File size: 7,490 Bytes
f8c5348
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 71,
   "id": "b4c4c986",
   "metadata": {},
   "outputs": [],
   "source": [
    "import os\n",
    "from tqdm import tqdm\n",
    "import glob\n",
    "from astropy.io import fits\n",
    "import os\n",
    "from astropy.io import fits\n",
    "from astropy.wcs import WCS\n",
    "from spherical_geometry.polygon import SphericalPolygon\n",
    "import os\n",
    "from astropy.io import fits\n",
    "from astropy.wcs import WCS\n",
    "from spherical_geometry.polygon import SphericalPolygon\n",
    "from sklearn.cluster import AgglomerativeClustering\n",
    "import matplotlib.pyplot as plt\n",
    "import pandas as pd\n",
    "from astropy.io import fits\n",
    "import pandas as pd\n",
    "import matplotlib.pyplot as plt\n",
    "import numpy as np\n",
    "import shutil\n",
    "\n",
    "\"\"\"\n",
    "Use this code after downloading imagery using\n",
    "keck_downloading file.\n",
    "\n",
    "\"\"\"\n",
    "\n",
    "def get_all_fits_files(root_dir):\n",
    "    # Use glob to recursively find all .fits files\n",
    "    pattern = os.path.join(root_dir, '**', '*LR*.fits')\n",
    "    fits_files = glob.glob(pattern, recursive=True)\n",
    "    return fits_files"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 56,
   "id": "ba3bf5f7",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "1014"
      ]
     },
     "execution_count": 56,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "valid_fits_paths = get_all_fits_files('./GBI-16-2D/prelim_data')\n",
    "len(valid_fits_paths)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 57,
   "id": "a9a90d18",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "1014\n",
      "861\n"
     ]
    }
   ],
   "source": [
    "df_test = pd.read_json('./GBI-16-2D/splits/full_test.jsonl', lines=True)\n",
    "df_train = pd.read_json('./GBI-16-2D/splits/full_train.jsonl', lines=True)\n",
    "\n",
    "df = pd.concat([df_train, df_test])\n",
    "\n",
    "print(len(df))\n",
    "df = df[df['exposure_time'] >= 30]\n",
    "print(len(df))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 58,
   "id": "f965da24",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Symmetric?\n",
      "True\n",
      "(861, 861)\n"
     ]
    }
   ],
   "source": [
    "latitudes = list(df['dec'])\n",
    "longitudes = list(df['ra'])\n",
    "\n",
    "\"\"\"\n",
    "Code to compute all angular separations between pairwise images from single RA DEC\n",
    "values.\n",
    "\n",
    "\"\"\"\n",
    "\n",
    "n_points = len(latitudes)\n",
    "\n",
    "# Repeat each point n_points times for lat1, lon1\n",
    "lat1 = np.repeat(latitudes, n_points)\n",
    "lon1 = np.repeat(longitudes, n_points)\n",
    "\n",
    "# Tile the whole array n_points times for lat2, lon2\n",
    "lat2 = np.tile(latitudes, n_points)\n",
    "lon2 = np.tile(longitudes, n_points)\n",
    "\n",
    "# Calculates angular separation between two spherical coords\n",
    "# This can be lat/lon or ra/dec\n",
    "# Taken from astropy\n",
    "def angular_separation_deg(lon1, lat1, lon2, lat2):\n",
    "    lon1 = np.deg2rad(lon1)\n",
    "    lon2 = np.deg2rad(lon2)\n",
    "    lat1 = np.deg2rad(lat1)\n",
    "    lat2 = np.deg2rad(lat2)\n",
    "    \n",
    "    sdlon = np.sin(lon2 - lon1)\n",
    "    cdlon = np.cos(lon2 - lon1)\n",
    "    slat1 = np.sin(lat1)\n",
    "    slat2 = np.sin(lat2)\n",
    "    clat1 = np.cos(lat1)\n",
    "    clat2 = np.cos(lat2)\n",
    "\n",
    "    num1 = clat2 * sdlon\n",
    "    num2 = clat1 * slat2 - slat1 * clat2 * cdlon\n",
    "    denominator = slat1 * slat2 + clat1 * clat2 * cdlon\n",
    "\n",
    "    return np.rad2deg(np.arctan2(np.hypot(num1, num2), denominator))\n",
    "\n",
    "# Compute the pairwise angular separations\n",
    "angular_separations = angular_separation_deg(lon1, lat1, lon2, lat2)\n",
    "\n",
    "# Reshape the result into a matrix form\n",
    "angular_separations_matrix = angular_separations.reshape(n_points, n_points)\n",
    "\n",
    "def check_symmetric(a, rtol=1e-05, atol=1e-07):\n",
    "    return np.allclose(a, a.T, rtol=rtol, atol=atol)\n",
    "\n",
    "print(\"Symmetric?\")\n",
    "print(check_symmetric(angular_separations_matrix))\n",
    "print(angular_separations_matrix.shape)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 59,
   "id": "6670e994",
   "metadata": {},
   "outputs": [],
   "source": [
    "KECK_DEG_PER_PIXEL = 3.75e-5\n",
    "KECK_FOV = 3768 * KECK_DEG_PER_PIXEL\n",
    "THRESH = KECK_FOV * 2\n",
    "\n",
    "'''\n",
    "Initial agglomerative clustering.\n",
    "Since we don't have WCS info, the above threshold is very conservative.\n",
    "'''\n",
    "\n",
    "clustering = AgglomerativeClustering(n_clusters=None, metric='precomputed', linkage='single', distance_threshold=THRESH)\n",
    "labels = clustering.fit_predict(angular_separations_matrix)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 60,
   "id": "ec592fb5",
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 137/137 [00:00<00:00, 1211.58it/s]"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Max subset with minimum distance: 137\n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "\n"
     ]
    }
   ],
   "source": [
    "RA_NAME = 'ra'\n",
    "DEC_NAME = 'dec'\n",
    "\n",
    "\"\"\"\n",
    "Only select images that are at least THRESH apart from each other.\n",
    "\n",
    "\"\"\"\n",
    "\n",
    "def max_subset_with_min_distance(points, min_distance):\n",
    "    subset = []\n",
    "    for i, row in points.iterrows():\n",
    "        if all(angular_separation_deg(row[RA_NAME], row[DEC_NAME], existing_point[RA_NAME], existing_point[DEC_NAME]) >= min_distance for existing_point in subset):\n",
    "            subset.append(row)\n",
    "    return subset\n",
    "\n",
    "all_subsets = []\n",
    "\n",
    "for label in tqdm(np.unique(labels)):\n",
    "    cds = df[labels == label]\n",
    "    subset = max_subset_with_min_distance(cds, THRESH)\n",
    "    all_subsets.extend(subset)\n",
    "\n",
    "print(\"Max subset with minimum distance:\", len(all_subsets))\n",
    "\n",
    "locations = pd.DataFrame(all_subsets)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 74,
   "id": "b141c2e9",
   "metadata": {},
   "outputs": [],
   "source": [
    "for path in [\"./GBI-16-2D/prelim_data/\" + s.split('/')[-1] for s in locations['image']]:\n",
    "    shutil.move(path, path.replace(\"prelim_data\", \"data\"))"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.10.13"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}