    Returns
    -------
    array : ndarray
      Combined image
    header : FITS header
    sections : list
      List of datasec, oscansec, ampsec sections
    """

    hdu = fits.open(raw_file)
    head0 = hdu[0].header

    # Get post, pre-pix values
    precol = head0["PRECOL"]
    postpix = head0["POSTPIX"]
    preline = head0["PRELINE"]
    postline = head0["POSTLINE"]

    # get the detector
    # this just checks if its the blue one and assumes red if not
    # note the red fits headers don't even have this keyword???
    if head0["INSTRUME"] == "LRISBLUE":
        redchip = False
    else:
        redchip = True

    # Setup for datasec, oscansec
    dsec = []
    osec = []
    nxdata_sum = 0

    # get the x and y binning factors...
    binning = head0["BINNING"]
    xbin, ybin = [int(ibin) for ibin in binning.split(",")]

    # First read over the header info to determine the size of the output array...
    n_ext = len(hdu) - 1  # Number of extensions (usually 4)
    xcol = []
    xmax = 0
    ymax = 0
    xmin = 10000
    ymin = 10000
    for i in np.arange(1, n_ext + 1):
        theader = hdu[i].header
        detsec = theader["DETSEC"]
        if detsec != "0":
            # parse the DETSEC keyword to determine the size of the array.
            x1, x2, y1, y2 = np.array(load_sections(detsec, fmt_iraf=False)).flatten()

            # find the range of detector space occupied by the data
            # [xmin:xmax,ymin:ymax]
            xt = max(x2, x1)
            xmax = max(xt, xmax)
            yt = max(y2, y1)
            ymax = max(yt, ymax)

            # find the min size of the array
            xt = min(x1, x2)
            xmin = min(xmin, xt)
            yt = min(y1, y2)
            ymin = min(ymin, yt)
            # Save
            xcol.append(xt)

    # determine the output array size...
    nx = xmax - xmin + 1
    ny = ymax - ymin + 1

    # change size for binning...
    nx = nx // xbin
    ny = ny // ybin

    # Update PRECOL and POSTPIX
    precol = precol // xbin
    postpix = postpix // xbin

    # Deal with detectors
    if det in [1, 2]:
        nx = nx // 2
        n_ext = n_ext // 2
        det_idx = np.arange(n_ext, dtype=np.int) + (det - 1) * n_ext
    elif det is None:
        det_idx = np.arange(n_ext).astype(int)
    else:
        raise ValueError("Bad value for det")

    # change size for pre/postscan...
    if not TRIM:
        nx += n_ext * (precol + postpix)
        ny += preline + postline

    # allocate output array...
    array = np.zeros((nx, ny), dtype="uint16")
    gain_array = np.zeros((nx, ny), dtype="uint16")
    order = np.argsort(np.array(xcol))

    # insert extensions into master image...
    for kk, i in enumerate(order[det_idx]):

        # grab complete extension...
        data, gaindata, predata, postdata, x1, y1 = lris_read_amp(
            hdu, i + 1, redchip=redchip
        )

        # insert components into output array...
        if not TRIM:
            # insert predata...
            buf = predata.shape
            nxpre = buf[0]
            xs = kk * precol
            xe = xs + nxpre

            array[xs:xe, :] = predata
            gain_array[xs:xe, :] = predata

            # insert data...
            buf = data.shape
            nxdata = buf[0]
            nydata = buf[1]

            # JB: have to track the number of xpixels
            xs = n_ext * precol + nxdata_sum
            xe = xs + nxdata

            # now log how many pixels that was
            nxdata_sum += nxdata

            # Data section
            # section = '[{:d}:{:d},{:d}:{:d}]'.format(preline,nydata-postline, xs, xe)  # Eliminate lines
            section = "[{:d}:{:d},{:d}:{:d}]".format(
                preline, nydata, xs, xe
            )  # DONT eliminate lines

            dsec.append(section)
            array[xs:xe, :] = data  # Include postlines
            gain_array[xs:xe, :] = gaindata  # Include postlines

            # ; insert postdata...
            buf = postdata.shape
            nxpost = buf[0]
            xs = nx - n_ext * postpix + kk * postpix
            xe = xs + nxpost
            section = "[:,{:d}:{:d}]".format(xs, xe)
            osec.append(section)

            array[xs:xe, :] = postdata
            gain_array[xs:xe, :] = postdata

        else:
            buf = data.shape
            nxdata = buf[0]
            nydata = buf[1]

            xs = (x1 - xmin) // xbin
            xe = xs + nxdata
            ys = (y1 - ymin) // ybin
            ye = ys + nydata - postline

            yin1 = preline
            yin2 = nydata - postline

            array[xs:xe, ys:ye] = data[:, yin1:yin2]
            gain_array[xs:xe, ys:ye] = gaindata[:, yin1:yin2]

    # make sure BZERO is a valid integer for IRAF
    obzero = head0["BZERO"]
    head0["O_BZERO"] = obzero
    head0["BZERO"] = 32768 - obzero

    # Return, transposing array back to goofy Python indexing
    return array.T, head0


def make_split_jsonl_files(
    config_type="tiny", data_dir="./data", outdir="./splits", seed=42
):
    """
    Create jsonl files for the GBI-16-2D dataset.

    config_type: str, default="tiny"
        The type of split to create. Options are "tiny" and "full".
    data_dir: str, default="./data"
        The directory where the FITS files are located.
    outdir: str, default="./splits"
        The directory where the jsonl files will be created.
    seed: int, default=42
        The seed for the random split.
    """
    random.seed(seed)
    os.makedirs(outdir, exist_ok=True)

    fits_files = glob(os.path.join(data_dir, "*.fits"))
    random.shuffle(fits_files)
    if config_type == "tiny":
        train_files = fits_files[:2]
        test_files = fits_files[2:3]
    elif config_type == "full":
        split_idx = int(0.8 * len(fits_files))
        train_files = fits_files[:split_idx]
        test_files = fits_files[split_idx:]
    else:
        raise ValueError("Unsupported config_type. Use 'tiny' or 'full'.")

    def create_jsonl(files, split_name):
        output_file = os.path.join(outdir, f"{config_type}_{split_name}.jsonl")
        with open(output_file, "w") as out_f:
            for file in tqdm(files):
                #print(file, flush=True, end="...")
                image_id = os.path.basename(file).split(".fits")[0]
                with fits.open(file, memmap=False) as hdul:
                    if len(hdul) > 1:
                        # multiextension ... paste together
                        data, header = read_lris(file)
                        dim_1 = data.shape[0]
                        dim_2 = data.shape[1]
                        header = fits.header.Header(header)
                    else:
                        dim_1 = hdul[0].header.get("NAXIS1", 0)
                        dim_2 = hdul[0].header.get("NAXIS2", 0)
                        header = hdul[0].header

                    ras = header.get("RA", "0")
                    ra = float(
                        Angle(f"{ras} hours").to_string(unit=u.degree, decimal=True)
                    )
                    decs = header.get("DEC", "0")
                    dec = float(
                        Angle(f"{decs} degrees").to_string(unit=u.degree, decimal=True)
                    )
                    pixscale = header.get("CD1_2", 0.135)
                    rotation = header.get("ROTPOSN", 0.0)
                    exposure_time = header.get("TTIME", 0.0)
                    item = {
                        "image_id": image_id,
                        "image": file,
                        "ra": ra,
                        "dec": dec,
                        "pixscale": pixscale,
                        "rotation_angle": rotation,
                        "dim_1": dim_1,
                        "dim_2": dim_2,
                        "exposure_time": exposure_time,
                    }
                    out_f.write(json.dumps(item) + "\n")

    create_jsonl(train_files, "train")
    create_jsonl(test_files, "test")


if __name__ == "__main__":
    make_split_jsonl_files("tiny")
    make_split_jsonl_files("full")